
Chapter 2
Local Limit Cycles of Degenerate Foci
in Cubic Systems

Terence R. Blows

Abstract The problem of determining the stability of a weak focus in a quadratic
or cubic system has been the focus of much research. Here we outline a simple but
imperfect approach to the study of degenerate foci and use the method to give an
example of a cubic system with four local limit cycles about a degenerate focus.
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2.1 Introduction

From his famous list of problems the second part of Hilbert’s Sixteenth Problem
was the topic of much interest in the 1980s and 1990s. The papers of Shi [1] and
of Chen and Wang [2] which gave examples of quadratic systems with four limit
cycles were a catalyst for this, but a major contributor to the increased work in
this area was the rise of computer algebra systems that allowed lengthy algebraic
manipulations to be carried out by a machine. With advances in bifurcation theory
happening at the same time, see Rousseau [3], this was a rich period for research in
planar polynomial systems.

A fixed point of a planar system of differential equations is called a center if a
neighborhood of the fixed point is filled with closed orbits. Centers can occur in two
ways; as well as the much studied case when the critical point is a weak focus (purely
imaginary eigenvalues) there is the case where the critical point is a degenerate
focus. The simplest type of the latter occurs under certain conditions when the
linearization about the critical point is nilpotent but non-zero. These conditions are
described with proof in Andronov et al. [4] and summarized in Perko [5].

Andronov’s condition for monodromicity does not specify whether the fixed
point is a center or focus, and in this sense the situation is similar to that of a
weak focus. The problem of determining the stability of a weak focus has been
well-studied and dates back to Poincaré. One approach is to construct a Liapunov
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function, and this can be done using an algorithm which is easily implemented using
symbolic computing. See, for example, Blows and Lloyd [6]. Here we use a similar
approach and use a Liapunov function to determine the stability of a degenerate
focus. The method described is imperfect—it does not determine the stability for
every degenerate focus—but we are able to use the method with some success. In
particular we describe and apply the method to degenerate foci of cubic systems and
extend a result of Andreev et al. [7].

It should be noted that another possibility is that the localization about the critical
point has no linear terms. An example of this was studied in Blows and Rousseau
[8] where the localization was about the point at infinity of a cubic system of a
certain type.

2.2 Method

We consider cubic systems that have a degenerate focus at the origin. These may
be written such that the linear part has a canonical form corresponding to a Jordan
block with double zero eigenvalue:

�
x0 D y C P2 .x; y/C P3 .x; y/
y0 D Q2 .x; y/C Q3 .x; y/

(2.1)

Also for monodromicity it is necessary that ([4, 5]) Q2(x, 0) D 0 and Q3(x, 0) < 0.
To study the stability of the origin we seek to construct a Liapunov function of

the form

V .x; y/ D V2 .x; y/C V3 .x; y/C V4 .x; y/C � � � C Vn .x; y/C � � �

where Vk(x, y) is homogeneous of degree k. This gives

V0 D @V2

@x
y C � � �

and to be one-signed we therefore need V2(x, 0) D 0. For V itself to be positive in
a neighborhood of the origin it is therefore necessary that V2(x, y) D cy2 for some
c > 0 and we make the arbitrary and convenient choice c D ½ to get

V2 D 1
2

y2 (2.2)

We have

V0 D
�

@V2

@x
C @V3

@x
C @V4

@x
C � � �

�
.y C P2 .x; y/C P3 .x; y//

C
�

@V2

@y
C @V3

@y
C @V4

@y
C � � �

�
.Q2 .x; y/C Q3 .x; y// ;
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and gathering like terms gives

V0 D �
@V2
@x

�
y

C �
@V3
@x

�
y C �

@V2
@x

�
P2 .x; y/C

�
@V2
@y

�
Q2 .x; y/

C �
@V4
@x

�
y C �

@V3
@x

�
P2 .x; y/C

�
@V3
@y

�
Q2 .x; y/C �

@V2
@x

�
P3 .x; y/

C
�

@V2
@y

�
Q3 .x; y/

C �
@V5
@x

�
y C �

@V4
@x

�
P2 .x; y/C

�
@V4
@y

�
Q2 .x; y/C �

@V3
@x

�
P3 .x; y/

C
�

@V3
@y

�
Q3 .x; y/C � � �

In order to guarantee that the quadratic and cubic terms of V 0 are both zero, the
choice (2.2) then implies that

V3 .x; y/ D �
Z

Q2 .x; y/ dx

Indeed we have V0 � 0 if we can recursively choose Vk such that

�
@Vk
@x

�
y D � � @Vk�1

@x

�
P2 .x; y/�

�
@Vk�1

@y

�
Q2 .x; y/� �

@Vk�2
@x

�
P3 .x; y/

�
�

@Vk�2
@y

�
Q3 .x; y/

for all integers k � 4. However the term on the right-hand side may contain terms of
the form xkC1 and so the best we can do when choosing the Vk is to have

V0 D �5x5 C �6x6 C �7x7 C � � � C �kxk C � � �

If the leading non-zero �k is such that k is even, then V0 is one-signed in a
neighborhood of the origin, and the stability of the origin is determined by the sign
of �k. If all �k terms are zero, then the origin is a center. However if the leading non-
zero �k is such that k is odd, then the construction fails to give a Liapunov function.
Such cases will require a different method. See, for example, Sadovskii [9].

The center problem parallels the case of a weak focus. Although there are an
infinite number of �k, this set has a finite basis which we denote <L(1), L(2),
L(3) : : :L(N)> where the Liapunov numbers L(k) are numbered in order as they
arise from the �k. Calculating the �k and reducing them to a finite set of Liapunov
numbers is a difficult problem, and it is likely, as with the case of a weak focus, that
the full solution to the problem may lie out of reach even with fast computers and
Gröbner basis methods.

Another connection with weak foci lies in the generation of small amplitude limit
cycles by perturbation methods. This is described below in the proof of Theorem 2.
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2.3 Results

Using a judicious linear coordinate change, we may assume without loss of
generality that P3(x, 0) D 0 and Q3(x, 0) D �1 in (2.1). We therefore consider
systems of the form

�
x0 D y C Cx2 C Dxy C Fy2 C Nx2y C Qxy2 C Ry3

y0 D Axy C By2 � x3 C Kx2y C Lxy2 C My3

Applying the algorithm we find that

˜5 D 1=2.A C 2C/.AC C 1/

˜6 D � �5AB C 14BC C 5A2BC C 17ABC2 C 6BC3 C 2AD � 6CD C 5A2CD
C12AC2D C 2K � ACK C 6C2K

�
=6

However the solution to �5 D �6 D 0 is far from simple, and we are already faced
with computational difficulties that we do not wish to get into here. Instead we
make the convenient choice A D C D 0 to easily get �5 D 0. It is easy to see that then
�6 D �K/3. Under the conditions A D C D K D 0 we find using Mathematica 8 that

˜7 D F=4

˜8 D .�19BF C 8DF � 12M � 4Q/ =20

˜9 D �
209B2F � 60D2F C 55FL C 90DM C 40FN C 207BDF

C42BM � 66BQ C 40DQ/ =120

˜10 D � � 1509B3F C 480D3F � 818DFL � 720DFN � 660D2M � 360D2Q

� 3261B2DF C 18B2M C 726B2Q � 1982BD2F C 439BFL � 22BDM

C 1090BFN C 956BDQ C 552LM C 480MN C 264LQ C 240NQ
�
=840

In terms of Liapunov quantities, where L(1) D˜5 and L(2) D �K/3 have been set to
zero, we have

L.3/ D F=4
L.4/ D .3M C Q/ =5
L.5/ D .D C 2B/M=4

We have a choice from L(5): Either DC2B D 0 or M D 0. However, as we show in
the proof of Theorem 1, the latter gives a center. So we assume M is non-zero. We
make the choices F D 0, Q D �3M, and D D –2B to get



2 Local Limit Cycles of Degenerate Foci in Cubic Systems 25

˜10 D 2M .L C N/ =7
˜11 D 3BM

�
2300B2 C 216L C 181N

�
=112

Substituting N D �L from ˜10 gives

L.7/ D 0

If B or M is equal to zero, then, as we show in the proof of Theorem 1, we have a
center. Otherwise

˜12 D �M
�
4436580B4 C 387976B2L � 1504L2 C 263331B2N

� 3968LN � 2464N2
�
=5040

And subbing L D �14B2 and N D 4B2 gives

L.8/ D .108161=560/ B4M

So ˜5 D˜6 D˜7 D˜8 D˜9 D˜10 D ˜11 D ˜12 D 0 implies a center.

Theorem 1 The origin of the system

�
x0 D y C Dxy C Fy2 C Nx2y C Qxy2 C Ry3

y0 D By2 � x3 C Kx2y C Lxy2 C My3

is a center if and only if one of the following two conditions holds:

1
�

K D F D M D Q D 0

2
�

K D F D B D D D 0I Q D �3M;N D �L

Proof Necessity has already been shown. For the sufficiency of 1) note that in this
case the origin is a center due to the symmetry (x, y, t) ! (x, �y, �t). Condition 2)
gives a Hamiltonian system.

In the following theorem we start with the weakest possible degenerate focus,
namely when ˜5 D˜6 D ˜7 D ˜8 D ˜9 D ˜10 D ˜11 D 0 but ˜12 ¤ 0, we may perturb
˜10, ˜8, and ˜6 away from zero in turn to get three local limit cycles in the same
manner as using multiple Hopf bifurcation from a weak focus. We then perturb œ
non-zero to get a fourth in a manner that is new. It is possible that other perturbations
will produce more than one local limit cycle; this would require a complete analysis
of the unfolding of the degenerate critical point in a manner similar to that of
Rousseau and Zhu [10] for an elliptic nilpotent singularity in quadratic systems.
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Theorem 2 The system

�
x0 D y � 2Bxy C Nx2y C .ı � 3M/ xy2 C Ry3

y0 D � .�x C sgn .M/ y/C By2 � x3 C �x2y C Lxy2 C My3

where M ¤ 0;B ¤ 0; ıM < 0;�M > 0; O << j�j << j�j << jıj << j"j << 1
has at least three local limit cycles in a neighborhood of the origin.

Proof With �D�D ıD 0, the origin is a degenerate focus whose stability is given
by the sign of M. The perturbations of ı, and � away from zero in turn each cause
a change in stability and produce local limit cycles. At this point, the origin has
stability given by the sign opposite to M. Finally perturbing � ¤ 0 produces a
strong focus at the origin whose stability is given by the sign of M to produce one
final local limit cycle.

Appendix: Mathematica 8

Mathematica was used interactively to produce the results in Sect. 2.3. Firstly the
base functions are put in place:

P2 D cxO2C Dxy C FO2
Q2 D Axy C ByO2

P3 D NxO2y C QxyO2C RyO3
Q3 D �xO3C KxO2y C LxyO2C MyO3

V2 D 1=2yO2
V3 D �Integrate ŒQ2; x�

After this each iteration of the algorithm has a sequence of similar steps. The first
set is as follows:

T4 D �D ŒV3; x�P2 � D ŒV3; y�Q2 � D ŒV2; x�P3 � D ŒV2; y�Q3

Collect Œ%; fx; yg�
X4 D Coefficient Œ%; xO4�

V5 D Simplify Œ.T4 � X4 xO4/ =y�
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Each X terms give us a focal value ˜, and the V terms give us the homogeneous
pieces of the Liapunov function that we are constructing. We continue through as
many of these steps as is necessary.
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