
Simulation Driven Policy
Recommendations for Code Diversity

Brady Tello, Michael Winterrose, George Baah and Michael Zhivich

Abstract Periodic randomization of a computer program’s binary code is an
attractive technique for defending against several classes of advanced threats. In this
paper we describe a model of attacker-defender interaction in which the defender
employs such a technique against an attacker who is actively constructing an exploit
using Return Oriented Programming (ROP). In order to successfully build a
working exploit, the attacker must guess the locations of several small chunks of
program code, known as gadgets, in the defended program’s memory space. The
defender thwarts the attacker’s efforts by periodically re-randomizing his code.
Randomization incurs some performance cost, therefore an ideal strategy strikes an
acceptable balance between utility degradation (cost) and security (benefit). We
present risk aware and risk agnostic policy recommendations that were generated
using simulation techniques. We found that policies that create low volatility
environments are ideal for risk sensitive actors while policies that favor high system
performance are more suitable for higher risk appetites.

Keywords Security � Multi-compiler � Optimization

B. Tello (&) � M. Winterrose � G. Baah � M. Zhivich
MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA, USA
e-mail: brady.tello@ll.mit.edu

M. Winterrose
e-mail: michael.winterrose@ll.mit.edu

G. Baah
e-mail: george.baah@ll.mit.edu

M. Zhivich
e-mail: mzhivich@ll.mit.edu

© Springer International Publishing Switzerland 2016
M.S. Obaidat et al. (eds.), Simulation and Modeling Methodologies,
Technologies and Applications, Advances in Intelligent Systems
and Computing 442, DOI 10.1007/978-3-319-31295-8_2

21



1 Introduction

As computer technologies become more firmly embedded in the fabric of our
societies the importance of keeping computer systems secure against malicious
intent becomes more obvious every day. This increased awareness is the direct
result of several high profile security incidents involving major corporations [1, 2],
governments [3, 4], and even the infrastructure of the web itself [5]. In response,
defensive techniques and technologies to counter these threats have become the
focus of much research and development [6, 7].

An interesting class of advanced defense techniques involves the strategic ran-
domization of system components in order to ‘outflank’ adversaries. Defensive
strategies that conform to this paradigm are often referred to as Moving Target
(MT) strategies [8–10]. Moving Target defenses are particularly effective largely
due to the fact that they make it more difficult for attacker’s to gather enough
information to launch an effective attack in a timely manner.

As is the case with most computer security technologies, MT defenses impose a
certain amount of overhead that must be addressed. As one might imagine,
increasing the amount of randomness in a computer system can only make it more
difficult to implement and manage. In order for a MT defense to be successful,
careful though and planning must go into every stage of the engineering lifecycle in
order to ensure adequate speed, functionality, and compatibility while simultane-
ously ensuring that things like implementation, design, and/or deployment mistakes
don’t undermine the entire system. All of these conditions are necessary in order for
a moving target technology to have a chance at acceptance. Often, achieving all of
these goals will involve calibration to a specific operational environment due to
varying security requirements of different organizations.

One particularly interesting MT technology, developed by researchers at the
University of California at Irvine (UCI), is known as the multi-compiler (Franz
2010). The multi-compiler is a tool that takes a computer program’s source code as
its input and outputs a set of unique variants of the executable program binary code
that are all functionally equivalent but have different code layouts. One technique
the multi-compiler uses to accomplish this objective is to probabilistically distribute
small pieces of binary code that have no effect on the program semantics. We will
refer to these chunks of code as null-operations (NOPs). NOP insertion is a tech-
nique that is particularly effective against an attack technique known as Return
Oriented Programming (ROP).

In a ROP attack, an adversary turns the code running on a defender’s machine
into a weapon. A ROP attack starts with the attacker searching for a set of small bits
of code in the defended program’s memory space—known colloquially as “gad-
gets”—that can be chained together to accomplish the attack objectives. Once a
functional set of gadgets is found, the attacker strategically redirects control flow to
the beginning of the chain. Once such a set of gadgets has been located on one

22 B. Tello et al.



machine, it can be re-used on similar machines. The multi-compiler eliminates the
re-usability of these gadget chains by breaking them up and relocating them in each
program variant. By making ROP attacks less reliable, the multi-compiler is very
attractive as a defensive technology. Using the multi-compiler this way strips the
attacker of the ability to write reusable exploits which creates a sort of herd
immunity in which individual actors can be compromised but the population as a
whole experiences a dramatic reduction in risk.

Although the multi-compiler brings security to the collective, we propose a
usage that would also benefit the individual. We propose an enhanced usage in
which a defender periodically installs a new multi-compiled variant of a program.
We refer to this action as a “rotation”. Under this binary rotation-based defense
strategy, diversification provides defensive advantages at both the individual and
aggregate scales.

The goal of our work is to use a computer simulation to evaluate the effectiveness
of a rotation- based multi-compiler defense strategy under a number of different
threat scenarios. If the defender is overly aggressive with his diversity/rotation
strategy, he incurs costs related to system utility: if a program is spending all of its
time defending itself, it’s not spending any of its time doing anything productive.
Conversely, if he is not aggressive enough, he risks system compromise and then
must pay the costs related to recovery (if recovery is an option).

The contributions of this work are as follows:

1. We present a case study in the use of software-based simulation to evaluate
rotation policies for the multi-compiler

2. We provide non-intuitive guidance for the setting of a key security parameter of
3. The multi-compiler (NOP insertion rate). The multi-compiler has a number of

additional security parameters that we hope to study in future work
4. We introduce the notion of “impact landscapes” which are useful tools for

visualizing and reasoning about task impact due to cyber security threats
5. We utilize observed impact landscapes to generate practical insights for a

diversity based cyber defense strategy
6. We present the results of a study that suggest certain parameter settings for the

multi-compiler may be robust across a wide array of performance cost scenarios
7. We show that risk considerations can lead to differing policy recommendations.

2 Related Work

In related work at Lincoln Laboratory, we studied a code diversification strategy
that is dependent on the results of an output scanner [11]. In the current work we
consider a strategy in which the defender simply assumes that he is under constant
attack and proactively rotates.

In a recent paper, it is suggested that BBN Technology’s A3 platform could be
used to manage a proactive code diversification strategy [12] similar to the one we

Simulation Driven Policy Recommendations for Code Diversity 23



outline in this paper. We believe the work laid out in our study bolsters the case for
this defensive mechanism by highlighting how it performs under a number of
scenarios.

Our approach resembles some aspects of the Data Farming methodology
described in [13, 14]. Specifically, our approach shares with Data Farming an
emphasis on simple agent-based models, extensive parameter space exploration,
visualizing outputs as landscapes, and decision support. Data Farming goes on to
emphasize high-performance computing and the discovery of outliers in the sim-
ulation results, two aspects that are not emphasized in the present work, though
these topics are of interest for future work.

3 Attack Model

In order to carry out our strategy evaluation, we have implemented a model-based
simulation of an attacker and defender interaction. Through the use of computer
simulation, we are able to study a wide array of attacker-defender scenarios and
outcomes.

3.1 Defender Model

In the model there are two actors: a defender and an attacker. The defender is
responsible for protecting a running computer program, A, from being exploited by
the attacker. It is assumed that A is a program that continuously performs pro-
cessing in support of a notional task. To evade compromise, the defender is allowed
to periodically rotate the variant of A that processes user requests, A*, to a new
variant of A. Each rotation resets the attacker’s cumulative effort to zero, thus
delaying system compromise.

In our model, the task takes a fixed amount of work to complete which is
specified by the parameter wm, measured in work units. The baseline defender (no
attacker, no multi-compiler) completes a single work unit during a single time unit.
Once the defender completes wm work units, the simulation ends and the total time
expended to complete the task, tm, is recorded. In the baseline case, it would take
wm time units to complete wm work units so tm ¼ wm but in the presence of an
attacker and the accompanying defense strategies, that relationship no longer holds.
The difference between these two numbers is what we refer to as task delay, or dm.

The task delay is important because it allows us to objectively compare defense
strategies and, indeed, this is the primary metric we use in our evaluation.

24 B. Tello et al.



There are two costs associatedwith rotation and compromise that directly affect how
quickly the defender accomplishes his task. The cost of a compromise to the defender,
bCMP, is an increase in dm. The cost of rotation, bROT , is also an increase in dm.

dm ¼ tm � wm ð1Þ

3.2 Threat Model

Much of the ground truth in our model is built into the threat model. Our attacker is
a remote actor who we assume has the ability to query the memory space of A*, in
an effort to guess the location of each of the nG gadgets required to build a working
ROP exploit. Once the attacker is able to correctly guess the location of all required
gadgets he launches an exploit against A*. It is also assumed that the attacker has
access to the multi-compiler, can compile versions of the target binary, and has a
priori knowledge of the fixed NOP insertion rate used by the defender’s instance of
the multi-compiler. The attacker uses these tools to build probability distributions
over the locations of the desired gadgets. These distributions allow the attacker to
make guesses in order of decreasing likelihood, thus minimizing the average
number of guesses that need to be made to find a particular gadget. The attacker is
also allowed to set the guess rate, rG, so the amount of time it would typically take
an attacker to find a single gadget is rG multiplied by the average number of guesses
required for that gadget.

The way we simulated this was to build distributions over the number of guesses
required to locate a specific gadget, as shown in Fig. 1. These were generated from
an empirical analysis of the multi-compiler’s effects on the popular gzip program.

Fig. 1 Distributions over the
number of guesses required to
locate a gadget. These
distributions were calculated
using Bonneau’s
alpha-guesswork metric using
an alpha value of 0.1

Simulation Driven Policy Recommendations for Code Diversity 25



This analysis involved the generation of a control binary as well as 10,000
multi-compiled variants for all NOP insertion rates between 0 and 100 % that are
multiples of 5. For each variant, it was necessary to take inventory of all the
surviving gadgets by aligning them with the control binary. This was required
because the multi-compiler can break up previously existing gadgets as a useful
side effect. For each surviving gadget in each variant, we calculated the displace-
ment from the corresponding gadget in the control binary and used those dis-
placements to build probability distributions over the displacements. From the
displacement distributions, we constructed our guessing distributions using a
password guessing metric known as a-guesswork as proposed by Bonneau with an
a value of 0.1 [15]. This metric captures the expected number of guesses required to
guess a gadget’s location in at least a percent of the variants. Figure 2 illustrates
how gadget displacements were measured for the ith variant of the program.

3.3 Multi-compiler Model

Another key component of our model is the multi-compiler itself. As described in
the introduction, the multi-compiler generates unique variants of a computer

Fig. 2 Gadgets are displaced
as the multi-compiler adds
NOP instructions to the
program code

26 B. Tello et al.



program by probabilistically inserting NOP instructions into the program’s binary
code. The probability that the multi-compiler will insert a NOP instruction before
any given instruction is specified by the model parameter, pNOP. Modifying pNOP
directly affects the shape of the attacker’s guess distributions, which makes it a
critical security parameter. Although one’s intuition might be to increase pNOP to
it’s maximum value (100 %) for optimal security, this actually leads to an entirely
deterministic strategy, which is obviously undesirable. The optimal setting for pNOP
is 50 % when performance costs are not accounted for.

One drawback of the multi-compiler, however, is that it inflates the number of
instructions in the program’s binary code. A multi-compiled program will take
longer to run than the control program due to the large number of extraneous NOP
instructions that must be executed by the CPU. The UCI team is well aware of this
problem and conducted a study into how NOPs might be more strategically placed
[16]. In that paper, data was provided describing the measured slowdown due to
pNOP. We modelled the average slowdown as a function, s, of pNOP with scaling
parameter b.

sb pNOPð Þ ¼ b � pNOP ð2Þ

By performing linear regression on the UCI data we found that b = 0.165 in their
experiments. We use this value for b in our experiments. Note that this value
describes the slowdown due to a Naïve NOP placement strategy. In [16] data is
provided for both a Naïve NOP placement strategy as well as a profile-guided
strategy. We decided to model the naïve strategy. We made this choice because we
think it has the highest potential for wide scale use due to its ease of configuration.
In contrast, profile guided NOP insertion requires runtime performance profiling
which we feel makes it more likely to be adopted by “power users” who are
extremely concerned with performance degradation.

One final metric of interest in this model is the amount of task progress that the
defender has made at time T:

m Tð Þ ¼
XT

t¼0

1� sbðpNOPÞð Þ � btROT � btCMP

� � ð3Þ

where btROT ¼ bROT if the defender rotates at time t and is 0 at all other times.
Similarly, btCMP ¼ bCMP if the defender becomes compromised at time t and is 0 at
all other times.

This metric is useful because it is only once it reaches wm that the simulation
ends. Note that btCMP is the only stochastic element of this function.

Simulation Driven Policy Recommendations for Code Diversity 27



3.4 Strategy Evaluation

We define a defense strategy, S, given an operational environment, Θ, as the tuple:

Sh ¼ hpNOP; rROTi ð4Þ

where Θ is the set of model parameters that define the operational environment:

h ¼ fnG; rG; bROT ; bCMP;wm; sbg ð5Þ

The effectiveness of a given Sh is evaluated based on the average observed value
of dm. The average is calculated over several scenario replicates using Monte Carlo
methods. We define a scenario as a fixed set of model parameters and a replicate as
a single simulation run of a scenario.

The baseline from which we measured relative performance was the scenario in
which there was no task delay. This corresponds to a scenario in which attackers and
multi-compilers are both disabled. Alternatively, we could have used a scenario in
which the attacker is still turned on but rROT ¼ 1 which would allow us to evaluate
the marginal benefit of the rotation strategy. However, since this is a probabilistic
baseline, we feel that the first alternative is more straightforward (Table 1).

4 Experiments and Analysis

4.1 Setup

Although our model has many parameters, several of them are fixed across both
scenarios and replicates. We set nG to 10, motivated by the observation that

Table 1 Table of symbols Symbol Description

A The software under defense

A� The current variant of A

pNOP The NOP insertion probability

nG The number of gadgets required to build an
exploit

rROT The defender rotation rate

rG The attacker guess rate

bROT The time penalty of rotation

bCMP The penalty due to compromise

wm The amount of work required to complete a task

dm The total task delay

sb pNOPð Þ The multi-compilation slowdown

tm The time to complete wm units of work

m Tð Þ The cumulative task progress up until time T

28 B. Tello et al.



attackers tend to prefer to use a small number of ROP gadgets as a compact first
stage of a full exploit. For example, many of the ROP chains published on the
Corelan ROP database [17] simply disable various virtual memory protection
mechanisms to set the stage for more efficient/reliable techniques to finish the rest
of the attack. The amount of work required to complete a task, wm, was kept fixed at
103 for all experiments. This choice allows for reasonable simulation execution
efficiency while allowing enough time for the important dynamics in the model to
manifest. The cost of rotation, bROT , was set to 25 because it is small compared to
the values we used for bCMP. The reason for this decision was because it seemed
reasonable to assume that nobody would deploy a rotation strategy if they didn’t
have an efficient mechanism for doing the actual rotations. We also had a maximum
tick count of 10,000 in place to prevent the model from running for too long. If the
model runs for over 10,000 ticks, it simply halts and reports the maximum task
delay of 9000.

Our strategy for varying the remaining parameters was to define nine distinct
task scenarios using different values for bCMP and rG and then for each scenario,
perform a parameter sweep on both pNOP and rROT . This allows us to analyze the
task delay landscape (henceforth, referred to as the “impact landscape”) for a wide
range of strategies under a number of task scenarios. We ran 100 replicates for each
scenario and measured dm for each.

Nine task scenarios were defined corresponding to various combinations of
attacker efficiency and defender costs due to compromise. In three of our scenarios,
the attacker guesses once every time unit. This is the strongest possible attacker
under our model. In another three scenarios the attacker guesses once every other
time unit and in the remaining three he guesses once every fourth time unit. For
each of the three attacker strength levels, we set three different levels of bCMP. The
levels we use are 125, 250, and 2500. These three values correspond to five, ten,
and one hundred times bROT .

4.2 Results and Analysis

In order to visualize how the various parameters impacted our model task, we
created “impact landscapes” for each of our scenarios. Each impact landscape is a
surface plot of the average response in dm (averaged over the 100 replicates) as a
function of rROT and pNOP.

In Fig. 3, the various landscapes are laid out with the attacker getting more
aggressive from left to right and the impact due to compromise getting more severe
from top to bottom. Within each landscape, the rotation rate increases from left to
right and the NOP insertion probability increases from bottom to top. Each land-
scape provides a clear picture of how the two factors in our experiments affected the
total task delay. The dark blue regions correspond to scenarios with small amounts
of task delay while the darker red regions correspond to scenarios in which the
defender took much longer to complete the task.

Simulation Driven Policy Recommendations for Code Diversity 29



The landscapes in Fig. 3 provide some practical strategic insights. Visual
inspection makes it immediately obvious that failure to rotate at all will always lead
to a compromise. It also clear that being overly zealous with rotations has a neg-
ative impact on the task on average. Perhaps surprisingly, we see that a low value
for pNOP does not always lead to a high impact situation. This is due to the fact that
the cost of the additional instructions is accrued during every step of the simulation.

These landscapes also highlight the fact that the attacker’s aggressiveness has a
strong effect on the defender’s ability to maneuver in the parameter space. In the
leftmost scenarios the defender has a wide array of parameter settings that can be
used to achieve acceptable task delay. In the rightmost scenarios, however, the
defender must restrict his setting of the rotation rate to a narrow band or risk being
“pinned down” by the attacker.

We also used the impact landscape data to determine optimal parameter settings
for each of the nine attacker scenarios. For each scenario, we found the values of
rROT and pNOP corresponding to the lowest task delay. We labeled these optimal
parameter settings r�ROT and p�NOP respectively and refer to them jointly as an Ideal
Operating Point (IOP). Table 2 provides the IOPs for each scenario and the cor-
responding task delay.

The first thing to notice in this data is that the value for p�NOP never rises above
0.3. The reason for this phenomenon is not intuitive. It is important to know that the
randomness added to a set of application binaries by the multi-compiler peaks when
pNOP ¼ 0:5. To understand this, consider the case in which pNOP ¼ 1: the adversary
would be able to reconstruct any multi-compiled application by simply taking the
control binary and adding a NOP after every instruction. The inverse parabolic
shape of the distribution means in Fig. 1 captures this phenomenon more clearly. It
is important to note, however, that although setting the NOP insertion rate to 50 %
provides the highest benefit with respect to system security, it also imposes a

Fig. 3 These impact landscapes demonstrate the effects of the rotation rate and NOP insertion rate
on overall task impact. Dark blue indicates low task impact (most desirable) and dark red indicates
high impact

30 B. Tello et al.



performance cost due to a NOP being executed after every other instruction. It is
due to this security-performance tradeoff dynamic that the ideal NOP insertion rate
hovers around 0.3.

Because the ideal value for pNOP(p�NOP) is the result of a tradeoff between
security and performance, it is interesting to study the sensitivity of p�NOP to dif-
ferent performance penalty models. To study this, we ran an experiment in which
we fixed the rotation rate at 375 and varied the effect of multi-compilation [the b
parameter in the slowdown function, sb pNOPð Þ] from no penalty (b = 0) up to a
moderate penalty (b = 0.4) in increments of 0.05 and studied the resultant value for
p�NOP. Surprisingly, although changes in b did cause shifts in the overall impact
landscape, the ideal NOP insertion rate remained fixed at 0.3 for all ten penalty
settings. This was surprising to us and seems to indicate that the NOP insertion rate
can be set in a way that leads to robustness across various security and performance
trade-off scenarios.

As a final step in our analysis, we considered volatility as part of our policy
evaluation criteria. Specifically, we replaced the utility metric used in our previous
results (the mean mission delay) with a risk adjusted utility metric based on the
Sharpe ratio—a risk metric widely used in quantitative finance [18]—to determine
whether risk awareness led to any change in the policy recommendation.

Risk Adjusted Utility ¼ tMAX � tm
rtm

ð6Þ

where tMAX is the maximum possible time allowed for mission completion and rtm
is the standard deviation over the observations of tm.

We applied the risk adjusted utility to the results of the scenario where rG ¼ 1 and
bCMP ¼ 125. This resulted in the risk adjusted impact landscape shown in Fig. 4.
Under this landscape the ideal operating point shifts from p�NOP ¼ :3; r�ROT ¼ 175 to
p�NOP ¼ :5; r�ROT ¼ 225 bringing dm from 221 to 226—an increase of about 2 %.

The adjusted operating point is interesting as it highlights the fact that the risk
agnostic recommendations may lead to inconsistent results over time. While risk

Table 2 Ideal operating
points for all threat scenarios

rG bCMP r�ROT p�NOP dm
0.25 125 550 0.1 54

0.25 250 550 (and 5 others) 0.2 59

0.25 2500 550 (and 6 others) 0.2 59

0.5 125 375 0.3 104

0.5 250 375 0.3 104

0.5 2500 300 0.2 111

1 125 175 0.3 221

1 250 175 0.3 209

1 2500 175 0.3 209

The baseline delay (no attacker, no rotations) is 0

Simulation Driven Policy Recommendations for Code Diversity 31



aware policy recommendations may not lead to the minimum average task delay,
they can strike a reasonable balance between average task delay and stability.
Interestingly enough, p�NOP sits at 0.5 under the risk aware framework, thus indi-
cating that by choosing 0.3 as suggested by the risk agnostic measure, the operator
essentially trades stability for performance.

5 Conclusions

In this paper we presented a simulation-centric evaluation of a cyber defense
strategy based on proactively rotating binary variants generated by a multi-
compiler. The strategy in question is one that has been considered in previous work
but as far as we know has not been the subject of a serious investigation.

We used the delay to a notional task as an evaluation metric to help us under-
stand the impact of this code diversification strategy. We generated a number of
comprehensive impact landscapes to help us understand how different deployment
configurations and adversarial assumptions affect the overall task impact. Our
analysis of these landscapes showed that this strategy facilitates safe and efficient
execution even in the presence of a highly motivated adversary.

Our study also suggested the existence of parameter settings for the multi-
compiler that are highly resilient across a broad spectrum of scenarios. In our
simulations, setting the multi-compiler’s NOP insertion rate to 30 % resulted in
minimal task impact in a large number of experiments including when the per-
formance cost of NOP insertion was nearly zero. However, when we studied the
task delay using a volatility sensitive utility function, we found that the ideal NOP
insertion rate shifted away from 30 to 50 % showing that highly risk averse
operators may wish to use the highest security setting of the multi-compiler even
though it leads to performance degradation.

This work was intended to shed light on various strengths and weaknesses of the
strategy and would likely be of greatest interest to those hoping to deploy such a
strategy in a production environment.

rROT

.1

1

25 1000

p N
O
P

Fig. 4 The optimal policy
under the risk-aware impact
landscape differs from the
risk-agnostic recommendation

32 B. Tello et al.



6 Future Work

In this study we have carried out extensive sweeps through the parameter space of
an abstract model of a rotation-based multi-compiler defense, resulting in global
visualizations of the task delay landscape caused by multi-compiler related latencies
and attacker success. The methodology of performing extensive parameter sweeps
is only feasible when the underlying model is highly abstract and simplified. In a
future study we plan to enhance our rotation-based multi-compiler model with
additional operational details and explore the applicability of metaheuristic search
techniques, such as genetic algorithms [19, 20] and simulated annealing [21] to
efficiently navigate complex output landscapes to discover optimal operation points
for a multi-compiler defense.

As part of this work we noticed that a NOP insertion rate of 30 % appeared to be
robust across a wide variety of threat scenarios but led to less stable task delay
observations. In future work, we would be interested in determining whether there
is any such robust parameter setting that also minimizes volatility.

Acknowledgements The authors would like to thank Dr. William Streilein, Dr. Neal Wagner,
and Dr. Kevin M. Carter of MIT Lincoln Laboratory for their advice on this paper. This work is
sponsored by Defense Advanced Research Projects Agency under. Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the
authors and are not necessarily endorsed by the United States Government. The views, opinions,
and/or findings contained in this article are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

References

1. Data Breach FAQ, Target. Inc. Available from: https://corporate.target.com/about/shopping-
experience/payment-card-issue-faq (07 Oct 2014)

2. The Home Depot Provides Update on Breach Investigation, The Home Depot, Inc. Available
from: https://corporate.homedepot.com/mediacenter/pages/statement1.aspx, 8 Sept 2014

3. Greenwald, G., MacAskill, E., Poitras, L.: (2013) Edward Snowden: The Whistleblower
Behind the NSA Surveillance Revelations, The Guardian. Available from: http://www.
theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance, 9 Oct
2014

4. Bumiller, E.: Army leak suspect is turned in, by Ex-Hacker. The New York Times. Available
from: http://www.nytimes.com/2010/06/08/world/08leaks.html?_r=0, 09 Oct 2014

5. CVE-2014-0160 2014, MITRE Corporation. 2014. Available from: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160, 09 Oct 2014

6. Data Execution Prevention: Frequently Asked Questions n.d. Microsoft Corporation. Available
from: http://windows.microsoft.com/en-us/windows-vista/data-execution-prevention-frequently-
asked-questions, 09 Oct 2014

7. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity: principles,
implementations, and applications. In: Proceedings of the 12th ACM Conference on
Computer and Communications Security, 9 Oct 2014 (2005)

8. Okhravi, H., Hobson, T., Bigelow, D., Streilein, W.: Finding focus in the blur of moving target
techniques. IEEE Secur Priv 12(2), 16–26 (2014)

Simulation Driven Policy Recommendations for Code Diversity 33

https://corporate.target.com/about/shopping-experience/payment-card-issue-faq
https://corporate.target.com/about/shopping-experience/payment-card-issue-faq
https://corporate.homedepot.com/mediacenter/pages/statement1.aspx
http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
http://www.nytimes.com/2010/06/08/world/08leaks.html%3f_r%3d0
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2014-0160
http://windows.microsoft.com/en-us/windows-vista/data-execution-prevention-frequently-asked-questions
http://windows.microsoft.com/en-us/windows-vista/data-execution-prevention-frequently-asked-questions


9. Cox, B., Evans, D., Filipi, A., Rowanhill, J.: N-variant systems a secretless framework for
security through diversity. In: Proceedings from the 15th Usenix Security Symposium.
Available from: http://www.cs.virginia.edu/nvariant/ (2006)

10. Franz, M.: E Unibus Pluram: massive-scale software diversity as a defense mechanism. In:
Proceedings of the 2010 Workshop on New Security Paradigms, pp. 7–16. Available from:
ACM Portal: ACM Digital Library (2010)

11. Priest, B., Vuksani, E., Wagner, N., Tello, B., Carter, K., Streilein, W.: Agent-based
simulation in support of moving target cyber defense technology development and evaluation.
In: Proceedings of the ACM Spring Simulation Multi-Conference (SpringSim’15) (2015)

12. Pal, P., Schantz, R., Paulos, A., Benyo, B.: Managed execution environment as a
moving-target defense infrastructure. IEEE Secur. Priv. 12(2), 51–59 (2014)

13. Alfred, G.B., Gray, E.H. (1998) Data farming: A metatechnique for research in the 21st
century. Maneuver Warfare Science, pp. 93–99

14. Barry, P., Koehler, M.: Simulation in context: using data farming for decision support. In:
Proceedings of the 2004 Winter Simulation Conference. vol. 1. pp. 814–819. Available from:
IEEE XPlore Digital Library (2004)

15. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy. Available from: IEEE Xplore
Digital Library (2012)

16. Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M.: Profile-guided automated
software diversity. In: Proceedings of the 2013 International Symposium on Code Generation
and Optimization, pp 204–214. Available from: IEEE Xplore Digital Library (2013)

17. Corelan Team n.d, Corelan ROPdb. Available from: https://www.corelan.be/index.php/
security/corelan-ropdb/, 23 Oct 2014

18. Sharpe, W.F.: Mutual fund performance. J Bus. vol. 39. pp. 119–138 (1966)
19. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
20. Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis With

Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press,
Arbor (1975)

21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
(New Series) 58(2), 671–680 (1983)

34 B. Tello et al.

http://www.cs.virginia.edu/nvariant/
https://www.corelan.be/index.php/security/corelan-ropdb/
https://www.corelan.be/index.php/security/corelan-ropdb/


http://www.springer.com/978-3-319-31294-1


	2 Simulation Driven Policy Recommendations for Code Diversity
	Abstract
	1 Introduction
	2 Related Work
	3 Attack Model
	3.1 Defender Model
	3.2 Threat Model
	3.3 Multi-compiler Model
	3.4 Strategy Evaluation

	4 Experiments and Analysis
	4.1 Setup
	4.2 Results and Analysis

	5 Conclusions
	6 Future Work
	Acknowledgements
	References


