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Abstract. One of the underutilized advantages of REST API is extensibility.
Extensibility allows a REST API to make certain changes to its resource repre-
sentation, identification, interaction, and connection without breaking its clients.
A client can cope with these changes in the REST API through hypertext-driven
interactions - an iterative process in which the client can determine the resource
identification based on its representation, utilize its identification to determine the
interactions, and follow the interactions to determine its connections. However,
our analysis reveals that there are limitations to the flexibility of the
hypertext-driven navigation due to the dependency between these interaction
layers in the REST API, and there is a critical need to determine if two REST
APIs are compatible for the client. To address this issue, we describe a structured
approach to REST client modelling that decomposes a REST client into two
functional components: client oracle and client agent. From this client model, we
derive a formal definition of compatibility based on the REST Chart representa-
tion of the REST API, and an efficient algorithm is developed to verify the
compatibility between two REST Charts. A prototype system has been imple-
mented, and the preliminary experimental results show that the approach is
feasible and promising.

Keywords: REST API � Coloured petri net � REST chart � Compatibility
checking � Client oracle � Client agent

1 Introduction

In recent years, the REST architectural style [1] has been widely applied in API design
for multiple areas, including Real-Time Communications [2], Cloud Computing [3],
and Software-Defined Networking (SDN) [4]. It is an efficient and flexible way to
access and integrate large-scale complex systems which may have many interacting
REST APIs to provide their resources as service for applications. However, in large
scale distributed systems, these interacting REST APIs are evolving rapidly and under
frequent updates. An acute problem in REST based system is how to efficiently migrate
REST clients to keep up with the rapid updates and service variations that are fre-
quently made to the numerous REST APIs - a situation may cause the backward
compatibilities to break.

For example, OpenStack is an open source IaaS platform that currently supports 14
REST APIs [5], implemented by over 30 components - managing compute, storage,
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network, VM image, and identity services. To maintain backward compatibility,
OpenStack simultaneously supports different versions of the same API - for example,
there are 3 versions of Compute API, 2 versions of Block Storage API, 2 versions of
Identity API, and 2 versions of Image API. In fact, the actual number of REST APIs in
an OpenStack installation can be even much higher if we count the third party REST
APIs.

On the other hand, OpenStack development follows a rapid release cycle, and the
development cycle of different versions of OpenStack often overlap in time [6]. For
example, the Grizzly and Havana versions of OpenStack overlap each other by 6
months, and each has 6 releases within 11 months respectively. The Havana and
IceHouse versions of OpenStack overlap each other by 6 months, and the IceHouse
version of OpenStack has 4 releases within 6 months. Each new release can introduce
changes to its REST APIs that can break the REST clients originally programmed for
the previous release.

For example, version 2.0 of Floodlight REST API in OpenStack made significant
changes to version 1.0. Version 2.0 allows a client to traverse to a port resource in one
of the two paths: (1) initial→ networks→ ports→ port or (2) initial→ ports→ port.
The first path is in version 1.0 while the second path is not. A version 1.0 client looking
for a port resource in the version 2.0 REST API can follow the first path without
change, but it cannot take advantage of the second path, unless it is pre-programmed to
take alternative paths. Version 2.0 also introduces changes that a version 1.0 client does
not recognize, such as renaming the attachment resource in version 1.0 to the device
resource. A version 1.0 client looking for an attachment resource will not find it in
version 2.0, unless it is reprogrammed to look for device resource.

To find such incompatibilities between versions of a REST API is therefore
important to design and port clients in face of the frequent changes and updates. This
task is difficult because a REST API permits 4 types of changes on its resources, and it
can happen at the layers of its resource representation, identification, interaction, and
connection. These changes can occur in any combination and each of them may require
a special method to deal with. Even if a well-designed REST API can navigate its
clients through some of the changes with hypertext-driven interactions, e.g. content
negotiation and URI redirection, a client is still at risk of not being able to reach its
targeted resource if the changes are beyond its programmed flexibility. Although it
might be possible to program more flexibility in the client to reduce such risks with a
new REST API, it is difficult to know what flexibility is necessary ahead of changes,
and adding unnecessary flexibility can impact the performance. For these reasons, we
propose a formal and efficient way to check and verify the compatibility for the client
between two REST APIs.

While compatibility checking can be based on either the implementations (be-
haviours) or the descriptions (structures) of the REST APIs after they are implemented,
this paper takes an approach to allow the compatibility checking and verification for the
REST APIs at their design time before they are implemented. This approach requires
that the REST APIs be described and represented in a more formal machine-readable
way, and it is justified for several reasons: (1) a formal description can be read by both
users and machines; (2) a formal description is more accurate than an informal one
(such as English); and (3) a formal description can be used to automatically generate
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REST API services and clients. The particular formal description adopted by this paper
is REST Chart [14], a REST service description language and modelling framework
based on Coloured Petri Net. Petri Net is a mathematical model with a graphical
representation that is easy to visualize for users. With REST Chart, compatibility
checking of two REST APIs is transformed into the compatibility checking of two
REST Charts that describe the REST APIs. The main contributions of this paper are
summarized below:

1. A layered model is described to analyze how changes to the resource representation,
identification, interaction, and connection can impact each other, and it is applied to
characterize the capabilities and limitations of hypertext-driven navigation in coping
with REST API changes.

2. A REST client model that decomposes a REST client into two structural compo-
nents: client oracle and client agent, to localize and classify the impact of REST API
changes on the client implementation.

3. From this client model, a formal definition of compatibility between REST Charts is
derived for compatibility checking and verification.

4. We describe an efficient algorithm to find and identify the compatible paths between
two REST Charts in hypertext-driven navigation.

The rest of this paper is organized as follows. Section 2 surveys the related work.
Section 3 analyzes the 4 types of changes that can be made to the REST API. Section 4
introduces the framework of REST Chart modelling for REST APIs. Section 5 presents
the proposed REST client operational model which provides a theoretical basis for the
REST Chart based compatibility testing and verification. Section 6 derives the com-
patibility conditions and the REST Chart comparison algorithm based on the proposed
operational model. Section 7 discusses the implementation and experimental results,
and the findings of this paper are summarized in Sect. 8.

2 Related Work

Several REST service description languages have been developed since 2009. WADL
[7] is an early effort to describe REST services, followed by RAML [8], Swagger [9],
RSDL [10], API-Blueprint [11], SA-REST [12], ReLL [13], REST Chart [14], RADL
[15], and RDF-REST [16]. All these description languages are encoded in some
machine-readable languages, such as XML, and most of them are standalone docu-
ments, but a few of them, such as SA-REST, are intended to be embedded within a host
language, such as HTML. However, they lack a formal method to efficiently compare
different versions of a REST API based on these description languages.

There are several open source Java packages and Web tools [17–19] that compare
two WSDL files for WS-* based web services – they include using XML Schema [20]
files to identify changes (addition, deletion, modification, and reorder) made to the
WSDL elements, such as port types and operations, and the XML elements and
attributes. Some tools distinguish changes that will break interface compatibility from
those that will not. For example, adding an optional XML element to a XML Schema
of an input element for an operation will not invalidate the interface, but adding a
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required XML element, or changing the type, name, or position of an existing required
XML element will.

Moreover, these methods of WSDL comparison for WS-* based web services
cannot be applied to compare REST Charts for REST APIs, because a REST Chart is
not structured as a WSDL file. Despite that REST Chart is represented as a XML
dialect, we cannot use generic XML diff tools to compare REST Charts, because REST
Chart has special semantics not understood by these tools.

In addition, there are a few open source tools [21] that compare two XML Schema
definitions and identify their differences as changes (addition, deletion, modification,
and reorder). These tools can assist the comparison of REST Chart, as well as other
service description languages that use XML Schema to define the input and output
messages of a service. However, they fall short to provide a generic framework for
comparing the compatibility of REST service APIs, which is critically needed for large
scale distributed software systems.

Petri Net is a mathematical model that has been used to model and analyze con-
current and distributed communication and computation systems [22–24]. A Petri Net
consists of places and transitions connected by arcs. A place can store tokens, which
can represent data, messages or conditions, and a transition can move tokens between
places to model computation, processing or inference. Coloured Petri Net assigns
colours (data types) to places and tokens, such that it can realistically model systems in
which tokens can have complex structures. However, it lacks a structured way to check
and verify the compatibility of Petri Net in RESTful interactions.

3 A Layered Model of REST API Changes

Hypertext-driven navigation, also called “hypermedia as the engine of application
state” in [1], is an iterative process in which a client uses representations (e.g. XML) to
select identifications (e.g. URI), utilizes identifications to determine interactions with
resources (e.g. HTTP), and follows the interactions to obtain representations and
connections. This process is illustrated in Fig. 1, where a client moves from resource
a to resource c through three layers of objects: representations, identifications, and
connections, using two layers of operations: selections and interactions. At first, the
client selects the entry point URIa. It then uses the appropriate protocol to interact with
resource a identified by URIa. After the interaction returns Hypertexta, the client selects
URIb from the Hypertexta and the cycle continues until the client reaches the target
resource c. Because hypertext-driven navigation encourages a client to make its
decisions based on current resource states, a REST API can make certain changes at
these layers where a client can cope with these changes at runtime through hypertext
navigations without modification.

Compared to direct access from a fixed identification, hypertext-driven navigation
seems less efficient. For example, navigating to resource c from resource a requires 4
navigation messages, whereas the direct access to resource c from URIc requires 0
navigation message. However, direct access to a resource is possible only if the
resource already exists. If the resource (e.g. c) does not exist and must be created by
another resource (e.g. b), hypertext-driven navigation is the only option. Direct access
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binds resource identifications to resource connections and makes them difficult to
change at runtime. For example, if a REST API advertises URIc = http://www.example.
com/a/b/c for direct access, it removes the possibility for a client to find the changes to
the connection at runtime - the only way is to modify the client to use the new URI.

Although hypertext-driven navigation is a powerful mechanism in the RESTful
design framework, it has limitations in dealing with changes in REST APIs. For
hypertext-driven navigation to work, a client must recognize the objects and perform
the operations in Fig. 1.

If a change introduces unrecognized objects or operations, a client will not be able
to navigate through the REST API. In such cases, the client has to be modified in order
to work with the new changes. To understand these limitations, we analyze the possible
changes at each layer and describe how these changes in one layer can impact the other
and affect the clients.

In our analysis, we treat 3 layers of objects as 3 directed graphs so that we can
determine how changes in one graph can impact other graphs:

1. Connection Graph RG: a directed graph whose nodes are resources and edges are
connections between the resources. In particular, we use triple (x, r, y) to represent
connection r from resource x to resource y.

2. Identification Graph IG: a directed graph whose nodes are identifications and edges
are relations between the identifications. In particular, we use u(x) to denote
identification u of resource x.

3. Representation Graph HG: a directed graph whose nodes are hypertexts and edges
are relations between the hypertexts. In particular, we use h(u(x)) to denote
hypertext h obtained from the identification u(x) and l(r, u(x)) to denote a hyperlink
l corresponding to the connection r to identification u(x), and m(h(u(x))) to denote
the media type of the hypertext h.

Fig. 1. Layered REST API structure for hypertext-driven navigation.
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Because the selection operations are performed by a client and not controlled by a
REST API, we only analyze interaction operations. In particular, we use p(u(x)) to
denote protocol p to interact with identification u(x). Within these notations, we con-
sider three types of basic changes at each graph: (1) replacing element x by y is denoted
by x → y; (2) adding element x is denoted by +x; and (3) removing element x is
denoted by −x.

3.1 Connection

The basic changes to a resource graph RG are summarized in Table 1.

When a REST API replaces resource y by z or adds resource z, the REST API must
create new identification u(z) in graph IG. The new identification leads to new inter-
action operation p(u(z)). However, if resource z already exists in the REST API, there
will be no changes to the interaction operations or identification graph.

A REST API can replace the connection between the resources. Since the resources
remain the same, no changes are necessary to the interaction operations and graph IG,
except that the new connection must be advertised in the HG as hyperlinks.

When a REST API removes a connection including its resource, it needs to remove
the corresponding interaction operation, identification, and hyperlink properly. How-
ever, if resource y is still connected in the REST API, then no change to graph IG is
needed.

When a REST API changes connections between the same resources, it will break
those clients that navigate those connections. To deal with such changes, a client can
backtrack to rediscover the connections. For example, if the REST API changes
connection a → b→c to a → d→c, then the client cannot navigate to resource c from
b. The client can backtrack to resource a and follow d to c instead. This technique can
eventually find any resources connected to an entry resource.

3.2 Interaction

The basic changes to interaction operations are summarized in Table 2.
The first two rows show that a REST API can change the protocol to interact with

identification u(x), by associating different URI resolution procedures with the
hypertext.

Table 1. Impacts of the basic changes to RG.

(x,r, y) Interaction Identification Representation

→(x, r, z) +p(u(z)) +u(z) l(r, u(y)) → l(r, u(z)) in h(u(x))
+(x, r, z) +p(u(z)) +u(z) +l(r, u(z)) in h(u(x))
→(x, s, y) no no l(r, u(y)) → l(s, u(y)) in h(u(x))
+(x, s, y) no no +l(s, u(y)) in h(u(x))
−(x, r, y) −p(u(y)) −u(y) −l(r, u(y)) in h(u(x))
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The last row means a REST API can remove the protocol for a URI without
removing the URI itself. A URI without a protocol identifies a resource that cannot be
resolved from this hypertext.

When a REST API replaces a protocol, it will break those clients that depend on the
protocol. Although a client can prepare some common protocol stacks, it will increase
the footprint of the client, and there is still no guarantee that it will cover the protocols
used by a new REST API. For the same reason, it is better to install a small set of
common protocol stacks in a client, and add the new ones required by a REST API
when needed.

3.3 Identification

The changes to IG and impacts are summarized in Table 3.

A REST API can replace, add or remove identifications without modifying the
underlying connection graph RG. When a new identification v(x) is introduced, a new
interaction operation may be needed, and a new hypertext is always necessary. When
identification u(x) is removed, the corresponding interaction operation becomes useless,
if no other identifications use the operation.

Replacing identification u(x) may break those clients that do not know or under-
stand the new identification. A REST API can use HTTP redirection to “teach” a client
the new identification using the old identification. A REST API can also use a URI
template [28] to prepare its clients for the range of URI changes. However, these
techniques require that the new and old identifications use the same interaction oper-
ations. If new interaction operations are introduced, the client has to be modified.

Table 2. Impact of basic changes to interaction operations.

p(u(x)) Connection Identification Representation

→q(u(x)) no no →h(u(x))
+q(u(x)) no no →h(u(x))
−p(u(x)) no no −l(r, u(x)) in h(u(x))

Table 3. Impact of changes to identification graph IG.

u(x) Connection Interaction Representation

→v(x) no maybe l(r, u(x)) → l(r, v(x))
+v(x) no maybe +l(r, v(x))
−u(x) no maybe −l(r, u(x))
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3.4 Representation

The changes to HG and impacts are summarized in Table 4.

In these changes, we assume the new media type n (e.g. JSON) is equivalent to
m (e.g. XML). Therefore, there is no change to the resource connections or identifi-
cations. However, the interaction protocol messages have to be changed to transmit the
new media type.

Although a client can use content negotiation to accept a set of media types, there is
no guarantee that these media types will overlap with those supported in a REST API.
When a REST API replaces a media type, it breaks those clients that depend on that
removed media type. Similarly, adding a new media type requires reprogramming the
client in order to use it.

If a REST API modifies the specification of a media type, including its structure
and processing rules, a client must be reprogrammed, because hypertext-driven navi-
gation procedures depend on the media types.

4 REST Chart Model

To localize the impact of REST API changes on client, we decompose a client into two
functional components: (1) client oracle that copes with changes in connection and iden-
tification; and (2) client agent that copes with changes in representation and interaction.
In hypertext-driven navigation, a client oracle selects hyperlinks to visit from hypertext,
while a client agent interacts with the selected hyperlinks to obtain the new hypertext.
In order to define the compatibility between twoRESTAPIs from the perspective of clients,
we formalize these two concepts into a client model. Since any REST client model is
dependent on the REST API it uses, we develop a formal model of REST API and use it to
derive the client model. By defining compatibility based on the abstract models instead of
concrete RESTAPI implementations, we are able to derive a generic and efficient algorithm
to check the compatibility without REST API implementations.

The REST API model we choose is REST Chart (RC) [14], which is originally
proposed to design and describe REST APIs without violating the REST principles [1].
REST Chart models a REST API as a Colored Petri Net [23] that can model concurrent
system with complex data structures as colors. The structure and behavior of REST
Chart can be explained with a simple example in Fig. 2. This REST Chart with one
transition, two input places, and one output place. It models a login REST API with one
resource. The login place contains a token x1 which is the entry point to the REST API.
The credential place is initially empty. To navigate to the account place, a client must
deposit a valid token x2 in the credential place. The two tokens x1 and x2 cause the
transition to fire, emulating the interaction with the resource. If the credential x2 is

Table 4. Impact of changes to a representation.

m(h(u(x))) Connection Interaction Identification

→n(h(u(x))) no yes no
+n(h(u(x))) no yes no
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accepted by the resource, a token x3 representing the account information will be
deposited in the account place by the REST API.

The above interaction can be modeled by a sequence of token markings of the Petri
Net, where each token is a valid resource representation. As this REST Chart has 3
places, each token marking is a 3 dimensional vector and the interaction involves 3
token markings:

ðx1; 0; 0Þ ! ðx1; x2; 0Þ ! ð0; 0; x3Þ:

Token x1 may have many hyperlinks besides the login. To distinguish the login
hyperlink h from the rest, REST Chart adopts Predicate/Transition Petri Net [22] and
attaches a hyperlink predicate k(h) to the arc from the login place to the transition arc to
the account. Hyperlink predicate k(h) qualifies a hyperlink h with two information
items [25, 26]:

1. [service]: a URI [27] that represents the service provided by the hyperlink.
2. [reference]: a URI Template [28] that identifies the locations of the resource.

Two hyperlink predicates k1 and k2 are equal if k1.[service] = k2.[service] and k1.
[reference] = k2.[reference].

Predicate k(h) is true if and only if the following conditions hold:

1. k.[service] = h.[service];
2. match(k.[reference], h.[reference]) is complete.

Function match(x, y) returns a set of v = s pairs, for each variable v of URI template
x that is instantiated by string s from URI string y. Function match(x, y) is complete if
and only if all the variables of x are instantiated by y. The following XML represents a
hyperlink predicate k, where k.[service] = link/rel/@value, and k.[refer-
ence] = link/href/@value:

Fig. 2. Example of a basic REST Chart.

Compatibility Checking of REST API Based on Coloured Petri Net 33



The following XML represents an ordinary hyperlink h, where h.[service] = link/@rel
and h.[reference] = link/@href:

Clearly k(h) is true because the two conditions hold:

(1) k.[service] = h.[service] = http://a.b.com/login;
(2) match(k.[reference], h.[reference]) = {d = http://a.b.com, u = john}.

With hyperlink predicate, we can represent the client state in Fig. 2 as a sequence of
p-k pairs, where p denotes a place, k denotes the hyperlink predicate selected at p, and 0
means no hyperlink is selected:

login�k account�0

This p-k representation is equivalent to the token marking vectors, but it highlights the
two main operations performed by client oracle and client agent: (1) the oracle selects a
hyperlink at each place to move towards the goal place, in this case the account place;
(2) the agent moves tokens, e.g. x2 and x3, between the places by interacting with the
selected hyperlink.

To understand the distinction between these two components, we can regard a
REST Chart as a maze where the transitions are the locked “doors” that protect the
places. The oracle knows which door (hyperlink) to open at each place, but it does not
have the keys (interactions) to unlock the doors. The agent has the keys, but does not
know which doors to open. To move through a maze, a REST client needs the right
kind of client oracle and client agent for that maze.

Within the REST Chart model, the changes in the layers of a REST API correspond
to changes to a p-k path:

path ¼ p0�k0 p1�k1 p2�k2 p3�0

Without losing generality, we assume that this path exists in version 1.0 of a REST API
and the version 2.0 changes the path in the following ways.

Case 1: the new path is identical to the original path. Obviously, a version 1.0
client can reuse its client oracle and client agent to traverse the new path.

Case 2: the new path consists of the same pairs but different inter-pair relations. For
example, new path p0-k0 p2-k2 p3-0 removes pair p1-k1, whereas new path p0-k0 p2-k2
p1-k1 p3-0 reorders the original pairs. A version 1.0 client can keep its client oracle and
client agent, because the client oracle can select the same hyperlink at the same place in
version 2.0.

Case 3: the new path consists of different pairs combined from the same p and
k. For example, new path p0-k2 p1-k0 p3-0 changes the hyperlinks selected at p0 and p1.
For a version 1.0 client to traverse the new path, it needs a new client oracle that selects
k2, instead of k0, at p0. But the client can reuse its client agent, since all p and k in the
new path occur in the original path.
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Case 4: the new path consists of different pairs combined from different p and
k. For example, new path p0-k3 p4-k4 p3-0 introduces new hyperlink predicates {k3, k4}
and places {p4} to reach the original goal place p3. New hyperlink predicates mean new
services and protocols that a version 1.0 client agent cannot fire, while new places
mean new schemas and tokens that the client agent cannot process. For this reason, the
version 1.0 client has to update both its client agent and client oracle. However, if the
new places and transitions in version 2.0 are covered by some places and transitions in
version 1.0, then the client can update its client oracle but keep its client agent.

5 RC Operational Model

In order to identify the compatible paths between REST Charts, this section introduces
a deterministic operational model for REST Chart based on a state-based Petri Net
behaviour model (Murata 1989). This model leads to a formal model of client oracle
and client agent, from which the REST Chart compatibility checking algorithm is
derived.

5.1 RC Behaviour Model

A REST Chart is a bipartite graph RC = (P, T, F, M0, p0, L, S, K, type, link, bind)},
where:

• P is the finite set of places.
• T is the finite set of transitions.
• F � (P × T) [ (T × P) is the set of arcs from places to transitions and from

transitions to places.
• M0: P → {0, 1, 2, …} is the initial marking, a function that maps each place in P to

0 or more tokens.
• p0 is the initial place.
• L is a finite set of media type definition language.
• S is the finite set of schemas in some type definition language in L and valid(s, x)

indicates token x is an instance of schema s.
• K is the finite set of hyperlink predicates.
• type: P × L→S maps each place and a media type language to a schema.
• link: P → 2K maps a place to a set of hyperlink predicates.
• bind: P × K→T binds a hyperlink predicate in a place to a transition.

We assume that RC has no isolated places or transitions as typical. For a REST
Chat RC with m places and n transitions, let A = [aij] be the n × m incident matrix of
integers, whose entry is given by:

aij ¼ aþ
ij � a�ij ð1Þ

aþ
ij ¼ wðTi;PjÞ; a�ij ¼ wðPj; TiÞ ð2Þ
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where w(Ti, Pj) is the weight of the arc from transition Ti to its output place Pj and
w(Pj, Ti) is the weight of the arc to transition Ti from its input place Pj.

For a given token marking M, let M(Pj) denote the number of tokens in place Pj.
Transition Ti can fire if and only if:

a�ij �MðPjÞ; 1�Pj �m ð3Þ

In the deterministic operation model, only one transition fires at each step. To select a
transition to fire at the k-th step, we define a n × 1 column control vector uk with
exactly one 1 in the i-th position and 0 elsewhere to indicate that transition i fires. If g is
the goal place, then the necessary condition to reach marking Md(g) > 0 in d steps from
M0 is:

DMk ¼ Mk �Mk�1 ¼ ATuk ð4Þ

MdðgÞ ¼ M0 þAT
Xd

k¼1

uk ð5Þ

Among the three factors of Eqs. (4) and (5), AT is fixed by the REST Chart, uk is
controlled by the client oracle that selects a transition to fire, and ΔMk is handled by the
client agent that moves tokens between the places of the fired transition. The proce-
dures of these two components are defined in Sect. 5.2.

5.2 REST Client Model

Our REST client model represents the hypertext-driven navigation shown in Fig. 1 in
terms of Petri-Net. In particular, a client agent A of a REST Chart RC consists of the
following abstract procedures that operate on tokens in a place:

• (H, d) = decode(p, l, x): decode a token x in type language l in place p into a set of
hyperlinks H and data d, such that:
– (8 h 2 H 9 k 2 link(p))k(h): every decoded hyperlink h matches a hyperlink

predicate k at place p.
– valid(type(p, l), x): if it is true, then it indicates that token x is an instance of

schema type(p, l) at place p with language l.
• x = encode(p, l, (H, d)): encode a set of hyperlink H and data d into a token x in type

language l in place p, such that:
– valid(type(p, l), x) is true as described above.

• (p, xout) = fire(t, h, xin): send token xin to the resource identified by hyperlink h and
receives token xout in place p according to protocol defined by transition t.

In this model, each place and language pair defines a schema, and each token in a place
is processed as an instance of the schema. To decode in place pj, a token encoded in
place pi requires that these places maintain the coverage relation denoted by pi � pj.
More precisely, for any media type definition language l and token x, pi � pj if and only
if type(pi, l) � type(pj, l) such that:
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validðtypeðpi; lÞ; xÞ ! validðtypeðpj; lÞ; xÞ:

It is evident that if pi � pj, then any token encoded in pi can be decoded in pj such that:

ðH; dÞ ¼ decodeðpj; l; encodeðpi; l; ðH; dÞÞÞ:

A client oracle Q of a REST Chart RC consists of the following abstract procedures
that operate on the control vector:

• (k, t, pj, Hj, d) = select(pi): select a hyperlink predicate k, transition t for k, input
place pj for t, data d, and hyperlinks Hj for pj, based on the current place pi.

• Bool = goal(d): return true if data d satisfies the target place.

A client oracle can be derived from a REST Chart to select a shortest path to reach the
goal place. It could be implemented as a rule-based system or finite-state machine that
is easy to reconfigure when RC or the goal changes.

The client operation model can be represented by a recursive procedure by which
the client agent moves towards the goal place guided by the client oracle. More
precisely, a REST client C = (Q, A, reach), where Q is a client oracle, A is a client
agent, and reach is a control procedure that combines Q and A to reach the goal place,
starting from the initial place p0 and token x0 (Listing 1). Variable V collects the
traversed places and transitions with an empty set as the initial value.

Listing 1. REST client operational model.

6 REST Chart Compatibility

The compatibility between two REST Charts RC1 and RC2 can be defined in terms of
the client operation model introduced in Sect. 5. More formally, a place p in REST
Chart RC2 is compatible with REST Chart RC1 for client C, if and only if the following
conditions hold:

1. C = (QRC2, ARC1, reach);
2. (p, x) = reach(QRC2, ARC1, M0, p0, x0);
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where:

• QRC2 is a client oracle for RC2;
• ARC1 is a client agent for RC1;
• M0 is the initial state of C;
• p0 is the initial place of RC2;
• x0 is the initial token in p0.

By the maze analogy in Sect. 4, this definition implies that RC2 is compatible with RC1

if client C can reuse the keys for RC1 to open the doors in RC2, when guided by oracle
QRC2. Here a key refers to the decode(), encode() and fire() procedures defined in
Sect. 4.2. The situation is illustrated in Fig. 3, where client C has a token in place p02
and its oracle QRC2 selects door t2 to enter place p22.

To find a reusable key, we introduce agent B to RC2 whose job is to search RC1 for a
door (transition) t1 equivalent to t2 so that C can use the key for t1 to open t2. This
equivalent relation can be defined with an auxiliary Petri Net that connects RC1 and RC2

with dashed places and transition 1, 3, 4 shown in Fig. 3. Transition t1 and t2 are
equivalent if C can fire transition t2 in the following 4 steps. At step 1, agent B encodes
token x0 in place p02 and sends it to place p01 where agent ARC1 decodes x0 to extract the
hyperlinks H0. At step 2, oracle QRC2 selects from p02 hyperlink predicate k that leads to
place p22. Client C applies k toH0 to choose hyperlink h to follow at place p01. At step 3,
B finds place p11 for ARC1 to encode token x1 (request). Agent ARC1 sends token x1 to
place p12 for B to decode it. At step 4, agent ARC1 fires transition t1 which in turn fires
transition t2 to produce token x2 (response) in p22. The procedures of ARC1 and B at each
step are correlated in Table 5 (for brevity, the subscripts of Q and A are omitted).

Fig. 3. Client C uses agent A of RC1 to fire a transition of RC2.
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For client agent ARC1 to fire the transition, all the procedures in Table 5 must
succeed in the right order. However, these conditions rule out non-validating client
agents that do not use schemas. For this reason, Table 5 summarizes the necessary
conditions for finding a compatible path. Using the hyperlink predicate equality rela-
tion defined in Sect. 4 and the schema coverage relation defined in Sect. 5.2, the
Table 5 conditions can be reduced to Table 6, where the dependences on the opera-
tional procedures are removed and the conditions depend only on the structures of RC1

and RC2. These structural conditions allows us to compare RC1 and RC2 with a
Depth-First search algorithm to traverse RC2 aided by RC1 as outlined in Listing 2.

Listing 2. REST Chart comparison algorithm.

Table 5. Procedures called by client agents A and B.

RC2: Q, B RC1: Q, A

1 x0 = B.encode(p02,l,(H0,d0))
valid(type(p02, l), x0)

(H0, d0) = A.decode(p01, l, x0)
valid(type(p01, l), x0)

2 (k, t, p1, H1, d1) = Q.select(p02)
9h 2 H0 ^ k(h)

3 (H1, d1) = B.decode(p12, l, x1)
valid(type(p12, l), x0)

x1 = A.encode(p11,l,(H1,d1))
valid(type(p11, l), x0)

4 (p22, x2) = B.fire(t2, h, x1)
t2 � t1

(p22, x2) = A.fire(t1, h, x1)
t1 � t2

Table 6. Constraints between RC2 and RC1.

1 p02 � p01
2 k 2 RC1.link(p01)\ RC2.link(p02)
3 p11 � p12
4 RC1.bind(p01,k) = t1 = t2 = RC2.bind(p02, k)
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Procedure RC1.cover() finds a transition t1 in RC1 equivalent to transition t2 in RC2

based on the Table 6 conditions without actually constructing the auxiliary places and
transitions in Fig. 3. For each transition in RC2, this procedure may need to search up to
|P1| places of RC1 in the worst cases, where P1 is the set of places of RC1, since
hyperlink predicate k may occur in all places of RC1. As the algorithm traverses all
transitions and places of RC2, its time complexity is O(|P1|(|P2| + |T2|)), where P2 is the
set of places and T2 is the set of transitions of RC2.

7 Prototype and Experiments

We implemented the REST Chart comparison algorithm (Listing 2) in Java and tested it
on several REST Charts. The Java tool uses JDOM package to parse two REST Charts,
each defined by someXML files, and outputs compatible places and schema relations. An
example output of the RESTChart comparison is illustrated in Fig. 4, where a compatible
place in the new version is marked by arrows pointing to the old places that cover it.

The RC1.cover() procedure is based on the SOA membrane package (SOA
Membrane XSD tool 2014) that compares XML schemas and identifies their differ-
ences. Given two XML schemas s1 and s2, the procedure compare(s1, s2) returns the
differences between them as set D of pairs (e, op), where e denotes an element in s1 or
s2 and op denotes the operation that adds, removes or modifies the position or type of e:

Fig. 4. Compatible places between version 1.0 (left) and version 2.0 of Floodlight REST API.
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D ¼ fðe; opÞjop ¼ fadd; remove; move; typegg:

Certain pairs in D create incompatible differences such that some XML documents
validated by s1 are not validated by s2. Let B be the set of such incompatible differ-
ences, where e.min is the minimum occurrence of element e, and t1 � t2 indicates that
type t1 is a super type of type t2:
B ¼ fejðe; removeÞ 2 D _ ðe; moveÞ 2 D _ ððe; addÞ 2 D ^ e:min 6¼ 0Þ _ ðe; type; t1; t2Þ 2
D ^ ðt1 � t2ÞÞ g:

Let G be the set of compatible differences:

G ¼ feje 2 s1 ^ e 62 Bg:

Then we have the following decision rules:

1. D = {}: s1 = s2;
2. B = {}, G ≠ {}: si � sj;
3. B ≠ {}, G ≠ {}: s1 is partially covered by s2.

To test the correctness of the algorithm, we took a REST Chart and generated a
dozen versions of it by changing the places, transitions, and schemas in various ways.
Then the outputs of the algorithm against the changes were verified. The performance
of the algorithm is summarized in Table 7 for two REST APIs: SDN REST Chart (rows
1 and 2) and flat Coffee REST Chart (rows 3 and 4). The results are averaged over 5
runs of the algorithm on a Windows 7 Professional notebook computer (Intel i5 CPU
M560 Dual Core 2.67 GHz with 4 GB RAM). The results show that the algorithm
spent extra (1179.4 − 1063.8) = 115.6 ms when the complexity factors increased by
(19 + 21) * 17/((10 + 11) * 8) = 4 times from the Coffee REST API to the SDN REST
API.

8 Conclusions

Compatibility checking of REST API is important, because extensibility is one of the
main but underutilized advantages in RESTful service framework. Dealing with
compatibility at large scale requires not only a well-designed REST API, but also
automated methods to detect changes in a REST API. This paper defines compatibility
between REST API from the perspective of its clients, and it develops an efficient

Table 7. Performance summary.

Charts RC1 RC2 Time (ms)

Place 17 19 1179.4
Transition 17 21 30.3
Place 8 10 1063.8
Transition 10 11 55.9
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algorithm to check the compatibility between two REST API models based on
Coloured Petri Net. Our approach is independent of the REST API implementations,
and it promotes REST client reusability by decomposing the client into the functional
modules of client oracle and client agent. For future work, we plan to extend the REST
Chart comparison algorithm to more complex cases and implement an automated client
migration process based on the comparison.
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