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Abstract Let E/Q be an elliptic curve and p a rational prime of good ordinary
reduction. For every imaginary quadratic field K/Q satisfying the Heegner hypoth-
esis for £ we have a corresponding line in E(K) ® Q,, known as a shadow line.
When E/Q has analytic rank 2 and E/K has analytic rank 3, shadow lines are
expected to lie in E(Q) ® Q,. If, in addition, p splits in K/Q, then shadow lines
can be determined using the anticyclotomic p-adic height pairing. We develop an
algorithm to compute anticyclotomic p-adic heights which we then use to provide
an algorithm to compute shadow lines. We conclude by illustrating these algorithms
in a collection of examples.
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1 Introduction

Fix an elliptic curve E/Q of analytic rank 2 and an odd prime p of good ordinary
reduction. Assume that the p-primary part of the Tate—Shafarevich group of E/Q
is finite. Let K be an imaginary quadratic field such that the analytic rank of E/K
is 3 and the Heegner hypothesis holds for E, i.e., all primes dividing the conductor
of E/Q split in K. We are interested in computing the subspace of E(K) ® Q,
generated by the anticyclotomic universal norms. To define this space, let K be the
anticyclotomic Z,-extension of K and K, denote the subfield of K, whose Galois
group over K is isomorphic to Z/p"Z. The module of universal norms is defined by

U= ﬂNK,,/K(E(Kn) Q Zp),

n>0

where N, x is the norm map induced by the map E(K,) — E(K) given by
P > PO
o€Gal(K,/K)
Consider

Ly :=U®Q, CEK)®Q,.

By work of Cornut [6] and Vatsal [18], our assumptions on the analytic ranks
of E/Q and E/K together with the assumed finiteness of the p-primary part of the
Tate—Shafarevich group of E/Q imply that dim Lx > 1. Bertolini [2] showed that
dimLg = 1 under certain conditions on the prime p. Wiles and Ciperiani [4, 5]
have shown that Bertolini’s result is valid whenever Gal(Q(E,)/Q) is not solvable;
here E, denotes the full p-torsion of E and Q(E,) is its field of definition. The
1-dimensional Q,-vector space Lk is known as the shadow line associated to the
triple (E, K, p).

Complex conjugation acts on E(K) ® Q,, and we consider its two eigenspaces
E(K)* ®Q, and E(K)~ ® Q,. Observe that E(K) " ® Q, = E(Q) ® Q,. By work of
Skinner—Urban [15], Nekovar [14], Gross—Zagier [8], and Kolyvagin [10] we know
that

dmEK)T ®Q,>2 and dimEK) ®Q, = 1.
Then by the Sign Conjecture [11] we expect that
Ly CE(Q) ® Q.

Our main motivating question is the following:

Question (Mazur and Rubin). As K varies, we presumably get different shadow
lines Lx — what are these lines, and how are they distributed in E(Q) ® Q, ?
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In order to gather data about this question one can add the assumption that p
splits in K/Q and then make use of the anticyclotomic p-adic height pairing on
E(K) ® Q. It is known that { is contained in the kernel of this pairing [12]. In
fact, in our situation we expect that I/ equals the kernel of the anticyclotomic p-adic
height pairing. Indeed we have dim E(K)™ ® Q, = 1 and the weak Birch and
Swinnerton—-Dyer Conjecture for E/Q predicts that dim £(Q) ®Q, = 2, from which
the statement about ¢/ follows by the properties of the anticyclotomic p-adic height
pairing and its expected non-triviality. (This is discussed in Sect. 4 in further detail.)
Thus computing the anticyclotomic p-adic height pairing allows us to determine the
shadow line Lg.

Let I'(K) be the Galois group of the maximal Z,-power extension of K, and let
I(K) = I'(K) ®z, Q. Identifying I'(K) with an appropriate quotient of the idele
class group of K, Mazur et al. [13, §2.6] gave an explicit description of the universal
p-adic height pairing

(,): E(K) x E(K) — I(K).

One obtains various QQ,-valued height pairings on E by composing this universal
pairing with Q,-linear maps /(K) — Q,. The kernel of such a (non-zero) Q,-linear
map corresponds to a Z,-extension of K.

In particular, the anticyclotomic Z,-extension of K corresponds to a Q,-linear
map p : I(K) — @, such that p o c = —p, where c denotes complex conjugation.
The resulting anticyclotomic p-adic height pairing is denoted by (, ),,. One key step
of our work is an explicit description of the map p, see Sect.2. As in [13], for
P € E(K) we define the anticyclotomic p-adic height of P to be h,(P) = —%(P, P),.
Mazur et al. [13, §2.9] provide the following formula' for the anticyclotomic p-adic
height of a point P € E(K):

ho(P) = px (07 (P)) = px (02 (P) + D puldi(P)),

wipoo

where 7 is one of the prime divisors of p in K and the remaining notation is defined
in Sect.3. An algorithm for computing o, was given in [13]. Using our explicit
description of p, in Sect. 3 we find a computationally feasible way of determining
the contribution of finite primes w which do not divide p. This enables us to compute
anticyclotomic p-adic height pairings.

We then proceed with a general discussion of shadow lines and their identifi-
cation in E(Q) ® Q,, see Sect.4. In Sect.5 we present the algorithms that we
use to compute anticyclotomic p-adic heights and shadow lines. We conclude by
displaying in Sect. 6 two examples of the computation of shadow lines Lg on the
elliptic curve “389.al” with the prime p = 5 and listing the results of several
additional shadow line computations.

!"The formula appearing in [13, §2.9] contains a sign error which is corrected here.
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2 Anticyclotomic Character

Let K be an imaginary quadratic field with ring of integers Ok in which p splits
as pOx = ¢, where ¢ denotes complex conjugation on K. Let A* be the group
of ideles of K. We also use ¢ to denote the involution of A* induced by complex
conjugation on K. For any finite place v of K, denote by K, the completion of K
at v, O, the ring of integers of K, and u, the group of roots of unity in O,. Let
I'(K) be the Galois group of the maximal Z,-power extension of K. As in [13], we
consider the idele class Q)-vector space I(K) = I'(K) ®z, Q). By class field theory
['(K) is a quotient of J' := A*/K*C*[],,, O by its finite torsion subgroup 7,
see the proof of Theorem 13.4 in [19]. The bar in the definition of J’ denotes closure
in the idelic topology, and the subgroup T is the kernel of the Nth power map on J’
where N is the order of the finite group

A JKXCX T 031 + mO) (1 + 7°Ope).
wip
Thus we have

I(K) =J'|T ®z, Q. (1)

We shall use this idelic description of I'(K) in what follows.
Definition 2.1 (Anticyclotomic p-adic Idele Class Character). An anticyclo-
tomic p-adic idele class character is a continuous homomorphism

p:AY/K* — Z,

such that po¢c = —p.

Lemma 2.2. Every p-adic idele class character
p:A*/K* — Z,
factors via the natural projection
aX /< 2% /(e TToxTm),
wip vlp

Proof. This is an immediate consequence of the fact that Z,, is a torsion-free pro-p
group. a

The aim of this section is to define a non-trivial anticyclotomic p-adic idele class
character. By the identification (1), such a character will give rise to a Q,-linear map
I(K) — Q, which cuts out the anticyclotomic Z,-extension of K.



Shadow Lines in the Arithmetic of Elliptic Curves 37
2.1 The Class Number One Case

We now explicitly construct an anticyclotomic p-adic idele class character p in the
case when the class number of K is 1.
Recall our assumption that p splits in K/Q as pOg = 77 and let

U;-[ = 1+7T07-[ and Uﬂc = 1+7TCOT[C.
Define a continuous homomorphism
@A — Uy x Upe

as follows. Let (x,), € A*. Under our assumption that K has class number 1, we
can find @ € K* such that

ax, € OF  forall finite v.

Indeed, the ideal a, corresponding to the place v is principal, say generated by
w, € Ok. Then take o = ]_[v w, Ord”(x”), where the product is taken over all finite

places v of K. We define

@((0)0) = (@)™, (@xge)”™). 2

Note that since p is split in K we have OF =~ Z; = 1,1 X Uy, and similarly
for 7¢. To see that ¢ is independent of the choice of «, we note that any other choice
o’ € K* differs from « by an element of O%. Since K is an imaginary quadratic field,
Of consists entirely of roots of unity. In particular, under the embedding K — K,
we see that O < ,—;. Thus, any ambiguity about « is killed when we raise
a to the (p — 1)-power. Therefore, ¢ is well-defined. The continuity of ¢ is easily
verified.

Proposition 2.3. Suppose that K has class number 1. Then the map ¢ defined in
(2) induces an isomorphism of topological groups

AX/<KX(CX [To: ]‘[Mv) = Uy X Uye.

wip vlp

Proof. For v € {m, ¢, the p-adic logarithm gives an isomorphism
U, = 1+ pZ, — pZ,. Hence, raising to the power (p — 1) is an automorphism
on U, for v € {m 7¢ and consequently ¢ is surjective. It is easy to see
that K*C*[],,, 05 C kerg. Since u, = F; for v € {m 7}, we have
[1,, #v C kerg. We claim thatker o = K*C*[],,, OF .H”‘P Wy. Let (x,), € kerg
and let « € K* be such that ax, € O) for all finite v. It suffices to show
that (ax,), € C* ]_[wjm o Hvlp [y This is clear: since (x,), € kerg, we have
ax, € W, forv € {m, 7}.
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Finally, since ¢ is a continuous open map, it follows that ¢ induces the desired
homeomorphism. O

By Lemma 2.2 we have reduced the problem of constructing an anticyclotomic
p-adic idele class character to the problem of constructing a character

X Ug X Uzpe - 7, 3)

satisfying yoc = —y. Note that this last condition implies that y(x,y) = y(x/y, 1).
Explicitly:

1, y) = —yxoclx,y) = —x0x) = —x0" 1) — x(1,x°)
=—x0% D+ xx 1) = x(x/y, 1). “4)

In other words, y factors via the surjection

fn:UnXUﬂc—»Uﬂ
(x,y) = x/¥°.

Therefore, it is enough to define a character U, — Z,. Fixing an isomorphism
of valued fields ¥ : K, — Q, gives an identification U, = 1 + pZ,. Now, up
to scaling, there is only one choice of character, namely log, : 1 + pZ, — pZ,.
We write log, for the unique group homomorphism log, : QF — (Q,, +) with
log,(p) = 0 extending log, : 1 + pZ, — pZ,. The extension to Z;f of the map log,
is explicitly given by

1 -1
log,(u) = pTl log, (™).

We choose the normalization p = m log, oy o fr o ¢. We summarize our
construction of the anticyclotomic p-adic idele class character p in the following
proposition:

Proposition 2.4. Suppose that K has class number 1. Fix a choice of isomorphism
Y 1 Ky — Q,. Consider the map p : A* /K> — 7, such that

p((8)) = > log, oy ( ir )
P

[oe
where a € K* is such that ax, € O for all finite v. Then p is the unique (up to
scaling) non-trivial anticyclotomic p-adic idele class character.

Proof. Leta € K* be such that ax, € O for all finite v. By our earlier discussion
and the definition of the extension of logp to pr, we have
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(00xy )p_l )

(@exte)p=!

1 Xy
= — 1ng 01// (_c) .
p X e

1
p((xy)y) = =1 log, oyr (

2.2 The General Case

There is a simple generalization of the construction of p to the case when the class
number of K may be greater than one. Let / be the class number of K. We can no
longer define the homomorphism ¢ of (2) on the whole of A* because Ok is no
longer assumed to be a principal ideal domain. However, we can define

ot (A" - Uy x Uge

in a similar way, as follows. Let a, be the ideal of K corresponding to the place v.
Then a” is principal, say generated by @, € Ok. For (x,), € A* we set a(v) =
@, %) Then a(v)x” € OX and a(v) € O for all w # v. Note that a(v) = 1
for all but finitely many v. Set @ = [], «(v) and observe that ax” € O for all v.
Then we define ¢;, by

on((0)y) = (@)™ ()™, ®)

Fix an isomorphism ¥ : K, — Q,. As before, we can now use the p-adic logarithm
to define an anticyclotomic character p : (A*)" — 7, by setting

1
= ———log, oY of; o .
pp—1
We extend the definition of p to the whole of A* by setting p((x,),) = % p((x,)h).

As in Proposition 2.4, we now summarize our construction of the anticyclotomic
p-adic idele class character in this more general setting.

Proposition 2.5. Let h be the class number of K, and fix a choice of isomorphism
Y : Ky — Q,. Consider the map p : A* /K> — %Zp such that

»
) = - og, o ( i )

acxh

where o € K* is such that ax! € O for all finite v. Then p is the unique (up to
scaling) non-trivial anticyclotomic p-adic idele class character.
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Remark 2.6. Note that p : AX/K* — %Zp, so if p | h, then p is not strictly an
anticyclotomic idele class character in the sense of Definition 2.1. However, the
choice of scaling of p is of no great importance since our purpose is to use p to
define an anticyclotomic height pairing on E(K) and compute the kernel of this
pairing.

Remark 2.7. The ideal [], a, ") g principal and a generator of this ideal
is the element @ € K that we use when evaluating the character p defined in
Proposition 2.5.

3 Anticyclotomic p-adic Height Pairing

We wish to compute the anticyclotomic p-adic height i, using our explicit descrip-
tion of the anticyclotomic idele class character p given in Proposition 2.5. For any
finite prime w of K, the natural inclusion K; < A induces amap t,, : K}, — I(K),
and we write p,, = p o (,,. For every finite place w of K and every non-zero point
P € E(K) we can find d,,(P) € O,, and a,,(P), b,,(P) € O,,, each relatively prime to
d,,(P), such that

(6)

(0 (H(P)). 1, (5(PY) = ( aw(P) by(P) ) |

dy(P)*" d,(P)?

We refer to d,,(P) as a local denominator of P at w. The existence of d,,(P) follows
from the Weierstrass equation for E and the fact that O,, is a principal ideal domain.
Finally, we let 0, denote the w-adic o-function of E.

Given a non-torsion point P € E(K) such that

e P reduces to 0 modulo primes dividing p, and
e P reduces to the connected component of all special fibers of the Neron model
of E,

we can compute its anticyclotomic p-adic height using the following formula?
[13, §2.9]:

hy(P) = pr (02 (P)) = pr (02 (P)) + D pul(du(P)). (7
wipoo

In the following lemmas, we make some observations which simplify the
computation of 4,(P).

Lemma 3.1. Let w be a finite prime such that w { p. Let x,, € K ;. Then p,(x,,)
only depends on ord,,(x,,). In particular, if x,, € O, then p,(x,,) = 0.

w?

2The formula appearing in [13, §2.9] contains a sign error which is corrected here.
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Proof. This follows immediately from Lemma 2.2. Alternatively, note that the
auxiliary element « used in the definition of p only depends on the valuation

of x,,. O
Lemma 3.2. Let w be a finite prime of K. Then p,c = —p,, o c. In particular, if
w = wS, then p,, = 0.

Proof. This is an immediate consequence of the relations p o ¢ = —p and
COlye =1)0cC. O

Lemma 3.2 allows us to write the formula (7) for the anticyclotomic p-adic height

as follows:
_ Ox (P) d)t (P)
e =0 (555) + 2 0 () (8)
t#p

Remark 3.3. In order to implement an algorithm for calculating the anticyclotomic
p-adic height ,, we must determine a finite set of primes which includes all the split

primes £ = AA¢ } p for which p; ( 4 (F) ) # 0. Let k;, be the residue field of K

dyc (P)¢
at A and set D(P) =[], tpoo (#k; )92 (@G (P) Tt turns out that D(P) can be computed
easily from the leading coefficient of the minimal polynomial of the x-coordinate of

P [1, Proposition 4.2]. Observe that p; ( djﬁg;) # 0 implies that ord, (d, (P)) # 0

or ord,c(dyc(P)) # 0. Hence, the only primes £ # p which contribute to the sum in
(8) are those that are split in K/Q and divide D(P). However, in the examples that
we have attempted, factoring D(P) is difficult due to its size.

We now package together the contribution to the anticyclotomic p-adic height
coming from primes not dividing p. Consider the ideal x(P)Ok and denote by
8(P) C Ok its denominator ideal. Observe that by (6) we know that all prime factors
of §(P) appear with even powers. Fix d,(P) € O as follows:

d,(P)Ok = l‘[ gforda 6(P)/2 )
q

where £ is the class number of K, and the product is over all prime ideals q in Ok.

Proposition 3.4. Let P € E(K) be a non-torsion point which reduces to 0 modulo
primes dividing p, and to the connected component of all special fibers of the Neron
model of E. Then the anticyclotomic p-adic height of P is

B l Un(P) L dh(P)c
hp(P) = p tog, (1// (on(Pf))) T log, (1// ( d,(P) )) ’

where  : Ky — Q) is the fixed automorphism.
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Proof. By (7) we have

0 (P)
07 (P°)

o (P) = pn( )+ S puldn(P)). (10)
wipoo

Let P = (x,y) € E(K). Since P reduces to the identity modulo 7 and 7, we have

ord, (x) = —2e,, ord, (y) = —3e,,
ordye(x) = —2exc, ordye(y) = —3exe,

for positive integers e, and e,c. Since the p-adic o function has the form
o(t) =t+--- € 1Z,[[1]], we see that

ord, (0, (P)) = ord, (an (__x)) = ord, (__x) = ¢5
y y

and similarly

ord, (6, (P°)) = ord, (—x ) = ordyec (—_x) = eye.
y(

Thus,

d GJT(P) _ 11
ord, (O'n(PC)) = €x — €gc. (11)

Let @ € K* generate the principal ideal 7”. By (11) and the definition of the
anticyclotomic p-adic idele class character, we have

0 (P)) Ly gy (S P
T = — 10 (o)
P\ @) = p 27 \ @y —era, (P
1 07 (P) 1 o\ et —ex
= yon (v () apros (0 (),
Now it remains to show that

% ) = g, (v (G ) ) = tom (v (2) 7). a2
wipoo

By the definition of p, we have

D puldu(P) = % D pul(du(P)). (13)

wipoo wipoo
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Since ord,,(d,,(P)") = ord,,(d,(P)), Lemma 3.1 gives p,,(d,,(P)") = p,,(d;(P)) for
every w { poo. Substituting this into (13) gives

> puld(P) = 1 7 puldn(P)

wipoo wipoo

1
= 2 Pot(di(P)

wipoo

2o TT w@nen).

wipoo

Now [],, tpoo bw(dn(P)) is the idele with entry d(P) at every place w } poo and
entry 1 at all other places. Define f € Ok by d,(P) = a®(a)*S. Thus, by
Proposition 2.5 and Remark 2.7, we get

2o(TT w@en) = - tog, (W (%))

wipoo
(P enc—ex
= élogp (1// (c:l};(i) )) —élogp (Vf (%) )

as required. This concludes the proof. O

In [13], the authors describe the “universal” p-adic height pairing (P, Q) € I(K)
of two points P, Q € E(K). Composition of the universal height pairing with any
Qp-linear map p : I(K) — Q, gives rise to a canonical symmetric bilinear pairing

(,)pE(K)xXEKK)—Q,

called the p-height pairing. The p-height of a point P € E(K) is defined to be
—3(P.P),.

Henceforth, we fix p to be the anticyclotomic p-adic idele class character defined
in Sect. 2. The corresponding p-height pairing is referred to as the anticyclotomic
p-adic height pairing, and it is denoted as follows:

(,)=0 ) EK)xEK) —Q,
Observe that
<P’ Q) = hp(P) + hp(Q) - hp(P + Q)

Let E(K)* and E(K)~ denote the +1-eigenspace and the —I-eigenspace,
respectively, for the action of complex conjugation on E(K). Since o, is an odd
function, using (8) we see that the anticyclotomic height satisfies

hy(P) =0 forallP € E(K)* UE(K)".



44 J.S. Balakrishnan et al.
Therefore, the anticyclotomic p-adic height pairing satisfies
(E(K)T.E(K)™) = (E(K)". E(K)™) = 0. (14)

Consequently, if P € E(K)* and Q € E(K)~, then

(P,Q) = hp(P) + hp(Q) - hp(P +0) (15)
1 1
= _E(P’P) - §<Q’ Q) —hy(P+ Q)
= —h,(P+ Q).

4 The Shadow Line

Let E be an elliptic curve defined over Q and p an odd prime of good ordinary
reduction. Fix an imaginary quadratic extension K/Q satisfying the Heegner
hypothesis for E/Q (i.e., all primes dividing the conductor of E/Q split in K).
Consider the anticyclotomic Z,-extension K, of K. Let K, denote the subfield of
K~ whose Galois group over K is isomorphic to Z/p"Z. The module of universal
norms for this Z,-extension is defined as follows:

U .= mNKn/K(E(Kn) ® Zp) - E(K) ® ZI”

n>0

where Nk, x is the norm map induced by the map E(K,) — E(K) given by
P > P
o€Gal(K,/K)

By work of Cornut [6] and Vatsal [18] we know that for n large enough, we have
anon-torsion Heegner point in E(K,,). Since p is a prime of good ordinary reduction,
the trace down to K, of the Heegner points defined over K, is related to Heegner
points defined over K, see [1, §2] for further details. Due to this relation among
Heegner points defined over the different layers of K, if the p-primary part of the
Tate—Shafarevich group of E/K is finite, then these points give rise to non-trivial
universal norms. Hence, if the p-primary part of the Tate—Shafarevich group of E/K
is finite, then I/ is non-trivial whenever the Heegner hypothesis holds. By Bertolini
[2], Ciperiani and Wiles [5], and Ciperiani [4] we know that if Gal(Q(E,)/Q) is not
solvable, then U >~ Z,,.

Consider

LK :U®Qp

If the p-primary part of the Tate—Shafarevich group of E/K is finite, then Lk is a
line in the vector space E(K) ® Q, known as the shadow line associated to the triple
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(E,K,p). The space E(K) ® Q, splits as the direct sum of two eigenspaces under
the action of complex conjugation

EK)®Q,=EK)'T®Q,®EK)” ®Q,.
Observe that

EK)"®Q,=EQ®Q, and EK)” ®Q,~E"(Q) ®Q,

where EX denotes the quadratic twist of E with respect to K. Since the module U/ is
fixed by complex conjugation, the shadow line L lies in one of the eigenspaces:

LK < E(@) ® Qp or LK - E(K)_ ® Qp-

The assumption of the Heegner hypothesis forces the analytic rank of E/K to be
odd, and hence the dimension of E(K) ® Q) is odd by the Parity Conjecture [14]
and our assumption of the finiteness of the p-primary part of the Tate—Shafarevich
group of E/K. Hence, dimE(K)~™ ® Q, # dimE(Q) ® Q,. The Sign Conjecture
states that Ly is expected to lie in the eigenspace of higher dimension [11].

Our main motivating question is the following:

Question 4.1 (Mazur and Rubin). Consider an elliptic curve E/Q of positive
even analytic rank r, an imaginary quadratic field K such that E/K has analytic
rank r + 1, and a prime p of good ordinary reduction such that the p-primary part
of the Tate—Shafarevich group of E/Q is finite. By the Sign Conjecture, we expect
Lk to lie in E(Q) ® Q. As K varies, we presumably get different shadow lines L.
What are these lines and how are they distributed in E(Q) ® Q,?

Note that in the statement of the above question we make use of the following
results:

1. Since E/Q has positive even analytic rank we know that dim £(Q) ® Q, > 2 by
work of Skinner—Urban [15, Theorem 2] and work of Nekovar [14] on the Parity
Conjecture.

2. Since our assumptions on the analytic ranks of E/Q and E/K imply that the
analytic rank of EX/Q is 1, by work of Gross—Zagier [8] and Kolyvagin [10] we
know that

(a) dmEK)” ® Q, = 1;

(b) the p-primary part of the Tate-Shafarevich group of EX/Q is finite, and
hence the finiteness of the p-primary part of the Tate—Shafarevich group
of E/K follows from the finiteness of the p-primary part of the Tate—
Shafarevich group of E/Q.

Thus by (2b) we know that Ly € E(K) ® Q,, while (1) and (2a) are the input to the
Sign Conjecture.
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It is natural to start the study of Question 4.1 by considering elliptic curves E/Q
of analytic rank 2. In this case, assuming that

rankz E(Q) = 2, (16)

we identify L in E(Q) ® Q, by making use of the anticyclotomic p-adic height
pairing, viewing it as a pairing on E(K) ® Z,. This method forces us to restrict
our attention to quadratic fields K where p splits. It is known that U/ is contained
in the kernel of the anticyclotomic p-adic height pairing [12, Proposition 4.5.2]. In
fact, in our situation, the properties of this pairing and (16) together with the fact
that dim E(K)” ® Q, = 1 imply that either I/ is the kernel of the pairing or the
pairing is trivial. Thus computing the anticyclotomic p-adic height pairing allows us
to verify the Sign Conjecture and determine the shadow line Lg.

In order to describe the lines Lx for multiple quadratic fields K, we fix two
independent generators Py, P; of E(Q) ® Q, (with E given by its reduced minimal
model) and compute the slope of Lx ® Q) in the corresponding coordinate system.
For each quadratic field K we compute a non-torsion point R € E(K)~ (on the
reduced minimal model of E). The kernel of the anticyclotomic p-adic height
pairing on E(K) ® Z, is generated by aP; + bP, for a,b € Z, such that
(aPy+bP>,R) = 0. Then by (15) the shadow line Ly ®Q, in E(Q) ®Q,, is generated
by h,(P> 4+ R)Py —h,(P1 + R)P, and its slope with respect to the coordinate system
induced by {Py, P,} equals

—h,(P1 + R)/h,(P> + R).

5 Algorithms

Let E/Q be an elliptic curve of analytic rank 2; see [3, Chap. 4] for an algorithm
that can provably verify the non-triviality of the second derivative of the L-function.
Our aim is to compute shadow lines on the elliptic curve E. In order to do this using
the method described in Sect. 4 we need to

 verify that rankzE(Q) = 2, and
e compute two Z-independent points P, P, € E(Q).

By work of Kato [9, Theorem 17.4], computing the £-adic analytic rank of E/Q
for any prime £ of good ordinary reduction gives an upper bound on rankzE(Q)
(see [16, Proposition 10.1]). Using the techniques in [16, §3], which have been
implemented in Sage, one can compute an upper bound on the £-adic analytic rank
using an approximation of the £-adic L-series, thereby obtaining an upper bound
on rankzE(Q). Since the analytic rank of E/Q is 2, barring the failure of standard
conjectures we find that rankzE(Q) < 2. Then using work of Cremona [7, Sect. 3.5]
implemented in Sage, we search for points of bounded height, increasing the height
until we find two Z-independent points Py, P, € E(Q). We have thus computed a
basis of E(Q) ® Q,,.
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We will now proceed to describe the algorithms that allow us to compute shadow
lines on the elliptic curve E/Q.

Algorithm 5.1. Generator of E(K)™ ®@ Q,.
Input:

e anelliptic curve E/Q (given by its reduced minimal model) of analytic rank 2;
e an odd prime p of good ordinary reduction;
* an imaginary quadratic field K such that

— the analytic rank of E/K equals 3, and
— all rational primes dividing the conductor of E/Q split in K.

Output: A generator of E(K)™ ® Q,, (given as a point on the reduced minimal
model of E/Q).

(1) Letd € Z such that K = Q(~/d). Compute a short model of EX, of the form
y? = x* + ad*x + bd>.

(2) Our assumption on the analytic ranks of E/Q and E/K implies that the
analytic rank of EX/Q is 1. Compute a non-torsion point® of EX(Q) and

denote it (xo,y0). Then (33, yod—}/g) is an element of E(K) on the model
y:=x+ax+b.

(3) Output the image of (%%, yod«z/ﬁ

) on the reduced minimal model of E.

Algorithm 5.2. Computing the anticyclotomic p-adic height associated to
(E.K.p).

Input:

e elliptic curve E/Q (given by its reduced minimal model);
e an odd prime p of good ordinary reduction;

e an imaginary quadratic field K such that p splits in K/Q;
e a non-torsion point P € E(K).

Output:  The anticyclotomic p-adic height of P.

(1) Let pOgx = mn. Fix an identification ¥ : K, =~ Q,. In particular,

vp (Y () = 1.
(2) Let mg = lecm{cy}, where € runs through the primes of bad reduction for
E/Q and c; is the Tamagawa number at £. Compute* R = mgP.

3Note that by Gross and Zagier [8] and Kolyvagin [10] the analytic rank of EX /Q being 1 implies
that the algebraic rank of EX /Q is 1 and the Tate—Shafarevich group of EX /Q is finite. Furthermore,
in this case, computing a non-torsion point in EX(Q) can be done by choosing an auxiliary
imaginary quadratic field F satisfying the Heegner hypothesis for EX/Q such that the analytic
rank of EX/F is 1 and computing the corresponding basic Heegner point in EX (F).

“Note that Steps 2 and 3 are needed to ensure that the point whose anticyclotomic p-adic height we
will compute using formula (7) satisfies the required conditions.
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(3) Determine the smallest positive integer n such that nR and nR° reduce to
0 € E(F,) modulo . Note that n is a divisor of #E(F,). Compute T = nR.
(4) Compute d,,(R) € Ok defined in (9) as a generator of the ideal

1_[ qh ordq (8(R))/2
q

where h is the class number of K, the product is over all prime ideals q of
Ok, and §(R) is the denominator ideal of x(R)Ok.

(5) Let f, denote the nth division polynomial associated to E. Compute d;(T) =
d,(nR) = f,(R)"d, (R)"Z. Note that by Step (2) and Proposition 1 of Wuthrich
[20] we see that fn(R)hdh(R)"2 € Ok since d;(T) is an element of K that is
integral at every finite prime.

(6) Compute o, (t) 1= 0,(t) as a formal power series in tZ,([t]] with sufficient
precision. This equality holds since our elliptic curve E is defined over Q.

(7) We use Proposition 3.4 to determine the anticyclotomic p-adic height of T:
compute

1 oD \) |, ! du(1)*
0 = s (v (7)) + e (v (i)
—x(T) :
_ %logp " ( ) ) n i1og,, (w (dh(T) ))

(—;(Cg)‘ ) hp d,(7)

= l]ogp ( ( ;(C(TT)))) hp ng (1// (dh(T)c)) .

o) o

(8) Output the anticyclotomic p-adic height of P: compute’

1
hy(P) = Whp(T)-
0

Algorithm 5.3. Shadow line attached to (E, K, p).
Input:

e an elliptic curve E/Q (given by its reduced minimal model) of analytic rank 2
such that rankzE(Q) = 2;

e an odd prime p of good ordinary reduction such that the p-primary part of the
Tate—Shafarevich group of E/Q is finite;

e two Z-independent points Py, P, € E(Q);

3As a consistency check we compute the height of nP and verify that h,(nP) = n%h,,(P) for
positive integers n < 5.
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e an imaginary quadratic field K such that

— the analytic rank of E/K equals 3, and
— p and all rational primes dividing the conductor of E/Q split in K.

Output:  The slope of the shadow line Ly C E(Q) ® Q, with respect to the
coordinate system induced by {Py, P,}.

(1) Use Algorithm 5.1 to compute a non-torsion point S € E(K)™. We then have
generators Py, P, S of E(K) ® Q, such that Py, P, € E(Q) and S € E(K)~
(given as points on the reduced minimal model of E/Q) .

(2) Compute Py + S and P, + S.

(3) Use Algorithm 5.2 to compute® the anticyclotomic p-adic heights:
ho(Py +S) and h,(P> + S). Finding that at least one of these heights
is non-trivial implies that the shadow line associated to (E, K, p) lies in
E(Q) ® Qp, i.e., the Sign Conjecture holds for (E, K, p).

(4) The point hy(Py + S)P1 — hy,(Py + S)P; is a generator of the shadow line
associated to (E, K, p). Output the slope of the shadow line Ly € E(Q)®Q,
with respect to the coordinate system induced by {Py, P,}: compute

—hp(Pl + S)/hp(Pz +9) e Qp.

6 Examples

Let E be the elliptic curve “389.al1” [17, Elliptic Curve 389.al] given by the model
V' +y=x+x>—2x

We know that the analytic rank of E/Q equals 2 [3, §6.1] and
rankzE(Q) = 2, see [7]. In addition, 5 and 7 are good ordinary primes for E.
We find two Z-independent points

Py =(—1,1),P, = (0,0) € E(Q).

We will now use the algorithms described in Sect. 5 to compute the slopes of two
shadow lines on E(Q) ® Q5 with respect to the coordinate system induced by
{P1,P,}.

6.1 Shadow Line Attached to (“389.a1”, Q(+/—-11), 5)

The imaginary quadratic field K = Q(+/—11) satisfies the Heegner hypothesis for
E and the quadratic twist EX has analytic rank 1. Moreover, the prime 5 splits in K.

6We compute the height of P; + P, + S as a consistency check.
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We use Algorithm 5.1 to find a non-torsion point S = (1, 1 v/—11—1) € E(K)™.
We now proceed to compute the anticyclotomic p-adic heights of P; + S and P, + S
which are needed to determine the slope of the shadow line associated to the triple
(“389.a1”, Q(+/—11), 5). We begin by computing

6 27
A=Pis=(-2voie 282 o
: v (25 HETRETT: 125)

Ay =Py + S = (=2+/—11,—4/—11 — 12).

We carry out the steps of Algorithm 5.2 to compute /,(A):

(1) Let 50k = mx®, where 7 = (3+/—11 + 3) and ¢ = (—=1+/=11 + 2). This
allows us to fix an identification

w:Kn _>Q5
that sends
1 3
§¢—11+5 25452435 4+4.5*+ 4.5 +3.57 458457 L 0(5"9).

(2) Since the Tamagawa number at 389 is trivial, i.e., c339 = 1, we have my = 1.
Thus R = A;.

(3) We find that n = 9 is the smallest multiple of R and R¢ such that both points
reduce to 0 in E(Og/m). Set T = 9R.

(4) Note that the class number of K is 2 = 1. We find d,(R) = %«/—11 - %

(5) Letfy denote the 9th division polynomial associated to E. We compute

d,(T) = d,;(9R)
= fo(R)dy(R)”
= 24227041862247516754088925710922259344570/—11
— 147355399895912034115896942557395263175125.
(6) We compute
0. (1) : = o0s(t)
=t+(4+5+3-5%+5+2-5+3.5+2-5°+ 0(5*))
+(34+2:5+2:5+2:5+2:5"+2.5 +2-5°+ 0(5")) ¢*
+(1+5+5+5+3-5"+3-5 +0(5°) ¢
4+42.542-542.5+3.5 4+ 0(5%)) 1
4435445406517 +(3+3-524+0(5))
3-54+0(5)) 1 + 2+ 065) " + o).

+(
(
(
(

+
+
+
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(7) We use Proposition 3.4 to determine the anticyclotomic p-adic height of 7: we
compute

1 oD\, dy(Ty
)= os (1 (7575 ) ) 5 tow (0 (G )

1 d,(T)*
e GE)) (+ (7))

=3+5+52+4-543.5+4.5 +3.52 45 4+ 0(5").

(8) We output the anticyclotomic p-adic height of A;:

Bo(A1) = 3hy(T)
=343.543-5242-5"+4.544.5° 4+ 3.5 1 0(5").
Repeating Steps (1)—(8) for A, yields
ho(A2) =3+2-5+4-524+2.5 450+ 4.5 +4.5 4 0(5").
As a consistency check, we also compute
hy(Py+Py+8) = 14+5+3-55+5 +2.5+5 + 50+ 4.58 1 4.57 4 0(5").
Observe that, numerically, we have
ho(P1+ Py +8) = ho(P1 +85) + hy(P, + S).

The slope of the shadow line Ly € E(Q) ® Q, with respect to the coordinate
system induced by {P1, P,} is thus

_hp(Pl +5)

=442-5454+3-54+5 4545 4 0(5").
hp(P2+S) )

6.2 Shadow Line Attached to (“389.a1”, Q(+/—24), 5)

Consider the imaginary quadratic field K = Q(+/—24). Note that K satisfies the
Heegner hypothesis for E, the twist EX has analytic rank 1, and the prime 5 splits
in K.
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Using Algorithm 5.1 we find a non-torsion point
S = ! lv 24 ! € E(K)~
-~ \2'8 2 '

We then compute

1 1 5
P +S= (—E¢—24 +yg VN 1)

1
Py+S= (—§¢—24 —2, —6) .

Many of the steps taken to compute A, (P + S) and h,(P, + S) are quite similar
to those in Sect. 6.1. One notable difference is that in this example the class number
h of K is equal to 2. We find that

hy(Py+8) =4+2-54+3-5"+2.5 +4.5042.5 + 5%+ 2.5+ 0(5"),

hy(Pra+8)=1+5+5+54+2.5+4.57+2.5843.57 4+ 0(5").
In addition, we compute 4,(P; 4+ P, + S) and verify that

ho(Py+Py+8)=4-5+5 +3.5"+3.55+5042.5 1 4.5 + 0(5")

= hp(P1 +95) + hp(Pz +S).

This gives that the slope of the shadow line Lx € E(Q) ® Q, with respect to the
coordinate system induced by {Py, P,} is

(P +S)

=1454+3-5243.54+3.543.5"42.58 45 4 0(5"9).

6.3 Summary of Results of Additional Computations
of Shadow Lines

The algorithms developed in Sect.5 enable us to compute shadow lines in many
examples which is what is needed to initiate a study of Question 4.1. We will now
list some results of additional computations of slopes of shadow lines on the elliptic
curve “389.al”. In Tables 1 and 2 we fix the prime p = 5, 7, respectively, and vary
the quadratic field.



53

Shadow Lines in the Arithmetic of Elliptic Curves

()0 + ¢S v+ S €+ oS- €+ S €+:S v+ S+ S v+ST+¢| FII—MO

()0 + S+ S v+ S+ oS+ S v+,5v+5-T| (651—)D

()0 + ¢S v+ S v+ S v+ oS+ ST+ S v+ S v+S5-T+S-T+T+ -S-¥| 6II—MD
(0 + S+ ST+ S+ S €+STH S v+ ST+ S T+HSv+v+ S+ 6| UII=MD
(S0 + ST+ S+ oS v+ ST+ + 5+ €+ (16=MO

(1O + (S T+ S €+ S €+ oS- €+S-v+4S v+ ST+ 5-T+S5+T| (6L—/MO

()0 + ST+ S v+ S €+ 5 TH4S T+ S+ S v+S+1 | (65—MD

(190 + ¢S+ 4S-T+ S €+ oS- €+ S €+ 5-€+S+T1| FT=MO

(1O + S v+ 43S €+ S v+ oS+ ST+ ST+ S T+HS-v+1| (61—/MD

()0 + S+ oS+ S+ S-€+S+s-T+v| (LI=MO

adors Y

(S *.17°68€.,) 10§ soul| mopeys jo sado]s T d[qeL



J.S. Balakrishnan et al.

54

(O + L TH L THoL €+ L€+ L-v+cL-THL-S+S| (PI=MD

(O F L TH L TH+ol+ LS+ L9+ L THL+L-THS+ L TH L] (IIT=MD
(DO + L+ L-S+ol+cL-THyL-THel+L-v+L-€| (L8—MD

(DO + LS+ gl -S4 L+ oL+ L S+ L-SH+cL-THL-v+1| (89=MD

(O + L 9+ gL+ L v+ oL-TH L S+ yL-SH+eL-€+L-€+L+T  (65—MD
(DO + Lt + LA+ cL-€+ LS+l €+ L-9+L+T| (SS—MD

(O + L €+ ol S+ cL-TH L€+l €+ L+L-S+T| @S=MD

(DO + gL TH L9+ oL THcL-TH L9+ L-THoL-€+L-€+T| HFT—/MD
(O + L€+ oL-€+ L€+ yL-TH L9+ L-9+L-S+T| (0T—/MD

(O + 6L 9+ L+ oL+ L+l €+ oL-THL-THE| (GI=/MD

adog Y

(LN *.17°68¢€.,) 10§ soul] mopeys jo sado[s ¢ dqeL
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