
Chapter 2
Pure Elastic Contact Force Models

Abstract The most important pure elastic constitutive laws commonly utilized to
model and analyze contact-impact events in the context of multibody mechanical
system dynamics are presented in this chapter. Additionally, the fundamental issues
related to the generalized contact kinematics, developed under the framework of
multibody system dynamics formulation, are briefly described. In this process, the
main contact parameters are determined, namely the indentation or pseudo-penetration
of the potential contacting points, and the normal contact velocity. Subsequently, the
linear Hooke’s contact force model and the nonlinear Hertz’s law are presented
together with a demonstrative example of application. Some other elastic contact force
models are also briefly described.

Keywords Multibody dynamics � Contact kinematics � Elastic contact force
models � Hooke force model � Hertz force model

2.1 Generalized Contact Kinematics

The generalized contact kinematics between two planar rigid bodies that can
experience an oblique eccentric impact is first described. Figure 2.1a shows two
convex bodies i and j in the state of separation that are moving with absolute
velocities _ri and _rj, respectively. The potential contact points are denoted by Pi and
Pj (Machado et al. 2012).

The evaluation of the contact kinematics involves the calculation of three fun-
damental quantities, namely the position of the potential contact points, their
Euclidian distance and their relative normal velocity (Glocker 2001; Machado et al.
2010). In general, this information must be available in order to allow the deter-
mination of the contact forces that develop during the contact-impact events
(Lankarnai and Nikravesh 1990; Gilardi and Sharf 2002; Hippmann 2004; Askari
et al. 2014). The possible motion of each body in a multibody system can be
quantified in terms of the distance and relative velocity of the potential contact
points. Positive values of that distance represent a separation, while negative values
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denote relative indentation or penetration of the contacting bodies. These two
scenarios are illustrated in Fig. 2.1a, b, respectively. The change in sign of the
normal distance indicates a transition from separation to contact, or vice versa
(Flores and Ambrósio 2010). In turn, positive values of the relative normal velocity
between the contact points, that is, the indentation or penetration velocity, indicate
that the bodies are approaching, which corresponds to the “compression phase”,
while negative values denote that the bodies are separating, that corresponds to the
“restitution phase”. The vectors of interest in studying contact-impact events are
represented in Fig. 2.1.

The vector that connects the two potential contact points, Pi and Pj, is a gap
function that can be expressed as (Nikravesh 1988)

d ¼ rPj � rPi ð2:1Þ

where both rPi and rPj are described in global coordinates with respect to the inertial
reference frame, that is

rPk ¼ rk þAis0Pi k ¼ i; jð Þ ð2:2Þ

in which ri and rj represent the global position vectors of bodies i and j, while s0Pi
and s0Pj are the local components of the contact points with respect to local coor-
dinate systems. The planar rotational transformation matrices Ak are given by
(Nikravesh 1988; Flores 2015)

(a)

(b)

Fig. 2.1 a Two bodies in the
state of separation; b two
bodies in the state of contact
(indentation, δ)
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Ak ¼ cos/k �sin/k
sin/k cos/k

� �
k ¼ i; jð Þ ð2:3Þ

A normal vector to the plane of contact, illustrated in Fig. 2.1b, can be deter-
mined as

n ¼ d
d

ð2:4Þ

where the magnitude of the vector d is evaluated as

d ¼ nTd ð2:5Þ

The minimum distance condition given by Eq. (2.5) is not enough to find the
possible contact points between the contact bodies, since it does not cover all
possible scenarios that may occur in the contact problem. Therefore, the contact
points are defined as those that correspond to maximum indentation, that is, the
points of maximum relative deformation, measured along the normal direction
(Lopes et al. 2010; Machado et al. 2014). Thus, three geometric conditions for
contact can be defined as, (i) the distance between the potential contact points given
by vector d corresponds to the minimum distance; (ii) the vector d has to be
collinear with the normal vector ni; (iii) the normal vectors ni and nj at the potential
contact points have to be collinear. The conditions (ii) and (iii) can be written as
two cross products as (Machado et al. 2011)

nj � ni ¼ 0 ð2:6Þ

d� ni ¼ 0 ð2:7Þ

The geometric conditions given by Eqs. (2.6) and (2.7) are two nonlinear
equations with two unknowns, which can be solved using a Newton-Raphson
iterative procedure (Atkinson 1989; Nikravesh 1988). This system of equations
provides the solutions for the location of the potential contact points. Once the
potential contact points are found, the next step deals with the evaluation of the
relative indentation between the contact bodies as (Flores and Ambrósio 2004)

d ¼
ffiffiffiffiffiffiffiffi
dTd

p
ð2:8Þ

The velocities of the contact points expressed in terms of the global coordinate
system are evaluated by differentiating Eq. (2.2) with respect to time, yielding

_rPk ¼ _rk þ _Aks0Pk k ¼ i; jð Þ ð2:9Þ
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in which the dot denotes the derivative with respect to time. The relative normal
velocity is determined by projecting the contact velocity onto the direction normal
to the plane of contact, yielding (Flores et al. 2004)

vN ¼ _d ¼ nT _rPj � _rPi
� �

ð2:10Þ

This way of representing the relative normal velocity is quite convenient, in the
measure that it is not necessary to deal with the derivation of the normal unit vector
because this velocity component is not directly obtained by differentiating Eq. (2.5)
(Flores et al. 2006; Tian et al. 2009). Furthermore, the fully rigid body velocity
kinematics can easily be applied. The computational implementation of this
methodology is quite efficient. However, the above description is restricted to
convex rigid bodies with a smooth surface at least in a neighborhood of the po-
tential contact points such that the contact area reduces to a single point which may
move relative to the surfaces of the bodies. This approach can be extended to more
generalized contact geometries as long as a common tangent plane of the contacting
bodies is uniquely defined (Glocker 2004; Pombo and Ambrósio 2008; Machado
et al. 2011, 2014).

2.2 Linear Hooke Contact Model

The simplest elastic contact force model is represented by a linear spring element,
in which the spring embodies the elasticity of the contacting surfaces. This linear
contact force model, also known as Hooke’s law, can be expressed as (Shigley and
Mischke 1989; Ravn 1998).

FN ¼ kd ð2:11Þ

where k is the spring stiffness and δ represents the relative penetration or defor-
mation of the colliding bodies and FN is the resulting normal contact force. The
spring stiffness of the Hooke contact force model can be evaluated by using ana-
lytical expressions for simple cases, obtained by means of finite element method or
determined through experimental tests performed within the linear elastic domain
(Zhu et al. 1999; Machado et al. 2012; Koshy et al. 2013). In turn, the penetration is
determined from the relative position of the contacting bodies.

One primary weakness associated with this contact force model is the quan-
tification of the spring constant, which depends on the geometric and material
characteristics of the contacting bodies. Furthermore, the assumption of a linear
relation between the penetration and the contact force is at best a rough approxi-
mation, because the contact force is affected by the shape, surface conditions and
mechanical properties of the contacting bodies, all of which suggest a more
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complex relation. In addition, the contact force model given by Eq. (2.11) does not
account for the energy loss during an impact event.

For this linear contact force model, Fig. 2.2 shows the penetration δ, the normal
contact force FN and the force-penetration relation of two externally colliding
spheres. The spheres are identical and have the same radius of 50 mm. The left
sphere has an approaching initial velocity of 0.5 m/s, while the right sphere is
stationary. A relative spring stiffness of 2.4 × 109 N/m is utilized for the results in
Fig. 2.2. The spheres are considered to be made of steel with the Young’s modulus
and the Poisson’s ratio of 207 GPa and 0.3, respectively.

2.3 Nonlinear Hertz Contact Model

The most popular contact force model for representing the collision between two
spheres of isotropic materials is based on the work by Hertz, utilizing the theory of
elasticity (Hertz 1881; Timoshenko and Goodier 1970; Flores et al. 2006). It should
be noted that the Hertz contact theory is restricted to frictionless surfaces and
perfectly elastic solids. The Hertz law relates the contact force with a nonlinear
power function of penetration and is expressed as (Johnson 1982)

FN ¼ Kdn ð2:12Þ

where K is a generalized stiffness parameter and δ is the same relative penetration or
indentation. The exponent n is equal to 3/2 for the case where there is a parabolic
distribution of contact stresses, as in the original work by Hertz (1881). For
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Fig. 2.2 Externally colliding spheres modeled by Hooke contact force law: a scenario of the
impact between two spheres; b penetration and contact force versus time; c force-penetration
relation
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materials such as glass or polymer, the value of the exponent n can be either higher
or lower, leading to a convenient contact force expression which is based on
experimental work, but that should not be confused with the Hertz theory
(Shivaswamy 1997; Ravn 1998; Dietl et al. 2000).

The generalized stiffness parameter K is dependent on the material properties
and shape of the contact surfaces. For two spheres in contact, the generalized
stiffness parameter is a function of radii of the spheres i and j and the material
properties as (Goldsmith 1960)

K ¼ 4
3ðri þ rjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RiRj

Ri þRj

s
ð2:13Þ

in which the material parameters σi and σj are given by

rl ¼ 1� m2l
El

; l ¼ i; jð Þ ð2:14Þ

and the quantities νl and El are, respectively, the Poisson’s ratio and Young’s
modulus associated with each sphere. For contact between a sphere i and a plane
surface body j, the generalized stiffness parameter depends on the radius of the
sphere and the material properties of the contacting surfaces, and is expressed as
(Lankarani 1988; Flores et al. 2008)

K ¼ 4
3ðri þ rjÞ

ffiffiffiffiffi
Ri

p ð2:15Þ

It is important to note that, by definition, the radius is negative for concave
surfaces, such as in mechanical joint clearances, and positive for convex surfaces,
such as in external impacts (Hertz 1881).

Figure 2.3 illustrates the penetration, the normal contact force and the
force-penetration relation for two externally colliding spheres modeled by the Hertz
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Fig. 2.3 Externally colliding spheres modeled by Hertz contact law: a penetration and contact
force versus time; b force-penetration relation
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contact force law. The generalized stiffness is evaluated for the two steel spheres to
be 2.4 × 1010 N/m3/2. The impact scenario is the same as described for the Hooke
law example presented in Fig. 2.2. It is apparent that the Hertz contact law given by
Eq. (2.12) is limited to contacts with elastic deformations and does not include
energy dissipation. This contact force model represents the contact process as a
non-linear spring along the direction of collision. The advantages of the Hertz
model relative to Hooke law reside on its physical meaning represented by both its
nonlinearity and by its relation between the generalized stiffness and geometric and
material properties of the contacting surfaces. Although the Hertz law is based on
the elasticity theory, several studies have been performed to extend its application
to include energy dissipation. In fact, the process of energy transfer is an extremely
complex task of modeling contact events. When an elastic body is subjected to
cyclic loads, the energy loss due to internal damping causes a hysteresis loop in the
force-penetration diagram, which corresponds to energy dissipation (Shivaswamy
1997; Alves et al. 2015).

2.4 Other Elastic Contact Models

Yang and Sun (1985) linearized the Hertz’s law to model the contact force
developed in spur gear dynamics, yielding the following expression

FN ¼ kd ð2:16Þ

in which the contact stiffness is given by

k ¼ pEL
4ð1�m2Þ ð2:17Þ

where E is the Young’s modulus, ν is the Poisson’s ratio and L denotes the
thickness of the gears. Dubowsky and Freudenstein (1971) also considered a linear
relation between indentation and contact force for the case of contact of a journal
inside of a bearing when the impact takes place at low velocity and the loads
involved are small. The linearization of the Hertz’s law may not be very accurate
because it does not represent the overall nonlinear nature of an impact, and limits its
application as it was avowed by Hunt and Crossley (1975).

One limitation associated with the Hertz’s law deals with the evaluation of the
contact stiffness parameter and nonlinear exponent, particularly when the bodies
contact in a line or surface instead of a point (Pereira et al. 2011). For spherical
contact geometries, where the contact areas assume a circular or ellipsoidal shape,
the contact stiffness parameter used to define the constitutive contact force law is
estimated by applying the Hertz theory of contact. However, for rectangular contact
areas, that is, for contacts involving cylindrical shape bodies with parallel axis, the
physical meaning of the contact stiffness parameter is not straightforward and its
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value is not easy to obtain. In empirical and theoretical investigations, Brändlein
et al. (1998) proposed the following mathematical relation for the contact between
cylinders

FN ¼ Kd1:08 ð2:18Þ

It is worth to note that K depends on the contact length and is independent of the
contact radii of the bodies. A similar force-indentation relation for the contact
between a cylinder of infinite length and a half space was presented by Nijen
(1997).

Another weakness associated with Hertz’s law is that it assumes that the size of
contact area is small when compared to the curvature radii of the surfaces in
contact. This assumption seems good enough for nonconformal contacts. However,
for the case of conformal contacts this is not entirely true due to the large defor-
mations that occur at the contact zone (Johnson 1999). Goodman and Keer (1965)
demonstrated that conformal contacts can be up to 25 percent stiffer in compression
than would be predicted by the Hertzian contact theory. This idea has been cor-
roborated by Pereira et al. (2011). Liu et al. (2006) extended the Hertz contact law
to propose a new force model for the particular case of spherical joints with
clearance. In a previous work, Liu et al. (2005) presented a compliant force model
for cylindrical joints with clearances, where the Hertz’s law is only valid for large
clearance sizes and small loads (Dubowsky and Freudenstein 1971; Tian et al.
2011). The force model proposed by Liu et al. (2005) can be expressed as

FN ¼ pE�Ld
2

d
2ðcþ dÞ
� �1

2

ð2:19Þ

where E* represents the composite modulus of the two colliding cylinders, L is the
length of cylindrical joint, δ denotes the relative indentation and c is the radial
clearance size. This approach was compared and validated with results obtained
with FEM analysis (Liu et al. 2007). The composite modulus can be evaluated
using the following mathematical expression

E� ¼ 1� m2i
Ei

þ 1� m2j
Ej

 !�1

ð2:20Þ

More recently, Luo and Nahon (2011) extended the Hertz contact approach for
polyhedral contacting bodies, namely for line and face contacting objects, in which
they explicitly consider the distinction between true contact geometry and inter-
ference geometry. This new approach was accompanied with both FEM and
experimental discussions. Another way to overcome the difficulties of the Hertz’s
law, when the contact area cannot be represented as a single contact point, is to
consider the elastic foundation approach (Hippmann 2004). This model is based on
representation of the body surfaces by polygon meshes and contact force
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determination by the elastic foundation model. This approach allows for the
modeling of contact between complex geometries and scenarios where the contact
area is relatively large, having good computational efficiency when compared with
the FEM analysis. Bei and Fregly (2004) proposed a computationally efficient
methodology for combining multibody dynamic simulation method with a
deformable contact knee model. In this study, the contact between knee surfaces
was modeled through the use of the elastic foundation approach for both natural and
artificial knee articulations. Pérez-González et al. (2008) developed a modified
elastic foundation approach for application in three-dimensional models of the
prosthetic knees, in which both contacting bodies are considered to be deformable
solids with their own elastic properties. Mukras et al. (2010) also used the elastic
foundation method to evaluate the contact forces for wear modeling and analysis in
the framework of multibody systems formulations. Their results obtained for a
planar slider-crank mechanism with a dry clearance revolute joint were compared
and validated with those produced via FEM.

At this stage, it must be noted that the contact force models described in this
chapter do not consider the energy dissipation during the contact process. In fact,
the process of energy transfer is an extremely complex task of modeling
contact-impact events. When a body is subjected to cyclic loads, the energy loss
due to internal damping causes a hysteresis loop in the force-indentation diagram,
which corresponds to energy dissipation. Krempf and Sabot (1993) identified the
damping capability of a dry sphere pressed against a plate made by steel (Hertzian
contact) from experimental nonlinear resonance curves. These authors observed that
the contact damping shows approximately viscous behavior (Kelvin and Voigt
like). This corresponds to the theoretical considerations presented by Hunt and
Crossley (1975). Sabot et al. (1998) experimentally studied a ball normally pre-
loaded by a moving rigid mass. They clearly exhibited the softening primary res-
onance when no loss of contact occurs and analyzed mechanical sources of
damping. In a similar manner to Krempf and Sabot, Johnson (1961) measured the
energy loss within a dry contact, in which two spherical surfaces were pressed
together and excited by an oscillating force. The force direction deviates from the
normal direction to the contact plane, and notable energy dissipation was observed.
The fundamental issues associated with internal damping that occurs in the contact
process will be analyzed and discussed in the next chapter.
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