
Chapter 2
Background: Train Operations
and Scheduling

Abstract In this chapter, backgroundmaterial and literature review on the operation
of trains and on urban rail train scheduling are presented. In Sect. 2.1, the operation of
trains is introduced, where the automatic train operation (ATO) system is explained
in detail. In addition, a brief introduction to fixed block signaling systems andmoving
block signaling systems is also given. An overview of optimal control approaches for
the trajectory planning of a single train and multiple trains is provided in Sect. 2.2.
Section2.3 introduces the urban rail transit scheduling problem is introduced. This
chapter concludes with a short summary in Sect. 2.4.

2.1 Operation of Trains

Nowadays, several dedicated high-speed railway lines and urban rail transit systems
with short headways are operated with a high degree of automation [1]. This requires
advanced train control systems to fulfill safety and operational requirements, such
as the European train control system and communication-based train control sys-
tems, which include equipment on board of trains as well as in control centers [2].
Advanced train control systems enable the energy-efficient driving of trains, which
becomes more and more important because of the operation costs and environmental
concerns [3].

The automatic train operation (ATO) system of an advanced train control system
drives the train according to a predefined train trajectory (i.e., a speed profile) [4] to
ensure punctuality and energy saving. In addition, signaling systems in train control
systems is important for running safety of trains. In this section, we first give a brief
introduction to ATO systems and then provide a short introduction to the principle
of signaling systems.

2.1.1 Automatic Train Operation

With the development of modern railway systems, automatic train control (ATC)
systems have become vital equipment that ensures the running safety, shortens the
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Fig. 2.1 The structure of an advanced automatic train control (ATC) system [5]

Fig. 2.2 The schematic diagram of the control actions in an ATO system

train headways, and improves the quality of train operations [4]. An advanced auto-
matic train control system could consist of an automatic train protection (ATP) sys-
tem, an automatic train supervision (ATS) system, and an ATO system as shown in
Fig. 2.1 [5]. The onboard ATP system is responsible for supervising the train speed
according to the safety speed profile and for applying an appropriate braking force if
necessary. In addition, the onboard ATP system also communicates with the wayside
ATP system to exchange information (e.g., temporary speed limits and the limits
of movement authority (i.e., the maximum position that a train is allowed to move
to)) to guarantee the safety of the operations of trains. The ATS system acts as an
interface between the operator and the railway system, managing trains according
to the specific regulation criteria. The ATO system controls the traction and braking
force to keep the train speed under the speed limit established by the ATP system.
The ATO system can be used to facilitate the driver or to operate the train in a fully
automatic mode; it thus plays a key role in ensuring accurate stopping, operation
punctuality, energy saving, and riding comfort [4].

An onboard ATO system consists of two levels of control actions, as concep-
tually illustrated in Fig. 2.2. The higher level optimizes the optimal speed-position
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reference trajectory for the operation of the train, where the line resistance, speed
limits, maximum traction and braking forces, etc. are taken into account. The low-
level control is used to make the train track the preplanned reference trajectory via
certain control methods (such as PID control, model predictive control, and robust
control). The traction or braking control commands are implemented to the train and
information on e.g. the speed and position of the train is collected by the sensors and
transferred to the ATO system in real time.

The driving performance including punctuality, energy consumption, etc. strongly
depends on the optimal reference trajectory both when the train is partly or fully
controlled by the ATO system. In addition, there exist several driver assistance sys-
tems to enhance the driving performance of the drivers, such as the FreightMiser,
Metromiser, and the driving style manager. The FreightMiser and Metromiser sys-
tems [6] were developed by the scheduling and control group of the University of
South Australia in order to calculate the optimal reference trajectory and to give
advices to the drivers of long-haul trains and suburban trains respectively. That
group mainly focused on minimizing the energy consumption through Pontryagin’s
principle [7]. The driving style manager [8] developed by Bombardier implements
dynamic programming to calculate energy-efficient train trajectories, which are then
displayed to the train driver. Whenever the train stops at a station, the driving style
manager calculates the optimal trajectory to the subsequent station using real-time
information. An energy-efficient driving module is integrated in the Trainguard MT
communications-based train control (CBTC) systemof Siemens,where a simulation-
based approach is applied to obtain the energy-optimal trajectories for trains [9]. The
interested reader is referred to [10] formore information on the implemented systems.

ATO systems and driver assistance systems are able to take advantage of a pre-
computed train speed trajectory. However, if the operational conditions change, the
ATO system will calculate an updated optimal trajectory. Therefore, it is important
to design efficient algorithms to find the optimal speed-position reference trajec-
tory. In the literature, various algorithms have been developed to optimize the speed
trajectory for trains and these algorithms will be reviewed in Sect. 2.2.

2.1.2 Principles of Signaling Systems

Block signaling is used to maintain a safe distance between successive trains on
the same track. There are two main types of signaling systems, namely fixed block
signaling systems and moving block signaling systems. The main principles of those
two signaling systems are presented next.

2.1.2.1 Fixed Block Signaling Systems

Fixed block signaling (FBS) systems are commonly used in railway operation sys-
tems nowadays [11]. In FBS systems, a track is divided into blocks, the length of
which depends on the maximum train speed, the worst-case braking rate, and the



10 2 Background: Train Operations and Scheduling

Fig. 2.3 Three aspect fixed block signaling system

number of signal aspects, such as a green, yellow, or red. Each block is exclusively
occupied by only one train and the presence of a train within a block is usually
detected by the track circuits [12]. Furthermore, blocks are protected by wayside
signals (i.e., signals next to the track) or cab signals (i.e., visual signals on board of
trains). Wayside signals are still typical in railways, however, cab signals are used
more and more, in particular on high-speed lines where wayside signals cannot be
watched clearly by drivers because of the high speed. There are one-block signal-
ing and multiple-block signaling in FBS systems [11]. In one-block signaling, the
indication of the block signal depends only on the state of the block section after
the signal and every block signal must have a distant signal, which is supposed to
provide the required approach information. In multiple-block signaling systems, the
indication of a block signal depends on the state of two or more subsequent block
sections.

A simple example is a two-block signaling system with three aspects, i.e. red,
yellow, and green, and which is also called a three-aspect signaling system. Such a
three-aspect signaling system on a line equipped with an ATP system is shown as
Fig. 2.3. Each block carries an electronic speed code through its track circuit. The
speed code data consists of two parts: the authorized-speed code for this block and the
target-speed code for the next block. The speed code data is coded by the electronic
equipment controlling the track circuitry and is transmitted via tracks. This speed
code data is then picked up by antennae on board of the train. If a train tries to enter a
zero speed block or an occupied block, or if it enters a section at a speed higher than
that authorized by the speed code, the onboard electronics will trigger an emergency
brake.

2.1.2.2 Moving Block Signaling Systems

With the increasing operational density in railway systems, railway systems with
an FBS system are often suffering from a shortage in transportation capacity. Even
though the line capacity of an FBS system can be increased using shorter block
lengths, the installation and maintenance cost of the signaling and track equipment
may not be justified by the increased capacity. Consequently, moving block signaling
(MBS) systems have been proposed to achieve a higher performance.

In anMBS system, the blocks are defined as dynamic safe zones around each train.
Regular communication between trains and local traffic centers is needed for knowing
the exact locations and speeds of all trains in the area controlled by the local traffic
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Fig. 2.4 The principle of a pure MBS system

center at any given time. Therefore, compared to an FBS system, an MBS system
allows trains to run closer together, thus increasing the transport capacity. The local
traffic center computes the so-called limit of movement authority for every train in
the area it controls and makes sure that each train will be running at a safe distance
with respect to other trains (cf. Fig. 2.4). More specifically, the limit of movement
authority represents the maximum position that a train is allowed to move to and
it is determined by the tail of the preceding train with a safety margin included.
In addition, the limit of movement authority of the following train moves forward
continuously as the leading train travels. In the literature, four MBS schemes [13]
have been discussed: moving space block signaling, moving time block signaling,
pure MBS, and relative MBS. Takeuchi et al. [12] evaluated the first three schemes
and compared them with the FBS scheme based on two basic criteria, viz., steady-
state performance and perturbed performance. It is concluded that the pure MBS
scheme gives the best performance. In addition, Takeuchi et al. [12] stated that the
concept of the relative MBS has never been accepted for regular rail traffic even
though it is routinely accepted for road traffic. Therefore, we will mainly consider
the pure MBS scheme later on in this book. However, the proposed approaches can
be extended to other MBS schemes too. Moreover, the pure MBS scheme is the basis
of all systems currently implemented in practice [12].

In a pure MBS system, the minimum distance between two successive trains is
basically the sum of the instantaneous braking distance required by the following
train and a safety margin (which is introduced to avoid collisions even if the leading
train comes to a sudden halt) as shown in Fig. 2.4. However, the minimum distance
between trains in practice should also take the train length and the running distance
during the reaction time of the drivers or ATC systems into account.

2.2 Optimal Trajectory Planning of Trains

In this section, we first give a literature review on the optimal trajectory planning
of a single train and then the state-of-the-art on the trajectory planning of multiple
trains with signaling constraints is reviewed.
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2.2.1 Optimal Trajectory Planning of a Single Train

The research on optimal trajectory planning for a single train started in the 1960s. A
simplified train optimal control problem was studied by Ichikawa [14], who solved
the problem using Pontryagin’s principle. Later on, many researchers explored this
optimal control problem by applying various methods, since it has significant effects
for energy saving, punctuality, and riding comfort. These methods can be grouped
into two main categories [8], viz., analytical solution and numerical optimization.
The aim of this section is to give an overview of the research on optimal trajectory
planning. Thereby, the research reported in literature will be reviewed using these
two categories.

• Analytical solution
The train is usually modeled as a point mass in the optimal control problem.
According to whether the traction and braking force is continuous or discrete,
there are two kinds of models, i.e. continuous-input models and discrete-input
models. The research on discrete-input models is mainly done by the SCG group
of the University of South Australia [6, 15]. A type of diesel-electric locomotive
is considered, the throttle of which can take only on a finite number of positions.
Each position determines a constant level of power supply to the wheels. Sev-
eral results, which include consideration of varying grades and speed restrictions,
were presented. However, nowadays many locomotives or motor cars can pro-
vide a continuous traction and braking force making the use of continuous-input
models necessary. For a continuous-input model, Howlett et al. [15] gave neces-
sary conditions for optimality and developed efficient numerical algorithms for
calculating the optimal control inputs. Furthermore, in [16, 17] a new method is
proposed to calculate the optimal switching points on a track with steep gradients.
Alrecht et al. [18] used perturbation analysis to prove that the optimal switching
points are uniquely defined for each steep section of track and deduced that the
global optimal strategy is unique. Khmelnitsky [19] described the mathematical
model of the train using the kinetic energy as the state variable. In that study, the
optimal control problem was solved under varying grade profile and speed restric-
tions of rail lines. Liu and Golovicher [3] developed an analytical approach which
combined the Pontryagin’s principle and some algebraic equations to obtain the
optimal solution, which contains the sequence of optimal controls and the change
points, for the continuous-input model.
The optimal trajectory of an analytical solution typically contains four optimal
control regimes: maximum acceleration, cruising at constant speed, coasting, and
maximum deceleration. It is worth to note that the analytical methods often meet
difficulties if more realistic conditions are considered that introduce complex non-
linear terms into the model equations and the constraints [20].

• Numerical optimization
A number of advanced techniques such as fuzzy and genetic algorithms have
been proposed to calculate the optimal reference trajectory for trains. Chang and
Xu [21] proposed a modified differential evolution algorithm to optimally tune the
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fuzzy membership functions that provide a trade-off between punctuality, riding
comfort, and energy consumption. The implementation of a genetic algorithm to
optimize the coasting regions along a line is presented by Chang and Sim [22].
Han et al. [23] also used a genetic algorithm to construct the optimal reference
trajectory taking non-constant grade profile, curve, and speed limits into account.
They concluded that the performance of their genetic algorithm is better than that
of the analytic solution obtained by Howlett and Pudney [6] in view of energy
saving.
The train optimal control problem was solved by nonlinear programming and
dynamic programming in [8]. The performance of a sequential quadratic
programming algorithm and discrete dynamic programming were evaluated. Ko
et al. [20] applied Bellman’s dynamic programming to optimize the optimal ref-
erence trajectory. Multi-parametric quadratic programming was used to calculate
optimal control laws for trains in [24]. The nonlinear train model with quadratic
resistance was approximated by a piecewise affine function. The resulting optimal
control law was a piecewise affine function, which relates the traction force to the
train position and speed.
Due to the comparable high computing power available nowadays, more and more
researchers are applying numerical optimization approaches to the train optimal
control problem.However, a disadvantage of numerical solutionmethods is that the
optimal solution is not always guaranteed and the convergence speed is uncertain
in general.

2.2.2 Optimal Trajectory Planning of Multiple Trains

The solution approaches for the trajectory planning of a single train presented in
Sect. 2.2.1 ignore the impact caused by signaling systems, e.g., an FBS system or
an MBS system. In the literature, Lu and Feng [25] considered the operation of two
trains on a same line and optimized the trajectory of the following train considering
the constraints caused by the leading train in an FBS system. More specifically,
a parallel genetic algorithm was used to optimize the trajectories for the leading
train and the following train, resulting in a lower energy consumption [25]. Gu
et al. [26] also considered the trajectory planning of two trains and they applied
nonlinear programming to optimize the trajectory for the following train, where two
situations of the leading train, i.e. running and stopped, were considered. In addition,
Ding et al. [27] took the constraints caused by an MBS system into account and
developed an energy-efficient multi-train control algorithm to calculate the optimal
trajectories. Three optimal control regimes, i.e. maximum traction, coasting, and
maximum braking, were adopted in the algorithm and the sequences of these three
regimes were determined by a predefined logic [27].

For optimal trajectory planning of trains, the analytical methods often meet dif-
ficulties to find analytical solutions if more realistic conditions are considered that
introduce complex nonlinear terms into the model equations and the constraints.



14 2 Background: Train Operations and Scheduling

The numerical optimization approaches are used more and more with the increas-
ing computing power even though the optimal solution is not always guaranteed.
In Chaps. 3 and 4 of this book, we will develop efficient approaches to provide a
balanced trade-off between accuracy and computational efficiency for the trajectory
planning of trains. Furthermore, since the operation of trains is highly influenced by
signaling systems and only a few researchers studied the impact of signaling sys-
tems in trajectory planning problem, we will also investigate the trajectory planning
problem with signaling constraints in this book.

2.3 Urban Rail Transit Scheduling Process

A general scheduling both for interurban and urban rail transit systems is a highly
complex process, which is often divided into several steps [28]: demand analysis, line
planning, train scheduling, rolling stock planning, and crew scheduling as shown in
Fig. 2.5. First, the passenger demand has to be assessed and analyzed. Consequently,
the amount of travelers wishing to go from certain origins to destinations is deter-
mined. Next, line planning is performed, which decides the routes or lines to be
operated and the nominal frequency of the service. During the train scheduling step,
all departure and arrival times at all stations of the lines are planned, i.e., the timetable
is determined. The rolling stock planning assigns trains to all the lines. Similarly,
the crews are distributed to different trains through the crew scheduling. If the crew
schedule is not feasible, then the rolling stock plan or even the train schedule should
be adapted. In addition, some researchers have studied the integration of steps, e.g.,
IVU plan introduces the integration of rolling stocking planning and crew scheduling
to achieve optimal deployment of resources [29].

For urban rail transit systems, not all steps are equally important. There are spe-
cific characteristics for urban rail transit systems. The degree of freedom in the line
planning is limited because the routes for the operation of trains have been fixed

Fig. 2.5 The hierarchical
planning process of railway
system [28]

http://dx.doi.org/10.1007/978-3-319-30889-0_3
http://dx.doi.org/10.1007/978-3-319-30889-0_4


2.3 Urban Rail Transit Scheduling Process 15

when the urban rail lines were constructed, i.e., trains do not move from one line
to another during regular operation. Therefore, only the frequencies of the service,
the stop-skip schedule on a certain line, and the size of train fleet can be regulated
through coupling or decoupling of multiple train units to adapt varying passenger
demands in urban rail transit lines. Therefore, in this section, the passenger demand
and the train scheduling for urban rail transit systems will be discussed in detail.

2.3.1 Passenger Demand

Passenger demand estimation is the basis for the whole planning process. Tradition-
ally, demandestimation relies heavily on costly andunreliablemanual data collection,
e.g., using passenger surveys to estimate origin-destination (OD) travel patterns. The
results obtained by this kind ofmanual data collectionmaybe subject to bias and even
error [30]. However, nowadays most urban rail transit systems have been equipped
with automatic passenger counting systems and automatic fare collection systems,
which can provide accurate passenger information to rail operators. Automatic pas-
senger counting systems are used to count the number of passengers getting on and
getting off trains at stations.With automatic fare collection systems, passengers need
to use their fare cards when entering and exiting urban rail transit systems, so the
location and time of each passenger’s fare transactions can be recorded.

Due to historical reasons and the complexity of optimizationmodels, the passenger
demand is usually described in one of the following two ways in the literature:

• OD-independent passenger demands
When describing the passenger demand in an OD-independent way, the origin
and destination of each passenger are not considered. The passenger arrival rate
at a certain station is then e.g. defined as the number of passengers arriving at the
station during a predefined time period [31].

• OD-dependent passenger demands
The OD-dependent passenger demand is defined as an estimation of the number
of people wishing to travel from an origin to a destination over a certain period
of time during the day. The OD-dependent passenger demand can be conducted
using the available passenger information, see [30, 32, 33] for details.

2.3.2 Train Scheduling

Train scheduling for interurban rail transit systems has been studied for decades
via different mathematical techniques [34], such as linear programming [35, 36],
integer or nonlinear programming [28, 37–39], and graph theory [40]. In interurban
rail transit systems, the available resources, e.g., the single tracks and the crossings,
are shared by trains with different origins and destinations. Thus, the trains may
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overtake and cross eachother at some specific locations, such as sidings and crossings.
However, urban rail transit systems have the following characteristics: (1) the urban
rail transit lines are usually separate from each other and have double tracks, where
each track is used for one direction of the train operations, (2) train overtakings and
crossings are normally not allowed during the operations, (3) the frequency of train
services is much higher when compared with interurban rail transit systems. Here,
we concentrate on urban rail transit systems.

2.3.2.1 Scheduling of Trains for Urban Rail Transit

In 1980, Cury et al. [41] presented a methodology to generate optimal schedules for
metro lines based on a model of the train movements and of the passenger behavior.
The performance index included passenger delay, passenger comfort, and the effi-
ciency of the operation of trains. The resulting nonlinear scheduling problem was
recast into several subproblems by Lagrangian relaxation and then solved in a hier-
archical manner [41]. Since the convergence rate of the hierarchical decomposition
algorithm can be quite poor in some cases, Assis and Milani [42] proposed a model
predictive control algorithmbased on linear programming to optimize the train sched-
ule. The algorithm proposed in [42] can effectively generate train schedules for the
whole day. Kwan and Chang [43] applied a heuristic-based evolutionary algorithm
to solve the train scheduling problem, where the operation costs and the passenger
dissatisfaction are included in the performance index. The train scheduling prob-
lem is formulated as a periodic event-scheduling problem based on a graph model
in [44], which is then solved using integer programming methods. The approach pro-
posed by Liebchen has been applied in Berlin subway systems [45]. The passenger
transfer behavior and transfer waiting times are considered in [46], which presents
a mixed-integer programming optimization model to synchronize the train sched-
ules for different urban rail transit lines. Furthermore, a demand-oriented timetable
design is proposed in [47], where the optimal train frequency and the capacity of
trains are first determined and then the schedule of trains are optimized. Vazquez
et al. [48] proposed a stochastic approximation approach to adjust the frequencies of
different urban transit lines according to the observed variable passenger demand.
However, the energy consumption of railway operation and dwell times at stations
are not included in the model of [48].

2.3.2.2 Real-Time Scheduling or Rescheduling of Trains

Since trains do not run exactly according to the predefined schedule in practice, real-
time scheduling approaches have been proposed. In the literature, there are several
interpretations for real-time scheduling. For interurban railway systems, real-time
scheduling is based on the existing timetable data and is used to handle route conflicts
due to train delays or incidents [40, 49–56]. However, in urban rail transit systems,
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real-time scheduling regulates the headways between trains based on a train schedule
with a constant headway.

Several rescheduling approaches have been proposed for urban rail transit sys-
tems [57]: holding, zone scheduling, short turning, deadheading, and/or stop-
skipping [31, 58–60]. Holding is used to regulate the headways by holding an
early-arriving train, or a train with a relatively short leading headway [31]. In zone
scheduling [58], the whole line is divided into several zones, where the trains stop at
all stations within a single zone and then run to the terminal station without stopping.
The required number of trains and drivers and passenger travel times may be reduced
by the zone scheduling, where the zones are defined based on the passenger flows.
There are short-turning and full-length trips operating on the line in the short-turning
strategy [59, 60], where the short-turning trips serve only the zonewith high demands
and the full-length trips run the whole line. The deadheading strategy involves some
trains running empty through a number of stations at the beginning of their trips to
reduce the headways at later stations [57, 61]. A dynamic stop-skipping strategy is
frequently used in lines with high demands, as it allows those trains that are late and
behind the schedule to skip certain low-demand stations and in that way increase the
running speed.

Wong and Ho [62] proposed dwell time and running time control for the real-
time rescheduling problem of urban rail transit systems. They applied a dynamic
programming approach to their rescheduling model to devise an optimal set of dwell
times and running times [62]. In addition, Goodman and Murata [63] formulated
the train rescheduling problem from the perspective of passengers, where a gradient
calculation method was developed to solve the rescheduling problem in real time.
Furthermore, Norio et al. [64] proposed to use passenger dissatisfaction as a criterion
for the rescheduling and applied ameta-heuristics algorithm to solve the rescheduling
problem.

As demonstrated in [65, 66], the stop-skipping strategy can reduce the passenger
travel time and the operation cost of rail transit operators. The stop-skipping operation
was first developed for the Chicago metro system in 1947 [65]. Now, the SEPTA line
in Philadelphia, Helsinki commuter rail, and the metro system in Santiago, Chile
apply the stop-skipping train schedule in practice. They apply a static stop-skipping
strategy [66], i.e., the A/B skip-stop strategy, where stations are divided into three
types: A, B, and AB; A train services stop at A stations and AB stations, while B train
services stop at B stations and AB stations. Major stations are usually labeled with
the type AB; so all trains stop there. The transit operators provide the stop-skipping
information to passengers via panels at platforms and announcements in the trains.
TheSantiagometro operator stated that passengers adapt to the stop-skipping strategy
quickly [65]. Elberlein [67] formulated the stop-skipping problem as a mixed integer
nonlinear programming problem (MINLP),where trains can skip some station strings
(i.e., a collection of consecutive stations). Fu et al. [57] represented the skipping of
stations by trains as binary variables and obtained a MINLP problem, which was
solved using an exhaustive approach. Lee [66] applied genetic algorithm to obtain
the optimal train schedule and to find the best combination of the stop-skipping trains
and the all-stop trains based on the A/B stop-skipping strategy.
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The passenger demand for urban rail transit systems increases dramatically and
varies significantly along urban rail transit lines and the time of the day. To satisfy the
passenger demand, trains are operated with small headway, which is around 2–5min.
Therefore, the scheduling of trains according to the passenger demand becomes
more and more important for reducing the operation costs and for guaranteeing
passenger satisfaction. In particular, the passenger satisfaction can be characterized
by waiting times at platforms, onboard travel times, the number of transfers, the
onboard crowdedness, etc.

2.4 Summary

A brief introduction to the operation of trains and the principle of signaling systems
has been presented in this chapter. We have briefly discussed the literature of the
optimal trajectory planning for trains and of the train scheduling for urban rail transit
systems. In addition, we have motivated why the work of this book is needed.
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