
Preface

In 2015, we celebrated the 100th anniversary of the development of general rela-
tivity theory (GRT). Einstein presented his theory at the Prussian Academy of
Science in Berlin on November 25th, 1915. In GRT, he replaced the absolute space
and time of Newton in favor of a changing arena called “spacetime,” in which
gravity appeared as curvature. The equivalence principle linked every acceleration
locally with gravitation. In principle, GRT poses the possibility of understanding all
forces in the world using geometry. Galileo Galilei expressed this thought nearly
400 years ago when he pronounced: He who understands geometry, understands
anything in the world. Therefore it was logical that Einstein continued this program
even after completing his GRT, with the development of proposals for a unified
field theory.

Carl H. Brans chose to investigate such theories for his undergraduate thesis at
Loyola University in New Orleans. It was the beginning of a lifelong engagement
with GRT. Even the mathematical beauty of GRT and the unified field theory
attracted him. As a 10-year-old boy, he taught himself differential and integral
calculus, and difficult books on mathematics and mathematical physics held a great
appeal for him. His preference for GRT was a little bit unusual at the time. Since the
1920s, the GRT had lost its prominent role in theoretical physics. The advent of
quantum mechanics and elementary particle physics, together with new work on
quantum electrodynamics, inspired more interest among physicists in those days.

In the 1950s, the situation began to change. John A. Wheeler, at Princeton
University, started to develop geometrodynamics as a new representation of GRT.
At the same time, Wheeler established his by-now famous working group, which
focused on problems in GRT and on the foundations of quantum mechanics. In
parallel, Robert Dicke, Wheeler’s colleague at Princeton, began to work on the
experimental problems in GRT during his sabbatical year of 1954. He also became
interested in Mach’s principle, which Einstein had used as a guide during the
development of GRT. Dicke considered Mach’s principle to imply: The gravita-
tional constant, κ, should be a function of the mass distribution in the universe.
Paul A.M. Dirac had earlier conjectured that there is a relation between the coupling
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constant of gravity and the mass and radius of the universe (now known as Dirac’s
“large number conjecture”). For an expanding universe, one thereby obtains a
variable gravitational coupling constant!

In 1957, Carl Brans arrived in Princeton to undertake his graduate study and
Ph.D. thesis. In his contribution to this book, he writes extensively about that time.
He heard some lectures and visited the seminar of Wheeler, who had established his
famous group. Charles Misner, who had recently completed his Ph.D. thesis,
introduced Carl to fiber bundle theory. Hence, Carl planned to write his Ph.D. thesis
about the application of fiber bundles in physics. At that time, he also began to be
interested in the mathematical structure of spacetime. But the time was not yet ripe
for these ideas; fiber bundles would only become commonly used in theoretical
physics in the 1970s. Instead, Misner recommended that Carl should contact Dicke,
who was searching for a theoretical physicist. It was the beginning of a lifelong and
fruitful collaboration.

Mach’s principle and Dirac’s large-numbers hypothesis formed the basis for the
discussions between Dicke and Brans. They wondered if they could create a version
of GRT with a variable gravitational coupling. Brans pursued the idea and devel-
oped it in his Ph.D. thesis in 1961. Today this renowned theory is known as the
Brans-Dicke theory. They introduced a scalar field to represent the variable cou-
pling. Pascual Jordan had described a similar theory in his 1955 book, Schwerkraft
und Weltall, though Jordan’s work was not well known at the time. Brans and
Dicke’s work quickly received much more attention within the physics community,
helping to establish the importance of “scalar-tensor” theories of gravitation, as Carl
describes further in his contribution to this volume.

In the Brans-Dicke theory, one arbitrary parameter (usually denoted by ω)
quantifies the coupling between the scalar field and spacetime curvature. Dicke
proposed to express ω in terms of other physical constants; failing that, most
experimental tests of the theory concentrated on possible restrictions on ω. An
outstanding experimenter, Dicke was strongly interested in the experimental veri-
fication of the Brans-Dicke theory. As an important side-effect of these efforts,
many effects of GRT were tested with unprecedented precision. Among them
included classic experiments like the Eötvös experiment to confirm the weak
equivalence principle, as well as various NASA missions. Martin McHugh’s con-
tribution in this volume presents an overview of these experiments, as well as
Dicke’s endeavor to confirm the Brans-Dicke theory.

In 1961, Brans and Dicke’s paper appeared in the Physical Review. Following its
publication, the Brans-Dicke theory had wide repercussions. The meaning and
importance of scalar fields in physics increased significantly, from their role in
spontaneous symmetry breaking, as in the Higgs mechanism, to the dynamics of the
very early universe, as in models of cosmic inflation. Other theories, which
incorporated a scalar field to model variable cosmological effects, such as quin-
tessence, used Brans-Dicke theory as a prototype. Interest in Brans-Dicke theory
increased further during the 1980s and 1990s in the context of string theory.
Finally, the discovery of the Higgs boson in 2012 marked the first experimental
detection of a fundamental scalar field in nature.
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The present volume includes a collection of invited papers by renowned col-
leagues. The contributions range over various aspects of scalar fields to Mach’s
principle, Bell’s inequality, and spacetime structure. Together, the chapters illus-
trate how Carl’s ideas have been developed even further over the years. The volume
is organized into three parts, reflecting the scientific foci of Carl’s career.

The first part concerns the scalar-tensor theory. In the decades since the devel-
opment of Brans-Dicke theory, scalar fields have come to play a diverse set of roles
in physics, from the inflaton that drove cosmic inflation, to the axion that breaks
chiral symmetry in QCD, to the Higgs boson that generates mass for elementary
particles and the dilaton field that breaks global scale invariance (Weyl symmetry).
Chapters in this part focus on this diversity of scalar fields in the context of GRT.

David Kaiser (MIT, USA) describes the role of Brans-Dicke (or non-minimal)
couplings between scalar fields and spacetime curvature in the context of
inflationary model-building. As he discusses, recent observational data, such as
collected by the Planck satellite, place strong constraints on models of
early-universe inflation. Models with Brans-Dicke couplings provide a natural way
of realizing inflation while matching all the latest observations. Yasunori Fujii
(Waseda University, Japan) focuses on a possible relation between micro-
scopic physics and the cosmological model of Brans and Dicke. According to
Brans-Dicke theory, the mass of an electron would not be constant in an expanding
universe. However, Fujii demonstrates, one may introduce a massive scalar field
(akin to a dilaton) to address this feature, and further estimate the dilaton mass.
Roman Jackiw (MIT, USA) and So-Young Pi (Boston University, USA) focus on a
special version of Brans-Dicke theory which is independent of the underlying scale
(Weyl symmetry), which should affect short-scale behavior.

The appearance of different scalar fields naturally leads to the question of how
those fields might relate or interact with each other. Friedrich Hehl (University of
Cologne, Germany, and University of Missouri-Columbia, USA) addresses such
questions. First he shows that the dilaton and axion fields appear naturally in the
context of Einstein−Cartan theory. Next he constructs the metric as well as the
axion and dilaton fields directly from an electromagnetic model of the universe
(“premetric electrodynamics”).

Many researchers have implicitly assumed that Brans-Dicke theory would yield
small deviations from the usual predictions of GRT. But what about more radical
departures, such as contributions that are quadratic in the curvature? This question
is discussed by Tirthabir Biswas (Loyola University New Orleans, USA) in col-
laboration with Alexey Koshelev (Universidade da Beira Interior, Portugal) and
Anupam Mazumdar (Lancaster University, UK). They demonstrate the appearance
of the Brans-Dicke model as a stable solution to physically well-motivated con-
sistency conditions.

What is the influence of the scalar field on objects in the universe and on the
universe as a whole? These fascinating questions are investigated by Eckehard W.
Mielke (Universidad Autónoma Metropolitana Iztapalapa, Mexico) and Israel
Quiros (Universidad de Guanajuato, Mexico). As shown by Mielke, the gravita-
tional collapse of a boson cloud of scalar fields would lead to a boson star as a

Preface ix



new type of a compact object. Moreover, as a coherent state (like the vortices of
Bose–Einstein condensates), such collapse would allow for rotating solutions with
quantized angular momentum. Quiros focuses on the cosmological impact of
Brans-Dicke theory. Is the standard model of cosmology (the so-called ΛCDM
model) a stable solution of Brans-Dicke theory? Assuming a
Friedmann-Robertson-Walker metric in the Brans-Dicke theory, he demonstrates
that the de Sitter solution of GRT is an attractor of the Jordan frame (dilatonic)
Brans-Dicke theory only for special values of the coupling constant ω and for
special scalar-field potentials. Only for these values does one obtain the ΛCDM
model from Brans-Dicke theory.

The first part of the volume closes with the contribution by Martin McHugh
(Loyola University New Orleans, USA) about the history of the Brans-Dicke theory
and its experimental tests. Dicke became famous for this experimental work and
was a popular contact to discuss unexplainable experimental results. At the end of
1965, he received a call from Arno Penzias and Robert W. Wilson at nearby Bell
Laboratory, who had found a mysterious microwave signal. They had spent nearly a
year searching for the cause of the signal in their antenna. Dicke immediately
identified the signal as the long-sought cosmic microwave background (CMB),
which he had dubbed the “ash of the Big Bang.” In 1978, Penzias and Wilson
received the Nobel Prize for their discovery.

The Brans-Dicke theory occupied Carl Brans for twenty years after its initial
publication in 1961, and he continued to return to the topic after that. But Brans
made contributions to several other topics as well. (Indeed, even beyond the
research topics covered in this volume, Carl made additional, important contribu-
tions to the Petrov classification, numerical GRT, and complex GRT.) The second
part of this volume includes contributions reflecting on Carl’s work during the
1980s.

The original motivation for Brans-Dicke theory concerned Mach’s principle, and
the notion that the gravitational constant, κ, should be a function of the mass
distribution of the universe. In his contribution for this volume, Bahram Mashoon
(University of Missouri-Columbia, USA) describes the application of Mach’s
principle to particles’ inertial property of spin. The inertia of intrinsic spin is studied
via the coupling of intrinsic spin with rotation, a coupling which has recently been
measured in neutron polarimetry. The implications of the inertia of intrinsic spin are
critically examined in the light of the hypothesis that an electromagnetic wave
cannot stand completely still with respect to an accelerated observer.

The second chapter in this part, by Michael J.W. Hall (Griffith University
Brisbane, Australia), concerns Bell’s inequality. Carl’s colleague A.R. Marlow
(Loyola University New Orleans, USA) notes that Carl developed an interest in
quantum logic and interpretational problems in quantum mechanics. In particular,
Carl became interested in Bell’s theorem and the effort to decide whether any
hidden variables determine the outcomes of measurements, or if the probabilistic
framework of quantum mechanics is complete. In 1988, Carl published an article in
which he noticed a circular argument in the derivation of Bell’s theorem. Bell had
to assume that an experimenter’s selection of detector settings in an experimental
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test of quantum entanglement was entirely uncorrelated with any possible hidden
variables that could affect the outcomes of those measurements—even though the
events that determined the detector settings presumably shared an enormous causal
past with any events that could have influenced the outcome of the measurements.
Put another way, whatever hidden variables could have classically determined the
outcomes of measurements could also have determined the experimenter’s selection
of detector settings. Hence, in order to derive strong no-go results like Bell’s
inequality, one must assume “measurement independence.” Hall discusses the
importance of such an assumption as well as means to relax it within the context of
Bell’s inequality. He further generalizes Brans’s 1988 model to demonstrate that no
more than 2 log d bits of prior correlation between the hidden variables and the
detector settings are required for a local deterministic model to reproduce the
quantum-mechanical predictions for any d-dimensional system.

More recently, Carl’s research has focused on the structure of spacetime, and in
particular on exotic smoothness. These topics occupy the third part of the volume.
As noted above, Charles Misner introduced Carl to such questions with his lecture
on fiber bundle theory in 1957, and Norman Steenrod’s book on The Topology of
Fiber Bundles (1951) provided further inspiration. Exploiting similar methods,
including cobordism theory, John Milnor made an unexpected discovery in 1956:
there exist exotic 7-spheres.

To appreciate the importance of this result, one must dig deeply into manifold
theory. The weak equivalence principle in GRT implies the usage of the manifold
concept: every neighborhood of a point in spacetime must be locally flat, that is, it
must be a subset of Rn. Then spacetime is a smooth manifold, i.e. it is covered by
smooth charts with smooth transition functions forming an atlas. A smooth atlas is a
smoothness structure. Conventional wisdom had long held that every topological
manifold could be smoothed (by smoothing the corners), so that there would only
be one smoothness structure (given by the smoothness structure of the Rn). But
Milnor found seven 7-dimensional spheres S7 which agreed topologically but dif-
fered in their smoothness structure, thereby providing the first counterexample to
the higher-dimensional Poincaré conjecture. Milnor thus founded the new topic of
differential topology and received the highest mathematical honor, the Fields medal,
in 1962.

As Carl noticed, this revolution occurred only “some doors away from him” at
Princeton university. From the physics point of view, the 7-sphere is not particu-
larly interesting, except perhaps in string theory (in which Edward Witten used it to
cancel the global gravitational anomalies in 1985). Moreover, exotic smoothness is
difficult to visualize, because no exotic smoothness structure exists in dimension
smaller than four. For dimension 5 and higher, there are only finitely many exotic
smoothness structures, as shown by Kervaire and Milnor in 1963. But what about
4-manifolds as models of our spacetime?

The riddle was solved in the 1980s with the work of many mathematicians,
including Michael Freedman, Simon Donaldson, Robert Gompf, and Clifford
Taubes. Most compact 4-manifolds admit (countable) infinitely many different
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smoothness structures, whereas most non-compact 4-manifolds—including R4—
admit (uncountable) infinitely different ones. Therefore, the physical dimension 4 is
mathematically distinguished from any other dimension!

Carl attended a lecture by Ron Fintushel at Tulane University to hear about these
results. It is typical for Carl that he immediately asked about their relevance for
physics. In his first article in collaboration with the mathematician Duane Randall,
Brans published the first deep results. It was the start of a long and fruitful col-
laboration between mathematicians and physicists on this topic. Indeed, many of
Carl’s questions remain open to this day. His questions helped to shape the
direction for current research.

A driving force was the Brans conjecture from 1994. In an article from that year,
Carl constructed an exotic R4 in which the exoticness is localized (now known as
small exotic R4). The Brans conjecture is that this localized exoticness can act as a
source for some externally regular field, just as matter or a wormhole can. This
conjecture was partly proven by Jan Sładkowski and Torsten Asselmeyer-Maluga.
In a 2002 paper by Brans and Asselmeyer-Maluga, this conjecture was extended:

“… In summary, what we want to emphasize is that without changing the
Einstein equations or introducing exotic, yet undiscovered forms of matter, or even
without changing topology, there is a vast resource of possible explanations for
recently observed surprising astrophysical data at the cosmological scale provided
by differential topology. …”

Results in this area of research up through 2007 may be found in Brans and
Asselmeyer-Maluga’s book, Exotic Smoothness and Physics (World Scientific,
2007), which has become a standard reference for the topic. An introduction to the
topic may also be found in Carl’s contribution to the present volume. The third part
of this book describes more recent developments.

Jan Sładkowski (University of Silesia Katowice, Poland) aims to describe
spacetime structure from the physics point of view. He considers the algebra of all
real functions over a manifold containing the information about the topology of the
manifold. A generalization of these functions leads to Alain Connes’s model of
noncommutative geometry as a possible description of the standard model in ele-
mentary particle physics.

Jerzy Król (University of Silesia Katowice, Poland) studies model-theoretic
aspects of exotic smoothness, uncovering unexpected relations to noncommutative
spaces and quantum theory. Forcing, as a special extension of the axioms in set
theory, is used to obtain the deformation of the algebra of usual complex functions
to the noncommutative algebra of operators on a Hilbert space. The results in the
context of the Epstein-Glaser renormalization in QFT are also discussed.

In the contribution by Duane Randall (Loyola University New Orleans, USA), a
question of Milnor is answered: is there always an exotic n–sphere for n[ 6 and
n 6¼ 12; 61? In the next chapter, Torsten Asselmeyer-Maluga (German Aerospace
Center Berlin, Germany) extensively discusses the following questions: Is it pos-
sible to construct a quantum gravity theory by using exotic smoothness? Is it
possible to construct quantum gravity directly, i.e. without any quantization of a
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classical theory? In his chapter, the richness of exotic smoothness in dimension 4 is
used to construct a quantum gravity theory directly. The use of this geometrical
approach implies one problem: one has to construct a geometrical expression for a
quantum state (the ψ–ontic interpretation as implied by current experiments). This
construction, using wild embeddings (like Alexander’s horned sphere), gives a
fractal space. Moreover, quantum fluctuations arise from an unpredictable chaotic
dynamics. The consequences for decoherence, the measurement problem, and
cosmology are discussed.

The contributions in this volume are dedicated to Carl Brans on the occasion of
his 80th birthday, and were written exclusively for this volume. The chapters were
contributed by renowned colleagues who collaborated directly with Carl or who
were inspired by his ideas. Though Carl never founded a formal school or group,
his influence has been felt by many young scientists, across many countries and
communities.

Throughout his career, colleagues and students have appreciated Carl’s critical
questions and his ambition to understand problems at a very deep level. Always
approachable, Carl has inspired generations with his deep questions and important
insights. Israel Quiros expressed it best in his dedication: “He is one of the greatest
minds of the twentieth century.” It is a great pleasure to honor Carl Brans with this
collection. Happy Birthday, Carl!

Berlin Torsten Asselmeyer-Maluga
January 2016
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