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Abstract

There are a range of methodologies available to study the human micro-
biota, ranging from traditional approaches such as culturing through to
state-of-the-art developments in next generation DNA sequencing tech-
nologies. The advent of molecular techniques in particular has opened up
tremendous new avenues for research, and has galvanised interest in the
study of our microbial inhabitants. Given the dazzling array of available
options, however, it is important to understand the inherent advantages and
limitations of each technique so that the best approach can be employed to
address the particular research objective. In this chapter we cover some of
the most widely used current techniques in human microbiota research
and highlight the particular strengths and caveats associated with each

approach.
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2.1 Introduction

The Nobel prize winning biologist Sydney
Brenner once remarked that “progress in science
results from new technologies, new discoveries
and new ideas, probably in that order” (Robertson
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1980) and this sentiment has undoubtedly been
well exemplified in the field of microbiota
research. Study of the human microbiota can be
traced back to Antonie van Leeuwenhoek’s late
Seventeenth Century description of ‘“‘animal-
cules” in scrapings from the human mouth (Porter
1976), a discovery that was made possible by van
Leeuwenhoek’s ground-breaking work with
microscopes. From the pioneering endeavours of
Cohn, Pasteur, Koch and others in the Nineteenth
Century, through to developments in anaerobic
microbiology and molecular biology in the
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Fig. 2.1 Overview of some of the most common tech-
niques used to study the human microbiota

(a) The functional activities of the microbiota can be stud-
ied by monitoring transcription (using RNA-seq/meta-
transcriptomics), protein production (metaproteomics) or
metabolite  production (metabolomics). (b) DNA
sequence-based techniques are used to determine the
composition of the microbiota (e.g. 16S rRNA gene sur-
veys) and the functional encoding capabilities of the
microbiome (shotgun metagenomics). (¢) Culture remains
highly relevant as cultured organisms can be studied in

second half of the Twentieth Century, and the
Twenty-first Century’s own breakthroughs in
genomics and DNA sequencing technologies
(McPherson 2014), subsequent developments in
the field of microbiota research have been simi-
larly driven by successive waves of technological
and methodological advances. As a result, today’s
microbiota researcher has the benefit of a stag-
gering array of tools at their disposal (Fig. 2.1).
This chapter gives a broad overview of the many
techniques that are now available, and attempts to
describe the inherent advantages and limitations
of each of these techniques.

depth in the laboratory or in animal hosts. Recently, the
term ‘““culturomics” has been applied to high-throughput
culturing of microbes in multi-welled plates containing
highly nutritious growth media. Cultured organisms can
also have their genomes sequenced, providing further
information about their potential activities in vivo. These
techniques can be used in combination to generate more
comprehensive understandings of the human microbiota.
Reprinted in unmodified form from: Pham and Lawley
(2014) (Pham and Lawley 2014) under Creative Commons
Attribution (CC BY) license

2.2  Classical Microbiological
Methods
2.2.1 Culture

For well over a 100 years microbiologists have
used the classical approaches of cultivating
microbes in the laboratory, isolating individual
colonies and then studying these isolated strains
in order to describe their phenotypic characteris-
tics and metabolic capabilities (see Lagier et al.
(2015a) for a recent overview of the techniques
used). As a result of these extensive efforts, it has
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been estimated that over 1000 distinct microbial
species have been cultured from the human gas-
trointestinal tract alone (McPherson 2014), and
characterisation of microbes and gene function
discovery in the laboratory remains the bedrock
upon which many of the more modern molecular
techniques that will be described in later sections
of this chapter rely upon. A further advantage of
having a strain in culture is that it allows potential
exploitation for therapeutic purposes should it
turn out to have beneficial properties (Walker
et al. 2014).

The simplest form of microbial cultivation is
to incubate samples or individual strains in batch
culture in nutritious or selective growth media.
Batch culture studies allow selective enrichment
of bacterial groups of interest, comparisons to be
made between growth rates and metabolite pro-
duction on different substrates, and interactions
between specific species to be observed and mea-
sured (Belenguer et al. 2006). Many microbial
inhabitants of humans are obligately anaerobic
and therefore exquisitely sensitive to oxygen. As
a result, some species can be killed by even very
brief exposure to air (Flint et al. 2007), making
them much more difficult to grow. To permit lab-
oratory cultivation of these species, culturing
must therefore be carried out under strictly anaer-
obic conditions, for example by using anaerobic
cabinets or Hungate roll tubes (Eller et al. 1971).
Cultivation of particularly fastidious gut species
can also be enhanced by using media containing
rumen fluid, filtered stool extracts, or mixtures of
short chain fatty acids, which can be utilised by
some gut bacteria as growth substrates (Duncan
et al. 2002; Lagier et al. 2015b).

A limitation of batch culture is that results can
only be obtained over relatively short periods of
time before the supply of nutrients in the growth
medium is exhausted or toxic by-products accu-
mulate and lead to cessation of microbial growth
(Ferenci 1999). A further, and key, disadvantage
to using culture is that it is highly labour inten-
sive, and a range of complex growth media are
typically required to recover as wide a diversity
of organisms from a sample as possible. It is also
known that many of the microbial species that
inhabit the human body have yet to be grown in

the laboratory (Rajilic-Stojanovic et al. 2007).
This problem is particularly acute for bodily sites
such as the colon, where the majority of the con-
stituent bacteria are strict anaerobes. As such,
culture alone cannot address the sheer complex-
ity of the human microbiota.

Nonetheless, there are many reasons to be
optimistic that cultured coverage of the human
microbiota can be greatly improved. DNA-
sequence based surveys of the gut microbiota, for
example, commonly show that many of the most
abundant sequences map to cultured species, and
that it is the rarer sequences that are less likely to
be derived from a cultured isolate (Walker et al.
2014). This suggests that it is insufficient cultur-
ing effort rather than an inherent “unculturabil-
ity” that is the main barrier to successful novel
isolations. Furthermore, unlike environments
such as soil, which can harbour very slow grow-
ing microbes, bacteria living in the human body
are often provided with relatively stable environ-
mental conditions, and a generally reliable sup-
ply of growth nutrients, and must therefore be
capable of multiplying quickly or else face being
rapidly outcompeted. Provided the correct condi-
tions can be supplied in artificial growth media it
can be assumed therefore that these species will
be relatively more amenable to culture. Indeed,
novel species continue to be regularly isolated
from the human microbiota, and there have been
some impressive recent examples of successful
high-throughput culturing programmes (Lagier
et al. 2015b; Goodman et al. 2011). Such efforts
have been dubbed “culturomics”, and have con-
tributed to a reinvigorated interest in the use of
culture-based techniques to better characterise
the human microbiota. Information gleaned from
modern genomics methods can also be used to
design improved culture media that support the
growth of previously uncultivated species (Bomar
etal. 2011).

2.2.2 Continuous Culture
A more sophisticated method to cultivate

microbes in the laboratory is the use of continu-
ous culture model systems such as fermentors
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Fig.2.2 Continuous culture fermentor system

Fermentors are continuous culture model systems, which
allow long term cultivation of microbes. (A) An example
of a single vessel fermentor system (the culture vessel is
labelled with “X”), inoculated with human faeces and fed
a constant supply of nutritious growth medium (labelled
“Y”). The contents of the culture vessel are gassed with

(Fig. 2.2). In contrast to the batch approach, con-
tinuous culture is carried out in an open system,
which is continually supplied at one end with
fresh growth medium/nutrients, and overflow is
allowed to drain from the vessel at the other end,
diluting out toxic metabolic by-products and
dead cells. Systems such as these reach a “steady
state” equilibrium, allowing the researcher to
exert an enhanced level of control over prevailing
environmental conditions within the culture ves-
sel, and can therefore be run over relatively long
time periods (Miller and Wolin 1981). These sort
of systems have been commonly used to study
colonic microbes, and a number of research
groups have made fermentors more advanced by
incorporating distinct sequential stages, which
aim to mimic the sort of environmental changes
microbes are exposed to as they pass along the

CO, or N, to ensure that they remain anaerobic, and can
be maintained at defined pH and temperatures, which are
constantly monitored. (B) a modified fermentor vessel,
incorporating a nylon bag containing insoluble particulate
substrates (labelled “Z”), developed to identify fibre-
degrading gut bacteria

length of the gastrointestinal tract (Van den
Abbeele et al. 2010). While these model systems
are an advance over simple batch culture it should
be noted, however, that they still have important
limitations. For example, they lack an immune
system, and metabolites such as short chain fatty
acids (SCFAs) produced by the bacteria are not
absorbed, meaning results may not necessarily be
directly translatable to the situation in vivo.

2.2.3 Animal Models

Microbes of interest can also be cultivated and
maintained in animal models. Until relatively
recently, for example, the only way to grow seg-
mented filamentous bacteria, which have been
shown to have important pro-inflammatory
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effects in mice, was in animal models (Klaasen
et al. 1991). One disadvantage of using animal
models is that, while the microbiota composition
at the phylum level generally appears to be simi-
lar between humans and other animals, at the
species and strain level there is considerable
divergence, likely to due to underlying differ-
ences in host anatomy/physiology, and dietary
regimes (Nguyen et al. 2015). However, recent
work has shown that it may be possible to miti-
gate this issue somewhat as a significant propor-
tion of human-associated bacterial species appear
to be able to successfully colonise the intestines
of animal models following faecal microbiota
transfer (Ellekilde et al. 2014). Germ-free, or
gnotobiotic, mice are another appealing option as
these mice can be specifically inoculated with
microbial strains of interest (Goodman et al.
2011; Seedorf et al. 2014). This permits a more
reductionist approach to study host-microbe and
microbe-microbe interactions, separated from the
potentially perplexing background complexity of
the wider microbiota. A further particular advan-
tage of using mouse models is that extensive
genotyping analyses have been carried out, and
there are a range of knockout mouse lines avail-
able to allow the study of interactions between
specific host genetic components and the micro-
biota (Kostic et al. 2013).

There are, however, a number of important
limitations to using animal models, particularly
rodent models. For example, co-housing, and the
practice of coprophagy, generally leads to rapid
transfer of microbiota between cage mates, and
this can confound results by being a stronger
determinant of intestinal microbiota composition
than either host genotype or experimental vari-
ables (Lees et al. 2014; Ericsson et al. 2015).
Furthermore, recent work has indicated that
rodents who are handled by male experimenters
are likely to be more stressed than those handled
by females (Sorge et al. 2014), and it is possible
that stress may impact microbiota structure
(Cryan and Dinan 2012). Finally, emerging evi-
dence suggests that host diet may have a greater
impact on microbiota structure and composition
in rodents than in humans (explaining around
60 % of variance vs 10% respectively), raising

concerns as to whether or not rodent models are
most appropriate for studies investigating links
between the microbiota and, for example, diet-
dependent diseases such as obesity (Salonen
et al. 2014). A recent review by Nguyen et al
(2015) extensively documents the inherent
advantages and disadvantages of using mouse
models, and discusses the translatability of find-
ings in mice to humans.

2.3 Sequence-Based Approaches
While culture remains an important tool, human
microbiota research has been completely revolu-
tionised over the last decade by molecular meth-
ods, and in particular by the falling costs and
vastly increased throughput of DNA sequencing
technologies (Fig. 2.3). This rapidly moving, and
highly innovative, field continues to produce
exciting and novel technologies, with the latest
generation of sequencing machines capable of
generating data at a depth of billions of individ-
ual sequence reads (Illumina HiSeq), or at com-
paratively long read lengths (PacBio), or even via
miniaturised devices that can be plugged into the
USB port of a laptop (Oxford Nanopore’s
MinlION) (Reuter et al. 2015).

The key advantage to sequence-based
approaches is that, by circumventing the require-
ment to grow microorganisms in the laboratory,
they generally give much more comprehensive
overviews of the species present in a sample.
They are also typically far less labour intensive
than classical microbiological techniques, and as
a result it is now possible to carry out experi-
ments at a scale that would have been unthink-
able just a decade ago. Indeed, recent global
research initiatives such as the Human
Microbiome Project (HMP) and MetaHIT, for
example, have taken advantage of these new
sequencing technologies to produce staggering
amounts of freely available data (Human
Microbiome Project Consortium 2012a; Li et al.
2014). There are a number of ways in which the
power of DNA sequencing can be used to study
the human microbiota, which are detailed in the
following text. In addition, Table 2.1 summarises
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Fig.2.3 DNA sequencing approaches have revolution-
ised microbiota research

Chart showing the meteoric rise in publications mention-
ing the gut microbiota since the advent and market release
of next generation sequencing platforms such as 454
pyrosequencing and Illumina. Data collected by searching

the most common uses, and outlines the inherent
advantages and limitations of each approach.

2.3.1 Marker Gene Surveys

One common sequence-based approach is to
carry out surveys of universal marker genes,
which provide a broad census of the microbial
species present within a sample. While these sort
of surveys have been carried out since the 1980s
recent developments in next generation sequenc-
ing technologies mean it is possible to survey
microbial communities at previously unimagina-
ble depth and scales (Tringe and Hugenholtz
2008; Caporaso et al. 2011). The most widely
used universal marker genes are the small subunit
ribosomal RNA (SSU rRNA) genes (16S rRNA
gene for bacteria and archaea, 18S rRNA gene
for eukaryotes). Within these genes there are
regions of DNA sequence that are highly con-
served, but there are also other regions that are
more variable, and which are unique to certain
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Pubmed (search date Dec. 1st, 2014) for the terms “gut
flora” OR ““gut microflora” OR “gut microbiota” OR “gut
microbiome” OR “intestinal flora” OR “intestinal micro-
flora” OR “intestinal microbiota” OR “intestinal microbi-
ome” OR “colonic flora” OR “colonic microflora” OR
“colonic microbiota” OR “colonic microbiome”

microbial groups or genera (Woese and Fox
1977). Following DNA extraction from the
human tissue sample, the SSU rRNA genes are
typically PCR-amplified using primers targeted
towards highly conserved regions of the gene.
The aim here is to generate a mixed pool of PCR
amplicons that are derived from as many of the
bacterial species present in the original sample as
possible, which are then sequenced en masse.
Typically, the resulting data is then clustered by
sequence similarity into Operational Taxonomic
Units (OTUs), with the assumption being that
these OTUs will be a reasonable approximation
of the underlying species content of a given sam-
ple. It should be noted though that, due to the
wide variation in 16S rRNA gene operon copy
numbers between individual strains, results are
not truly quantitative (Vetrovsky and Baldrian
2013). Furthermore, the chosen OTU sequence
similarity threshold is both artificial and subjec-
tive and will not be able to accurately capture
diversity correctly across the full range of genera
present in a sample. Nonetheless, when the full
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Table 2.1 Comparison between different sequence-based approaches used to study the human microbiota

Method

Species profiling via
marker gene surveys
(e.g. 16S rRNA gene)

Whole genome
sequencing

Metagenomics

Advantages

Provides overview of species present
in a sample

Much cheaper than other sequencing
methods

Analysis requires less computational
power

Larger sample sets increase statistical
power

Broad functional capabilities can
often be inferred from 16S rRNA
gene sequences by comparing to

closely related isolates with fully
sequenced genomes

Provides information on the
complete coding potential of an
organism

Draft bacterial genomes can now be
generated very quickly and cheaply

Data generated can be used for
epidemiological purposes, e.g. for
strain typing

Allows simultaneous profiling of
both the functional capabilities and
species composition of microbial
communities

Can simultaneously obtain genomic
data of bacterial, archaeal, eukaryotic
and viral origin

Complete genomes of constituent
species, including uncultured
organisms, can be assembled

No PCR bias

Limitations

Relatively insensitive — can be impossible to
derive species-level classifications for some
genera

Only provides information on community
composition, does not provide direct functional
capability data

Single marker genes such as 16S rRNA genes
typically only describe the bacterial/archaeal
fraction of microbial communities. Does not
describe viruses, fungi etc. that may also be
present.

Results can be heavily impacted by sampling,
storage, PCR and DNA extraction biases

16S rRNA gene is usually multi-copy, and the
number of copies is variable between species,
meaning results are not truly quantitative
Usually does not discriminate between active
and inactive/dead cells

Usually requires that the organism be cultivated
prior to sequencing the genome

Modern, short read, sequencing technologies
will typically generate draft, not complete,
genomes

Many constituent genes will be of unknown
function

Can require very deep sequencing to achieve
reasonable genome coverage, making it
comparatively expensive

Often limited to small numbers of samples,
which reduces statistical power

Data analysis may require large computational
resources.

Assembling genomes can be challenging

Gaps in reference databases mean that large
proportions of the genomic data are of unknown
function

Biases introduced during sampling, storage and
DNA extraction can impact results

Usually does not discriminate between active
and inactive/dead cells

(continued)
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Table 2.1 (continued)

Method
Single-cell genomics

Advantages

Provides genomic data from
uncultured species

Allows placement of genomic data in
a phylogenetic context

Data generated from uncultured
species can improve reference
databases for metagenomic analyses.

A.W. Walker

Limitations

Isolating single cells typically requires access to
expensive equipment (e.g. flow cytometry,
micromanipulators)

Genome amplification step introduces biases,
making complete genome assembly challenging
Sensitivity of the genome amplification step
means that contamination is a constant concern
and must be mitigated against

Metatranscriptomics
of microbial communities

Focusses on the active members of

the microbiota, results not as

impacted by dead/inactive cells as

other sequencing methods

Can often attribute source organisms

to transcripts

1500 bp sequence of the 16S rRNA gene is avail-
able, clustering into OTUs with 98.7-99%
sequence similarity appears to best fit species-
level designations derived from culture work
(Stackebrandt and Ebers 2011). However, as next
generation sequencing technologies typically
generate comparatively short read lengths, which
are focussed on hyper-variable regions of the
gene, slightly less stringent clustering is required
and it is now most common to cluster OTUs with
97 % sequence similarity (Schloss and Westcott
2011).

Regardless of sequence similarity used, OTUs
can be mapped against comprehensive reference
databases such as SILVA, RDP, EzTaxon and
Greengenes in order to assign taxonomic classifi-
cations to them (Quast et al. 2013; Cole et al.
2014; Chun et al. 2007; DeSantis et al. 2006).
This provides information about which taxa were
present in the original sample, and allows the
researcher to monitor differences in microbiota
composition between samples and between study
cohorts. A range of software options are now

Gives data on the functional activity

Biases introduced during sampling, storage and
DNA extraction can impact results

Cannot discriminate between active and inactive/
dead cells

Short half-life of mRNA is an important
limitation; sample selection and preservation are
key concerns

Can be technically challenging, often need to
deplete the far more abundant rRNA before
sequencing mRNA

Gaps in reference databases mean that large
proportions of the genomic data are of unknown
function

Biases introduced during sampling, storage and
RNA extraction can impact results

available, such as mothur, QIIME, VAMPS and
GUSTA ME (Schloss et al. 2009; Caporaso et al.
2010; Huse et al. 2014; Buttigieg and Ramette
2015) which allow the researcher to carry out all
of the stages involved in processing marker gene
survey data, from quality control steps to statisti-
cal comparisons and visualisation of results.
While broad marker-gene surveys using uni-
versal markers such as the 16S rRNA gene are
the most commonly applied variation of this
technique it is also possible to carry out focussed
surveys of functional genes that have more lim-
ited dissemination throughout the microbiota
(Walker et al. 2014). The principle here is simi-
lar; degenerate PCR primers are targeted towards
conserved regions of these functional genes, cre-
ating a mixed pool of amplicons, which are then
sequenced. This approach has been used, for
example, to identify novel groups of butyrate/
propionate producing bacteria from the human
colon, and cellulolytic bacteria from the rumen
(Louis et al. 2010; Reichardt et al. 2014; Brulc
et al. 2011). A disadvantage of this targeted
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approach is that the PCR primers may not effi-
ciently amplify all of the functional genes of
interest in a given sample. Untargeted approaches
such as metagenomics (see “Metagenomics” sec-
tion below) may circumvent this issue, but at the
cost of having to generate far greater amounts of
data, which is considerably more expensive to
produce and more difficult to analyse (Prakash
and Taylor 2012).

2.3.2 Whole Genome Sequencing

The first bacterial genome to be completely
sequenced was that of Haemophilus influenzae,
in 1995 (Fleischmann et al. 1995). Then, sequenc-
ing was carried out using the traditional Sanger
method (Sanger et al. 1992) and it took many
years, and hundreds of thousands of dollars, to
complete a whole bacterial genome. Advances in
DNA sequencing technology since then mean
that draft bacterial genomes can now be gener-
ated in a matter of hours, and at a cost that is
thousands of times cheaper (Loman et al. 2012;
Koser et al. 2012). Given the extremely high-
throughput nature of next generation sequencing
platforms such as Illumina it is now common to
simultaneously sequence many microbial
genomes on a single sequencing run. This is done
by multiplexing samples via the addition of a
unique sequence “tags” and then bioinformati-
cally separating reads from each of the combined
samples post-sequencing (Lennon et al. 2010).
“Shotgun” sequencing, whereby DNA is ran-
domly fragmented prior to sequencing and then
the resulting overlapping sequence data is pieced
together bioinformatically into contiguous
stretches (contigs), is the standard method
(Fleischmann et al. 1995). Genomes are typically
pieced together by either mapping data on to an
existing reference genome (if one is available) or
by assembling the data de novo. There is a wide
range of software available for the genome
assembly step, with the optimal choice of assem-
bler depending on the sequencing platform used
(Loman et al. 2012).

There are now a large, and constantly increas-
ing, number of genomes available from human-
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associated microbes. The Human Microbiome
Project alone, for example, aims to have gener-
ated over 3000 draft genomes once the first phase
is complete (Human Microbiome Project
Consortium 2012b). Genome sequence data pro-
vides critical information on the putative func-
tional capabilities of a given species, although it
should be acknowledged that there are often a
large number of unannotated genes due to pau-
city of close, well-characterised matches in refer-
ence databases. Indeed, even with E. coli K-12,
which has been extensively studied and used as a
model organism over many decades, around a
quarter of the constituent genes remain unanno-
tated (Conway et al. 2014). Nonetheless, as refer-
ence databases expand, and techniques for
high-throughput, genome-wide, functional prob-
ing such as transposon insertion sequencing are
developed (van Opijnen and Camilli 2013), this
situation will improve. A further, and flourishing,
use for whole genome sequencing is in the field
of epidemiology, and there are now numerous
examples of using whole genome sequence data
to trace both global and local dissemination of
microbes within human populations (Parkhill and
Wren 2011; Eppinger et al. 2014), and to monitor
evolutionary changes in genomic content (He
et al. 2010; Schuenemann et al. 2013).

2.3.3 Metagenomics

An important limitation of whole genome
sequencing is that it typically requires the organ-
ism to be grown in culture first, so that enough
DNA can be extracted for subsequent sequenc-
ing. 16S rRNA gene-based surveys have revealed,
however, that the majority of human microbiota
species have yet to be cultivated in the laboratory
(Eckburg et al. 2005). As a result complementary
methods such as metagenomics, which can pro-
vide genomic insights into this uncultured major-
ity, are attractive options, and have gained
increasing favour in recent years. With metage-
nomics, the researcher directly shotgun sequences
DNA extracted from an environmental sample.
They then either attempt to bioinformatically
piece together the resulting sequence data, which
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will be comprised of fragments of DNA derived
from the range of different species that were
present in the original sample, into contiguous
stretches of sequence data derived from each
individual constituent species, or use the unas-
sembled sequence data directly as a means to
assess the functional capabilities of the microbial
community as a whole entity (Handelsman
2004).

Metagenomic sequencing in this manner was
first applied to samples from the human gut in
2006 (Gill et al. 2006), and has since been used
numerous times to study the human microbiota.
This technique can be hugely powerful, and it is
possible to generate in depth profiles of the func-
tional potential of a given microbial community,
including uncultured constituents. It is important
to note, however, that the high complexity of
many human-associated microbial habitats, such
as the colon, means that very deep sequencing is
often required in order to generate sufficient
sequence data from a representative cross-section
of the microbes that are present. Luckily, the
development of next-generation sequencing plat-
forms such as [llumina mean that this is now pos-
sible, and large-scale metagenomics studies
incorporating many individual samples are now
being carried out (Hu et al. 2013). Metagenomics
is also the only technique that allows effective, in
depth, monitoring of the viral communities (or
“viromes”) that are present in the human body as
there are no marker genes equivalent to SSU
rRNA that are universally detected in all viruses
and so can be used for sequence-surveys (Minot
et al. 2011). Further key advantages of metage-
nomics over other sequence-based techniques are
outlined in Table 2.1.

There are, however, some important limita-
tions to the use of metagenomics. For example,
this sort of study is far more expensive than
marker gene surveying, and comes with a require-
ment for appropriate computational infrastruc-
ture and expertise in order to be able to process
the data effectively. Unfortunately, these factors
mean that sample sizes tend to be quite small, and
large-scale metagenomics studies are currently
out of reach for many laboratories. This situation
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will likely improve though as sequencing costs
fall and the use of cloud computing facilities
becomes more wide-spread (Angiuoli et al.
2011). As with other DNA-based approaches, the
sample storage, preparation, and processing
methodologies used will also have significant
impacts on the quality of the final metagenomics
data (see section “Common pitfalls of sequence
based approaches” below).

The task of assembling genomes from such a
complex collection of microbes, where there will
also be great divergences in genome coverage
depth based on the relative abundance of each
species in the original sample, is also daunting,
particularly when trying to assemble genomes
from closely related strains and species, or highly
fragmented genomes where there is only limited
coverage (Nielsen et al. 2014). Although these
issues have still not been completely surmounted,
there have been great improvements in this area
in recent years, and various bioinformatics tools
have been developed to aid the genome assembly
and species assignment processes (Peng et al.
2011; Namiki et al. 2012; Bankevich et al. 2012;
Alneberg et al. 2014).

A further concern is that the current reference
databases that are routinely used to classify the
DNA sequences are not comprehensive enough.
As aresult, a large fraction of metagenomics data
often goes uncharacterised as there are simply no
close matches in the reference database to base a
classification on (Thomas et al. 2012). This also
means that results tend to be heavily weighted
towards well characterised housekeeping genes,
which are comparatively well covered in refer-
ence databases (Walker et al. 2014). This situa-
tion will improve, however, as novel gene
functions and pathways are continually eluci-
dated, and reference databases incorporate
genomes from a more phylogenetically diverse
array of isolates (Walker 2014).

2.3.4 Single-Cell Genomics

Single cell genomics (SCG) is an emerging and
complementary technique to metagenomics, and
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is a more targeted approach to generating
genomes from uncultured microbes. With this
technique, individual microbial cells are isolated
from environmental samples, and their genomic
DNA subsequently amplified by a whole genome
amplification technique (typically multiple dis-
placement amplification) (Walker and Parkhill
2008). This exquisitely powerful amplification
step generates sufficient DNA from just a single
cell that subsequent shotgun sequencing becomes
feasible (Blainey 2013). Moreover, combining
SCG with a form of targeted cell selection, such
as fluorescent in situ hybridisation (Amann and
Fuchs 2008), stable isotope probing or Raman
microspectroscopy, allows the researcher to
potentially recover specific cells that are derived
from a particular phylogenetic background, or
that carry out a function of interest. As such,
SCG complements metagenomics by allowing
recovery of genomic information from species
that may be rare in the microbial community, and
allows the researcher to understand which organ-
isms are capable of carrying out a particular func-
tion, even if the genes that are responsible for
carrying out this function are unknown or miss-
ing from reference databases (Walker et al. 2014).

There are some important limitations to this
technique however (see Table 2.1), which have so
far hindered wide-scale implementation. Of par-
ticular relevance are the issues of contamination
(with such a small starting DNA input, any
amount of contaminating DNA can easily
overwhelm the sequence data that is derived from
the cell of interest), and of biases introduced dur-
ing the amplification step, which can confound
genome assembly software, and typically mean
that only partial genome coverage can be achieved
(Raghunathan et al. 2005). Nonetheless, SCG has
been used to characterise novel human-associated
bacteria from rare and understudied phyla such as
TM7 and Chloroflexi (Marcy et al. 2007,
Campbell et al. 2014) and holds great promise for
wider future application. Results generated can
also greatly aid metagenomics-based analyses by
broadening reference databases and providing
reference genomes to aid with the assembly steps
(Rinke et al. 2013).
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2.3.5 Metatranscriptomics

A further emerging sequence-based technique
with applicability to the human microbiota is
metatranscriptomics (also termed RNA-seq).
Transcriptomics is the study of the RNA tran-
scripts produced by a given species, whereas
metatranscriptomics is the study of combined
transcripts from an entire microbial community.
Thus, in contrast to metagenomics, metatran-
scriptomics allows insights into the functional
activity of the microbiota at a given time and
under prevailing environmental conditions, not
just the functional potential. Typically, this
technique involves isolating RNA from environ-
mental samples and using this to create reverse
transcribed cDNA libraries, which can then be
shotgun sequenced using modern high through-
put sequencing platforms such as Illumina
(Reck et al. 2015). Shotgun sequenced data is
then typically assembled by either mapping
back to reference genomes, or by carrying out
de novo assembly. Recent RNA-seq develop-
ments now allow strand-specific identification
of transcripts, permitting enhanced detection of
both messenger and non-coding RNAs, and pro-
viding new insights into the roles that the latter
may play in cellular function (Croucher and
Thomson 2010).

Metatranscriptomics is considerably more
technically challenging than metagenomics as it
requires additional processing steps such as cre-
ating cDNA and depleting host and bacterial
rRNAs, which typically make up the vast major-
ity of RNA present in a sample (Giannoukos
et al. 2012). Furthermore, transcriptomics is also
commonly used in combination with reference
genomes, as mapping transcripts back to a refer-
ence allows the researcher to understand how a
given species responds to changes in environ-
mental conditions. Metatranscriptomic analyses
of human microbiota samples are therefore ren-
dered more complex by the fact that there are
often no reference genomes available for many
members of the microbial community. As such,
the raw data may require complex de novo assem-
bly prior to analyses, a process which has been
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improved in recent years with the advent of novel
software programmes (Tjaden 2015).

A key limitation of metatranscriptomics is
that, due to the very short half-life of mRNA mol-
ecules (typically measured in minutes (Reck
et al. 2015)), it may not always be entirely repre-
sentative of microbial activities in situ. For exam-
ple, microbial transcriptional activities measured
in faecal samples may not be reflective of gene
expression occurring in areas such as the proxi-
mal colon. A further limitation is that, as with
metagenomics, many of the transcribed genes
will be of unknown function due to extensive
gaps in reference databases.

Given these inherent complexities and limita-
tions, metatranscriptomics has yet to be applied
to human microbiota samples to the same extent
as metagenomics, although uptake of this tech-
nique is increasing (Jorth et al. 2014; Leimena
et al. 2013; Maurice et al. 2013; Macklaim et al.
2013). Moreover, direct comparisons between
metagenomic and metatranscriptomic datasets
demonstrate the worth of this approach, as highly
significant differences between the two datasets
are detected, reflective of the fact that microbes
are constantly altering their gene expression pro-
files in response to prevailing environmental con-
ditions (Franzosa et al. 2014).

Common Pitfalls
of Sequence Based
Approaches
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While sequence-based approaches have undoubt-
edly revolutionised the field of microbiota
research there are a number of key caveats, par-
ticularly in the areas of sample handling and pro-
cessing, that should be considered when applying
them. Analyses of mock bacterial communities
prepared for the Human Microbiome Project, for
example, showed that samples clustered together
based upon which of four sequencing centres
generated the data, illustrating the impact that
sample processing steps can have on final
sequencing results (Schloss et al. 2011).
Furthermore, it is clear from comparisons

A.W. Walker

between techniques that sequence-based
approaches commonly “miss” a significant frac-
tion of species present in a sample due to their
inherent biases (Shade et al. 2012; Lagier et al.
2012). Awareness of these inherent limitations
and biases is therefore important to ensure that
erroneous conclusions are not drawn from
sequence data (Degnan and Ochman 2012).

Sample preservation is a critical, and often
under looked, first step. Emerging evidence sug-
gests that prior freezing of faecal samples can
lead to systematic distortions in molecular profil-
ing results. Specifically, it appears that
Bacteroides-derived DNA may be gradually
depleted if samples have been previously held in
long term frozen storage (Maukonen et al. 2012;
Bahl et al. 2012). Furthermore, evidence suggests
that bacterial community profiles obtained from
sputum samples may be perturbed by being kept
for greater than 12 h at room temperature prior to
being placed in long-term frozen storage, and
also by repeated freeze-thaw cycles prior to DNA
extraction and sequencing (Cuthbertson et al.
2014, 2015).

DNA extraction is another key step, and it is
known that choice of extraction kit/method can
have major impacts on the final sequencing
results obtained (Ferrand et al. 2014; Kennedy
et al. 2014). If the chosen DNA extraction
method is not robust enough to break open the
cell walls of certain microbes then DNA from
these species will not be recovered and so will
not be observed in the final sequencing libraries.
For this reason kits with only chemical-based
extraction are not recommended, as they typi-
cally generate results with an over-abundance of
the more easily extracted Gram negative organ-
isms present in a sample compared to the more
recalcitrant Gram positive organisms, which
have a stronger cell wall that is less likely to be
broken down by chemical lysis only (Walker
et al. 2015). DNA extraction kits with a mechan-
ical lysis, or bead-beating, step, which is far
more effective at breaking open Gram positive
cell walls, are therefore typically recommended
(de Boer et al. 2010). However, it should be
noted that some bead-beating kits are more
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effective than others (see Fig. 2.4a) (Kennedy
et al. 2014).

For sequence-based approaches requiring
prior amplification of specific genes, such as 16S
rRNA genes, PCR primer design is a further crit-
ically important consideration. It is known that
certain groups, for example the Actinobacteria,
are systematically under-represented in studies
using the commonly used 27f primer (Frank
et al. 2008). An example of this is the
Bifidobacterium genus, typically the dominant
member of the gut microbiota in breast fed
infants, which has three mismatches to 27f (Fig.
2.4b), therefore this primer should not be used
with infant faecal samples as results will not
reflect the true microbiota content (Walker et al.
2015). Incorporating degenerate bases into
primer design is one way to effectively widen the
range of target organisms (Fig. 2.4b). Sim et al
(2012), for example, were able to show that
improved primers resulted in far better recovery
of bifidobacterial sequences from infant faecal
samples (Sim et al. 2012).

Primer choice is also important if there are
specific groups of bacteria that a researcher is
interested in. Next generation sequencing plat-
forms currently generate relatively short reads,
meaning that it is typical to target sub-sections of
the 16S rRNA gene. Unfortunately, no specific
variable region, or combination of variable
regions, is able to fully capture the diversity that
can be described with full-length 16S rRNA gene
sequences. It is therefore prudent to ensure that
the species of interest can be differentiated using
the variable regions targeted prior to initiating a
study (Fig. 2.4c¢).

A further complicating factor with
amplification-based approaches such as marker
gene surveys and single-cell genomics is that chi-
meric molecules can be created during the ampli-
fication step (Edgar et al. 2011). Indeed, it is
estimated that a significant proportion of DNA
sequences submitted to 16S rRNA gene data-
bases, for example, may in fact be chimeric in
nature (Ashelford et al. 2005). Chimeric mole-
cules inflate microbial diversity estimates
(Schloss et al. 2011), and in the case of single-
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cell genomics can confound genome assembly
software (Lasken and Stockwell 2007). Errors
generated during the sequencing process itself
can also vastly inflate diversity measures if steps
are not taken to account for their impact (Huse
et al. 2010). Repeated PCR cycling may also lead
to an over-representation of some groups and the
under-representation of others. For this reason it
has been recommended that the number of PCR
cycles should be kept as low as is feasible (Bonnet
et al. 2002).

A further potential pitfall is the presence of
contamination. Sequence-based approaches are
exquisitely sensitive, which means they are an
attractive means with which to investigate areas
of the body traditionally thought of as “sterile”,
or that have very low abundance of colonising
microbes that are difficult to grow. Unfortunately,
contaminating DNA or cells can be introduced
to the sample of interest at many processing
stages, including from reagents in common lab-
oratory DNA extraction and PCR kits (Tanner
et al. 1998) (Fig. 2.4d). Recent work by Salter
et al has indicated that, when sequencing is
applied to low biomass samples (i.e. sample
containing less than 10* cells), background con-
tamination effectively “swamps” the targeted
DNA from the sample and becomes the domi-
nant feature of sequencing results (Salter et al.
2014). Therefore, any researcher working with
low biomass samples should ideally make use of
copious ‘“negative” sequencing controls. This
involves running “blank” DNA extractions and
PCR reactions with no sample or template
added, and then sequencing these alongside the
samples of interest. Any contaminating species
detected in the negative controls can then be
removed from the sequencing results from the
actual samples.

The choice of DNA sequencing platform is a
further important consideration. A recent com-
parative analysis between the Illumina MiSeq
and Ion Torrent platforms, for example, indi-
cated that a peculiarity of the Ion Torrent
sequencing process can lead to premature trun-
cation of sequence reads derived from certain
microbial groups. The effect of this would be to
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bias the results against these groups, and to
therefore give misleading estimates of their
presence and/or abundance in the original sam-
ples. Furthermore, error rates appear to be
higher on the Ion Torrent platform, which
would artificially inflate measures of diversity
(Salipante et al. 2014). The common practise of
multiplexing many samples together on a single
DNA sequencing run can also introduce bias to
the PCR step (Berry et al. 2011) and lead to
problems with misidentification of barcoded
samples (Esling et al. 2015).

Finally, as DNA can persist in the environ-
ment after the death of the host organism,
sequencing results (aside from perhaps meta-
transcriptomics, due to the short half-life of
RNA compared to DNA) are unable to distin-
guish between live and dead/inactive microbes.
Results may not therefore accurately represent
the active microbiota at the site of interest.
However, pre-treatment of samples with agents
such as propidium monazide, which can bind to
free DNA, and DNA contained within dead or
damaged cells, make it possible to make
sequencing results more representative of the
living or active populations within the micro-
biota (Rogers et al. 2013).

The combined influence of all of these poten-
tially confounding factors should be particularly
borne in mind when conducting meta-analyses
incorporating data generated across many differ-
ent studies where different methodologies have

<
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been used since they have the potential to have a
greater influence on results obtained than any
underlying experimental variable (Wesolowska-
Andersen et al. 2014).

2,5 Other Community Profiling
Approaches
2.5.1 Community Fingerprinting

Techniques

Due to their falling costs and increased output
sequence-based approaches have become the most
widely adopted microbial community profiling
techniques in recent years. Nonetheless, there are
other molecular techniques, such as temperature/
denaturing gradient gel electrophoresis (T/DGGE)
(Muyzer et al. 1993), terminal restriction fragment
length polymorphism (T-RFLP) (Marsh 1999) and
automated ribosomal intergenic spacer analysis
(ARISA) (Popa et al. 2009), that allow rapid pro-
filing of human-associated microbial communi-
ties. These approaches are termed community
fingerprinting techniques since they usually give
representative overviews of the species present in
a sample, without providing direct detailed infor-
mation about the actual species present. Thus,
although these approaches are relatively quick and
cheap, the resolution and sensitivity is often much
lower than that obtained with direct DNA sequenc-
ing (Kovacs et al. 2010; Kisand and Wikner 2003).

<

Fig. 2.4 (continued) DNA extraction kits and laboratories
upon the assessment of human gut microbiota composi-
tion by 16S rRNA genesequencing. (Kennedy et al. 2014)
under Creative Commons Attribution (CC BY) license
(b) Primer sequence can impact the recovery of species
in 16S rRNA gene surveys. In this example it can be
seen that the commonly used 27f primer has three mis-
matches with the important intestinal genus
Bifidobacterium. As a result this genus is often under-
represented in DNA sequence libraries. The bottom
configuration shows the same primer with four degen-
erate bases, which widens the specificity of the primer
and improves coverage of groups such as the bifidobac-
teria (Walker et al. 2015)

(c) Choice of 16S rRNA gene variable region can impact
species-specificity of sequence results. In this example the

V3 region allows differentiation of two Neisseria species
(N. meningitidis and N. lactamica) but the sequences from
both species are identical over the V6 region, meaning dif-
ferentiation would not be possible. Therefore, if the
researcher was particularly interested in distinguishing
these two species, primers targeting the V6 region could
not be used

(d) Contamination in laboratory reagents. The panel shows
the qPCR quantification of a serial dilution of a pure cul-
ture of Salmonella bongori. The bacterial quantification
should reduce in a linear manner as the number of target
cells reduces. Instead, the quantification plateaus after
three dilutions, indicating the presence of background for-
eign contamination in the DNA extraction. This panel is
reprinted in unmodified form from: Salter et al. (2014)
under Creative Commons Attribution (CC BY) license
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Although these techniques are gradually falling
out of favour, recent work suggests that, while they
are not as sensitive as modern next-generation
sequencing, they can still generate broadly robust
results (van Dorst et al. 2014). It should also be
noted that, as they are all DNA extraction and
PCR-dependent, and typically make use of marker
genes such as 16S rRNA genes, they share many
of the limitations and biases of the sequence-based
approaches outlined previously in the “Common
pitfalls of sequence based approaches” section,
and in Table 2.1.

2.5.2 Microarrays

A microarray is a grid-like collection of micro-
scopic spots of DNA that are anchored to a solid
surface. These can be used to probe for the pres-
ence of complementary stretches of DNA extracted
from a sample of interest by hybridising against the
array. Microarrays can therefore be designed to be
used in a number of different ways, for example to
monitor changes in gene expression, or to mine for
the presence of particular functional or marker
genes (Paliy and Agans 2012; Tu et al. 2014).
Phylogenetic microarrays (sometimes also referred
to as phylochips) are a profiling method used in
human microbiota research. This technique typi-
cally involves creating custom arrays seeded with
short oligonucleotides (usually targeting the SSU
rRNA genes) that are selected so that they collec-
tively encompass the taxonomic range of organ-
isms expected to be present within a given
environmental sample type (Loy et al. 2010). DNA
is extracted from the sample of interest, the SSU
rRNA genes PCR amplified and labelled with a
fluorescent marker and then hybridised against the
microarray. When particular DNA spots on the
array retain a positive fluorescent signal post-
hybridisation, this indicates that the targeted taxo-
nomic group is present in the original sample. By
measuring the relative strength of the signal
obtained for each positive spot post-hybridisation it
may also be possible to semi-quantitatively assess
the abundance of different taxa in a sample (Rajilic-
Stojanovic et al. 2009).
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A potential advantage that the microarray
approach has over other profiling techniques is
that it typically allows the researcher to simul-
taneously detect the presence of even quite low
abundance organisms, which may not be
detected reliably with even a sequence-based
approach unless very deep sequencing is car-
ried out. One major limitation though is that,
unlike random sequencing approaches, detec-
tion is of course limited to the organisms that
are targeted by the range of probes that are
included on the initial array. Fortunately, there
are now comprehensive custom arrays for a
range of human-associated habitats such as the
gut (Rajilic-Stojanovic et al. 2009; Ladirat
et al. 2013; Tottey et al. 2013), vaginal tract
(Gautam et al. 2015) and oral cavity (Crielaard
et al. 2011), and the range of oligonucleotide
probes that are included in these can be
expanded as novel species are detected using
sequence-based approaches (Rajilic-Stojanovic
et al. 2009). It can also be difficult to design
arrays where the hybridisation conditions are
standardised for all of the probes included. As
such it is prudent to control for potential false
positives/negatives by including more than one
probe for each taxonomic group targeted (Roh
et al. 2010). Microarrays also share the same
methodological limitations associated with the
DNA extraction and PCR steps as other DNA-
based techniques (see “Common pitfalls of
sequence based approaches” section, and Table
2.1).

2.6 Quantitative Approaches

There are two widely used molecular methods,
namely quantitative PCR and fluorescent in situ
hybridisation, that allow the enumeration or
quantification of dominant groups of microbes
within the microbiota. For both of these tech-
niques 16S rRNA gene sequences are typically
the underlying basis, with different variable
regions targeted with oligonucleotide probes and
primers that are specific for particular phyloge-
netic groups.
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2.6.1 Quantitative PCR

Quantitative PCR (qPCR), sometimes also
referred to as real-time PCR, is a technique based
on measuring fluorescence released during PCR
amplification (Malinen et al. 2003). The amount
of fluorescent signal generated, and the rate at
which it accumulates, as the number of PCR
cycles increases allows the researcher to quantify
the amount of targeted DNA present in a given
extraction. This approach is often used to quan-
tify total bacterial cell numbers in a sample, but it
can also be used to concurrently quantify the
population levels of a number of different bacte-
rial groups by using a range of targeted primer
sets (Ramirez-Farias et al. 2009). This is a highly
sensitive method and cell densities as low as 10!
to 103 cells per sample may be accurately detected
(Ott et al. 2004). One limitation of qPCR, how-
ever, is that it only allows monitoring of groups
that have been specifically targeted by the chosen
PCR primers. As a result, untargeted groups will
not be observed in the results, and extensive mon-
itoring of microbial communities typically
requires the use of multiple different primer sets.
Recent efforts have therefore been made to make
this approach more high-throughput (Hermann-
Bank et al. 2013). Primers must also be exten-
sively tested first, to rule out non-specific binding
to non-target DNA. As with all other DNA-based
approaches, qPCR is also highly dependent on
the choice of DNA extraction methodology.

2.6.2 Fluorescentinsitu
Hybridisation (FISH)

FISH is another widely used quantitative tech-
nique, with the added advantage that it does not
require a DNA extraction step so is free from
some of the biases associated with DNA-based
methodologies. With FISH, bacterial cells are
first fixed using chemicals such as paraformal-
dehyde and then permeabilised to allow access
of  fluorescently-labelled  oligonucleotide
probes. These oligonucleotides are typically
between 15 and 30 bases in length and are com-
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monly designed to target regions of rRNA that
are specific for chosen phylogenetic groups of
bacteria (Amann and Fuchs 2008). Probes may
be targeted towards a broad range of bacteria by
selecting a highly conserved section of the 16S
rRNA gene or towards a narrower range by tar-
geting more specific stretches of the gene
(Amann and Ludwig 2000). After entering the
fixed cell, the probes hybridise to any sequence
of rRNA that is complementary to that of their
own. As ribosomes are highly abundant, and
distributed throughout the bacterial cell, the tar-
geted cell fluoresces, which allows direct visu-
alisation and enumeration by epifluorescent
microscopy (Harmsen et al. 2002). FISH there-
fore, as well as being a quantitative approach,
has the singular advantage that it allows obser-
vation of cells of interest in situ. For example, it
is possible to determine the composition of spe-
cific consortia of microbes present on mucosal
surfaces, or on the surfaces of particles (Fig.
2.5). A further strength of this approach is that it
can be used to link phylogeny to function by
employing it in conjunction with techniques
such as microautoradiography (MAR-FISH)
(Nielsen et al. 2010), Raman microspectroscopy
(Raman-FISH) (Wagner 2009) or Secondary Ion
Mass Spectrometry (FISH-SIMS) (Musat et al.
2012).

However, there are some important limitations
to the use of FISH. It is a far less sensitive quan-
titative technique than qPCR because a critical
mass of bacterial cells (typically around 10° cells/
ml of sample) is required per microscopic field of
view for accurate visual enumeration. As a result,
FISH is most often used to monitor bacterial pop-
ulations at broader taxonomic levels as individual
species only rarely reach the required density for
accurate monitoring (Harmsen et al. 2002). As
with qPCR, it should also be noted that a further
limitation is that FISH only allows monitoring of
the microbial groups specifically targeted with
oligonucleotide probes, and results can be con-
founded by false positive/negative results. It is
therefore imperative that all newly designed oli-
gonucleotides be tested for specificity prior to
use with samples.
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Fig.2.5 Fluorescent in situ hybridisation
A key advantage of FISH is that it allows
direct visualisation of bacteria in
environmental samples. In this example we
can see groups of bacteria colonising an
insoluble fibre particle recovered from a
human faecal sample. Cells coloured green
belong to the Lachnospiraceae family, those
labelled red belong to the Ruminococcus
genus and those in blue are labelled with the
universal DAPI stain and do not belong to
either of the these bacterial groups. Thus it
can be seen that the majority of cells
attaching to this fibre are derived from the
Lachnospiraceae and Ruminococcaceae

2.7  Functional Analyses

Community profiling techniques can only pro-
vide an overview of the microbial composition in
a given sample or, in the case of shotgun metage-
nomics, can only provide an overview of the
encoding potential of a microbial ecosystem.
Indeed, while we now have a much clearer pic-
ture of the kind of microbes that inhabit the vari-
ous niches associated with the human body we
know comparatively far less about the roles that
each individual species plays. Fortunately, there
are now a number of complementary techniques,
beyond the culture-based and metatranscrip-
tomics methods described previously in this
chapter, that can be used to assess the functional-
ity of the microbiota.

2.7.1 Functional Metagenomics

In contrast to whole shotgun metagenomics,
where the aim is to generate deep sequencing-
based profiles of the entire functional capability
of the microbiota, with functional metagenomics
the aim is instead to identify specific functional
genes by cloning and expressing them in a sur-
rogate bacterial species (Handelsman et al. 1998).
Typically this involves large-scale cloning of ran-
dom environmental DNA fragments into a host
species such as E. coli and then screening for

activity by growing the transformed host species
on agar plates containing a substrate of interest.
Where functional activity is observed, the cloned
gene can then be sequenced to provide support-
ing genomic data. This approach has been used,
for example, to identify complex-carbohydrate
degrading enzymes derived from the human gut
(Tasse et al. 2010). Functional metagenomics is
therefore a potentially hugely powerful approach,
with the key advantage that it allows the
researcher to simultaneously identify novel genes
encoding specific functions from a broad range
of bacterial species, including those that may not
be amenable to culture in the laboratory
(Uchiyama and Miyazaki 2009). A further advan-
tage is that the functional annotation of previ-
ously unknown genes enhances reference
databases, which can then be used to improve
classification success rates and accuracy for
sequence-based shotgun metagenomics studies.
There are, however, a number of important
limitations, which has so far limited the use of
functional metagenomics in comparison to the
sequence-based shotgun metagenomics
approach. For example, it is typically highly
laborious and inefficient; millions of random
DNA fragments may need to be cloned in order
to identify activities of interest. Furthermore,
there are important technological barriers that
impinge upon the effectiveness of the approach.
Many of the cloned fragments will be poorly
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expressed by foreign hosts such as E. coli, mean-
ing that alternative hosts/approaches may need
to be considered (Liebl et al. 2014). In addition,
the DNA extraction step is crucially important as
the researcher must reach a balance between
using a protocol that is stringent enough to
extract DNA from as wide a range of species in
the original sample as possible, but is not so
stringent that it shears the resulting DNA to the
extent that many of the cloned genes and gene
clusters are disrupted (Kakirde et al. 2010). A
further limitation is that, while this approach
may identify products formed from individual
genes or relatively simple contiguous gene clus-
ters, it is unlikely to be able to identify gene
products that result from complex metabolic
pathways (Walker et al. 2014).

2.7.2 Metaproteomics

Metaproteomics is the study of the complement
of proteins produced by mixed microbial com-
munities (Wilmes and Bond 2009). As such, it
provides functional information by allowing the
researcher to monitor changes in protein expres-
sion by the entire microbiota in response to
changes in prevailing environmental conditions.
With this technique, proteins must first be
extracted from the environmental sample of inter-
est, and then separated prior to characterisation
with mass spectrometry and subsequent
bioinformatics-based comparisons with refer-
ence databases (Hettich et al. 2012). Until
recently proteins (or peptides) were most com-
monly separated by using gel electrophoresis
approaches (Magdeldin et al. 2014), but they are
now increasingly separated by using liquid chro-
matography instead. Recent technological
advances in the field mean that it is now possible
to carry out very high throughput liquid
chromatography-mass spectrometry based analy-
ses, where many thousands of different proteins/
peptides can be separated and characterised
(Hettich et al. 2013).

Metaproteomics offers some key advantages
over the metatranscriptomics approach described
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previously in that, by measuring proteins rather
than mRNA, it provides a broader, more repre-
sentative picture of the functional activity of the
microbiota as it also accounts for the impact of
processes such as post-translational modifica-
tions (Cain et al. 2014). Proteins are also typi-
cally more stable than mRNA molecules,
meaning that results obtained may not be so
dependent on the speed with which the samples
are processed. A particular advantage over DNA-
based metagenomics is that metaproteomics is
faster, and cheaper (Verberkmoes et al. 2009).
The relatively untargeted nature of metapro-
teomics also means that it may be possible to
identify marker proteins that are indicative of a
healthy or diseased human host status.

However, although the technology involved
in metaproteomics is rapidly improving, there
are a range of important limitations, and this
technique is currently far less commonly applied
in comparison to DNA-based approaches.
Although resolution is improving, metapro-
teomics can only currently characterise thou-
sands out of the millions of proteins/peptides
that might be present in a complex microbiota
sample at one time (Kolmeder and de Vos 2014).
As such, only proteins produced by the most
dominant members of the microbiota can be
expected to be captured with reasonable cover-
age (Verberkmoes et al. 2009). It can also be dif-
ficult to differentiate similar proteins or ascribe
them to particular phylogenetic groups
(Lichtman et al. 2015), and, as with metagenom-
ics studies, a large proportion of the data recov-
ered will have no close matches to available
reference databases (Verberkmoes et al. 2009).
The methodology chosen during the protein
extraction step will also have significant impacts
on the representativeness of the protein comple-
ment recovered, and it is important to extract
proteins with reasonable efficiency from both
Gram positive and Gram negative constituents
(Tanca et al. 2014). Human-derived proteins will
also be present, and can be a highly significant
component in samples such as biopsies, meaning
it is sometimes necessary to carry out selective
steps to enrich for microbial proteins (Kolmeder
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and de Vos 2014). There are also issues sur-
rounding reproducibility between samples, par-
ticularly when using gel electrophoresis to
separate proteins (Magdeldin et al. 2014).

2.7.3 Metabolomics

Metabolomics is the study of the metabolites/
small molecules present within a given sample at
the time of sampling. As with the metaproteomics
approach outlined above, metabolomics there-
fore offers distinct advantages over other func-
tional approaches such as metatranscriptomics as
it allows the direct monitoring of the end prod-
ucts of bacterial metabolism (Ursell et al. 2014).
With metabolomics, metabolites are typically
isolated from bodily samples such as urine, fae-
ces and blood and measured using technologies
such nuclear magnetic resonance (NMR) micros-
copy or mass spectrometry (Nicholson and
Lindon 2008). The end result of these approaches
are a series of characteristic spectra or peaks
derived from the range of metabolites that are
present within the original sample (Savorani
et al. 2013). Depending on the approach used,
metabolomic screens can either be carried out in
a targeted way for particular groups of metabo-
lites (for example, short chain fatty acids), or on
a more global basis (Griffiths et al. 2010). In the
latter case, the main challenge is to assign par-
ticular spectra from the complex mixture of peaks
to specific compounds, and then to attempt to
correlate presence/absence of these compounds
with markers of host health (Lenz and Wilson
2007). By simultaneously capturing both host
and microbial-derived metabolites, metabolo-
mics has particular appeal as an approach to char-
acterise host-microbe interactions (Wikoff et al.
2009).

A key limitation of this technique is that it can
be difficult to accurately determine which micro-
bial species are producing particular metabolites.
While attempts are often made to correlate
metabolite production with microbial composi-
tion data generated in tandem by sequence survey
or metagenomic approaches, these can be con-
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founded by the presence of DNA derived from
dead or inactive species in the sequence-based
results, and by the fact that there can be consider-
able metabolic flux within complex ecosystems,
such that metabolites associated with taxa that
are dominant in sequence surveys may not actu-
ally be produced by them (Abram 2015).
Furthermore, many metabolites, for example
short chain fatty acids, are rapidly absorbed by
the host, meaning that production levels cannot
be accurately defined or ascribed to particular
species (Kolmeder and de Vos 2014). An addi-
tional important disadvantage is that reference
databases are generally lacking, even more so
than those for DNA and proteins, meaning that
only a small fraction of metabolomics data can
currently be assigned to known metabolites
(Baker 2011). Finally, as with metaproteomics,
resolution limits (even with the most modern
instruments) mean that it is only possible to accu-
rately monitor a small subset of the wide range of
metabolites that may be present in a complex
sample such as faeces (Goedert et al. 2014).

It can be seen, therefore, that all four key mod-
ern “omics” technologies (metagenomics for
DNA, metatranscriptomics for RNA, metapro-
teomics for proteins, and metabolomics for
metabolites) have distinct strengths and limita-
tions. As a result, there is increasing interest in
integrating the output from each of these
approaches in order to enhance their overall
power and provide a more comprehensive, sys-
tems biology-based, overview of the human
microbiota. Effective integration of these com-
plex datasets remains to some extent an unful-
filled ambition, but one that is being rapidly
guided by improvements in computing infra-
structure, bioinformatics, mathematical model-
ling and statistical approaches (Abram 2015).

2.7.4 Stablelsotope Probing

One final functional approach with strong appli-
cability to the study of the human microbiota is
stable isotope probing (SIP). With this technique,
mixed microbial communities are incubated with
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labelled substrates containing heavy stable iso-
topes such as 1*C, °N, and '30. Species that are
able to grow on the labelled substrate incorporate
the isotope markers into cellular biomass, which
can then be studied by looking at components
such as DNA (DNA-SIP), RNA (RNA-SIP), pro-
teins (protein-SIP) or phospholipid-derived fatty
acids (PFLA-SIP). Approaches like density gra-
dient ultracentrifugation (Dunford and Neufeld
2010) or advanced single-cell resolution tech-
niques such as Raman microspectroscopy and
Secondary Ion Mass Spectrometry (SIMS) are
used to distinguish the active microbes from spe-
cies that did not incorporate the marker (Eichorst
et al. 2015). Regardless of the actual cellular
components targeted SIP is therefore an attrac-
tive basis for uncovering which microbes within
complex microbial communities carry out par-
ticular functions (Uhlik et al. 2013).

SIP is an emerging means with which to
unravel the complex activities of the human
microbiota. Early studies used this technique in
tandem with community profiling approaches
like T-RFLP and FISH to characterise the
microbes that were able to actively utilise labelled
substrates such as resistant starch and oligofruc-
tose (Kovatcheva-Datchary et al. 2009; Reichardt
et al. 2011). When used in combination with
more modern “omics” techniques SIP has the
potential to be particularly powerful. For exam-
ple, fractionated DNA or RNA containing the
stable isotopes can then be sequenced using
marker gene surveys, metagenomics or metatran-
scriptomics in order to identify the species that
were active during incubation with the labelled
substrate (Chen and Murrell 2010). Similarly,
advances in micro-manipulation technologies
such as optical tweezers mean that whole cells
that have been shown by techniques like Raman
microspectroscopy to have incorporated the sta-
ble isotopes can then be isolated from the sample
and either cultured or, if that is not possible, put
forward for genome sequencing via single cell
genomics (Berry et al. 2015).

While SIP approaches can be hugely power-
ful there are important caveats, which have lim-
ited widespread application of these techniques
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thus far. SIP is far more technically challenging
than approaches such as SSU rRNA gene sur-
veys or metagenomics, and the modern single-
cell resolution techniques such as Raman
microspectroscopy and SIMS can be prohibi-
tively expensive (Wagner 2009). Similarly, use
of SIP is limited by the supply and cost of
labelled substrates (Uhlik et al. 2013). Recent
innovations though, such as the use of the cheap
and readily available heavy water (D,O) as a
general marker of cellular growth, allows SIP to
be carried out without specific labelled carbon or
nitrogen sources (Berry et al. 2015). A further
limitation is that SIP requires microbes to be
grown in the presence of the labelled tracer so
that it can be incorporated into active cells. Often
this means growing mixed communities under
artificial laboratory conditions, meaning that
results may not entirely reflect the activity of the
microbiota in vivo (Uhlik et al. 2013).
Nonetheless, impressive new innovations have,
for example, allowed researchers to identify
microbes growing in vivo that forage host-
derived proteins for growth (Berry et al. 2013).
Finally, there is considerable metabolic flux
within complex microbial communities, with
cross feeding between species a common fea-
ture. This means that stable isotopes such as *C
may “flow” from the primary degrader of a
labelled substrate to many other species that are
present within the community, potentially
impeding the ability to detect the initial utilising
species (Dumont and Murrell 2005).

2.8 Conclusions

There are now many different ways in which the
human microbiota can be studied, and each meth-
odology has inherent advantages and limitations.
Ultimately, the best technical approach for a
given situation will clearly depend on the ques-
tion that the researcher wishes to address.
Although each technique has largely been con-
sidered in isolation in this review it should be
emphasised here that, where possible, the syner-
gistic use of multiple methodological approaches
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offers perhaps the greatest power with which to
uncover novel insights.

Looking towards the future, it is clear that fur-
ther improvements in sequence-based technolo-
gies, molecular methods, model systems and
bioinformatics will continue to open up novel
avenues for research. The synergistic adoption of
such approaches will greatly enhance our ability
to take a systems biology-based view of the
human microbiota, and how it interacts with the
host. Traditional techniques such as culture will
also retain an important role as we seek to trans-
late omics-based observations into interventions
such as probiotics and pharmabiotics aimed at
improving host health (Reardon 2014). We have
come a long way since Antonie van
Leeuwenhoek’s first glimpses of the human
microbiota, and are now quickly entering an era
where our increased understanding of our micro-
bial inhabitants is being put to practical therapeu-
tic use (Shanahan 2015). Further technological
advances can only accelerate this process.
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