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Abstract. We describe a novel diversity method named Grid Diver-
sity Operator (GDO) that can be incorporated into population-based
optimization algorithms that support the use of infusion techniques to
inject new material into a population. By replacing the random infusion
mechanism used in many optimisation algorithms, the GDO guides the
containing algorithm towards creating new individuals in sparsely visited
areas of the search space. Experimental tests were performed on a set of
39 multimodal benchmark problems from the literature using GDO in
conjunction with a popular immune-inspired algorithm (opt-ainet) and
a sawtooth genetic algorithm. The results show that the GDO operator
leads to better quality solutions in all of the benchmark problems as a
result of maintaining higher diversity, and makes more efficient usage
of the allowed number of objective function evaluations. Specifically, we
show that the performance gain from using GDO increases as the dimen-
sionality of the problem instances increases. An exploration of the para-
meter settings for the two main parameters of the new operator enabled
the performance of the operator to be tuned empirically.

Keywords: Grid · Diversity · Optimization · Evolutionary algorithms ·
Artificial immune systems

1 Introduction

Managing the diversity of a population has been recognized as one of the most
influential factors within an Evolutionary Algorithm (EA) right from their incep-
tion. From an exploration and exploitation perspective, an increase in diver-
sity correlates with the exploration phase of an optimization algorithm whilst
a decrease correlates with the exploitation phase. Maintaining a diverse pop-
ulation through the use of exploration operators is key to achieving a balance
between the two phases [1].
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The term diversity refers to differences among individuals which can be at
either the genotype or phenotype level. Typically, diversity is classified into three
categories: diversity maintenance, diversity control, and diversity learning. Diver-
sity maintenance encourages exploring multiple promising pathways through the
search space simultaneously in hopes of reaching higher fitness peaks. On the
other hand, diversity control methods use population diversity, individual fit-
ness, and/or fitness improvements as feedback to steer the evolutionary process
towards exploration or exploitation. The main difference between diversity con-
trol and diversity learning methods is that in the former case, the short-term his-
tory (e.g., current population) is often used during diversity computation, whilst
in the latter case, long-term history is used in combination with machine learn-
ing techniques to find (un)explored search areas. More recent research focuses
on diversity learning, using cultural learning or self-organizing maps for example
in order to discover promising locations within the search space.

In this work we extend research within the field of diversity maintenance.
We describe a novel genotypic diversity learning method named Grid-Diversity-
Operator (GDO) that makes use of the long-term history of all populations in
order to suggest a biased distribution for new individuals. GDO is not specific
to any particular algorithm, but can be used with any optimization algorithm
that supports the use of infusion techniques — that is, insertion of new indi-
viduals after a certain number of generations or special initialization techniques.
The new operator is tested within two population-based optimization algorithms
that support infusion techniques, replacing the infusion step that causes random
generation of new individuals. Experiments are conducted on a set of 13 bench-
mark multimodal optimization problems in different search space dimensions.
We proposed an outline of this operator in a recent short paper [2]. Here we pro-
vide a full description of the operator and the motivation behind it. In addition,
we undertake the first thorough evaluation of the operator using a well-known
set of 39 multimodal benchmark problems, ranging in dimensionality from 2 to
30 (in contrast, the earlier work considered a small set of 2-dimensional functions
only as proof-of-concept). Finally, we incorporate the GDO operator into two
different optimisation algorithms to provide evidence that GDO is not tied to
any particular algorithm, but can be used as a generic operator. A comprehen-
sive statistical analysis is conducted to provide a more accurate explanation of
GDO’s performance.

This paper is structured as follows. Section 2 will cover related work in the
literature regarding diversity preserving techniques. The Grid Diversity Operator
(GDO) will be introduced in detail in Sect. 3. Section 4 will briefly introduce the
algorithms that will be used in the experimental analysis. The experimental
protocol followed here with the benchmark problems adopted and the testing
procedure is introduced in Sect. 5. The obtained results and discussion along
with the statistical analysis will be presented in Sect. 6, while the final comments
will be given in Sect. 7.
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2 Related Work

It is widely accepted that maintaining high levels of diversity within a population
greatly contributes to algorithm performance [3]. Recent and detailed survey of
the area is given in by Črepinšek et al. [4] in which a taxonomy of approaches
for managing exploration and exploitation within a search algorithm is defined.
Three approaches are identified: diversity maintenance, diversity learning and
diversity control.

Of most relevance to our work is the branch of this taxonomy that concerns
methods for diversity maintenance, which the authors divide into two classes:
non-niching and niching. Within the former class, four approaches are defined —
population-based, selection-based, crossover/mutation-based and hybrid. Our
interest lies within population-based methods, which are sub-classified into meth-
ods that vary population size, eliminate duplicates, infusion techniques and
external archives. We provide a short overview of relevant work in the area
of infusion-techniques, given that the GDO operator proposed in this paper is
inspired by this — the reader is referred to the survey article for detailed exam-
ples of each of the other techniques.

Infusion techniques typically involve the insertion of new individuals into the
population after a certain number of generations or managing initialisation of
the population (e.g. [5]). Early approach to this were described by Grefenstette
in [6] in which random immigrants are inserted into the population every gen-
eration, and Koza [7] whose ‘decimation’ algorithm replaced a random fraction
of the population each generation. More recently, Koumousis and Katsaras [8]
proposed a SawTooth GA that utilised a periodic re-initialization step at which
a number of new, random individuals are added to the population. This algo-
rithm introduced an operator that varied the population size over time — the
population size is linearly decreased over a number of generations, then suddenly
increased to its original value through the addition of random immigrants, hence
the sawtooth name. This was shown to achieve both better population diversity
and overall performance on a set of continuous optimization benchmarks com-
pared to a standard GA.

In addition, our proposed approach has some similarities to previous diversity
learning methods. This class of methods is less well-studied than the maintenance
methods — the idea is that the long-term history of the population can be used in
combination with a machine learning techniques to learn which areas of the space
have not been explored. For example, Leung et al. [9] propose a history-driven
evolutionary algorithm (HdEA), in which a binary space-partitioning tree (BSP)
is used to record evaluated individuals and their associated fitness throughout
the evolution process. A guided anisotropic search governs the search direc-
tion based on the history of the BSP tree which results in an individual being
either exploitatively mutated towards the nearest historical optimum or ran-
domly mutated if the individual is already a local optimum. Other learning
methods [10] use self-organising maps (SOMs) to learn about unexplored areas
of the space using information from the whole evolutionary history; this infor-
mation is used to determine novelty and thus encourage exploration.
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Another class of algorithms that also exploit variable population size with
random immigration are the aiNET series of algorithms, first proposed in [11].
Steps intrinsic to the core algorithm maintain diversity by suppressing individu-
als that are genotypically similar (thus varying population size) while additionally
adding a small number of new, randomly generated individuals to the population
each iteration. Andrews and Timmis [12] further increased the diversity of
aiNET with respect to function optimization through adding an immune-inspired
mutation operator. De França et al. [13] evaluated the diversity mechanisms of
opt-ainet compared to fitness-sharing methods using a set of continuous optimiza-
tion benchmarks, finding that the diversity mechanisms within opt-ainet both
obtained better solutions but also maintained more diverse solutions.

Most infusion techniques described in the literature rely on random initialisa-
tion methods; in contrast, we propose an operator that biases the generation of
new individuals towards areas of the search space that are under-explored by the
current population. The proposed GDO operator shares some similarities with
previous learning approaches in that is exploits the history of the complete evolu-
tionary process, however unlike [9] we focus in its use to guide exploration rather
than exploitation. The operator can be used with any optimization algorithm
that uses an infusion-technique. In this paper, we test its validity by replacing
the random generation step of both Opt-aiNET and SawTooth algorithms which
we will briefly introduce to give better understanding in Sects. 4.1 and 4.2.

3 Grid Diversity Operator (GDO)

The Grid Diversity Operator (GDO) is a novel approach for achieving explo-
ration and exploitation balance through maintaining diversity. It can be defined
as a hybrid, non-niching, population-based, genotype diversity maintaining and
learning technique. Simply put, GDO is a special infusion technique for initializ-
ing new individuals that are inserted into a population after a certain number of
generations. Instead of randomly initializing individuals over the whole domain,
GDO tries to initialize them in unexplored locations. A memory archive is used
to store information collected throughout the run regarding the distribution of
the individuals, and is used to infer rarely visited locations.

The basic idea behind GDO is to split the feasible space (the domain) into
smaller sub-spaces using the grid size parameter Gsz ∈ �n, which defines the
number of intervals per dimension, where n is the number of dimensions for the
problem. This process will form a 2D grid for 2-dimensional problem, 3D grid
for a 3-dimension problem, and so on as demonstrated in Fig. 1. The GDO will
then try to distribute new individuals into the grid slots that have received fewer
visits over time, thus increasing the explorative power of the algorithm.

First, a memory archive is initialized as an empty dictionary that has n
component keys, where each of them matches a single value. The keys refer to
the indices of a slot within the grid, while the value represents the number of
individuals that have previously been placed in this slot. The memory archive
is designed in this manner for efficiency: as most of initialized memory will be
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Fig. 1. Examples of grid for 2-dimensional and 3-dimensional problems

sparse, by using the dictionary only visited locations are stored, and therefore
the use of memory is efficient regardless of problem dimensionality.

An example of the memory archive is shown in Table 1 that represent a
sample of a memory archive with two entries for a 10-dimensional problem.

Table 1. Example of memory archive for 10-dimensional problem

Slot Dictionary key (dimensions indexes) N (value)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

1 5 2 1 4 3 1 5 2 8 1 7

2 7 3 4 1 3 6 3 2 5 3 4

For the first entry, the slot located at key < 5, 2, 1, 4, 3, 1, 5, 2, 8, 1 > has
been assigned a value of 7, indicating that 7 solutions have appeared in this slot
during the run so far. The slot located at key < 7, 3, 4, 1, 3, 6, 3, 2, 5, 3 > has been
assigned a value of 4 indicating 4 solutions visited this slot. For each iteration in
the containing algorithm, every new individual is processed to identify its slot
to update the memory archive. For each individual being processed, if there is
an entry in the archive with a key that matches the identified slot, the value
corresponding to this entry is increased by one. Otherwise, a new entry is added
to the archive with a value of 1. The process of updating the memory archive is
demonstrated in Listing 1.

After processing all individuals, the updated archive is used to initialize new
individuals. For each new individual required, we pick a slot S(d1,d2,...,dn) at
random and calculate its distribution probability P according to Eq. 1.

P = e(−N) (1)
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Listing 1. GDO Update Archive Method
Input: MemoryArchive, Individuals, Resolution
Output: MemoryArchive

for Individuali ∈ Individuals do
Key ← FindSlot(Individuali)
if KeyExist(MemoryArchive,Key) then

IncreaseValue(MemoryArchive,Key,1)
else

AddKey(MemoryArchive,Key)
SetValue(MemoryArchive,Key,1)

end if
end for
Return (MemoryArchive)

where N is the value matching the slot key in the archive or zero if the
slot does not yet belong to the archive. Finally, the calculated probability P is
compared to the probability threshold parameter of the algorithm, Pth, and if
P > Pth then a new individual is initialized randomly in this specific slot. If not,
another slot is picked at random, and the steps are repeated until the individual
is initialized successfully. The Grid Diversity Operator, GDO, is described in
Listing 2.

Listing 2. Grid Diversity Operator
Input: MemoryArchive,Nnew,Gsz,Pth
Output: Snew

Snew ← ∅
for i = 1 to Nnew do

distributed ← FALSE
while ¬ distributed do

Key ← PickSlotAtRandom(Gsz)
if KeyExist(MemoryArchive,Key) then

V ← GetValueOfKey(MemoryArchive,Key)

P ← e−V

else
P ← 1

end if
if P > Pth then

Individual ← CreateNewIndividualInSlot(Key)
InsertIndividual(Snew,Individual)
distributed ← TRUE

end if
end while

end for
Return (Snew)

The process of updating the memory archive and distributing new individuals
continues until the algorithm terminates, at which point the final population is
expected to be more diverse than simply using a random initialisation procedure.

4 Selected Infusion-Supported Algorithms for
Experimentation

To assess the performance of the proposed Grid Diversity Operator (GDO), we
incorporate it within two algorithms from the literature that feature a distinct
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diversity maintenance mechanism. The first of the two is the artificial immune
algorithm opt-ainet [11] and the other one is the sawtooth genetic algorithm [14].

4.1 Opt-aiNET Algorithm

Opt-aiNET, proposed in [11], is a well-known Artificial Immune System opti-
mization algorithm. Opt-aiNET evolves a population that consists of a network
of candidate solutions to the function being optimised known as antibodies.
These undergo a process of evaluation against the objective function, clonal
expansion, mutation, selection and interaction between themselves resulting in a
population of dynamically changing size. Overtime, Opt-aiNET creates a mem-
ory set of antibodies that represent the best candidate solutions to the objective
function. One of the main features of opt-ainet algorithm is that it has a defined,
separated, diversity mechanism that injects a small number of new randomly cre-
ated solutions into the population following each cycle of clonal expansion and
mutation (the AppendNewRandomCells() shown in the bottom of Listing 3). This
diversity-maintaining step makes it an ideal candidate for GDO injection.

Listing 3. Opt-aiNET Algorithm
Input: Initialsize,Nclones, Suppth,Errth,Mutationpar,Divratio
Output: Population

Population ← ∅
AppendNewRandomCells(Population,Initialsize)
while ¬ StopCondition() do

EvaluateCells(Population)
Clones ← CloneCells(Population,Nclones,Errth)
MutatedClones ← HypermutateClones(Clones,Mutationpar)
EvaluateCells(MutatedClones)
for Celli ∈ Population do

BestClone ← GetBestClonePerCell(MutatedClones,i)
if F(BestClone) < F(Population[i]) then

Population[i] ← BestClone
end if

end for
SupressLowAffinityCells(Population, Suppth)
AppendNewRandomCells(Population,Divratio)

end while
Return (Population)

Most of the parameters of opt-ainet were set as suggested by the authors of
the algorithm [11]. We set the number of clones per cell Nclones = 10, suppression
threshold Suppth = 0.2, error threshold Errth = 0.001, mutation parameter μ =
100 and diversity ratio Drate = 40 %. The only change was the value of initial
population size which we set to 50 instead of the suggested value of 20. This
change was important to help the algorithm with high dimensional problems
and has been applied to all opt-ainet versions whether injected with GDO or
not.
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4.2 SawTooth Algorithm

The SawTooth Genetic Algorithm [14] is an algorithm that follows a sawtooth
scheme defined by population size mean n̄, an amplitude D and period of varia-
tion T in order to balance periods of exploration and exploitation. During every
period, the population size decreases linearly. At the start of the next period, a
population re-initialization occurs by appending randomly generated individuals
to the population as shown in Listing 4. To achieve variable sized population,
the population size is calculated every generation according to Eq. 2 below.

n(t) = int
{

n̄ + D − 2D

T − 1

[
t − T · int(

t − 1
T

) − 1
]}

(2)

where int(·) is the floor function. The authors suggested a range for the
optimum values of the T and D parameters of the sawtooth based on experi-
mentation. The optimum normalized amplitude D/n̄ being from 0.9 to 0.96 and
the optimum normalized period ranging from T/n̄ = 0.5 to 0.7. In this paper,
we choose n̄ = 80, T = 50, D = 75 and these values complies with the ranges
suggested by the algorithm authors. We also set the initial population size to
200, crossover rate to 0.7 and mutation rate to 0.95.

Listing 4. SawTooth Algorithm
Input: Populationsize,CrossOverrate,Mutationrate, n̄,D,T
Output: Population

t ← 0
Population ← InitializePopulation(Populationsize)
EvaluatePopulation(Population)
while ¬ StopCondition() do

t ← t + 1
n(t) ← CalculateNextPopulationSize(n̄,D,T,t)
if mod(t,T) = 0 then

NewIndividuals ← InitializePopulation(2 ∗ D)
InsertIndividuals(Population,NewIndividuals)

end if
NextPopulation ← ∅
for i = 1 to n(t) by 2 do

[P1,P2] ← SelectParents()
[C1,C2] ← CrossOver(P1,P2,CrossOverrate)
Mutate(C1,Mutationrate), Evaluate(C1)
Mutate(C2,Mutationrate), Evaluate(C2)
[B1,B2] ← SelectBestTwoIndividuals([P1,P2,C1,C2])
InsertIndividuals(NextPopulation, [B1,B2])

end for
Population ← NextPopulation

end while
Return (Population)

5 Experimental Protocol

The aim of the experiments is to assess if the performance of both algorithms
introduced above improves when injected with GDO in order to determine
whether GDO can help in achieving better quality solutions.
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In addition, since GDO introduces two parameters – grid size Gsz and prob-
ability threshold Pth, we investigate settings for each parameter in a brief empir-
ical investigation. For the grid size parameter, Gsz, the chosen values were
(100, 500, 1000) while for the probability threshold Pth the values were (0.01,
0.10, 0.20). Thus, nine configurations of GDO are tested in an attempt to find
the most successful configuration as shown in Table 2.

Table 2. Configuration code names and parameter values

GDO-1 GDO-2 GDO-3 GDO-4 GDO-5 GDO-6 GDO-7 GDO-8 GDO-9 GDO-free

Gsz 100 100 100 500 500 500 1000 1000 1000 N/A

Pth 0.01 0.10 0.20 0.01 0.10 0.20 0.01 0.10 0.20 N/A

The experimental tests are performed using opt-ainet and sawtooth algo-
rithms on a set of benchmark problems from the CEC 2014 benchmark suite
[15]. The selected problems (F4 through F16) are multimodal problems where
many of which have huge numbers of local optima that make the assessment
process challenging. The rest of the problems from the suite (three unimodal
functions F1–F3 and 14 hybrid/composite functions F17–F30) are interesting as
well but have different features and therefore were not selected.

Following the evaluation criteria defined in CEC 2014 benchmark suite [15],
both algorithms with and without GDO (including the nine GDO configurations)
will be tested against the 13 problems in 2, 10 and 30 dimensional space. For
every function, each algorithm/configuration is run 25 times with a maximum
number of function evaluations equal to (MaxFES) of 10, 000 ∗ D where D is the
number of dimensions. Therefore, MaxFES is 20,000 for two dimensions, 100,000
for 10 dimensions and 300,000 for 30 dimensions. The best quality solution is
noted for each run, along with the number of function evaluations at which the
best solution is found: if this is less than MaxFES this indicates stagnation of the
algorithm. A detailed statistical analysis is conducted to assess the results.

6 Results and Discussion

Due to space limitations, it is not possible to provide detailed tables for the
results of all experiments with 39 test cases (13 problems over three different
dimensions) for both algorithms with 10 configurations each — a total of 780
results. In an attempt to summarize the data, we count the number of problem
instances in which a GDO configuration outperforms the corresponding GDO-
free algorithm. Table 3 displays this information for the nine GDO configurations
used within the two algorithms over the three different dimensions for the bench-
mark problems. For instance, the first entry denotes that opt-ainet injected with
GDO-1 outperformed GDO-free opt-ainet in 5 problems out of 13 instances with
respect to solution quality (while in the remaining 8 problems either GDO-free
was better or there were no significant difference). Two observations are clear
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from Table 3. Firstly, the number of instances in which GDO outperforms GDO-
free increases as the dimensionality of the instances increases, i.e., its benefit
increases with dimensionality. Secondly, the GDO-9 configuration performs best
out of the 9 different parameterisations, when considered across all problem
dimensions.

Table 3. Number of functions (out of 13) where a GDO configuration achieves better
quality solutions than GDO-free

Config. Dimension Dimension

[Opt-aiNET] [SawTooth]

2 10 30 2 10 30

GDO-1 5 8 12 7 7 11

GDO-2 8 8 11 9 8 12

GDO-3 6 8 11 9 9 8

GDO-4 5 6 10 6 10 11

GDO-5 8 7 10 5 10 9

GDO-6 9 8 10 8 9 9

GDO-7 8 5 12 7 9 10

GDO-8 9 6 11 7 5 10

GDO-9 10 9 12 9 9 10

Since the algorithm/configuration that optimises both objectives (minimises
convergence speed and minimises summed fitness) is always considered more
successful, additionally we provide graphs that summarise the results concerning
both solution quality and convergence speed.

Figures (2-7) summarise the results where every graph contains the result of
9 GDO configurations and one without GDO injection (GDO-free) for a specific
algorithm and problem dimensionality. The different configurations are distrib-
uted on the graph’s horizontal axes. The bars on top denote the sum of the
normalized fitness for the configuration over the 13 problem instances; simi-
larly, the bars on the bottom refer to the sum of the normalized of number of
evaluations used before algorithm termination. Error bars are provided as an
indication of difference in means between configurations for both quality (top)
and efficiency (bottom).

Beginning with the optainet algorithm results, we see in Fig. 2 that all GDO-
injected configurations of opt-ainet for two-dimensional problems outperform
the GDO-free version with respect to solution quality. However, all the GDO
configurations use more evaluation cycles than the GDO-free version. For the ten-
dimensional tests, Fig. 3 shows that 7 out of 9 of the GDO configurations of opt-
ainet — all but GDO-7 and GDO-8 — surpasses the GDO-free version in terms
of solution quality. In this case, GDO-4,GDO-5, and GDO-8 configurations used
less number of function evaluations than the GDO-free version while GDO-1,
GDO-3, GDO-6 were similar to GDO-free and the rest were the worst. Figure 4
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Fig. 2. Opt-aiNET (2 Dimensions) Fig. 3. Opt-aiNET (10 Dimensions)

Fig. 4. Opt-aiNET (30 Dimensions) Fig. 5. Sawtooth (2 Dimensions)

Fig. 6. Sawtooth (10 Dimensions) Fig. 7. Sawtooth (30 Dimensions)
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shows the results for the 30-dimensional tests where we see that all instances
of GDO configured opt-ainet algorithm were able to achieve better results than
GDO-free opt-ainet, while all GDO configurations have utilised more function
evaluations than GDO-free.

The sawtooth algorithm for two-dimensional problems results (Fig. 5) shows
that only the GDO-5 configuration failed to achieve better quality solutions than
GDO-free sawtooth. In this case, GDO-2, GDO-7 and GDO-9 configurations
shown faster convergence while the rest were the worst with respect to num-
ber of evaluations used. The results of the ten-dimensional sawtooth tests are
shown in Fig. 6 were seven GDO-injected sawtooth algorithm instances outper-
form the GDO-free version for quality. However, all GDO versions utilise more
evaluation cycles in this case. Finally, for the 30-dimensional tests, the results
in Fig. 7 shows that all GDO instances outperformed the GDO-free version with
respect to solution quality while GDO configurations (GDO-1, GDO-3, GDO-5
and GDO-7) shown better utilisation to their allowance of function evaluations
than GDO-free version of sawtooth.

It is interesting to note that some GDO configurations are able to achieve
better results with fewer evaluations than GDO-free, e.g. in Figs 3, 5 and 7.
However, these are exceptions: in general, the GDO configurations utilise more
function evaluations than the GDO-free configurations for both opt-ainet and
sawtooth algorithms due to the additional exploration ability facilitated by the
GDO operator.

In summary, in terms of solution quality, the majority of GDO configu-
rations provide an improvement in all the six experiments defined by (algo-
rithm/dimensionality). Out of them we note GDO-9 which performed better
than the rest of the configurations in three instances as shown in Figs 2, 3 and 5
followed by GDO-2 as a second best beating all configurations in two other
instances as shown in Figs 4 and 7. The benefit increases with dimensionality,
with GDO-9 winning 12/13 instances when used with opt-ainet, and 10/13 cases
when used with the saw-tooth algorithm for 30 dimensions problems according
to Table 3. To further demonstrate the performance of GDO-9 configuration,
Tables 4 and 5 shows the median for all the runs over the 13 functions using
the algorithms opt-ainet and sawtooth respectively. Comparing the results of
GDO-free in both tables we can see that sawtooth capable of achieving better
results than opt-ainet for all problems especially in higher dimensions where
opt-ainet tends to diverge notably with functions 4 and 15. For function 15, and
while GDO-9 helped sawtooth to make significant improvements for the same
function for all dimensions, GDO-9 help for opt-ainet was much more important
and the performance drastically improved over the poor results of GDO-free
opt-ainet especially in 10 and 30 dimensions.

With respect to number of evaluations, it is clear that most GDO-injected
algorithms require more function evaluations to converge than the GDO-free
version of the algorithm. Recall that each algorithm is given a fixed number of
function evaluations (MaxFES), but terminates before this in case of no improve-
ment which in many cases reflect being stuck in a local optima. This is clearly
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Table 4. Median of Opt-aiNET algorithm results: GDO-free against GDO-9 over the
3 dimensions for the 13 functions

Fn Dimension [GDO-free] Dimension [GDO-9]

2 10 30 2 10 30

4 400.4180170 15076.92619 41522.53368 400.0067050 1382.623949 25880.42417

5 510.1203580 520.2005640 520.6004260 504.8840650 520.0004160 520.2967840

6 601.0638150 617.8945810 650.5898950 600.3518890 611.1999250 643.6837470

7 713.9159790 1404.468688 2867.517032 700.1278140 806.8315380 1676.329282

8 802.0770040 1012.395469 1285.506462 800.3384240 894.4034050 1244.529391

9 901.2102780 1154.560341 1436.587623 901.8637690 1000.095998 1437.381565

10 1092.261931 4307.027543 10982.91621 1014.131418 2713.651994 9295.601940

11 1222.144605 4525.313885 13180.02786 1114.076847 3326.207438 9469.204918

12 1200.005679 1202.956275 1206.578518 1200.004737 1201.733634 1203.362254

13 1301.264216 1307.748503 1309.748985 1300.567841 1303.354419 1308.982133

14 1400.341883 1612.230827 1783.065834 1400.100778 1435.029170 1728.472052

15 1500.167713 3556487.517 98467228.88 1500.048914 4426.678862 7485.869758

16 1600.156432 1604.219537 1614.369001 1600.156378 1603.941531 1613.563775

Table 5. Median of SawTooth algorithm results: GDO-free against GDO-9 over the 3
dimensions for the 13 functions

Fn Dimension [GDO-free] Dimension [GDO-9]

2 10 30 2 10 30

4 400.0142740 727.9746490 9170.752282 400.0065010 651.3681520 8160.968453

5 507.9617110 520.0003550 520.0021610 514.0684370 520.0002660 520.0022920

6 600.1977440 611.0157390 641.2174190 600.1320940 610.4406700 639.3822960

7 700.9761200 759.2174120 1189.677979 700.2440890 769.6810190 1157.155085

8 800.0000000 838.8033260 944.6040920 800.9949590 827.8587750 946.8881300

9 901.9899180 941.7881410 1094.533675 900.9949590 950.7426880 1093.022542

10 1000.312173 1140.325716 4056.051603 1000.312173 1269.169192 3983.343406

11 1218.438335 2277.064899 5145.395051 1218.438335 2454.652439 5542.767461

12 1200.000579 1200.698797 1201.134650 1200.000604 1200.664882 1201.048815

13 1300.062153 1303.208397 1305.765346 1300.018911 1303.365590 1306.059232

14 1400.004992 1404.043086 1570.808730 1400.125393 1405.069313 1567.143899

15 1500.090571 1952.314124 2576.155155 1500.019729 1948.094013 2391.734321

16 1600.356445 1603.382337 1612.343996 1600.074448 1603.331906 1612.063572

observed in Figs 2 and 4 that show that the GDO-free algorithms stagnates
early, therefore recording a low number of function evaluations, but has the
worst solutions from the quality perspective. The larger number of evaluations
used by GDO in the majority of experiments reflects the extra effort used by the
operator to continue searching in novel parts of the solution space, therefore
using the allowed budget of evaluations to avoid convergence to local optima.
Thus in general GDO facilitates longer running times, leading to improved solu-
tion quality, though clearly there is computational cost to this in terms of utilised
CPU time.
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6.1 Statistical Analysis

Although the graphical summaries given above provide some insight and intu-
ition regarding GDO performance, a proper statistical analysis is required to
justify any claims. The statistical analysis in this section addresses the following
questions:

– Does GDO injection helps improve solution quality when compared to the
equivalent GDO-free algorithm?

– Which GDO configuration (from the proposed nine configurations) shows the
best performance in terms of solution quality?

Since we have two algorithms, each with 10 possible configurations (9 GDO, 1
GDO-free) and each is tested against 13 problems in each of three different
dimensions, there are 780 datasets. Each dataset contains the results of running
a specific algorithm/configuration on a specific problem and specific dimension
25 times.

Before conducting any statistical analysis of the results, we utilise a Shapiro-
Wilk normality test (with a level of significance of α = 0.05) to determine
with the datasets follow a normal distribution in order to identify appropriate
statistical tests. The samples in 194 groups out of 780 were found to appear
normally distributed while 586 groups were not and therefore non-parametric
tests are used.

We used the non-parametric MannWhitney U test (with a level of significance
of α = 0.05) to test for difference in means and Table 6 shows the number
of cases (out of 78) where a GDO configuration outperformed GDO-free and
those where GDO-free dominated. The test shows that if there is a statistically
difference in solution mean between GDO-injected and GDO-free algorithm,
then the probability that the GDO-injected algorithm will lead to better quality
solutions is twice that of the GDO-free one: the final row of Table 6 shows that
GDO configurations are better in 158 cases, as opposed to 75 for the GDO-
free. In addition, the results for the GDO-9 configuration across all experiments
appear to be statistically better with respect to solution quality than any other
GDO configuration when compared to GDO-free algorithms results. As shown
in Table 6, the probability that GDO-9 will likely have better quality solutions
is three times that of the GDO-free algorithm.

Table 6. MannWhitney U test results (aggregated)

Config GDO-1 GDO-2 GDO-3 GDO-4 GDO-5 GDO-6 GDO-7 GDO-8 GDO-9 Total

Better 14 18 15 19 17 22 16 19 18 158

Worse 9 9 9 9 9 9 8 7 6 75
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7 Conclusion

Diversity control methods for search algorithms fall into three classes: diversity
maintenance, diversity learning and diversity control. We have described a new
operator, GDO, that directs exploration into previously unvisited areas of the
search space. While mainly falling into the class of diversity maintenance algo-
rithms, it also draws inspiration from diversity learning methods in making use
of historical information from the evolution process.

The GDO operator was shown to achieve effective exploration through testing
on the benchmark problems when incorporated within opt-ainet and sawtooth
algorithms. When compared to the GDO-free versions of the algorithms, it was
shown that GDO can significantly help a supported algorithm to achieve better
quality solutions in most cases. Importantly, Table 3 showed that the benefit of
the GDO operator increases as the dimensionality of the problems increases. It
was noticeable however that GDO-injected algorithms tend to use more function
evaluation cycles than the GDO-free versions, i.e. does not stagnate prematurely.
GDO forces the algorithm to explore more of the space thus using more evalu-
ations while exploring but without preventing the algorithm’s internal exploita-
tion method from finding improved solutions. This added exploration ability
helps the injected algorithm to both escape local optima and to achieve better
solutions.

Within the current implementation, the grid size is fixed for all dimensions
such that setting the grid size parameter Gsz = 100 in three-dimensional prob-
lem will correspond to a grid resolution of 100×100×100. There is no obligation
to set the grid resolution equally for all dimensions and in fact, it may be better
to set different values depending on the dimensionality of the problems. In this
paper, we empirically studied the values of grid size and probability threshold
parameters of GDO by selecting three appropriate values for each. Although the
nine proposed configurations of GDO (each with different parameters values)
behaved differently, certain configurations were found able to offer the best pos-
sible performance across the tests, in particular the GDO-9 configuration where
Gsz = 1000 and Pth = 0.20. The GDO-9 configuration was able to outperform
GDO-free in all cases as shown in Figs 2–7 and all other GDO configurations as
well in three cases as shown in Figs 2, 3 and 5. In addition, the statistical analysis
conducted in this paper confirmed GDO-9’s superiority. However, by incorpo-
rating feedback from search process it seems clear that this could be achieved
autonomously, so that both parameters in fact could adapt over a single run to
achieve better performance. We aim to address this issue in future work.
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