
Minimizing the Number of Bootstrappings
in Fully Homomorphic Encryption

Marie Paindavoine1,2(B) and Bastien Vialla3

1 Orange Labs, Applied Crypto Group, Caen, France
2 Université Claude Bernard Lyon 1, LIP (CNRS/ENSL/INRIA/UCBL),

46 Allée d’Italie, 69364 Lyon Cedex 07, France
marie.paindavoine@ens-lyon.fr

3 Université Montpellier, LIRMM, CNRS, 161 rue Ada, 34095 Montpellier, France
bastien.vialla@lirmm.fr

Abstract. There has been great progress regarding efficient implemen-
tations of fully homomorphic encryption schemes since the first construc-
tion by Gentry. However, evaluating complex circuits is still undermined
by the necessary resort to the bootstrapping procedure. Minimizing the
number of times such procedure is called is a simple yet very efficient
way to critically improve performances of homomorphic evaluations.
To tackle this problem, a first solution has been proposed in 2013 by
Lepoint and Paillier, using boolean satisfiability. But their method can-
not handle the versatility of fully homomorphic encryption schemes. In
this paper, we go one step forward providing two main contributions.
First, we prove that the problem of minimizing bootstrapping is NP-
complete with a reduction from a graph problem. Second, we propose a
flexible technique that permits to determine both such minimal number
of bootstrappings and where to place them in the circuit. Our method
is mainly based on linear programming. Our result can advantageously
be applied to existing constructions. As an example, we show that for
the Smart-Tillich AES circuit, published on the Internet in 2012, we find
about 70 % less bootstrappings than naive methods.

Keywords: Fully homomorphic encryption · Bootstrapping · Complex-
ity analysis · Mixed integer linear programming

1 Introduction

Homomorphic encryption extends traditional encryption in the sense that it
becomes feasible to perform operations on ciphertexts, without the knowledge
of the secret decryption key. As such, it enables someone to delegate heavy com-
putations on his sensitive data to an untrusted third party, in a secure way. More

B. Vialla—This work is partially funded by the HPAC project and the CATREL
project of the French Agence Nationale de la Recherche (ANR 11 BS02 013),
(ANR 12 BS02 001).

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 25–43, 2016.
DOI: 10.1007/978-3-319-31301-6 2

26 M. Paindavoine and B. Vialla

precisely, with such a system, one user can encrypt his sensitive data such that
the third party can evaluate a function on the encrypted data, without learning
any information on the underlying plain data. Getting back the encrypted result,
the user can use his secret key to decrypt it and obtain the result of the evalua-
tion of the function on his sensitive plain data. For a cloud user, the applications
are numerous, and reconcile both a rich user experience and a strong privacy
protection.

Such a promising idea has first been proposed by Rivest, Adleman and
Dertouzos in 1978 [20]. The first homomorphic cryptosystems were able to han-
dle only additions (e.g. [14,19]), or only multiplications (e.g. [8]), or an arbitrary
number of additions but only one multiplication [2]. The first fully homomorphic
encryption (FHE) scheme, able to handle an arbitrary number of additions and
multiplications on ciphertexts, has been proposed by Gentry in 2009 [10].

In homomorphic encryption schemes, the executed function is typically rep-
resented as an arithmetic circuit. In practice, any circuit can be described as a
set of successive operation gates, each one being either a sum or a product per-
formed over some ring. As we will see, the multiplication is the most important
operation to be studied for efficiency optimization of a FHE schemes, and the
multiplicative depth of a circuit, that is the maximum number of multiplications
in a path, is an important parameter for FHE schemes.

In Gentry’s construction, based on lattices, each ciphertext is associated
with some noise, which grows at each operation (addition or multiplication)
done throughout the evaluation of the function (procedure called HE.Eval in
the sequel). When this noise reaches a certain limit, decryption is not possible
anymore. To overcome this limitation, closely related to the number of operations
that the HE.Eval procedure can handle, Gentry proposed in [10] a technique of
noise refreshment called “bootstrapping”.

The main idea behind this bootstrapping procedure is to homomorphically
run the decryption procedure of the scheme on the ciphertext, using an encrypted
version of the secret key. It comes along with a circular security assumption, as
we have to feed the decryption circuit with an encryption of the secret key. This
permits to get a “refreshed” ciphertext, which encrypts the same plaintext, but
with less noise: the decryption is then always feasible. However, the counterpart
is that its computational cost is quite heavy and it should be avoided as much
as possible [16]. Ducas and Micciancio proposed a bootstrapping procedure in
less than a second [7], but their procedure can only be applied to ciphertexts
encrypting a single bit. HElib [15] procedure, on the other hand, takes roughly
6 min. However, the plaintext space is much larger, yielding an amortized cost
per bit operation of the same order. In such a context, it is of great importance
to determine the exact minimum number of bootstrappings needed to evaluate
a given circuit. This way, the time execution for the evaluation of a function will
be optimal for a given FHE scheme.

Noise Growth Model. Such a study requires a model to point out how noise grows
operation after each operation. Following [17], we associate to each ciphertext
ci a discrete noise level li with li = 1, 2, Level 1 corresponds to the noise

Minimizing the Bootstrappings in Fully Homomorphic Encryption 27

X1 X2 X3 X4 X5 X6 X7 X8

S1

(a) Bootstrapping after
each multiplication.

X1 X2 X3 X4 X5 X6 X7 X8

S1

(b) Bootstrapping before
each multiplication.

X1 X2 X3 X4 X5 X6 X7 X8

S1

(c) Optimal solution.

Fig. 1. In dashed rectangle, the bootstrapping positions given by the different heuris-
tics in a FHE scheme with lmax = 2. (a) The first heuristic uses 5 bootstrappings.
(b) The second heuristic uses 4 bootstrappings. (c) Whereas the optimal solution is
3 bootstrappings.

of encryption procedure output. The last level at which it is necessary to either
stop the computation or to bootstrap the ciphertext is denoted lmax. The boot-
strapping procedure does not reset the noise level of a ciphertext to 1 in general
but to a level 1 ≤ N < lmax. As we will see later, FHE schemes can be divided
into two categories depending on the effect of multiplication on noise level, the
exponential ones and the linear ones.

Minimizing Bootstrapping. We introduce the lmax-minimizing bootstrapping
problem as finding (one of) the minimal set of ciphertexts one has to boot-
strap in order to correctly evaluate a given circuit. Naively, two heuristics can
be used in order to avoid unnecessary bootstrappings.

Heuristic 1: One can bootstrap a ciphertext as soon as its noise level reaches
lmax. It usually means to bootstrap a ciphertext just after a multiplicative
gate.
Heuristic 2: When a ciphertext with noise level lmax is produced, one waits
as long as possible before bootstrapping it. It usually means to bootstrap a
ciphertext just before it is used as input into a multiplicative gate.

But, as shown in Fig. 1, these two heuristics most of the time fail to produce a
solution to the lmax-minimizing bootstrapping problem. In this paper, our aim
is then to provide a generic method to find such solution.

Previous Works. To the best of our knowledge, the only method to com-
pute a minimal number of bootstrappings has been proposed by Lepoint and
Paillier in [17]. It is based on the SAT problem, known to be NP-complete, and
on the definition of some noise management rules. They focus on exponential
schemes and proposed a method for any lmax. In order to handle linear schemes

28 M. Paindavoine and B. Vialla

as well, they need to modify the circuit so they can apply their algorithm as a
blackbox. Regarding efficiency, the running time of their solving algorithm grows
exponentially with lmax, and they do not give timings for lmax ≥ 4.

Outline and Contributions. In this context, our contribution is twofold. We first
prove that the lmax-minimizing bootstrapping problem is polynomial for lmax = 2
and NP-complete for lmax ≥ 3. We then propose a new method to determine
the minimal number of bootstrappings needed for a given FHE scheme and a
given circuit. As well as the previous work, our method also permits to exactly
know where to place them in the circuit. We use linear programming to find
the best outcome for our problem. The main advantage of our method over the
previous one is that it is highly flexible and can be adapted for numerous types
of homomorphic encryption schemes and circuits.

The paper is organized as follows. In the next section, we introduce the
tools we need all along the paper. Section 3 provides our complexity analysis:
the lmax-minimizing bootstrapping problem is polynomial for lmax = 2 and NP-
complete for lmax ≥ 3. Finally, Sect. 4 gives our new method for solving the lmax-
minimizing bootstrapping problem.

2 Background

In this section, we first recall some technical details about graph theory, and
in particular arithmetic circuits. We then describe noise growth model during
homomorphic evaluation of an arithmetic circuit. Next, we introduce some basic
notions of complexity theory. Finally, we present our main tool for solving the
lmax-minimizing bootstrapping problem which is mixed integer linear program-
ming.

2.1 Graph Theory

As sketched in the introduction, functions handled by homomorphic encryption
are arithmetic circuits. They are a particular type of graph. This allows us to
make use of complexity results over graph problems for our complexity analysis.

A graph G is a couple (V,E) where V is the set of vertices and E is the set of
edges. An edge from a vertex u to a vertex v is noted (u, v). A directed graph is
a graph where all the edges are oriented, meaning that ∀u, v ∈ V, (u, v) �= (v, u).
For a directed edge (u, v), u is called the tail and v the head. A (u1 −un+1)-path
of length n is a collection of n edges ((u1, u2), (u2, u3) · · · , (un, un+1)) and a cycle
is a path where the first vertex equals the last. A directed graph is said acyclic if
it does not contain any directed cycles. A directed acyclic graph is denoted DAG.
The input degree of a vertex x is |{(u, x) ∈ E}|, and a vertex whose input degree
is equal to 0 is called a source. The output degree of a vertex x is |{(x, u) ∈ E}|,
and a vertex whose output degree is equal to 0 is called a sink.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 29

Arithmetic Circuit. An arithmetic circuit C = (G,W) is a DAG defined over a
ring R and a set of n variables X = {X1,X2, · · · ,Xn} as follows. The vertices G
of C are called gates. The edges W of C are called wires. A gate of input degree
0 is an input gate and is labelled either by a variable from X or a ring element.
Every other gate has an input degree 2, and is labelled either by × or +. We
respectively call them product gates and sum gates. Every gate of output degree
0 is called an output gate. In the case of binary circuits defined over F2, we also
have gates of input degree 1. They are labelled NOT, and are called NOT gates.

Let P be a path in C. We call the multiplicative length of P the number of
product gates in P. Let us note that the multiplicative length of P is defined with
respect to the number of product gates of P, whereas its length is defined with
respect to the number of edges. Therefore, for a path P that is only composed
of k product gates (and no sum gates), its length is k − 1 and its multiplicative
length is k.

2.2 Noise Growth Model

In existing homomorphic encryption schemes, each ciphertext has some noise
attached to it. This noise grows throughout the HE.Eval procedure. In this
section, we model how the noise grows operations-wise. As pointed out in the
introduction, we use a discretized noise model.

Additions in homomorphic encryption are almost free. The noise growth
induced by additions is indeed logarithmic with regard to the noise growth
induced by multiplications. It can therefore be neglected most of the time. In
this case, let c1, c2 be two ciphertexts of noise level l1 and l2, and let c3 = c1+c2.
We have l3 = max(l1, l2). However, this restriction is not necessary to apply our
method for solving the lmax-minimizing bootstrapping problem, and the loga-
rithmic noise induced by additions can be taken into account in our model.

The effect of a multiplication on noise levels divides FHE schemes into two
categories. Let c1, c2 be two ciphertexts of noise level l1, l2 and c3 = c1 · c2 with
noise level l3.

– The exponential schemes [4,6,9,24]: in these schemes, we have l3 = l1 + l2.
Therefore, the evaluation of a circuit with a multiplicative depth D will require
lmax > 2D. This becomes quickly unacceptable and in practice lmax is set to 2.

– The linear schemes [3,11]: in these schemes, we have l3 = max(l1, l2) + 1.
However, in those schemes, the user can set lmax to be greater than the multi-
plicative depth of the circuit to be evaluated. This comes at the cost of greater
public parameters. When the multiplicative depth of the circuit is not known
in advance, or is too important, one still has to resort to bootstrapping.

2.3 Complexity Theory

We recall the basic definitions of the classic complexity classes that we use in
Sect. 3.

30 M. Paindavoine and B. Vialla

A decision problem is a yes-or-no question on an infinite set of inputs.
A problem P is in the NP class if the verifying a feasible solution can be done in
polynomial time. A problem P is NP-hard if P is at least as hard as the hardest
problem in NP. In particular, a NP-hard problem is not necessary in NP.

To prove that a problem P is NP-hard we use a reduction that preserves the
NP-hardness defined as follows:

Definition 1 (Reduction). Let A and B be two decision problems, A NP-hard.
Let x be an instance of A. A reduction is a pair of algorithms (f, g) such that:

– f is a polynomial algorithm transforming x into an instance f(x) of B,
– g is a polynomial algorithm transforming a solution y of B in f(x) into a

solution g(x, y) in x of A.

A problem P is NP-complete if P is in NP and P is NP-hard.

2.4 Mixed Integer Linear Programming

To solve the lmax-minimizing bootstrapping problem, we use linear programming
[21], and especially mixed integer linear programming (MILP). Linear program-
ming is used to minimize a linear function whose variables are subject to linear
constraints. An integer linear programming problem is expressed in the follow-
ing form. Let A be a matrix in Mm×n(R), b ∈ R

m, c ∈ R
n, x, l, u ∈ Z

n. The
program objective is:

Minimize c1x1 + c2x2 + · · · + cnxn

Subject To a11x1 + a12x2 + · · · + c1nxn ≥ b1

...
an1x1 + an2x2 + · · · + cnnxn ≥ bn

∀xi, li ≤ xi ≤ ui.

We call cTx the objective function, x the problem variables, l the lower bounds
on x, u the upper bounds on x and Ax the linear constraints. Constraints should
not be defined with strict inequalities. If xi ∈ {0, 1}, they are named boolean
variables. The goal of this formulation is to find values for x that minimize the
objective function without violating any constraints.

A mixed integer linear programming problem is an integer linear programming
problem where some of the xis (and the corresponding uis and lis) are allowed
to be in R.

Note that non-linear terms are not allowed in the model. Expressing con-
straints on the multiplication of variables or the maximum of variables is not
straightforward, but is still possible with various techniques.

As for any optimization problem, a solution that satisfies all constraints is
a feasible solution. An optimal solution is a feasible solution that achieves the
best objective function value.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 31

Theorem 1. The decisional version of the mixed integer linear programming
problem is NP-complete.

Proof. See [21]. ��

3 Complexity Analysis of the lmax-Minimizing
Bootstrapping Problem

In this section, we first formally introduce the lmax-minimizing bootstrapping
problem, before proving that it is polynomial for lmax = 2 and NP-complete for
lmax ≥ 3.

The lmax-minimizing bootstrapping problem is formally defined as a decision
problem as follows.

Definition 2 (lmax-Minimizing Bootstrapping (lmax-MB)). Let lmax be
the desired maximum noise level and C = (G,W) be an arithmetic circuit. Is
there a subset S ⊆ G of size ω such that each path P ⊆ C of multiplicative length
lmax has at least one gate in S?

3.1 A Polynomial Time Algorithm for lmax =2

In order to prove that the lmax-minimizing bootstrapping problem is polynomial
for lmax = 2, we design an algorithm that solves it using a graph connectivity
algorithm as a blackbox.

In a DAG G = (V,E), with a source s and a sink t we define a (s, t)-separator,
that is, a subset W ⊆ V such that each (s, t)-paths has at least one vertex in W .
The graph connectivity problem consists in finding a minimal (s, t)-separator.
This problem can be solved in O(|V ||E| log(|V |2/|E|)) (see [1]).

In what follows, we describe the algorithm solving the 2-minimizing boot-
strapping problem using the graph connectivity problem. Let C be a circuit and
G = (V,E) the underlying DAG. As only one level of product is allowed between
each bootstrapping, the goal is to split G into subgraphs where each path has a
multiplicative length of 1.

The first step is to delete every arc (u, v) ∈ E where v is a product gate. The
resulting graph is named G′. This step is depicted in Fig. 2a.

The connected components of G′ are also directed acyclic graphs, but the
underlying circuit has at most one level of multiplication. The second step is
to add an edge from the source s to each product gate and one from each
component’s sinks to t. With this construction, each (s, t)-path passes through
one and only one product gate. Therefore, in order to correctly evaluate the
circuit C, we want to bootstrap each ciphertext once per path. In other words,
we have to find the smallest subset of vertices S ⊆ V , for which each path has
a gate in S. S is an (s, t)-separator of G.

In Fig. 3, we represent our algorithm which computes the minimal set of
bootstrappings. A (toy) running example is depicted in Fig. 2.

32 M. Paindavoine and B. Vialla

(a) Delete every edge en-
tering a product gate.

s

t

(b) Add an edge from s
to each product gate, and
from every sink to t.

s

t

(c) Solve the graph connec-
tivity problem on this in-
stance.

Fig. 2. Algorithm for finding the optimal solution for lmax = 2 applied to the circuit
from Fig. 1

Algorithm 1: Building the minimum set of bootstrappings for lmax = 2.
Data: C a circuit and G = (V,E) the associated directed acyclic graph.
Result: The minimum set S of variables to bootstrap.
begin

Delete every edge (u, v) where v is a product gate (figure 2a);
Add two vertices s and t, s will be the source of G and t the sink;
For each multiplication vertices v, add an edge (s, v) (figure 2b);
For each edges (u, v) deleted in step 1, add an edge (u, t) (figure 2b);
Compute the minimal (s, t)-vertex separator S (figure 2c);
Return S;

Fig. 3. Algorithm to compute the minimal set of bootstrapping for exponential
schemes.

Theorem 2. The asymptotic complexity of Algorithm 1 is

O(|V ||E| log(|V |2/|E|)).

Proof. The complexity of the first and third steps is O(|V |) and the complexity
of the fourth step is O(|E|). The second step is executed in constant time. The
complexity for computing a minimal (s, t)-separator is O(|V ||E| log(|V |2/|E|)),
therefore, the general complexity of the algorithm is O(|V ||E| log(|V |2/|E|)). ��

Thus, the 2-minimizing bootstrapping problem, which mostly corresponds
to exponential schemes can be solved in polynomial time. Moreover, graph con-
nectivity algorithms provide us with the optimal bootstrapping location in the
circuit.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 33

3.2 NP-Completeness of the lmax-Minimizing Bootstrapping
Problem

In this section we prove that the lmax-minimizing bootstrapping problem is
NP-complete for lmax ≥ 3. We reduce the vertex cover problem known to be
NP-complete to the lmax-MB problem. We need to introduce an intermediary
problem: the k-path vertex cover problem.

Let us first recall the decison version of the vertex cover problem on a
DAG [18].

Definition 3 (Vertex Cover in Directed Acyclic Graph (VCD)). Let
G = (V,E) be a directed acyclic graph. Is there a subset W ⊆ V of size ω, such
that each edge in E admits a vertex of W as tail or head (or both)?

Theorem 3. The VCD problem is NP-complete.

Proof. See [18]. ��
Let us now extend the definition of VCD to a directed version of the k-path

vertex cover problem from [5].

Definition 4 (k-Path Vertex Cover in Directed Acyclic Graph
(k-PVCD)). Let G = (V,E) be a directed acyclic graph. Is there a subset
W ⊆ V of size ω, such that each path P in G of length k has a vertex in
W , i.e., P ∩ W �= ∅?

Problems VCD k − PVCD

Instances x
f→−� f(x)

Solutions g(x, Y) solution of x
g←−� Y solution of f(x)

Fig. 4. Scheme of a reduction from the VCD problem to the k-PVCD problem.

Theorem 4. The k-PVCD problem is NP-complete for k ≥ 2.

Proof. A scheme of the reduction is depicted Fig. 4.
Note that for k = 2, k-PVCD is the same as VCD which is NP-complete.
For k > 2 we show a reduction (f, g) from the VCD problem to the k-PVCD

problem.
Let G = (V,E) be an arbitrary directed acyclic graph. We transform G into

a k-PVCD instance f(G) = G′. Let G′ = (V ′, E′) be the graph obtained from
G such that for all x ∈ V we add a directed path of

⌊
k
2

⌋ − 1 new vertices where
x is the head; and a path of size

⌈
k
2

⌉ − 1 new vertices where x is the tail. We
call the vertices of G original vertices, and the others the new vertices. This
transformation f has a linear complexity with respect to |V |. An example is
depicted in Fig. 5.

34 M. Paindavoine and B. Vialla

(a) Original graph G. (b) Graph G′ for k = 4. (c) Graph G′ for k = 5.

Fig. 5. Example of the G′ construction.

We now have to transform back a k-PVCD feasible solution Y in G′ into a
VCD feasible solution g(G, y) in G.

Let y be a k-path vertex cover in G′. Suppose that y contains a new vertex
u that lies in one of the added path, i.e., ∃u ∈ Y, u �∈ V . Let v ∈ V be the
original vertex closest to u. Note that u only secures one path, hence we can
swap u with v in Y . We can apply this procedure until all vertices of y are in
V . Let us name g the algorithm just described. We claim that g(G,Y) ⊆ V is a
vertex cover in G.

Let us suppose otherwise. There is an edge (u, v) ∈ E such that u, v �∈
g(G,Y). Depending on the orientation of the edge between u and v, consider the
path P in G′, composed of the path attached to x where u is the head (resp.
the tail), of the edge (u, v) (resp. (v, u)), and of the path attached to v where v
is the tail (resp. the head). Then P does not contain any vertex from y, and it
has
k

2 � + �k
2 � − 2 + 2 = k vertices, which is a contradiction. Hence, g(G,Y) is

a vertex cover in G.
The transformation g of a k-PVCD feasible solution in G′ into a VCD feasible

solution in G has a linear complexity with respect to |V |.
Conversely, we prove that a vertex cover X in G yields a k-path vertex cover

in G′. Let us suppose otherwise. There is a path P of length k in G′ such that
P ∩X = ∅. By construction of G′, at least one edge of P is in G, let e = (u, v) ∈ P
be this edge. So, u, v �∈ X which is a contradiction because X is a vertex cover.
Hence, X is a k-path cover in G′.

Thus, there is reduction (f, g) from VCD to k-PVCD: k-PVCD is NP-hard.
We finally prove that an alleged solution of k-PVCD in a DAG G̃ = (Ṽ , Ẽ)

can be verified in polynomial time. Let Δ− be the maximum output degree of
G̃. The number of paths of size k in G̃ is at most O(|Ṽ |Δ−k), and the paths
of length k can be computed using a truncated breadth first search on every
vertex, with a complexity of O(|Ṽ |(|Ṽ | + |Ẽ|)). So a solution can be verified in
polynomial time. k-PVCD lies in NP.

Hence k-PVCD is NP-hard and NP: it is NP-complete. ��
Now we can prove that lmax-MB is NP-complete by reducing the k-PVCD

problem to the lmax-MB problem. A scheme of the reduction is depicted Fig. 7.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 35

Theorem 5. lmax-MB is NP-complete for lmax ≥ 3.

Proof. We show a reduction (f, g) from the k-path vertex cover problem to the
lmax-minimizing bootstrapping, for lmax ≥ 3 and k = lmax − 1.

Let G = (V,E) be an arbitrary directed acyclic graph. We transform G into a
lmax-MB instance f(G) = C. C is not required evaluate any “interesting”function.
For our reduction purpose, we only need that any path P of length k in G is
transformed into a path P in C with multiplicative length lmax.

Let Δ+(G) be the maximum input degree of G. In order to transform G into
a circuit C = (G,W), we distinguish three cases. When a vertex of G has input
degree 2, it is directly transformed into a product gate. When a vertex of G
has input degree 1, it is transformed into a product gate, the second input of
the gate being a field constant. Finally, every vertex x ∈ V with input degree
at least 3 is transformed into a subcircuit only composed of sum gates (each of
input degree 2) except for the last one that will be a product gate, see Fig. 6.
Note that f is a bijection between the vertices of G and the product gates of C,
and that f has a linear complexity with regard to |V |.

We now have to transform a lmax-MB feasible solution y in C into a k-PVCD
feasible solution g(G, y) in G.

Let Y be a lmax-MB feasible solution in C. The transformation g consists in
moving every bootstrapping that is placed on a sum gate to the next product
gate downwards. Every bootstrapping is now on a product gate. We claim that
g(x, Y) is a (lmax − 1)-path cover of G.

Let us suppose otherwise. There is a path P ⊆ G of length lmax − 1 which is
not covered by g(x, Y). Let P ⊆ C be the path obtained after the transformation
of P . A path of length lmax − 1 is composed of lmax vertices. Each of these
vertices is transformed into a subcircuit that contains exactly one multiplication.
So the multiplicative length of P is equal to lmax. Therefore, there is a path in C
of multiplicative length lmax that is not covered by y, which is a contradiction.
Hence, g(x, Y) is a (lmax − 1)-path cover of G. The transformation g between a
lmax-MB feasible solution in C and a k-PVCD feasible solution in G has linear
complexity with regard to |V |.

Conversely, using a similar reasoning, we can show that a (lmax − 1)-path
vertex cover of in G yields a lmax-MB in C.

Hence the lmax-MB problem is NP-hard. We have now to prove that the lmax-
MB problem is NP. That is any alleged solution of lmax-MB in an arithmetic
circuit C̃ = (G̃, W̃) can be verified in polynomial time. Let Δ− be the maximum
output degree of C̃. The paths of multiplicative length lmax can be computed
using a truncated breadth first search on every vertex, with a complexity of
O(|G̃|(|G̃| + |W̃|)). So a solution can be verified in polynomial time, so lmax-MB
lies in NP.

Hence, lmax-MB is in NP and is NP-hard: it is NP-complete. ��
Thus, the lmax-minimizing bootstrapping problem, for lmax ≥ 3, is NP-

complete. In the following section we provide a constructive method to solve it.

36 M. Paindavoine and B. Vialla

(a) Vertex of G. (b) Vertex transformation in C.

Fig. 6. Transformation a vertex of input degree greater than 2.

Problems k − PVCD lmax − MB

Instances x
f→−� f(x)

Solutions g(x, Y) solution of x
g←−� Y solution of f(x)

Fig. 7. Scheme of a reduction from the k-PVCD problem to the lmax-MB problem.

4 Minimizing Bootstrappings with Mixed
Integer Linear Programming

In this section we present a general and adaptable method based on mixed inte-
ger linear programming for solving the lmax-minimizing bootstrapping problem.
We first introduce the model’s variables and then we describe a general MILP
model that can take into account many types of FHE operations. Moreover,
one can choose the noise level at which the ciphertexts are refreshed after a
bootstrapping.

4.1 Defining Variables and Objective Function of the Program

At each gate of the circuit, we attach a boolean variable which will take the value
true if it is necessary to bootstrap after the node. The goal of our optimization
program will be to minimize the sum of those bootstrapping variables.

For each gate G(i) of the circuit we denote by G
(i)
1 and G

(i)
2 the noise levels

of the gate inputs. For each output wire of a gate, we add a fictive node cor-
responding to our bootstrapping boolean variable that we denote B(i). If B(i)

equals to one, it means that a bootstrapping is necessary after the ith gate of
the circuit. In order to keep the notations simple, B(i) will be used either for the
boolean variable or for the fictive bootstrapping computation node. We consider
that the B(i) node takes as input the noise level of the gate output it is attached
to, which we denote G

(i)
in and outputs a noise level variable G

(i)
out. These variables

are depicted in Fig. 8.
Each of those variables admits 1 as lower bound and lmax as upper bound.

Furthermore we require that the noise level of each circuit output is strictly less
than lmax in order to have a correct decryption or to allow further computations.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 37

G
(i)
2

G
(i)
1

G
(i)
in

G
(i)
out

B(i)

Fig. 8. Variables representing the noise level of a gate in the mixed integer linear
programming problem.

Minimizing the number of bootstrappings is equivalent to minimizing the number
of boolean variables set to true. Hence, the objective function to be minimized is:

∑

i

B(i).

4.2 Linear Constraints

We translate the relations between the noise levels of each gate into linear con-
straints. We describe them thoroughly for the main FHE operations: addition
and multiplication. The model can easily be modified to include other kinds
of FHE operations as long as the noise growth can be translated into linear
constraints.

Bootstrapping. We first express the constraints that rule the noise growth after
the bootstrapping gate added to each gate of the circuit. We recall that the
scheme can handle lmax operations before the first bootstrapping and that each
bootstrapping resets the noise level to N . If we do not bootstrap at a gate B(i),
the noise level of the output of the gate is not affected, and we want G

(i)
in to be

equal to G
(i)
out. We can formulate these into a simple constraint:

G
(i)
out = G

(i)
in · (1 − B(i)) + N · B(i). (1)

This quadratic constraint can be written as a linear constraint using an
auxiliary constant X such as X ≥ lmax. The constraints system becomes:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G
(i)
out ≥ N · B(i) (2)

G
(i)
out ≤ N + (1 − B(i)) · X (3)

G
(i)
out ≥ G

(i)
in − X · B(i) (4)

G
(i)
out ≤ G

(i)
in + X · B(i). (5)

We can see that if the solver decides to bootstrap at gate i, both Eqs.
(2) and (3) will force the equality G

(i)
out = N while Eqs. (4) and (5) remain true.

38 M. Paindavoine and B. Vialla

On the other hand, if the solver decides not to bootstrap, Eqs. (4) and (5) will
force the equality G

(i)
out = G

(i)
in while the other two will remain true.

Addition. Let c1, c2 be two ciphertexts with noise levels l1, l2 respectively. We
denote c3 = c1 + c2 with noise level l3. We want to ensure that l3 = max(l1, l2).
The maximum is not a linear function, so it cannot be directly used in a con-
straint. We prove later that the following implication is enough for our purposes:

A
(i)
in = max(A(i)

1 , A
(i)
2) =⇒

{
A

(i)
in ≥ A

(i)
1

A
(i)
in ≥ A

(i)
2 .

These equations are linear so we can use them as constraints with the fol-
lowing bounds on the variables: 1 ≤ A

(i)
in ≤ lmax and 1 ≤ A

(i)
j ≤ lmax.

Remark 1. If the proportion of sum gates in the circuit is overwhelming, our
model can consider the logarithmic noise growth induce by additions. Let ε ∈
[0, 1] be the noise added by a sum gate normalized with respect to the noise added
by a product gate. The noise level of a sum gate output is l3 = max(l1, l2) + ε.
Working with mixed integer linear programming instead of integer linear pro-
gramming allows to consider this noise using the following linear constraints:

{
A

(i)
in ≥ A

(i)
1 + ε

A
(i)
in ≥ A

(i)
2 + ε,

with the same lower and upper bounds as for the addition case.

Multiplication. Let c1, c2 be two ciphertexts with noise levels l1, l2 respec-
tively. We denote c3 = c1 · c2 with noise level l3. We want to ensure have
l3 = max(l1, l2) + 1. We have the following linear constraints:

l3 = max(l1, l2) + 1 =⇒
{

M
(i)
in ≥ M

(i)
1 + 1

M
(i)
in ≥ M

(i)
2 + 1,

with 1 ≤ M
(i)
in ≤ lmax and 1 ≤ M

(i)
j ≤ lmax − 1 as upper and lower bounds for

the linear program.

Other Operations. Other gates types can fit in our model as long as the noise
growth rules can be expressed as linear constraints. For example, a multiplication
by a constant roughly adds half a level [12] and therefore can be considered. In
the GSW scheme [13], the authors used NAND gates. Our model can be applied
to such a scheme as a NAND gate behaves with regard to noise growth exactly
as a multiplicative gate.

Minimizing the Bootstrappings in Fully Homomorphic Encryption 39

Theorem 6. The above MILP is equivalent to the lmax-minimizing bootstrap-
ping problem.

Proof. The constraints definition straightforwardly implies that every solution
to the lmax-MB problem is a solution of the MILP.

Let us now show the converse. Let S be a MILP solution that is not a lmax-
MB solution. There exists a path P in the circuit with multiplicative length lmax

such that P ∩ S = ∅. The noise level of a ciphertext along this path respects all
the MILP constraints. In particular, it increases by at least 1 at each product
gate. Its noise level at the end of the path is thus at least lmax. This is in
contradiction with the noise variables constraints: each one of them is bounded
by lmax and the circuit outputs has a noise level strictly less than lmax. Then S
cannot be a MILP solution. ��

4.3 Practical Experimentations

In this section we discuss the practical results of our model on several circuits
from [22], and on the AES circuit used in [12]. Circuits’ characteristics are
described in Table 1. We assume that the circuit’s inputs noise level is equal
to 1 and we require that the noise level of each circuit output is strictly less than
lmax.

MILP Solvers. MILP solvers do not only solve the original program but also its
dual. The transformation of a primal form of a MILP into its dual in our case is
the following:

min
{
cTx | Ax ≥ b, l ≤ x ≤ u

} �→ max
{
bT y | Ay ≤ c, l ≤ y ≤ u

}
.

A feasible solution of the dual problem gives a lower bound on the optimal
solution [21]. The difference between a feasible solution of the linear program
and a feasible solution of its dual is called the gap, until it reaches zero. It
then means that the solution found is optimal. The gap gives a hint on how
far the given solution is from the optimum in the worst case. As we will see in
experimentations, the gap value is useful because it allows to get an approximate
solution quickly.

Benchmarks. For the experimentation we ran both the Gurobi Optimizer 61 and
IBM CPLEX 12.62 on an Apple MacBook Pro with 2.3 GHz Intel Core i7 and
16 GB of RAM. Each solver implements many different optimization routines,
which makes difficult to predict the computation time. We tried both solvers on
small circuits and choose the faster one to tackle the problem on bigger circuits.
In our case, Gurobi performs better on all circuits. The results are displayed in
Table 2. We tested two settings:

1. (lmax = 2, N = 1). For this setting, we found the same solutions as in [17].
1 http://www.gurobi.com/.
2 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud.

http://www.gurobi.com/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

40 M. Paindavoine and B. Vialla

Table 1. Circuits’ characteristics.

Circuits Mult. gates Add. gates NOT gates Mult. depth

Adder 32 bits 127 61 187 64

Adder 64 bits 265 115 379 128

Comparator 32 bits 150 0 150 23

Multiplier 32 × 32 5926 1069 5379 128

AES (expanded key) 5440 20325 1927 41

DES (expanded key) 18175 1351 10875 262

MD5 29084 14150 34627 2973

SHA256 90825 42029 103258 3977

Circuit Mult. gates Add. gates Mult. cst gates Mult. depth

AES [12] 30 220 230 40

2. (lmax = 20, N = 9) as more realistic parameters, similar to those used in [16],
except for the AES from [12] where we chose the same parameters as the
authors.

For the simplest circuits, such as Adder and Comparator, the heuristics find
the optimal solution or a close one. For those circuits, computing the optimal
solution is done in less than a second.

Table 2. Minimal number of bootstrappings.

Circuits lmax N Solution heuristic 1 Solution heuristic 2 MILP solution

Adder 32 bits 2 1 127 127 127

Adder 32 bits 20 9 5 5 4

Adder 64 bits 2 1 265 267 265

Adder 64 bits 20 9 10 12 10

Comparator 20 9 1 1 1

Multiplier 2 1 6350 5926 5924

Multiplier 20 9 105 116 69

AES 2 1 4504 5440 3040

AES 20 9 736 1600 220±20

AES [12] 23 11 2

DES 2 1 18399 18175 18041

DES 20 9 4435 4006 440±20

MD5 2 1 29084 34496 28896

SHA256 2 1 90825 97009 88178

Minimizing the Bootstrappings in Fully Homomorphic Encryption 41

For bigger circuits, running time is difficult to predict. For lmax being small,
as well as “close” to the circuit multiplicative depth the optimal solution is found
in a couple of minutes. Between these settings, the solver can take hours to find
the optimal solution. Nonetheless, the solver always finds a good approximation,
better than both heuristics, in tens of minutes. But it can take a couple of hours
to prove optimality. This is where the gap value is important: one can choose
to stop the computation time when the gap reaches some desired threshold. For
the DES circuit, we stopped the solver after 3.5 hours of computation, when the
gap reached 5 % of error. In comparison with the more efficient heuristic, this
spares 3566 bootstrappings.

Unlike circuits from [22], the AES circuit from [12] exploits all the possibilities
offered by a FHE scheme. In particular they use SIMD [23], where ciphertexts
are vectors of encrypted plaintexts, and operations are performed component-
wise. These vectors are regularly permuted. This does not impact the noise level
of ciphertexts. The plaintext space is also bigger than for the binary circuits
from [22] which explains that much fewer bootstrappings are needed to correctly
evaluate it. This circuit is described is Table 1.

5 Conclusion

While homomorphic encryption implementations are now available for anyone
who wants to evaluate circuits on encrypted data, performances in the compu-
tation are largely undermined either by time taken by the bootstrapping step
or by memory requirement when increasing lmax. In this paper we proposed an
efficient and flexible technique to determine the minimal number of bootstrap-
ping when evaluating circuits in homomorphic encryption. In [5], the authors
give an upper bound on the size of the solution of the k-path vertex cover with
respect to the vertices degree of the graph. It would be interesting to see if it is
possible to adapt those formulas for the case of the lmax-minimizing bootstrap-
ping problem, as that could give constraints on the design of arithmetic circuits.
Also, it should be interesting to go further in the complexity analysis of the
problem by finding a monadic second order logic formulation, which would allow
to apply many meta-theorems giving better insights on the problem. A future
work is to provide an automatic tool that, given a circuit and a FHE scheme,
could generate a new circuit with optimal bootstrapping placement.

Acknowledgments. We thank Rémi Coletta, Tancrède Lepoint and Guillerme
Duvillie for their insights and expertise, and Sébastien Canard, Pascal Giorgi, Laurent
Imbert and Fabien Laguillaumie for discussion and comments that greatly improved
the manuscript.

42 M. Paindavoine and B. Vialla

References

1. Berge, C.: Graphs. North-Holland Mathematical Library. North Holland
Publishing Co., Amsterdam (1985)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer Sci-
ence, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS, Palm Springs, CA, USA, 22–25 October 2011, pp. 97–106 (2011)

5. Bresar, B., Kardos, F., Katrenic, J., Semanisin, G.: Minimum k-path vertex cover.
Discrete Appl. Math. 159(12), 1189–1195 (2011)

6. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

7. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015)

8. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

9. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009)

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC, Bethesda,
MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

11. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

14. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, 5–7 May 1982, San Francisco, California,
USA, pp. 365–377 (1982)

15. Shoup, V., Halevi, S.: Design and implementation of a homomorphic-encryption
library

16. Shoup, V., Halevi, S.: Bootstrapping for helib. Cryptology ePrint Archive, Report
2014/873 (2014). http://eprint.iacr.org/2014/873

17. Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homomorphic
circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862,
pp. 189–200. Springer, Heidelberg (2013)

http://eprint.iacr.org/2014/873

Minimizing the Bootstrappings in Fully Homomorphic Encryption 43

18. Naumann, U.: DAG reversal is NP-complete. J. Discrete Algorithms 7(4), 402–410
(2009)

19. Pieprzyk, J.P., Harper, G., Menezes, A., Vanstone, S.A., Paillier, P.: Public-key
cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

20. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phism. Found. Secur. Comput. 4, 168–177 (1978)

21. Sierksma, G., Linear, I.P.: Theory and Practice. Advances in Applied Mathematics,
2nd edn. Taylor & Francis, London (2001)

22. Smart, N.P., Tillich, S.: Circuits of basic functions suitable for MPC and FHE.
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

23. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryp-
tology ePrint Archive 133 (2011)

24. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

http://www.springer.com/978-3-319-31300-9

	Minimizing the Number of Bootstrappings in Fully Homomorphic Encryption
	1 Introduction
	2 Background
	2.1 Graph Theory
	2.2 Noise Growth Model
	2.3 Complexity Theory
	2.4 Mixed Integer Linear Programming

	3 Complexity Analysis of the lmax-Minimizing Bootstrapping Problem
	3.1 A Polynomial Time Algorithm for lmax=2
	3.2 NP-Completeness of the lmax-Minimizing Bootstrapping Problem

	4 Minimizing Bootstrappings with Mixed Integer Linear Programming
	4.1 Defining Variables and Objective Function of the Program
	4.2 Linear Constraints
	4.3 Practical Experimentations

	5 Conclusion
	References

