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Abstract Let E=Q be an elliptic curve and p a rational prime of good ordinary
reduction. For every imaginary quadratic field K=Q satisfying the Heegner hypoth-
esis for E we have a corresponding line in E.K/ ˝ Qp, known as a shadow line.
When E=Q has analytic rank 2 and E=K has analytic rank 3, shadow lines are
expected to lie in E.Q/ ˝ Qp. If, in addition, p splits in K=Q, then shadow lines
can be determined using the anticyclotomic p-adic height pairing. We develop an
algorithm to compute anticyclotomic p-adic heights which we then use to provide
an algorithm to compute shadow lines. We conclude by illustrating these algorithms
in a collection of examples.
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1 Introduction

Fix an elliptic curve E=Q of analytic rank 2 and an odd prime p of good ordinary
reduction. Assume that the p-primary part of the Tate–Shafarevich group of E=Q
is finite. Let K be an imaginary quadratic field such that the analytic rank of E=K
is 3 and the Heegner hypothesis holds for E, i.e., all primes dividing the conductor
of E=Q split in K. We are interested in computing the subspace of E.K/ ˝ Qp

generated by the anticyclotomic universal norms. To define this space, let K1 be the
anticyclotomic Zp-extension of K and Kn denote the subfield of K1 whose Galois
group over K is isomorphic to Z=pnZ. The module of universal norms is defined by

U D
\

n�0
NKn=K.E.Kn/˝ Zp/;

where NKn=K is the norm map induced by the map E.Kn/ ! E.K/ given by
P 7! P

�2Gal.Kn=K/
P� .

Consider

LK WD U ˝Qp 	 E.K/˝Qp:

By work of Cornut [6] and Vatsal [18], our assumptions on the analytic ranks
of E=Q and E=K together with the assumed finiteness of the p-primary part of the
Tate–Shafarevich group of E=Q imply that dim LK 
 1. Bertolini [2] showed that
dim LK D 1 under certain conditions on the prime p. Wiles and Çiperiani [4, 5]
have shown that Bertolini’s result is valid whenever Gal.Q.Ep/=Q/ is not solvable;
here Ep denotes the full p-torsion of E and Q.Ep/ is its field of definition. The
1-dimensional Qp-vector space LK is known as the shadow line associated to the
triple .E;K; p/.

Complex conjugation acts on E.K/ ˝ Qp, and we consider its two eigenspaces
E.K/C˝Qp and E.K/�˝Qp. Observe that E.K/C˝Qp D E.Q/˝Qp. By work of
Skinner–Urban [15], Nekovář [14], Gross–Zagier [8], and Kolyvagin [10] we know
that

dim E.K/C ˝Qp 
 2 and dim E.K/� ˝Qp D 1:

Then by the Sign Conjecture [11] we expect that

LK 	 E.Q/˝Qp:

Our main motivating question is the following:

Question (Mazur and Rubin). As K varies, we presumably get different shadow
lines LK – what are these lines, and how are they distributed in E.Q/˝Qp ?
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In order to gather data about this question one can add the assumption that p
splits in K=Q and then make use of the anticyclotomic p-adic height pairing on
E.K/ ˝ Qp. It is known that U is contained in the kernel of this pairing [12]. In
fact, in our situation we expect that U equals the kernel of the anticyclotomic p-adic
height pairing. Indeed we have dim E.K/� ˝ Qp D 1 and the weak Birch and
Swinnerton–Dyer Conjecture for E=Q predicts that dim E.Q/˝Qp D 2, from which
the statement about U follows by the properties of the anticyclotomic p-adic height
pairing and its expected non-triviality. (This is discussed in Sect. 4 in further detail.)
Thus computing the anticyclotomic p-adic height pairing allows us to determine the
shadow line LK .

Let �.K/ be the Galois group of the maximal Zp-power extension of K, and let
I.K/ D �.K/ ˝Zp Qp. Identifying �.K/ with an appropriate quotient of the idele
class group of K, Mazur et al. [13, §2.6] gave an explicit description of the universal
p-adic height pairing

. ; / W E.K/ � E.K/! I.K/:

One obtains various Qp-valued height pairings on E by composing this universal
pairing with Qp-linear maps I.K/! Qp. The kernel of such a (non-zero) Qp-linear
map corresponds to a Zp-extension of K.

In particular, the anticyclotomic Zp-extension of K corresponds to a Qp-linear
map � W I.K/ ! Qp such that � ı c D ��, where c denotes complex conjugation.
The resulting anticyclotomic p-adic height pairing is denoted by . ; /�. One key step
of our work is an explicit description of the map �, see Sect. 2. As in [13], for
P 2 E.K/ we define the anticyclotomic p-adic height of P to be h�.P/ D � 12 .P;P/�.
Mazur et al. [13, §2.9] provide the following formula1 for the anticyclotomic p-adic
height of a point P 2 E.K/:

h�.P/ D ��.��.P// � ��.��.Pc//C
X

w−p1
�w.dw.P//;

where � is one of the prime divisors of p in K and the remaining notation is defined
in Sect. 3. An algorithm for computing �� was given in [13]. Using our explicit
description of �, in Sect. 3 we find a computationally feasible way of determining
the contribution of finite primes w which do not divide p. This enables us to compute
anticyclotomic p-adic height pairings.

We then proceed with a general discussion of shadow lines and their identifi-
cation in E.Q/ ˝ Qp, see Sect. 4. In Sect. 5 we present the algorithms that we
use to compute anticyclotomic p-adic heights and shadow lines. We conclude by
displaying in Sect. 6 two examples of the computation of shadow lines LK on the
elliptic curve “389.a1” with the prime p D 5 and listing the results of several
additional shadow line computations.

1The formula appearing in [13, §2.9] contains a sign error which is corrected here.
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2 Anticyclotomic Character

Let K be an imaginary quadratic field with ring of integers OK in which p splits
as pOK D ��c, where c denotes complex conjugation on K. Let A� be the group
of ideles of K. We also use c to denote the involution of A� induced by complex
conjugation on K. For any finite place v of K, denote by Kv the completion of K
at v, Ov the ring of integers of Kv , and 
v the group of roots of unity in Ov . Let
�.K/ be the Galois group of the maximal Zp-power extension of K. As in [13], we
consider the idele class Qp-vector space I.K/ D �.K/˝Zp Qp. By class field theory

�.K/ is a quotient of J0 WD A�=K�C�Q
w−p O�

w by its finite torsion subgroup T ,
see the proof of Theorem 13.4 in [19]. The bar in the definition of J0 denotes closure
in the idelic topology, and the subgroup T is the kernel of the Nth power map on J0
where N is the order of the finite group

A�=K�C�Y

w−p

O�
w .1C �O�/.1C �cO�c/:

Thus we have

I.K/ D J0=T ˝Zp Qp: (1)

We shall use this idelic description of �.K/ in what follows.

Definition 2.1 (Anticyclotomic p-adic Idele Class Character). An anticyclo-
tomic p-adic idele class character is a continuous homomorphism

� W A�=K� ! Zp

such that � ı c D ��.

Lemma 2.2. Every p-adic idele class character

� W A�=K� ! Zp

factors via the natural projection

A�=K� � A�=
�

K�C�Y

w−p

O�
w

Y

vjp

v

�

:

Proof. This is an immediate consequence of the fact that Zp is a torsion-free pro-p
group. ut

The aim of this section is to define a non-trivial anticyclotomic p-adic idele class
character. By the identification (1), such a character will give rise to a Qp-linear map
I.K/! Qp which cuts out the anticyclotomic Zp-extension of K.
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2.1 The Class Number One Case

We now explicitly construct an anticyclotomic p-adic idele class character � in the
case when the class number of K is 1.

Recall our assumption that p splits in K=Q as pOK D ��c and let

U� D 1C �O� and U�c D 1C �cO�c :

Define a continuous homomorphism

' W A� ! U� � U�c

as follows. Let .xv/v 2 A�. Under our assumption that K has class number 1, we
can find ˛ 2 K� such that

˛xv 2 O�
v for all finite v:

Indeed, the ideal av corresponding to the place v is principal, say generated by
$v 2 OK . Then take ˛ D Q

v $
�ordv.xv/
v , where the product is taken over all finite

places v of K. We define

'..xv/v/ D ..˛x�/
p�1; .˛x�c/p�1/: (2)

Note that since p is split in K we have O�
� Š Z�

p Š 
p�1 � U� , and similarly
for �c. To see that ' is independent of the choice of ˛, we note that any other choice
˛0 2 K� differs from ˛ by an element of O�

K . Since K is an imaginary quadratic field,
O�

K consists entirely of roots of unity. In particular, under the embedding K ,! K�
we see that O�

K ,! 
p�1. Thus, any ambiguity about ˛ is killed when we raise
˛ to the .p � 1/-power. Therefore, ' is well-defined. The continuity of ' is easily
verified.

Proposition 2.3. Suppose that K has class number 1. Then the map ' defined in
(2) induces an isomorphism of topological groups

A�=
�

K�C�Y

w−p

O�
w

Y

vjp

v

�

! U� � U�c :

Proof. For v 2 f�; �cg, the p-adic logarithm gives an isomorphism
Uv Š 1C pZp ! pZp. Hence, raising to the power .p � 1/ is an automorphism
on Uv for v 2 f�; �cg and consequently ' is surjective. It is easy to see
that K�C�Q

w−p O�
w � ker'. Since 
v Š F�

p for v 2 f�; �cg, we have
Q

vjp 
v � ker'. We claim that ker' D K�C�Q
w−p O�

w

Q

vjp 
v . Let .xv/v 2 ker'
and let ˛ 2 K� be such that ˛xv 2 O�

v for all finite v. It suffices to show
that .˛xv/v 2 C�Q

w−p O�
w

Q

vjp 
v . This is clear: since .xv/v 2 ker', we have
˛xv 2 
v for v 2 f�; �cg.
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Finally, since ' is a continuous open map, it follows that ' induces the desired
homeomorphism. ut

By Lemma 2.2 we have reduced the problem of constructing an anticyclotomic
p-adic idele class character to the problem of constructing a character

� W U� � U�c ! Zp (3)

satisfying �ıc D ��. Note that this last condition implies that �.x; y/ D �.x=yc; 1/.
Explicitly:

�.x; y/ D �� ı c.x; y/ D ��.yc; xc/ D ��.yc; 1/ � �.1; xc/

D ��.yc; 1/C �.x; 1/ D �.x=yc; 1/: (4)

In other words, � factors via the surjection

f� W U� � U�c � U�

.x; y/ 7! x=yc:

Therefore, it is enough to define a character U� ! Zp. Fixing an isomorphism
of valued fields  W K� ! Qp gives an identification U� Š 1 C pZp. Now, up
to scaling, there is only one choice of character, namely logp W 1 C pZp ! pZp.
We write logp for the unique group homomorphism logp W Q�

p ! .Qp;C/ with
logp.p/ D 0 extending logp W 1C pZp ! pZp. The extension to Z�

p of the map logp
is explicitly given by

logp.u/ D
1

p � 1 logp.u
p�1/:

We choose the normalization � D 1
p.p�1/ logp ı ı f� ı '. We summarize our

construction of the anticyclotomic p-adic idele class character � in the following
proposition:

Proposition 2.4. Suppose that K has class number 1. Fix a choice of isomorphism
 W K� ! Qp. Consider the map � W A�=K� ! Zp such that

�..xv/v/ D 1

p
logp ı 

�

˛x�
˛cxc

�c

�

where ˛ 2 K� is such that ˛xv 2 O�
v for all finite v. Then � is the unique (up to

scaling) non-trivial anticyclotomic p-adic idele class character.

Proof. Let ˛ 2 K� be such that ˛xv 2 O�
v for all finite v. By our earlier discussion

and the definition of the extension of logp to Z�
p , we have
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�..xv/v/ D 1

p.p � 1/ logp ı 
�

.˛x�/p�1

.˛cxc
�c/p�1

�

D 1

p
logp ı 

�

˛x�
˛cxc

�c

�

:

ut

2.2 The General Case

There is a simple generalization of the construction of � to the case when the class
number of K may be greater than one. Let h be the class number of K. We can no
longer define the homomorphism ' of (2) on the whole of A� because OK is no
longer assumed to be a principal ideal domain. However, we can define

'h W .A�/h ! U� � U�c

in a similar way, as follows. Let av be the ideal of K corresponding to the place v.
Then ah

v is principal, say generated by $v 2 OK . For .xv/v 2 A� we set ˛.v/ D
$v

�ordv.xv/. Then ˛.v/xh
v 2 O�

v and ˛.v/ 2 O�
w for all w ¤ v. Note that ˛.v/ D 1

for all but finitely many v. Set ˛ D Q

v ˛.v/ and observe that ˛xh
v 2 O�

v for all v.
Then we define 'h by

'h..xv/
h
v/ D ..˛xh

�/
p�1; .˛xh

�c/
p�1/: (5)

Fix an isomorphism  W K� ! Qp. As before, we can now use the p-adic logarithm
to define an anticyclotomic character � W .A�/h ! Zp by setting

� D 1

p.p � 1/ logp ı ı f� ı 'h:

We extend the definition of � to the whole of A� by setting �..xv/v/ D 1
h�..xv/

h
v/.

As in Proposition 2.4, we now summarize our construction of the anticyclotomic
p-adic idele class character in this more general setting.

Proposition 2.5. Let h be the class number of K, and fix a choice of isomorphism
 W K� ! Qp. Consider the map � W A�=K� ! 1

hZp such that

�..xv/v/ D 1

hp
logp ı 

�

˛xh
�

˛cxch
�c

�

where ˛ 2 K� is such that ˛xh
v 2 O�

v for all finite v. Then � is the unique (up to
scaling) non-trivial anticyclotomic p-adic idele class character.
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Remark 2.6. Note that � W A�=K� ! 1
hZp, so if p j h, then � is not strictly an

anticyclotomic idele class character in the sense of Definition 2.1. However, the
choice of scaling of � is of no great importance since our purpose is to use � to
define an anticyclotomic height pairing on E.K/ and compute the kernel of this
pairing.

Remark 2.7. The ideal
Q

v a
�h ordv.xv/
v is principal and a generator of this ideal

is the element ˛ 2 K that we use when evaluating the character � defined in
Proposition 2.5.

3 Anticyclotomic p-adic Height Pairing

We wish to compute the anticyclotomic p-adic height h� using our explicit descrip-
tion of the anticyclotomic idele class character � given in Proposition 2.5. For any
finite prime w of K, the natural inclusion K�

w ,! A� induces a map �w W K�
w ! I.K/,

and we write �w D � ı �w. For every finite place w of K and every non-zero point
P 2 E.K/ we can find dw.P/ 2 Ow and aw.P/; bw.P/ 2 Ow, each relatively prime to
dw.P/, such that

.�w.x.P//; �w.y.P/// D
�

aw.P/

dw.P/2
;

bw.P/

dw.P/3

�

: (6)

We refer to dw.P/ as a local denominator of P at w. The existence of dw.P/ follows
from the Weierstrass equation for E and the fact that Ow is a principal ideal domain.
Finally, we let �� denote the �-adic � -function of E.

Given a non-torsion point P 2 E.K/ such that

• P reduces to 0 modulo primes dividing p, and
• P reduces to the connected component of all special fibers of the Neron model

of E,

we can compute its anticyclotomic p-adic height using the following formula2

[13, §2.9]:

h�.P/ D ��.��.P// � ��.��.Pc//C
X

w−p1
�w.dw.P//: (7)

In the following lemmas, we make some observations which simplify the
computation of h�.P/.

Lemma 3.1. Let w be a finite prime such that w − p. Let xw 2 K�
w . Then �w.xw/

only depends on ordw.xw/. In particular, if xw 2 O�
w , then �w.xw/ D 0.

2The formula appearing in [13, §2.9] contains a sign error which is corrected here.
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Proof. This follows immediately from Lemma 2.2. Alternatively, note that the
auxiliary element ˛ used in the definition of � only depends on the valuation
of xw. ut
Lemma 3.2. Let w be a finite prime of K. Then �wc D ��w ı c. In particular, if
w D wc, then �w D 0.

Proof. This is an immediate consequence of the relations � ı c D �� and
c ı ��c D �� ı c. ut

Lemma 3.2 allows us to write the formula (7) for the anticyclotomic p-adic height
as follows:

h�.P/ D ��
�

��.P/

��.Pc/

�

C
X

`D��c

`¤p

��

�

d�.P/

d�c.P/c

�

: (8)

Remark 3.3. In order to implement an algorithm for calculating the anticyclotomic
p-adic height h�, we must determine a finite set of primes which includes all the split

primes ` D ��c − p for which ��
�

d�.P/
d�c .P/c

�

¤ 0. Let k� be the residue field of K

at � and set D.P/ D Q

�−p1.#k�/ord�.d�.P//: It turns out that D.P/ can be computed
easily from the leading coefficient of the minimal polynomial of the x-coordinate of

P [1, Proposition 4.2]. Observe that ��
�

d�.P/
d�c .P/c

�

¤ 0 implies that ord�.d�.P// ¤ 0

or ord�c.d�c.P// ¤ 0. Hence, the only primes ` ¤ p which contribute to the sum in
(8) are those that are split in K=Q and divide D.P/. However, in the examples that
we have attempted, factoring D.P/ is difficult due to its size.

We now package together the contribution to the anticyclotomic p-adic height
coming from primes not dividing p. Consider the ideal x.P/OK and denote by
ı.P/ � OK its denominator ideal. Observe that by (6) we know that all prime factors
of ı.P/ appear with even powers. Fix dh.P/ 2 OK as follows:

dh.P/OK D
Y

q

qh ordq.ı.P//=2 (9)

where h is the class number of K, and the product is over all prime ideals q in OK .

Proposition 3.4. Let P 2 E.K/ be a non-torsion point which reduces to 0 modulo
primes dividing p, and to the connected component of all special fibers of the Neron
model of E. Then the anticyclotomic p-adic height of P is

h�.P/ D 1

p
logp

�

 

�

��.P/

��.Pc/

��

C 1

hp
logp

�

 

�

dh.P/c

dh.P/

��

;

where  W K� ! Qp is the fixed automorphism.
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Proof. By (7) we have

h�.P/ D ��
�

��.P/

��.Pc/

�

C
X

w−p1
�w.dw.P//: (10)

Let P D .x; y/ 2 E.K/. Since P reduces to the identity modulo � and �c, we have

ord�.x/ D �2e� ; ord�.y/ D �3e� ;

ord�c.x/ D �2e�c ; ord�c.y/ D �3e�c ;

for positive integers e� and e�c . Since the p-adic � function has the form
�.t/ D tC � � � 2 tZpŒŒt��, we see that

ord�.��.P// D ord�

�

��

��x

y

��

D ord�

��x

y

�

D e�

and similarly

ord�.��.P
c// D ord�

��xc

yc

�

D ord�c

��x

y

�

D e�c :

Thus,

ord�

�

��.P/

��.Pc/

�

D e� � e�c : (11)

Let ˛ 2 K� generate the principal ideal �h. By (11) and the definition of the
anticyclotomic p-adic idele class character, we have

��

�

��.P/

��.Pc/

�

D 1

hp
logp ı 

�

˛e�c �e� ��.P/h

.˛c/e�c �e� ��.Pc/h

�

D 1

p
logp

�

 

�

��.P/

��.Pc/

��

C 1

hp
logp

�

 
� ˛

˛c

�e�c �e��

:

Now it remains to show that

X

w−p1
�w.dw.P// D 1

hp
logp

�

 

�

dh.P/c

dh.P/

��

� 1

hp
logp

�

 
� ˛

˛c

�e�c �e��

: (12)

By the definition of �, we have

X

w−p1
�w.dw.P// D 1

h

X

w−p1
�w.dw.P/

h/: (13)
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Since ordw.dw.P/h/ D ordw.dh.P//, Lemma 3.1 gives �w.dw.P/h/ D �w.dh.P// for
every w − p1. Substituting this into (13) gives

X

w−p1
�w.dw.P// D 1

h

X

w−p1
�w.dh.P//

D 1

h

X

w−p1
� ı �w.dh.P//

D 1

h
�
�
Y

w−p1
�w.dh.P//

�

:

Now
Q

w−p1 �w.dh.P// is the idele with entry dh.P/ at every place w − p1 and
entry 1 at all other places. Define ˇ 2 OK by dh.P/ D ˛e� .˛c/e�cˇ. Thus, by
Proposition 2.5 and Remark 2.7, we get

1

h
�
�
Y

w−p1
�w.dh.P//

�

D 1

hp
logp

�

 

�

ˇc

ˇ

��

D 1

hp
logp

�

 

�

dh.P/c

dh.P/

��

� 1

hp
logp

�

 
� ˛

˛c

�e�c �e��

as required. This concludes the proof. ut
In [13], the authors describe the “universal” p-adic height pairing .P;Q/ 2 I.K/

of two points P;Q 2 E.K/. Composition of the universal height pairing with any
Qp-linear map � W I.K/! Qp gives rise to a canonical symmetric bilinear pairing

. ; /� W E.K/ � E.K/! Qp

called the �-height pairing. The �-height of a point P 2 E.K/ is defined to be
� 1
2
.P;P/�.
Henceforth, we fix � to be the anticyclotomic p-adic idele class character defined

in Sect. 2. The corresponding �-height pairing is referred to as the anticyclotomic
p-adic height pairing, and it is denoted as follows:

h ; i D . ; /� W E.K/ � E.K/! Qp

Observe that

hP;Qi D h�.P/C h�.Q/ � h�.PC Q/:

Let E.K/C and E.K/� denote the C1-eigenspace and the �1-eigenspace,
respectively, for the action of complex conjugation on E.K/. Since �� is an odd
function, using (8) we see that the anticyclotomic height satisfies

h�.P/ D 0 for all P 2 E.K/C [ E.K/�:
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Therefore, the anticyclotomic p-adic height pairing satisfies

hE.K/C;E.K/Ci D hE.K/�;E.K/�i D 0: (14)

Consequently, if P 2 E.K/C and Q 2 E.K/�, then

hP;Qi D h�.P/C h�.Q/ � h�.PC Q/ (15)

D �1
2
hP;Pi � 1

2
hQ;Qi � h�.PC Q/

D �h�.PC Q/:

4 The Shadow Line

Let E be an elliptic curve defined over Q and p an odd prime of good ordinary
reduction. Fix an imaginary quadratic extension K=Q satisfying the Heegner
hypothesis for E=Q (i.e., all primes dividing the conductor of E=Q split in K).
Consider the anticyclotomic Zp-extension K1 of K. Let Kn denote the subfield of
K1 whose Galois group over K is isomorphic to Z=pnZ. The module of universal
norms for this Zp-extension is defined as follows:

U WD
\

n�0
NKn=K.E.Kn/˝ Zp/ 	 E.K/˝ Zp;

where NKn=K is the norm map induced by the map E.Kn/ ! E.K/ given by
P 7! P

�2Gal.Kn=K/
P� .

By work of Cornut [6] and Vatsal [18] we know that for n large enough, we have
a non-torsion Heegner point in E.Kn/. Since p is a prime of good ordinary reduction,
the trace down to Kn�1 of the Heegner points defined over Kn is related to Heegner
points defined over Kn�1, see [1, §2] for further details. Due to this relation among
Heegner points defined over the different layers of K1, if the p-primary part of the
Tate–Shafarevich group of E=K is finite, then these points give rise to non-trivial
universal norms. Hence, if the p-primary part of the Tate–Shafarevich group of E=K
is finite, then U is non-trivial whenever the Heegner hypothesis holds. By Bertolini
[2], Ciperiani and Wiles [5], and Ciperiani [4] we know that if Gal.Q.Ep/=Q/ is not
solvable, then U ' Zp.

Consider

LK WD U ˝Qp:

If the p-primary part of the Tate–Shafarevich group of E=K is finite, then LK is a
line in the vector space E.K/˝Qp known as the shadow line associated to the triple
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.E;K; p/. The space E.K/ ˝ Qp splits as the direct sum of two eigenspaces under
the action of complex conjugation

E.K/˝Qp D E.K/C ˝Qp ˚ E.K/� ˝Qp:

Observe that

E.K/C ˝Qp D E.Q/˝Qp and E.K/� ˝Qp ' EK.Q/˝Qp;

where EK denotes the quadratic twist of E with respect to K. Since the module U is
fixed by complex conjugation, the shadow line LK lies in one of the eigenspaces:

LK 	 E.Q/˝Qp or LK 	 E.K/� ˝Qp:

The assumption of the Heegner hypothesis forces the analytic rank of E=K to be
odd, and hence the dimension of E.K/ ˝ Qp is odd by the Parity Conjecture [14]
and our assumption of the finiteness of the p-primary part of the Tate–Shafarevich
group of E=K. Hence, dim E.K/� ˝ Qp ¤ dim E.Q/ ˝ Qp. The Sign Conjecture
states that LK is expected to lie in the eigenspace of higher dimension [11].

Our main motivating question is the following:

Question 4.1 (Mazur and Rubin). Consider an elliptic curve E=Q of positive
even analytic rank r, an imaginary quadratic field K such that E=K has analytic
rank r C 1, and a prime p of good ordinary reduction such that the p-primary part
of the Tate–Shafarevich group of E=Q is finite. By the Sign Conjecture, we expect
LK to lie in E.Q/˝ Qp. As K varies, we presumably get different shadow lines LK.
What are these lines and how are they distributed in E.Q/˝Qp?

Note that in the statement of the above question we make use of the following
results:

1. Since E=Q has positive even analytic rank we know that dim E.Q/˝Qp 
 2 by
work of Skinner–Urban [15, Theorem 2] and work of Nekovar [14] on the Parity
Conjecture.

2. Since our assumptions on the analytic ranks of E=Q and E=K imply that the
analytic rank of EK=Q is 1, by work of Gross–Zagier [8] and Kolyvagin [10] we
know that

(a) dim E.K/� ˝Qp D 1;
(b) the p-primary part of the Tate–Shafarevich group of EK=Q is finite, and

hence the finiteness of the p-primary part of the Tate–Shafarevich group
of E=K follows from the finiteness of the p-primary part of the Tate–
Shafarevich group of E=Q.

Thus by (2b) we know that LK 	 E.K/˝Qp, while (1) and (2a) are the input to the
Sign Conjecture.
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It is natural to start the study of Question 4.1 by considering elliptic curves E=Q
of analytic rank 2. In this case, assuming that

rankZE.Q/ D 2; (16)

we identify LK in E.Q/ ˝ Qp by making use of the anticyclotomic p-adic height
pairing, viewing it as a pairing on E.K/ ˝ Zp. This method forces us to restrict
our attention to quadratic fields K where p splits. It is known that U is contained
in the kernel of the anticyclotomic p-adic height pairing [12, Proposition 4.5.2]. In
fact, in our situation, the properties of this pairing and (16) together with the fact
that dim E.K/� ˝ Qp D 1 imply that either U is the kernel of the pairing or the
pairing is trivial. Thus computing the anticyclotomic p-adic height pairing allows us
to verify the Sign Conjecture and determine the shadow line LK .

In order to describe the lines LK for multiple quadratic fields K, we fix two
independent generators P1;P2 of E.Q/˝ Qp (with E given by its reduced minimal
model) and compute the slope of LK ˝Qp in the corresponding coordinate system.
For each quadratic field K we compute a non-torsion point R 2 E.K/� (on the
reduced minimal model of E). The kernel of the anticyclotomic p-adic height
pairing on E.K/ ˝ Zp is generated by aP1 C bP2 for a; b 2 Zp such that
haP1CbP2;Ri D 0. Then by (15) the shadow line LK˝Qp in E.Q/˝Qp is generated
by h�.P2CR/P1�h�.P1CR/P2 and its slope with respect to the coordinate system
induced by fP1;P2g equals

�h�.P1 C R/=h�.P2 C R/:

5 Algorithms

Let E=Q be an elliptic curve of analytic rank 2; see [3, Chap. 4] for an algorithm
that can provably verify the non-triviality of the second derivative of the L-function.
Our aim is to compute shadow lines on the elliptic curve E. In order to do this using
the method described in Sect. 4 we need to

• verify that rankZE.Q/ D 2, and
• compute two Z-independent points P1;P2 2 E.Q/.

By work of Kato [9, Theorem 17.4], computing the `-adic analytic rank of E=Q
for any prime ` of good ordinary reduction gives an upper bound on rankZE.Q/
(see [16, Proposition 10.1]). Using the techniques in [16, §3], which have been
implemented in Sage, one can compute an upper bound on the `-adic analytic rank
using an approximation of the `-adic L-series, thereby obtaining an upper bound
on rankZE.Q/. Since the analytic rank of E=Q is 2, barring the failure of standard
conjectures we find that rankZE.Q/ � 2. Then using work of Cremona [7, Sect. 3.5]
implemented in Sage, we search for points of bounded height, increasing the height
until we find two Z-independent points P1;P2 2 E.Q/. We have thus computed a
basis of E.Q/˝Qp.
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We will now proceed to describe the algorithms that allow us to compute shadow
lines on the elliptic curve E=Q.

Algorithm 5.1. Generator of E.K/� ˝Qp.

Input:

• an elliptic curve E=Q (given by its reduced minimal model) of analytic rank 2;
• an odd prime p of good ordinary reduction;
• an imaginary quadratic field K such that

– the analytic rank of E=K equals 3, and
– all rational primes dividing the conductor of E=Q split in K.

Output: A generator of E.K/� ˝ Qp (given as a point on the reduced minimal
model of E=Q).

(1) Let d 2 Z such that K D Q.
p

d/. Compute a short model of EK, of the form
y2 D x3 C ad2xC bd3.

(2) Our assumption on the analytic ranks of E=Q and E=K implies that the
analytic rank of EK=Q is 1. Compute a non-torsion point3 of EK.Q/ and

denote it .x0; y0/. Then . x0
d ;

y0
p

d
d2
/ is an element of E.K/ on the model

y2 D x3 C axC b.

(3) Output the image of . x0
d ;

y0
p

d
d2
/ on the reduced minimal model of E.

Algorithm 5.2. Computing the anticyclotomic p-adic height associated to
.E;K; p/.

Input:

• elliptic curve E=Q (given by its reduced minimal model);
• an odd prime p of good ordinary reduction;
• an imaginary quadratic field K such that p splits in K=Q;
• a non-torsion point P 2 E.K/.

Output: The anticyclotomic p-adic height of P.

(1) Let pOK D ��c. Fix an identification  W K� ' Qp. In particular,
vp. .�// D 1.

(2) Let m0 D lcmfc`g, where ` runs through the primes of bad reduction for
E=Q and c` is the Tamagawa number at `. Compute4 R D m0P.

3Note that by Gross and Zagier [8] and Kolyvagin [10] the analytic rank of EK=Q being 1 implies
that the algebraic rank of EK=Q is 1 and the Tate–Shafarevich group of EK=Q is finite. Furthermore,
in this case, computing a non-torsion point in EK.Q/ can be done by choosing an auxiliary
imaginary quadratic field F satisfying the Heegner hypothesis for EK=Q such that the analytic
rank of EK=F is 1 and computing the corresponding basic Heegner point in EK.F/.
4Note that Steps 2 and 3 are needed to ensure that the point whose anticyclotomic p-adic height we
will compute using formula (7) satisfies the required conditions.
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(3) Determine the smallest positive integer n such that nR and nRc reduce to
0 2 E.Fp/ modulo � . Note that n is a divisor of #E.Fp/. Compute T D nR:

(4) Compute dh.R/ 2 OK defined in (9) as a generator of the ideal
Y

q

qh ordq.ı.R//=2

where h is the class number of K, the product is over all prime ideals q of
OK, and ı.R/ is the denominator ideal of x.R/OK.

(5) Let fn denote the nth division polynomial associated to E. Compute dh.T/ D
dh.nR/ D fn.R/hdh.R/n

2
. Note that by Step (2) and Proposition 1 of Wuthrich

[20] we see that fn.R/hdh.R/n
2 2 OK since dh.T/ is an element of K that is

integral at every finite prime.
(6) Compute ��.t/ WD �p.t/ as a formal power series in tZpŒŒt�� with sufficient

precision. This equality holds since our elliptic curve E is defined over Q.
(7) We use Proposition 3.4 to determine the anticyclotomic p-adic height of T:

compute

h�.T/ D 1

p
logp

�

 

�

��.T/

��.Tc/

��

C 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 1

p
logp

0

@ 

0

@

�p

��x.T/
y.T/

�

�p

��x.T/c

y.T/c

�

1

A

1

AC 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 1

p
logp

0

@

�p

�

 
��x.T/

y.T/

��

�p

�

 
��x.T/c

y.T/c

��

1

AC 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

:

(8) Output the anticyclotomic p-adic height of P: compute5

h�.P/ D 1

n2m2
0

h�.T/:

Algorithm 5.3. Shadow line attached to .E;K; p/.

Input:

• an elliptic curve E=Q (given by its reduced minimal model) of analytic rank 2
such that rankZE.Q/ D 2;

• an odd prime p of good ordinary reduction such that the p-primary part of the
Tate–Shafarevich group of E=Q is finite;

• two Z-independent points P1;P2 2 E.Q/;

5As a consistency check we compute the height of nP and verify that h�.nP/ D 1
n2 h�.P/ for

positive integers n � 5.
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• an imaginary quadratic field K such that

– the analytic rank of E=K equals 3, and
– p and all rational primes dividing the conductor of E=Q split in K.

Output: The slope of the shadow line LK 	 E.Q/ ˝ Qp with respect to the
coordinate system induced by fP1;P2g.
(1) Use Algorithm 5.1 to compute a non-torsion point S 2 E.K/�. We then have

generators P1;P2; S of E.K/˝Qp such that P1;P2 2 E.Q/ and S 2 E.K/�
(given as points on the reduced minimal model of E=Q) .

(2) Compute P1 C S and P2 C S.
(3) Use Algorithm 5.2 to compute6 the anticyclotomic p-adic heights:

h�.P1 C S/ and h�.P2 C S/. Finding that at least one of these heights
is non-trivial implies that the shadow line associated to .E;K; p/ lies in
E.Q/˝Qp, i.e., the Sign Conjecture holds for .E;K; p/.

(4) The point h�.P2 C S/P1 � h�.P1 C S/P2 is a generator of the shadow line
associated to .E;K; p/. Output the slope of the shadow line LK 	 E.Q/˝Qp

with respect to the coordinate system induced by fP1;P2g: compute

�h�.P1 C S/=h�.P2 C S/ 2 Qp:

6 Examples

Let E be the elliptic curve “389:a1” [17, Elliptic Curve 389.a1] given by the model

y2 C y D x3 C x2 � 2x:

We know that the analytic rank of E=Q equals 2 [3, §6.1] and
rankZE.Q/ D 2, see [7]. In addition, 5 and 7 are good ordinary primes for E.
We find two Z-independent points

P1 D .�1; 1/;P2 D .0; 0/ 2 E.Q/:

We will now use the algorithms described in Sect. 5 to compute the slopes of two
shadow lines on E.Q/ ˝ Q5 with respect to the coordinate system induced by
fP1;P2g.

6.1 Shadow Line Attached to
�
“389:a1”;Q.

p�11/; 5
�

The imaginary quadratic field K D Q.
p�11/ satisfies the Heegner hypothesis for

E and the quadratic twist EK has analytic rank 1. Moreover, the prime 5 splits in K.

6We compute the height of P1 C P2 C S as a consistency check.
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We use Algorithm 5.1 to find a non-torsion point S D . 1
4
; 1
8

p�11� 1
2
/ 2 E.K/�.

We now proceed to compute the anticyclotomic p-adic heights of P1C S and P2C S
which are needed to determine the slope of the shadow line associated to the triple
�

“389:a1”;Q.
p�11/; 5�. We begin by computing

A1 WD P1 C S D
�

� 6
25

p�11C 27

25
;� 62
125

p�11C 29

125

�

;

A2 WD P2 C S D .�2p�11;�4p�11 � 12/:

We carry out the steps of Algorithm 5.2 to compute h�.A1/:

(1) Let 5OK D ��c, where � D . 1
2

p�11C 3
2
/ and �c D .� 1

2

p�11C 3
2
/. This

allows us to fix an identification

 W K� ! Q5

that sends

1

2

p�11C 3
2
7! 2 � 5C 52C 3 � 53C 4 � 54C 4 � 55C 3 � 57C 58C 59CO.510/:

(2) Since the Tamagawa number at 389 is trivial, i.e., c389 D 1, we have m0 D 1.
Thus R D A1.

(3) We find that n D 9 is the smallest multiple of R and Rc such that both points
reduce to 0 in E.OK=�/. Set T D 9R.

(4) Note that the class number of K is h D 1. We find dh.R/ D 1
2

p�11 � 3
2
.

(5) Let f9 denote the 9th division polynomial associated to E. We compute

dh.T/ D dh.9R/

D f9.R/dh.R/
92

D 24227041862247516754088925710922259344570p�11
� 147355399895912034115896942557395263175125:

(6) We compute

��.t/ W D �5.t/
D tC �4C 5C 3 � 52 C 53 C 2 � 54 C 3 � 55 C 2 � 56 C O.58/

�

t3

C �3C 2 � 5C 2 � 52 C 2 � 53 C 2 � 54 C 2 � 55 C 2 � 56 C O.57/
�

t4

C �1C 5C 52 C 53 C 3 � 54 C 3 � 55 C O.56/
�

t5

C �4C 2 � 5C 2 � 52 C 2 � 53 C 3 � 54 C O.55/
�

t6

C �4C 3 � 5C 4 � 52 C O.54/
�

t7 C �3C 3 � 52 C O.53/
�

t8

C �3 � 5C O.52/
�

t9 C .2C O.5// t10 C O.t11/:
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(7) We use Proposition 3.4 to determine the anticyclotomic p-adic height of T: we
compute

h�.T/ D 1

p
logp

�

 

�

��.T/

��.Tc/

��

C 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 1

p
logp

0

@

�p

�

 
��x.T/

y.T/

��

�p

�

 
��x.T/c

y.T/c

��

1

AC 1

hp
logp

�

 

�

dh.T/c

dh.T/

��

D 3C 5C 52 C 4 � 54 C 3 � 55 C 4 � 57 C 3 � 58 C 59 C O.510/:

(8) We output the anticyclotomic p-adic height of A1:

h�.A1/ D 1

92
h�.T/

D 3C 3 � 5C 3 � 52 C 2 � 54 C 4 � 55 C 4 � 56 C 3 � 58 C O.510/:

Repeating Steps (1)–(8) for A2 yields

h�.A2/ D 3C 2 � 5C 4 � 52 C 2 � 55 C 56 C 4 � 57 C 4 � 59 C O.510/:

As a consistency check, we also compute

h�.P1CP2C S/ D 1C 5C 3 � 52C 53C 2 � 54C 55C 56C 4 � 58C 4 � 59CO.510/:

Observe that, numerically, we have

h�.P1 C P2 C S/ D h�.P1 C S/C h�.P2 C S/:

The slope of the shadow line LK 	 E.Q/ ˝ Qp with respect to the coordinate
system induced by fP1;P2g is thus

�h�.P1 C S/

h�.P2 C S/
D 4C 2 � 5C 52 C 3 � 53 C 54 C 56 C 57 C O.510/:

6.2 Shadow Line Attached to
�
“389:a1”;Q.

p�24/; 5
�

Consider the imaginary quadratic field K D Q.
p�24/. Note that K satisfies the

Heegner hypothesis for E, the twist EK has analytic rank 1, and the prime 5 splits
in K.
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Using Algorithm 5.1 we find a non-torsion point

S D
�

1

2
;
1

8

p�24 � 1
2

�

2 E.K/�:

We then compute

P1 C S D
�

�1
6

p�24C 1

3
;� 5
18

p�24 � 1
�

P2 C S D
�

�1
2

p�24 � 2;�6
�

:

Many of the steps taken to compute h�.P1 C S/ and h�.P2 C S/ are quite similar
to those in Sect. 6.1. One notable difference is that in this example the class number
h of K is equal to 2. We find that

h�.P1 C S/ D 4C 2 � 5C 3 � 54 C 2 � 55 C 4 � 56 C 2 � 57 C 58 C 2 � 59 C O.510/;

h�.P2 C S/ D 1C 5C 53 C 55 C 2 � 56 C 4 � 57 C 2 � 58 C 3 � 59 C O.510/:

In addition, we compute h�.P1 C P2 C S/ and verify that

h�.P1 C P2 C S/ D 4 � 5C 53 C 3 � 54 C 3 � 55 C 56 C 2 � 57 C 4 � 58 C O.510/

D h�.P1 C S/C h�.P2 C S/:

This gives that the slope of the shadow line LK 	 E.Q/ ˝ Qp with respect to the
coordinate system induced by fP1;P2g is

�h�.P1 C S/

h�.P2 C S/
D 1C 5C 3 � 52 C 3 � 55 C 3 � 56 C 3 � 57 C 2 � 58 C 59 C O.510/:

6.3 Summary of Results of Additional Computations
of Shadow Lines

The algorithms developed in Sect. 5 enable us to compute shadow lines in many
examples which is what is needed to initiate a study of Question 4.1. We will now
list some results of additional computations of slopes of shadow lines on the elliptic
curve “389:a1”. In Tables 1 and 2 we fix the prime p D 5; 7, respectively, and vary
the quadratic field.
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