
Chapter 2
Nonminimal Couplings in the Early
Universe: Multifield Models of Inflation
and the Latest Observations

David I. Kaiser

Abstract Models of cosmic inflation suggest that our universe underwent an early
phase of accelerated expansion, driven by the dynamics of one or more scalar fields.
Inflationary models make specific, quantitative predictions for several observable
quantities, including particular patterns of temperature anistropies in the cosmic
microwave background radiation. Realistic models of high-energy physics include
many scalar fields at high energies. Moreover, we may expect these fields to have
nonminimal couplings to the spacetime curvature. Such couplings are quite generic,
arising as renormalization counterterms when quantizing scalar fields in curved
spacetime. In this chapter I review recent research on a general class of multifield
inflationary models with nonminimal couplings. Models in this class exhibit a strong
attractor behavior: across a wide range of couplings and initial conditions, the fields
evolve along a single-field trajectory for most of inflation. Across large regions of
phase space and parameter space, therefore, models in this general class yield robust
predictions for observable quantities that fall squarely within the “sweet spot” of
recent observations.

2.1 Introduction

I firstmet Carl Brans about twenty years ago, in themid-1990s, when Iwas a graduate
student. Carl invited me to visit him at Loyola University in New Orleans, and he
and his wife Anna kindly hosted me in their beautiful home. Our first meeting has
always stood out in my mind: Carl picked me up at the airport, drove me straight to
his office, and handed me a piece of chalk. I was to give him a lecture, right there
at the blackboard, about cosmic inflation. I launched in, as best I could, and after
a fun discussion Carl announced that it was time to pause and get some seafood
gumbo; after all, we were in New Orleans. Ever since my first visit, I have found it
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terrifically inspiring to talk with Carl and to try to sharpen my own ideas in the face
of his excellent questions, which he has always delivered in a gentle and encouraging
way.1

Carl pursued what has become known as the “Brans-Dicke” theory of gravitation
for his Ph.D. dissertation at Princeton, working closely with his advisor Robert
Dicke [1–3]. Previous physicists had explored various ideas for scalar-tensor theories
of gravity, including Pascual Jordan’s well-known work, though none of the prior
efforts had nearly the same galvanizing influence on the physics community as the
Brans-Dicke work [4–8]. Brans and Dicke were motivated to try to incorporate
Mach’s principle in a relativistic theory of gravitationmore consistently than Einstein
had done in his general theory of relativity.2

The key insight in Brans and Dicke’s work was to couple a scalar field directly
to the Ricci spacetime curvature scalar in the action, thereby replacing Newton’s
constant, G, with an effective strength of gravity that could vary over space and time.
Since Brans and Dicke introduced their formative work, several distinct theoretical
motivations have emerged for such nonminimal couplings, beyond consideration of
Mach’s principle, including everything fromdimensional compactification of higher-
dimensional theories to effective couplings in supergravity and beyond. (For recent
discussions, see [10–13].)

Perhaps the most mundane motivation for such nonminimal couplings today—
but for me, the most compelling—is that nonminimal couplings arise as necessary
counterterms when quantizing a self-interacting scalar field in curved spacetime.
Even if the bare coupling is set to zero, quantum corrections will induce a nonzero
coupling [14–20]. Moreover, the nonminimal coupling typically rises with energy
scale under renormalization-group flow, with no ultraviolet fixed point [18]. It there-
fore makes sense to consider models with sizable nonminimal couplings at high
energies, at or above the GUT scale—and hence to consider nonminimal couplings
when thinking about the early universe.

2.2 Nonminimal Couplings and Inflation

Models of cosmic inflation suggest that our observable universe underwent an early
phase of accelerated expansion, driven by the dynamics of one or more scalar
fields [21]. (For reviews, see [22, 23].) There is by now a long history of build-
ing models of early-universe inflation incorporating nonmiminal couplings. Early
models such as “induced-gravity inflation” [24], for example, built directly on work
by Lee Smolin [25] and Anthony Zee [26], who had aimed to combine Brans-Dicke
gravitation with a Higgs-like spontaneous symmetry breaking potential, in order to
account for why the strength of gravity is so much weaker than the other fundamen-
tal forces. “Extended inflation” [27] likewise combined a Brans-Dicke field with

1 Preprint MIT-CTP-4740.
2On Einstein’s changing considerations of Mach’s principle, see [9] and references therein.
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a simple potential to drive accelerated expansion. Others considered more general
nonmiminal couplings, in which the effective gravitational coupling Geff arose as a
combination of a bare coupling constant plus contributions from a scalar field cou-
pled to the Ricci curvature scalar [28]. Among the most prominent recent examples
is “Higgs inflation” [29]. In such models, the scalar field is expected to settle into a
minimum of its potential near the end of inflation, leading to an effectively constant
gravitational coupling for most of cosmic history. Hence such models present no
tension with Solar System constraints on scalar-tensor gravity.

Realistic models of particle physics, relevant for inflationary energy scales,
include many scalar fields [30]. The renormalization arguments alone suggest that
each of these scalar fields should have a nonminimal coupling. So together with sev-
eral students and collaborators, I have enjoyed exploring in recent years multifield
models of inflation that incorporate nonminimal couplings [31–36].

The action for the original Brans-Dicke theory may be written

SB D =
∫

d4x
√−g̃

[
Φ R̃ − ω

Φ
g̃μν∂μΦ∂νΦ

]
, (2.1)

whereω is a dimensionless constant and g̃μν(x) is the spacetimemetric. (Greek letters
label spacetime indices, μ, ν = 0, 1, 2, 3.) In (3 + 1) spacetime dimensions, the
Brans-Dicke field Φ has dimensions (mass)2. Since high-energy theorists typically
consider scalar fields that have dimension mass in (3+1) spacetime dimensions, we
may rescale the Brans-Dicke field as Φ → φ2/(8ω). In terms of the rescaled field
φ, the action of Eq. (2.1) may be written

SB D =
∫

d4x
√−g̃

[
fB D(φ)R̃ − 1

2
g̃μν∂μφ∂νφ

]
. (2.2)

The nonminimal coupling function takes the form

fB D(φ) = 1

2
ξφ2, (2.3)

where the dimensionless coupling constant ξ is related to the original Brans-Dicke
parameter as ξ = 1/(8ω). Such a quadratic term is precisely the form in which
quantum corrections arise for scalar fields in curved spacetime, and hence the form
that appropriate counterterms must assume [14–20].

In Brans and Dicke’s original formulation, the local strength of gravity, Geff(x),
varies with the fieldφ(x):Geff(x) = 1/(8πξφ2). Onemay generalize such a coupling
to include a bare (constant) mass, M0, within the function f (φ):

f (φ) = 1

2

[
M2

0 + ξφ2
]
, (2.4)
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with (16πGeff)
−1 = f (φ). And this form, in turn, may be generalized to models

with N scalar fields:

f (φI ) = 1

2

[
M2

0 +
N∑

I=1

ξI
(
φI

)2]
. (2.5)

We therefore consider models for which the action may be written

S =
∫

d4x
√−g̃

[
f (φI )R̃ − 1

2
δI J g̃

μν∂μφ
I ∂νφ

J − Ṽ (φI )

]
. (2.6)

Here capital Latin letters label field-space indices, I, J = 1, 2, ..., N , and tildes
denote quantities in the so-called Jordan frame, in which the nonminimal couplings,
f (φI )R̃, remain explicit in the action.
Because we are interested in comparing predictions from this family of mod-

els with recent astrophysical observations—especially high-precision measurements
of the cosmic microwave background radiation (CMB)—it is convenient to work
in the so-called Einstein frame, for which physicists have established a powerful
gauge-invariant formalism for treating gravitational perturbations.3 (For reviews,
see [22, 38].)

In order to bring the gravitational portion of the action of Eq. (2.6) to the famil-
iar Einstein-Hilbert form, we perform a conformal transformation, much as Dicke
described early in the study of Brans-Dicke gravitation [39]. We rescale the space-
time metric tensor, g̃μν(x) → gμν(x) = Ω2(x)g̃μν(x). The conformal factor Ω2(x)

is positive definite and is related to the nonminimal coupling function that appears
in Eq. (2.6) as

Ω2(x) = 2

M2
pl

f (φI (x)), (2.7)

where Mpl ≡ 1/
√
8πG = 2.43 × 1018 GeV is the reduced Planck mass, related to

Newton’s gravitational constant, G. Upon performing this conformal transformation,
the action of Eq. (2.6) is transformed to [40]

S =
∫

d4x
√−g

[
M2

pl

2
R − 1

2
G I J (φ

K )gμν∂μφ
I ∂νφ

J − V (φI )

]
. (2.8)

The conformal transformation induces a field-space manifold whose metric, in the
Einstein frame, is given by

3We have bracketed, for now, the important and rather subtle question of whether there remains
any significant “frame dependence” for predictions from such multifield models. It seems clear
that one may map predictions for observables from one frame to another in the case of single-field
models [11, 12]. But making that mapping between frames in the presence of entropy (or isocurva-
ture) perturbations—which can only arise in multifield models—seems to raise new subtleties [37].
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GI J (φ
K ) = M2

pl

2 f (φK )

[
δI J + 3

f (φK )
f,I f,J

]
, (2.9)

where f,I = ∂ f/∂φI .
We encounter an interesting feature when performing this conformal transforma-

tion for models with multiple scalar fields: unlike the well-studied case of a single-
field model, in general there does not exist a rescaling of the scalar fields φI that
can bring the gravitational portion of the action into Einstein-Hilbert form while also
yielding canonical kinetic terms for the scalar fields. In particular, for M0 �= 0 and
N ≥ 2 scalar fields, the conformal transformation induces a field-space manifold
whose metric, GI J (φ

K ), is not conformal to flat [40].4 Instead, following the confor-
mal transformation, models within this family assume the form of nonlinear sigma
models [41].

The potential is also stretched by the conformal factor upon transformation to the
Einstein frame. In particular, we find

V (φI ) = M4
pl

[2 f (φI )]2 Ṽ (φI ). (2.10)

This is the generalization of Dicke’s original finding that masses of particles depend
on the Brans-Dicke field following the conformal transformation [39]. In the context
of simple inflationary models, this conformal stretching of the potential leads to
important changes to the inflationary dynamics, compared to models with minimally
coupled fields. The most important change is the emergence of strong single-field
attractor behavior, which we discuss in Sect. 2.4.

Building on pioneering work on multifield inflation [44, 46], we developed in
[32–36] a doubly covariant formalism with which to address dynamics in models
that include multiple scalar fields with nonminimal couplings—that is, covariant
with respect to both ordinary gauge transformations (xμ → x ′μ) as well as repara-
meterizations of the field-space coordinates (φI → φ′I ). We consider perturbations
around a Friedmann-Lemaître-Robertson-Walker spacetime metric, which we take
to be spatially flat for convenience; the radius of curvature is stretched exponentially
quickly during the first few efolds of inflation, so that a spatially flat background
provides an excellent approximation for later dynamics. We then have

ds2 = gμνdxμdxν

= −(1 + 2A)dt2 + 2a(∂i B)dxi dt + a2
[
(1 − 2ψ)δi j + 2∂i∂ j E

]
dxi dx j ,

(2.11)
where a(t) is the scale factor, and A(xμ), B(xμ),ψ(xμ), and E(xμ) characterize the
scalar degrees of freedom of the metric perturbations. Given the symmetries of the
spacetime, to background order the fields can only depend on time:

4In the case of Brans-Dicke-like couplings, with M0 = 0, one may rescale the fields φI to bring
GI J → δI J , and hence restore canonical kinetic terms, only for N ≤ 2. For N > 2, even with
M0 = 0, one again finds that GI J is not conformal to flat [40].
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φI (xμ) = ϕI (t) + δφI (xμ). (2.12)

The magnitude of the velocity vector for the background fields is given by

|ϕ̇I | ≡ σ̇ =
√
GI J ϕ̇I ϕ̇J , (2.13)

where overdots denote derivatives with respect to cosmic time, t . The background
fields obey the equation of motion [32, 46]

Dt ϕ̇
I + 3H ϕ̇I + G I J V,J = 0, (2.14)

where H ≡ ȧ/a is the Hubble parameter, and we have introduced a (covariant)
directional derivative for vectors AI on the field-space manifold:

Dt AI ≡ ϕ̇JDJ AI = ȦI + Γ I
J K AJ ϕ̇K . (2.15)

The Christoffel symbols Γ I
J K are constructed from the field-space metric GI J . The

Friedmann equations (to background order) take the form [32, 46]

H 2 = 1

3M2
pl

[
1

2
σ̇2 + V (ϕI )

]
,

Ḣ = − 1

2M2
pl

σ̇2.

(2.16)

Equations (2.14) and (2.16) yield self-consistent inflationary solutions, with |Ḣ | 	
H 2, across wide ranges of coupling constants and initial conditions [32–35].

The scale of H during inflation is constrained by recent observations. In particular,
the present upper bound on the ratio of primordial tensor-to-scalar power spectra, r ,
requires H∗ ≤ 3.4 × 10−5 Mpl [45], where the asterisk indicates the value of H at
the time when cosmologically relevant perturbations first crossed outside the Hubble
radius during inflation. In simple, single-field models of chaotic inflation, one must
fine-tune parameters, such as the quartic self-coupling λ ∼ O(10−12), in order to
accommodate this bound on H∗. In models with nonminimal couplings, however,
the magnitude of H∗ depends on both the Jordan-frame couplings (such as masses,
m I , and quartic self-couplings, λI , in Ṽ (φI )), as well as the nonminimal coupling
constants ξI , due to the conformal stretching of the potential in Eq. (2.10). Hence
one may accommodate the observational constraint on H∗ without exponentially
fine-tuning the parameters [29, 32–35].

In order to study the behavior of the fluctuations, we may generalize the gauge-
invariant Mukhanov-Sasaki variable to the multifield case, defining a vector of per-
turbations QI (xμ) as a linear combination of the field fluctuations, δφI , and the
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metric perturbation, ψ [32]5:

QI ≡ δφI + ϕ̇I

H
ψ. (2.17)

To linear order, the fluctuations QI satisfy the equation of motion [32, 46]

D2
t Q I + 3HDt Q I +

[
k2

a2
δ I

J + MI
J

]
Q J = 0, (2.18)

where we have performed a Fourier transform, ∇2QI = −k2QI with comoving
wavenumber k, and the mass-squared matrix is given by

MI
J ≡ G I K (DJDK V ) − RI

L M J ϕ̇
L ϕ̇M − 1

a3M2
pl

Dt

(
a3

H
ϕ̇I ϕ̇J

)
. (2.19)

Here RI
L M J is the Riemann tensor of the field-space manifold, constructed from

GI J (and calculated to background order in the fields, ϕI ); we raise and lower field-
space indices with GI J . The fluctuations thus acquire three distinct contributions
to their effective mass: a term arising from the second derivative of the potential,
akin to simple single-field models; a term (proportional to RI

L M J ) arising from the
curvature of the field-space manifold; and a term (proportional to 1/M2

pl) arising
from the coupled metric perturbations.

2.3 Predictions for Observables

Even to linear order, Eq. (2.18) couples fluctuations QI with Q J and so on. The
presence of several interacting degrees of freedom can lead to new observational
features in multifield models, with no correlates in simple, single-field models. Two
of the most important and best studied examples include the amplification of non-
Gaussianities in the primordial power spectrum of curvature perturbations, and the
amplification of isocurvature perturbations in addition to adiabatic modes. Non-
Gaussianities are generically suppressed in single-field models [42, 43], and isocur-
vature modes do not arise at all in models with only a single scalar degree of freedom
[22, 44]. Given tight constraints on primordial non-Gaussianities and isocurvature
perturbations from the latest measurements of the CMB [45], many types of multi-
field models may therefore be in tension with the latest observations.

5Because the field-space manifold is curved, one must work with a representation of the field
fluctuations that is covariant with respect to reparameterizations of the field-space coordinates, as
discussed in [32] and references therein. That form reduces to Eq. (2.17) to linear order in the field
fluctuations, which will suffice for our purposes here.
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In order to quantify these multifield features, we build on techniques developed in
[22, 44, 46] and introduce covariant measures with which to study the perturbation
spectra [32–36]. We introduce a unit vector

σ̂ I ≡ ϕ̇I

σ̇
(2.20)

which points in the direction of the background fields’ evolution. The directions in
field space orthogonal to σ̂ I are spanned by

ŝ I J ≡ G I J − σ̂ I σ̂ J . (2.21)

Wemay then project the perturbations QI into components along the direction of the
background fields’ motion (the adiabatic direction) and orthogonal to that motion
(the isocurvature directions):

Qσ ≡ σ̂I QI , δs I ≡ ŝ I
J Q J . (2.22)

The gauge-invariant curvature perturbation, Rc, is defined as [22, 38],

Rc ≡ ψ − H

(ρ + p)
δq, (2.23)

where ρ and p are the background-order energy density and pressure, respectively,
and δq is the momentum flux of the perturbed fluid, T 0

i = ∂iδq. Given the form of
the action in Eq. (2.8), one may show that [32]

Rc = H

σ̇
Qσ. (2.24)

Primordial curvature perturbations, Rc(x), lead to temperature anisotropies in the
CMB. Photons that hail from regions of space that had a slightly greater-than-average
gravitational potentialwill be slightly redshifted, upon expending a bit of extra energy
to climb out of the potential well, compared to photons from regions of space that had
a slightly less-than-average gravitational potential [22, 23, 38]. Hence the statistical
properties of the tiny temperature anisotropies of the CMB provide a snapshot of
primordial inhomogeneities, which in turn help to constrain models of early-universe
inflation.

A critical insight [44, 46] is that Qσ and δs I are coupled only if the background
fields turn in field space. Hence features like non-Gaussianities and isocurvature per-
turbations can be amplified in multifield models if the turn-rate, ω I , is nonvanishing
during the late stages of inflation (typically within the last 60 efolds of inflation).
The covariant turn-rate may be defined as [32]

ω I ≡ Dt σ̂
I . (2.25)
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In multifield models, ω I need not remain small during inflation, which can amplify
features that are not observed in the CMB.

Consider the limit ω I → 0 first, in which case the perturbations Qσ and δs I

remain decoupled. The effective masses for the perturbations take the form [32]

Mσσ ≡ σ̂I σ̂
JMI

J , Mss ≡ ŝ J
I MI

J . (2.26)

In the limit |Mσσ|, |Mss | 	 H 2, each perturbation will evolve during inflation as
a (nearly) massless scalar field in (quasi-) de Sitter space, and hence we may expect
each perturbation to develop an amplitude of order [16, 19, 22]

PQ 

(

H

2π

)2

, (2.27)

where the power spectrum is defined as PQ ≡ (2π)−2k3|Qσ|2, which we have
evaluated for modes of order the Hubble scale, k 
 aH ; likewise for PS , the power
spectrum associated with the conventionally normalized isocurvature perturbations
SI ≡ (H/σ̇)δs I . Upon using Eqs. (2.16), (2.24), and the usual definition of the
slow-roll parameter,

ε ≡ − Ḣ

H 2
, (2.28)

we therefore expect an amplitude of curvature perturbations during inflation

PR 
 1

2M2
plε

(
H

2π

)2

(2.29)

and similarly for PS .
The background fields ϕI (t) evolve slowly during inflation, and hence neither

H(t) nor ε(t)will remain constant. Thatmeans that whenmodes of various comoving
wavenumbers k cross outside the Hubble radius, with k = aH , they do so with
slightly different amplitudes,PR(k). Hencewith a littlemorework, onemay calculate
the spectral tilt of the curvature perturbations [22, 32, 44, 46]:

ns ≡ 1 + ∂ lnPR

∂ ln k
= 1 − 6ε + 2ησσ, (2.30)

where

ησσ ≡ M2
pl
Mσσ

V
(2.31)

is the generalization of the second slow-roll parameter, formotion along the adiabatic
direction. In the limitω I → 0, therefore, the amplitude and spectral tilt of primordial
curvature perturbations in the multifield case look quite similar to the predictions
from single-field models—with one important difference. If |Mss | 	 H 2, then
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such multifield models may amplify a sizable fraction of isocurvature modes, with
βiso(k) ≡ PS(k)/[PR(k)+PS(k)] ∼ O(1) at relevant wavenumbers k, which would
be in significant tension with the latest observations [45].

Even greater deviations from the single-field case emerge if the fields turn in field
space during inflation, ω I �= 0. In that case, there can be a transfer of power from
the isocurvature to the adiabatic modes, and the amplitude and tilt of PR(k) will be
affected. In particular, one may relate the power spectrum at time t∗ (say, 50 or 60
efolds before the end of inflation) to its value at some later time, t , by means of a
transfer function TRS(t∗, t) [32, 44, 46]:

PR(k) = PR(k∗)
[
1 + T 2

RS(t∗, t)
]
,

ns = ns(t∗) + 1

H

(
∂TRS

∂t∗

)
sin (2Δ) ,

(2.32)

whereΔ ≡ arccos(TRS/

√
1 + T 2

RS). Even amodest transfer of power from the isocur-
vature to the adiabatic modes could push multifield models out of agreement with
the latest high-precision measurements of quantities like ns . Moreover, since TRS is
scale-dependent, such processes effectively couple modes of different wavenumber,
k, and hence can amplify non-Gaussianities, pushing the coefficient of the bispectrum
fN L � O(1) [32, 46].6

In the Einstein frame, there is no anisotropic pressure to leading order in the
perturbations (Π i

j ∝ T i
j ∼ 0 for i �= j), and hence the tensor perturbations hi j

evolve just as in single-field models. Around the pivot scale k∗, the power spectrum
thus obeys PT 
 128(H 2/M2

pl) [34, 44, 46], which yields a prediction for the
tensor-to-scalar ratio, r ,

r ≡ PT

PR
= 16ε

[1 + T 2
RS]

. (2.33)

Just as the case for ns and fN L , predictions for r can deviate strongly from the usual
single-field predictions in the case of significant transfer of power from isocurvature
to adiabatic modes.

The exact form of TRS for multifield models with nonminimal couplings may be
found in [32]; the important point is that TRS ∝ |ω I |. In general, when significant
turning occurs and TRS ≥ O(10−1), one finds both ns and fN L pulled significantly
outside the 2σ bounds from the latest observations [32, 35].

6To calculate fN L properly, one must go beyond linear order in the fluctuations and calculate the
genuine bispectrum, 〈Rc(k1)Rc(k2)Rc(k3)〉 [32, 42, 43]; upon performing the full calculation,
we find a strong correlation between nonzero TRS and sizable fN L [32].
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2.4 Single-Field Attractor

For multifield models with nonminimal couplings, the turn rate generically remains
negligible. Therefore the types of observational consequences that may arise in mul-
tifield models, such as the overproduction of isocurvature modes or the amplification
of significant non-Gaussianities, typically do not arise for this class of models. The
reason comes from the conformal stretching of the potential, V (φI ) of Eq. (2.10).

For simplicity, consider a two-field model, with φI = (φ,χ). Then for a generic,
renormalizable potential in the Jordan frame,

Ṽ (φ,χ) = 1

2
m2

φφ
2 + 1

2
m2

χχ2 + 1

2
gφ2χ2 + λφ

4
φ4 + λχ

4
χ4, (2.34)

and a nonminimal coupling function f (φ,χ) as in Eq. (2.5), we find from Eq. (2.10)
the potential in the Einstein frame7

V (φ,χ) = M4
pl

4

(2m2
φφ

2 + 2m2
χχ2 + 2gφ2χ2 + λφφ

4 + λχχ4)

[M2
pl + ξφφ2 + ξχχ2]2 . (2.35)

Whereas the potential in the Jordan frame, Ṽ (φI ), grows as φ and/or χ becomes
large, in the Einstein frame the potential V (φI ) flattens out to long plateaus for large
field values. (See Fig. 2.1.) That is, generically, the potential in the Einstein frame
develops ridges (local maxima) and valleys (local minima), becoming flat along a
given direction for asymptotically large field values. Both the ridges and valleys
satisfy V > 0, and hence the system will inflate (albeit at different rates) whether
the fields evolve along a ridge or a valley during inflation.

The ridge-valley structure of the potential leads to strong single-field attractor
behavior during inflation, across a wide range of couplings and initial conditions
[32–36]. If the fields happen to begin evolving along the top of a ridge, they will
eventually fall into a neighboring valley at a rate that depends on the local curvature
of the potential. Once the fields fall into a valley, Hubble drag quickly damps out
any transverse motion in field space, after which the system evolves with virtually
no turning for the remainder of inflation. (See Fig. 2.2.) In [36], we demonstrate that
the strong attractor behavior persists in the limit 0 < ξI ≤ 1 as well as in the limit
ξI � 1.

In the limit of strong nonminimal couplings, ξI � 1, the fields rapidly fall into
a single-field attractor (within the first few efolds of inflation) unless one fine-tunes
the ratio of couplings and the fields’ initial conditions to exponential accuracy.
Such attractor behavior is therefore a generic feature of multifield models with

7We have set M0 = Mpl in f (φI ), since for Ṽ (φI ) in Eq. (2.34), the global minimum of the
potential occurs at φ = χ = 0 rather than at any nonzero vacuum expectation value. Hence at the
end of inflation, once φ and χ settle into the global minimum of the potential, f (φI ) → M2

pl/2,
recovering the usual gravitational coupling for general relativity.
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Fig. 2.1 ThepotentialV (φ,χ) in theEinstein frame,Eq. (2.35), for ξφ = 100, ξχ = 80,λφ = 10−2,
λχ = 1.25× 10−2, g = 0.8× 10−2, mφ = 10−4 Mpl, and mχ = 1.5× 10−4 Mpl. The field values
are shown in units of Mpl

Fig. 2.2 Field trajectories for various couplings and initial conditions. Open circles indicate fields’
initial values (in units of Mpl). We set φ̇0 = χ̇0 = m I = 0, ξφ = 102,λφ = 10−2, and vary
the other parameters {ξχ,λχ, g, θ0}: {1.2ξφ, 0.75λφ,λφ,π/4} (red); {0.8ξφ,λφ,λφ,π/4} (blue);
{0.8ξφ,λφ, 0.75λφ,π/3} (green); {0.8ξφ, 1.2λφ, 0.75λφ,π/6} (black). Here θ0 ≡ arctan(χ0/φ0).
See also [34, 36]

nonminimal couplings, and subsumes the class of “α attractors” that has recently
been identified [47].

The lack of turning in field space means that, generically, models in this family
yield predictions very similar to those of simple single-field models of “plateau”
inflation. With ω I 
 0, there is virtually no transfer of power from the isocurvature
to the adiabatic modes, TRS 
 0. Moreover, the effective mass of the isocurvature
modes, Mss , remains large during inflation, while the fields evolve within a valley
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of the potential:Mss � H 2. Hence βiso(k) ∼ O(10−5), well in keeping with recent
observational constraints [35, 45].

Even better, within a single-field attractor and in the limit ξI � 1, one may inte-
grate the equations ofmotion for the background fields within a slow-roll approxima-
tion, taking |ϕ̈I | 	 |H ϕ̇I |; as demonstrated in [34], the resulting analytic expressions
provide a remarkably close match for the exact numerical solutions within a given
single-field attractor. In particular, we find [34]

ξφφ
2∗

M2
pl


 4

3
N∗, (2.36)

where N∗ is the number of efolds before the end of inflation, and we have considered
(in this case) couplings such that the direction χ = 0 is a local minimum of the
potential. (We arrive at comparable expressions for other choices of couplings such
that the local minimum lies along some angle θ = arctan(χ/φ) in field space.) In
that limit, we find expressions for the slow-roll parameters that are independent of
the couplings:

ε 
 3

4N 2∗
, ησσ 
 − 1

N∗

(
1 − 3

4N∗

)
. (2.37)

Returning to Eqs. (2.30), (2.32), and (2.33) with ω I 
 0 and hence TRS 
 0, we
then find [34]

ns 
 1 − 2

N∗
− 3

N 2∗
, r 
 12

N 2∗
, (2.38)

independent of the values of the couplings and the fields’ initial conditions. For
typical reheating scenarios, one expects 50 ≤ N∗ ≤ 60 to correspond to the time
during inflation when perturbations of a given comoving wavenumber first crossed
outside the Hubble radius, which later re-entered the Hubble radius around the time
the CMB was emitted [48]. Selecting 50 ≤ N∗ ≤ 60 in Eq. (2.38) yields

0.959 ≤ ns ≤ 0.966,

0.003 ≤ r ≤ 0.005.
(2.39)

This value of the spectral index, ns , is in excellent agreement with the latest measure-
ment by the Planck collaboration, ns = 0.968±0.006 [45], while the predictions for
r remain comfortably below the present upper bound of r < 0.09 [45]. Moreover,
predictions for the running of the spectral index, α = dns/d ln k, satisfy α < 10−3

[34], likewise consistent with the latest observational estimates (which themselves
are consistentwith no observable running) [45].Andwithω I 
 0 and hence TRS 
 0,
these models predict fN L ∼ O(10−1) [32], again perfectly consistent with the latest
observational constraints [45].

Lastly, one may study post-inflation reheating in this family of models [36]. The
single-field attractor persists after the end of inflation, at least during times when the
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perturbations may be treated to linear order. The lack of turning in field space leads
to efficient transfer of energy from the inflation condensate to coupled fluctuations,
in contrast to multifield models with minimal couplings, in which “dephasing” of
the background fields’ oscillations typically suppresses resonances [48, 49]. Hence
reheating in these models should be efficient, with an effective equation of state
w = p/ρ that interpolates between w 
 0 and w 
 1/3 within the first few efolds
after the end of inflation [36].

2.5 Conclusions

More thanhalf a century afterBrans andDicke introduced their scalar-tensor theoryof
gravitation, the studyof scalar fieldswith nonminimal couplings continues toflourish.
The number of compelling theoretical motivations for considering such nonminimal
couplings has grown, and the relevance of such models for understanding the earliest
moments of cosmic history is stronger than ever.

Brans and Dicke introduced their work at a time when Solar System tests of
gravitation were still rare, and before the CMB had even been detected! It is an
amazing testament to Carl’s curiosity and physical insights that work stemming
from his dissertation continues to inspire investigations of our cosmos to this day.8

Congratulations to Carl on his 80th birthday, with admiration and gratitude.
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