Chapter 2
Convex Functions

2.1 Definition and Basic Properties

Given a function f : § — [—00, +00] on a nonempty set S C R”, the sets

domf = {x € S| f(x) < +o0}
epif = {(x,a) € SxR[f(x) <o}

are called the effective domain and the epigraph of f(x), respectively. If domf # @
and f(x) > —oo for all x € S, then we say that the function f(x) is proper.

A function f : § — [—00, +00] is called convex if its epigraph is a convex set in
R”" x R. This is equivalent to saying that S is a convex set in R" and for any x!, x> € §
and A € [0, 1], we have

S =0x + 2% = (1= f &) + A () 2.1

whenever the right-hand side is defined. In other words (2.1) must always hold
unless f(x') = —f(x?) = Zoo. By induction it can be proved that if f(x) is
convex then for any finite setx!,...,x* € Sand any nonnegative numbers A1, ..., A
summing up to 1, we have

k k
f (Z xix") <Y AR
i=1 i=1

whenever the right-hand side is defined. A function f(x) is said to be concave on
S if —f(x) is convex; affine on S if f(x) is finite and both convex and concave. An
affine function on R” has the form f(x) = (a,x) + «, with a € R", ¢ € R, because
its epigraph is a halfspace in R” x R containing no vertical line.
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40 2 Convex Functions

For a given nonempty convex set C C R” we can define the convex functions:

0 ifxeC
+ooifx ¢ C

* the support function (see Sect. 1.8) sc(x) = supyec(y, x)
* the distance function dc(x) = infyec ||x —y||.

e the indicator function of C : §¢c(x) =

The convexity of §-(x) is obvious; that of the two other functions can be verified
directly or derived from Propositions 2.5 and 2.9 below.

Proposition 2.1 If f(x) is an improper convex function on R" then f(x) = —oo at
every relative interior point x of its effective domain.

Proof By the definition of an improper convex function, f(x°) = —oo for at least
some x° € domf (unless domf = @). If x € ri(domf) then there is a point X' € domf
such that x is a relative interior point of the line segment [x°, x']. Since f(x') < 400,
it follows from x = Ax? + (1 — A)x’ with A € (0, 1), that f(x) < Af(x") + (1 = 1)
f() = —o0. |

From the definition it is straightforward that a function f(x) on R” is convex if
and only if its restriction to every straight line in R” is convex. Therefore, convex
functions on R” can be characterized via properties of convex functions on the real
line.

Theorem 2.1 A real-valued function f(x) on an open interval (a,b) C R is convex
if and only if it is continuous and possesses at every x € (a, b) finite left and right
derivatives

fax+0—fx)

t

fax+9)—f)
t

') = i 7 i
o) tlTTg fr(x) tlf{)l

such that f' (x) is nondecreasing and

L) <fi@), ) 67 forx! <X 2.2)

Proof
(1) Letf(x) be convex. If 0 < s < t and x 4 ¢ < b then the point (x + 5, f(x + 5))
is below the segment joining (x,f(x)) and (x + ¢,f(x + £)), so

fats9)—f@) _fe+1)—f)

; t 2.3)

This shows that the function ¢ + [f(x + #) — f(x)]/t is nonincreasing as ¢ | 0.
Hence it has a limit f’, (x) (finite or = —00). Analogously, f” (x) exists (finite or
= +00). Furthermore, setting y = x + s, = s + r, we also have

fC+9) =@ _ fo+1)—10)

N r

(2.4)
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which implies f, (x) < f}(y) for x < y, i.e., f| (x) is nondecreasing. Finally,
writing (2.4) as

fO=9-fO) _fO+n-fO)

—S r

and letting —s 1 0,7 | 0 yields f’ (y) < f (v), proving the left part of (2.2)
and at the same time the finiteness of these derivatives. The continuity of f(x)
at every x € (a,b) then follows from the existence of finite f’ (x) and f} (x).
Furthermore, setting x = xl,y +r =x%in(2.4) and letting s, r — 0 yields the
right part of (2.2).

Now suppose that f(x) has all the properties mentioned in the Proposition and
leta < ¢ < d < b. Consider the function

8 =1 f0) — (= D=L,
—c
Since for any x = (1 —A)c+ Ad, we have g(x) = f(x) —f(c) —Alf(d)—f(c)] =
f@) —[(1 = A)f(c) + Af(d)], to prove the convexity of f(x) it suffices to show
that g(x) < O for any x € [c,d]. Suppose the contrary, that the maximum of
g(x) over the segment [c, d] is positive (this maximum exists because f(x) is
continuous). Let e € [c, d] be the point where this maximum is attained. Note
that g(c) = g(d) = 0, (hence ¢ < e < d) and from its expression, g(x) has
the same properties as f(x), namely: g’ (x), g, (x) exist at every x € (c.d),
g_(x) < g, (%), g (x) is nondecreasing and g, (x') < g (x?) for x' < x*.
Since g(e) > g(x) Vx € [c,d], we must have g’ (e) > 0 > ¢/, (e), consequently
g_(e) = g, (e) = 0, and hence, since g, (x) is nondecreasing, g, (x) > 0 Vx €
[e.d]. If g’ (y) < Oforsomey € (e,d]theng’, (x) < g’ (y) < Ohenceg'(x) =0
for all x € [e,y), from which it follows that g(y) = g(e) > 0. Since g(d) =
0, there must exist y € (e,d) with g’ (y) > 0. Let x! € [y,d) be the point
where g(x) attains its maximum over the segment [y, d]. Then g/, =" <o,
contradicting g’, (y) > g” (y) > 0. Therefore g(x) < 0 for all x € [c,d], as was
to be proved. O

Corollary 2.1 A differentiable real-valued function f(x) on an open interval is
convex if and only if its derivative f' is a nondecreasing function. A twice
differentiable real-valued function f(x) on an open interval is convex if and only
if its second derivative " is nonnegative throughout this interval. O

Proposition 2.2 A twice differentiable real-valued function f(x) on an open convex
set C in R" is convex if and only if for every x € C its Hessian matrix

2
O = (g5(x), g;(x) = (X1, X)

0x;0x;
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is positive semidefinite, i.e.,
(u, Qyu) > 0 Vu € R,

Proof The function f is convex on C if and only if for each @ € C and u € R”" the
function ¢, ,(f) = f(a + tu) is convex on the open real interval {t| @ + tu € C}. The
proposition then follows from the preceding corollary since an easy computation
yields ¢” () = (u, Q.u) withx = a + ru. ]

In particular, a quadratic function

F@) = 3600 + r.a) +o

where Q is a symmetric n X n matrix, is convex on R” if and only if Q is positive
semidefinite. It is concave on R” if and only if its matrix Q is negative semidefinite.

Proposition 2.3 A proper convex function f on R" is continuous at every interior
point of its effective domain.

Proof Let x° € int(domf). Without loss of generality one can assume x° = 0. By
Theorem 2.1, for each i = 1,...,n the restriction of f to the open interval {z| x° +
te' € int(domyf)} is continuous relative to this interval. Hence for any given ¢ > 0
and for each i = 1,...,n, we can select §; > 0 so small that [f(x) — f(x°)| < & for
all x € [=8:e!, +8;¢']. Let § = min{§;| i = 1,...,n} and B = {x| ||x||; < §}. Denote
uw = el ut" = =8¢/, i = 1,...,n. Then, as seen in the proof of Corollary 1.6,
any x € B is of the form x = leil A, with leil A; = 1,0 < A; < 1, hence
f@) = YL Af @), and consequently, f(x) = f() = YLy Ailf(x) — fG)].

Therefore,

2n

[F) —fOO)] < D Ailf ) —fGO)| <&

i=1

for all x € B, proving the continuity of f(x) at x°. O

Proposition 2.4 Let f be a real-valued function on a convex set C C R". If for
every x € C there exists a convex open neighborhood U, of x such that f is convex
on U, N C then f is convex on C.

Proof Tt suffices to show that for every a € C,u € R”, the function ¢(¢) = f(a+ tu)
is convex on the interval A := {t| a + tu € C}. But from the hypothesis, this
function is convex in a neighborhood of every t € A, hence is continuous and has
left and right derivatives ¢’ (f) < ¢/, (f) which are non decreasing in a neighborhood
of every t € A. These derivatives thus exist and satisfy the conditions described in
Theorem 2.1 on the whole interval A. Hence, ¢(¢) is convex. O
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Fig. 2.1 Convex piecewise affine function

For example, let f(x) : R — R be a piecewise convex function on the real line,
i.e., a function such that the real line can be partitioned into a finite number of
intervals A;,i = 1,..., N, in each of which f(x) is convex. Then f(x) is convex if
and only if it is convex in the neighborhood of each breakpoint (endpoint of some
interval A;). In particular, a piecewise affine function on the real line is convex if and
only if at each breakpoint the left slope is at most equal to the right slope (in other
words, the sequence of slopes is nondecreasing) (see Fig. 2.1).

2.2 Operations That Preserve Convexity

A function with a complicated expression may be built up from a number of
simpler ingredient functions via certain standard operations. The convexity of such a
function can often be established indirectly, by proving that the ingredient functions
are known convex functions, whereas the operations involved in the composition of
the ingredient functions preserve convexity. It is therefore useful to be familiar with
some of the most important operations which preserve convexity.

Proposition 2.5 A positive combination of finitely many proper convex functions
on R" is convex. The upper envelope (pointwise supremum) of an arbitrary family
of convex functions is convex.

Proof If f(x) is convex and o > 0, then af (x) is obviously convex. If f; and f, are
proper convex functions on R”, then it is also evident that f] + f; is convex. This
proves the first part of the proposition. The second part follows from the facts that
if f(x) = sup{fi(x)| i € I}, then epif = N;esepif;, and the intersection of a family of
convex sets is a convex set. a

Proposition 2.6 Let 2 be a convex set in R", G a convex set in R, ¢(x,y) a real-
valued convex function on 2 X G. Then the function

flx) = yig(f; @(x,y)

is convex on §2.
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Proof Letx',x> € 2 andx = Ax! 4+ (1 — )x? with A € [0,1]. Foreach i = 1,2
select a sequence {y"*} C G such that

o',y — inf p(x', y).
yeG
By convexity of ¢,

£ < @@ A + (1= 2y < Aoy + (1= D, y2h),

hence, letting k — oo yields

f@) = A6 + (1= f ().

a

Proposition 2.7 If g;(x),i = 1,...,m, are concave positive functions on a convex
set C C R” then their geometric mean

m 1/m
f) = []‘[ gi(x)} (2.5)
i=1

is a concave function (so —f (x) is a convex function) on C.

Proof LetT = {r € R%| []/, #; > 1}. We show that for any fixed x € C':

m 1/m m
[]} g,»(x)} = %rtrg;l { ;tigi(x)§ : (2.6)

Indeed, observe that the right-hand side of (2.6) is equal to

1 m m
—min{Ztigi(xﬂ [[e=116>0i= lm}
m

i=1 i=1

since if []/—,# > 1 then by replacing #; with 7/ < #; such that []'_, # = 1,
we can only decrease the value of ) i_, #;g;(x). Therefore, it can be assumed that
[T~,# = 1 and hence

[Tugi) = Ta. 2.7)
i=1 i=1

Since t;,g;(x) > 0,i = 1,...,m, and for fixed x the product of these positive

numbers is constant [= []'_, g;(x) by (2.7)] their sum is minimal when these
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numbers are equal (by theorem on arithmetic and geometric mean). That is,
taking account of (2.7), the minimum of ) ;" #;g;(x) is achieved when 7,;(x) =
Tz, gi(0)]/™ Vi = 1,...,m, hence (2.6). Since for fixed ¢+ € T the function
x = @x) = % > L, 1;gi(x) is concave by Proposition 2.5, their lower envelope
infer @ (x) = [[T'2, gi(x)]'/™ is concave by the same proposition. |

An interesting concave function of the class (2.5) is the geometric mean:

(rixz - x) /" if x> 0,...,%, > 0
—00 otherwise

fx) =

which corresponds to the case when g;(x) = x;.

Proposition 2.8 Let g(x) : R" — (—o00, +00) be a convex function and let ¢(t) :
R — (—o00,+00) be a nondecreasing convex function. Then f(x) = @(g(x)) is
convex on R".

Proof The proof is straightforward. For any x!, x> € R" and A € [0, 1] we have
g((1—=x' +2x%) < (1= 2)g(x) + Ag(x?)

hence

P(g((1 = Mx' +2x%) < (1 = Vep(gh) + Ap(g(:)).

ad

For example, by this proposition the function f(x) = Y ", ¢;e® @ is convex if ¢; > 0
and each g;(x) is convex proper.

Given the epigraph E of a convex function f(x), one can restore f(x) by the
formula

f(x) = inf{t| (x.1) € EL. (2.8)

Conversely, given a convex set E C R"*! the function f(x) defined by (2.8) is
a convex function on R” by Proposition 2.6. Therefore, if fi,...,f, are m given
convex functions, and E C R"*! is a convex set resulting from some operation on
their epigraphs Ei, ..., E,, then one can use (2.8) to define a corresponding new
convex function f(x).

Proposition 2.9 Let fi, ..., f,, be proper convex functions on R". Then
m m
f(x) = inf Zf,—(x‘)| x' e R, Zx’ =x
i=1 i=1

is a convex function on R".
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Proof Indeed, f(x) is defined by (2.8), where E = E| + --- + E,, and E; = epif;,
i=1,...,m. a

The above constructed function f(x) is called the infimal convolution of the
functions fi, ..., f,,. For example, the convexity of the distance function d¢(x) =
inf{||lx — y|| | y € C} associated with a convex set C follows from the above
proposition because dc(x) = inf,{[|x—y||+8c(y)} = inf{|x' || +8c(x?)| x! +x* = x}.

Let g(x) now be a nonconvex function, so that its epigraph is a nonconvex set.
The relation (2.8) where £ = conv(epig) defines a function f(x) called the convex
envelope or convex hull of g(x) and denoted by convg. Since E is the smallest
convex set containing the epigraph of g it is easily seen that convg is the largest
convex function majorized by g.

When C is a subset of R”, the convex envelope of the function

IC = glx) ifxeC
§18= +ooifx ¢ C

is called the convex envelope of g over C.

Proposition 2.10 Ler g : R" — R. The convex envelope of g over a set C C R"
such that dim(aff C) = k is given by

k+1 k1 k41
flx) = inf{ZAig(xi)|xi €ECA=0Y A=1)Y Ax =x}.
i=1 i=1 i=1

Proof LetX = Cx {0} CR"xR, B={(0,1)]0 <t <1} CR"xR and define

E={(xgx)|xeC}= U(X_O)GX((x, 0) + g(x)B). Then X is a Caratheodory core
of E (cf Sect. 1.4) and since dim(aff X) = k, by Proposition 1.14, we have

convE =

(x50 =D A g0 eC Ai=0, ) Ai=1

i=1 i=1

k~+1 k+1 }

But clearly for every (x,?) € epig there is 8 < ¢ such that (x, 8) € E, so for every

(x, 1) € conv(epig) there is & < tsuch that (x, 8) € convE. Therefore, (convg)(x) =

inf{t| (x,1) € conv(epig)} = inf{z] (x.7) € convE} = inf{> "4 Lig(x)| ' € C,
k+1 k+1

A= 0.) A =x. ) Ai=1} o
i=1 i=1

Corollary 2.2 The convex envelope of a concave function g : R" — R over a
polytope D in R" with vertex set V is the function

n+1 n+1 n+1

f@ =min Y Aig@) v e V.4 =0 Ai=1> A =x
i=1 i=1

i=1
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Proof By the above proposition, (convg)(x) < f(x) but any x € D is of the form
n+1

x = Y Al with vf € V, 4 > 0, Z)Li = 1, hence f(x) < Yt Lig(v') (by
i=1

definition of f(x)), while Y74 1,¢(v) < g(x) by the concavity of g. Therefore,

f(x) < g(x) Vx € D, and since f(x) is convex, we must have f(x) < (convg)(x), and

hence f(x) = (convg)(x). O

2.3 Lower Semi-Continuity

Given a function f : R” — [—00, +00] the sets

Ul f() =af. X f(x) = o}

where a € [—00, +00] are called lower and upper level sets, respectively, of f.

Proposition 2.11 The lower (upper; resp.) level sets of a convex (concave, resp.)
function f(x) are convex.

Proof This property is equivalent to
S ="+ 20%) < max{f (). f(P)} YA € (0,1) 2.9)

for all x', x2 € R”, which is an immediate consequence of the definition of convex
functions. O

Note that the converse of this proposition is not true. For example, a real-valued
function on the real line which is nondecreasing has all its lower level sets convex,
but may not be convex. A function f(x) whose every nonempty lower level set
is convex (or, equivalently, which satisfies (2.9) for all X2 e R™), is said to
be quasiconvex. If every nonempty upper level set is convex, f(x) is said to be
quasiconcave.

Proposition 2.12 For any proper convex function f -

(1) The maximum of f over any line segment is attained at one endpoint.
(i) If f(x) is finite and bounded above on a halfline, then its maximum over the
halfline is attained at the origin of the halfline.
(iii) If f(x) is finite and bounded above on an affine set then it is constant on this
set.

Proof

(i) Immediate from Proposition 2.11.
(i) If f(b) > f(a) then for any x = b + A(b — a) with A > 0, we have
b = tzx+ tipa. hence (1+1)f (b) < f(x)+ Af(a). (whenever f(x) < 400),
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ie., f(x) = A[f(b) — f(a)] + f(b), which implies f(x) — +00 as A — +o0.
Therefore, if f(x) is finite and bounded above on a halfline of origin a, one
must have f(b) < f(a) for every b on this halfline.

(iii) Let M be an affine set on which f(x) is finite. If f(b) > f(a) for a,b € M,
then by (ii), f(x) is unbounded above on the halfline in M from a through b.
Therefore, if f(x) is bounded above on M, it must be constant on M. O

A function f from a set S C R” to [—00, +00] is said to be lower semi-continuous
(l.s.c.) at a point x € § if

liminff(y) = f(x).

It is said to be upper semi-continuous (u.s.c.) at x € S if

limsupf(y) =< f(x).

yes
y—>x

A function which is both lower and upper semi-continuous at x is continuous at x in
the ordinary sense.

Proposition 2.13 Let S be a closed set in R". For an arbitrary function f : § —
[—00, +00] the following conditions are equivalent:

(i) The epigraph of f is a closed set in R";
(ii) For every o € R the set {x € S| f(x) < a} is closed;
(iii) f is lower semi-continuous throughout S.

Proof ()= (ii). Let x¥ € S,x¥ — x,f(x") < «. Since (x",«) € epif, it follows
from the closedness of epif that (x, @) € epif, i.e., f(x) < «, proving (ii).
(i1)=(iii). Let x” € S,x¥ — x. If lim,00 f(x") < f(x) then there is ¢ < f(x)
such that f(x") < « for all sufficiently large v. From (ii) it would then follow that
f(x) < a, a contradiction. Therefore lim, 0 f(x”) > f(x), proving (iii).
(iii)= (). Let (x", ") € epif, (i.e., f(x") < ¢’) and (x",#") — (x,?). Then from
(iii), we have liminff(x") > f(x), hence t > f(x), i.e., (x,?) € epif. |

Proposition 2.14 Let f be a Ls.c. proper convex function. Then all the nonempty
lower level sets {x| f(x) < o}, a € R, have the same recession cone and the same
lineality space. The recession cone is made up of 0 and the directions of halflines
over which f is bounded above, while the lineality space is the space parallel to the
affine set on which f is constant.

Proof By Proposition 2.13 every lower level set C, := {x| f(x) < «} is closed.
Let I' = {Au| A > 0}. If f is bounded above on a halfline I, = a + I, then
f(a) € R (because f is proper) and by Proposition 2.12 f(x) < f(a) Vx € I,. For
any nonempty Cyo, @ € R, consider a point b € C, and let § = max{f(a), o} so that
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B €Rand I, C Cg. Since Cg is closed and b € Cg it follows from Lemma 1.1 that
I, C Cg, ie., f(x) is finite and bounded above on I. Then by Proposition 2.12,
f(x) <f(b) <aVxe I}, hence I}, C C,. Thus, if f is bounded above on a halfline
I', then I is a direction of recession for every nonempty C,,® € R. The converse
is obvious. Therefore, the recession cone of Cy, is the same for all « and is made up
of 0 and all directions of halflines over which f is bounded above. The rest of the
proposition is straightforward. O

The recession cone and the lineality space common to each lower level set of f
are also called the recession cone and the constancy space of f, respectively.

Corollary 2.3 Ifthe lower level set {x| f(x) < a} of a L.s.c. proper convex function
f is nonempty and bounded for one o then it is bounded for every o.

Proof Any lower level set of f is a closed convex set. Therefore, it is bounded if and
only if its recession cone is the singleton {0} (Corollary 1.8). O

Corollary 2.4 If a l.s.c. proper convex function f is bounded above on a halfline
then it is bounded above on every parallel halfline emanating from a point of domf .
If it is constant on a line then it is constant on every parallel line passing through a
point of domf .

Proof Tmmediate. O

Proposition 2.15 Let f be any proper convex function on R". For any y € R", there
exists t € R such that (y, t) belongs to the lineality space of epif if and only if

fx+Ay) =f(x) + At Vx edomf,VA € R. (2.10)

When f is l.s.c., this condition is satisfied provided for some x € domf the function
A = f(x + Ay) is affine.

Proof (y,t) belongs to the lineality space of epif if and only if for any x € domf :
(x,f(x)) + A(y, 1) € epif VA € R, i.e., if and only if

fx+Ay)—At<f(x) VieR.

By Proposition 2.12 applied to the proper convex function ¢ (1) = f(x+At)—At, this
is equivalent to saying that ¢(1) = constant, i.e., f(x + Ay) — At = f(x) VA € R.
This proves the first part of the proposition. If f is Ls.c., i.e., epif is closed, then
(v, 1) belongs to the lineality space of epif provided for some x € domf the line
{(x,f(x)) + A(y, 1)| A € R} is contained in epif (Lemma 1.1). O

The projection of the lineality space of epif on R”, i.e., the set of vectors y for
which there exists ¢ such that (y, r) belongs to the lineality space of epif, is called
the lineality space of f. The directions of these vectors y are called directions in
which f is affine. The dimension of the lineality space of f is called the lineality of f.
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By definition, the dimension of a convex function f is the dimension of its domain.
The number dimf — linealityf which is a measure of the nonlinearity of f is then
called the rank of f :

rankf = dimf — linealityf. 2.11)

Corollary 2.5 If a proper convex function f of full dimension on R" has rank k then
there exists a k X n matrix B with rankB = k such that for any b € B(domf) the
restriction of f to the affine set Bx = b is affine.

Proof Let L be the lineality space of f. Since dimL = n — k, there exists a k X n
matrix B of rank k such that L = {u € R"| Bu = 0}. If b = Bx° for some x° € domf
then for any x such that Bx = b, we have B(x — x°) = 0, hence, denoting by
u', ... ,u"abasisof L, x = x° + Z?=1 Aii'. By Proposition 2.15 there exist t; € R
such that f(x° + Z?=1 L) = fF(x°) + Zf’zl Ait; for all A € R”. Therefore, f(x) is
affine on the affine set Bx = b. O

Given any proper function f on R”, the function whose epigraph is the closure of
epif is the largest l.s.c. minorant of f. It is called the Ls.c. hull of f or the closure of
f, and is denoted by clf. Thus, for a proper function f,

epi(clf) = cl(epif). 2.12)

A proper convex function f is said to be closed if clf = f (so for proper convex
functions, closed is synonym of l.s.c.). An improper convex function is said to be
closed only if f = 400 or f = —o0 (so if f(x) = —oo for some x then its closure is
the constant function —o0).

Proposition 2.16 The closure of a proper convex function f is a proper convex
function which agrees with f except perhaps at the relative boundary points of domf .

Proof Since epif is convex, cl(epif), i.e., epi(clf), is also convex (Proposition 1.10).
Hence by Proposition 2.13, clf is a closed convex function. Now the condition (2.12)
is equivalent to

clf(x) = liminff(y) Vx e R" (2.13)
y—=>x

If x € ri(domf) then by Proposition 2.3 f(x) = limf(y), hence, by (2.13), f(x) =
y—>x

clf (x). Furthermore, if x ¢ cl(domf) then f(y) = +oo for all y in a neighborhood
of x and the same formula (2.13) shows that clf(x) = +oc0. Thus the second half of
the proposition is true. It remains to prove that clf is proper. For every x € ri(domf),
since f is proper, —oo < clf(x) = f(x) < +o00. On the other hand, if clf(x) =
—oo at some relative boundary point x of domf = dom(clf) then for an arbitrary

y € ri(domf), we have clf (’%) < lclf(x) + Lclf(y) = —oo. Noting that 1 €

ri(domf) this contradicts what has just been proved and thereby completes the proof.
O
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2.4 Lipschitz Continuity

By Proposition 2.3 a convex function is continuous relative to the relative interior
of its domain. In this section we present further continuity properties of convex
functions.

Proposition 2.17 Let f be a convex function on R" and D a polyhedron contained
in domf. Then f is u.s.c. relative to D, so that if f is Ls.c. f is actually continuous
relative to D.

Proof Consider any x € D. By translating if necessary, we can assume that

x = 0. Let ¢!, ..., ¢" be the unit vectors of R” and C the convex hull of the set
{e', ..., e", —e',...,—e"}. This set C is partitioned by the coordinate hyperplanes
into simplices S;,i = 1,...,2", with a common vertex at 0. Since D is a polyhedron,

each D; = S;ND is apolytope and obviously DNC = U?;ID,-. Now let {x*} ¢ DNC
be any sequence such that x* — 0, f(x*) — y. Then at least one D;, say D, contains
an infinite subsequence of {x*}. For convenience we also denote this subsequence
by {xk}. If V, is the set of vertices of D; other than 0, then each x* is a convex
combination of 0 and elements of V; : xf = (1= ¢, A0+ X" oy, Afv, with
/\f >0, Zvevl )U,j < 1. By convexity of f we can write

FOH = (=200 + Y M/ ).

vEV] veV;

As k — +o00, since x* — 0, it follows that A¥ — 0 Vv, hence y < £(0), i.e.,

lim sup £ (xX) < £(0).

This proves the upper semi-continuity of f at 0 relative to D. O

Theorem 2.2 For a proper convex function f on R" the following assertions are
equivalent:

(1) f is continuous at some point;
(1) f is bounded above on some open set;
(iii) int(epif) # @;
(iv) int(domf) # @ and f is Lipschitzian on every bounded set contained in
int(domyf);
(v) int(domf) # @ and f is continuous there.

Proof (i) = (ii) If f is continuous at a point x°, then there exists an open
neighborhood U of x° such that f(x) < f(x°) + 1 forall x € U.

(i1) = (iii) If f(x) < ¢ for all x in an open set U, then U X [c, +00) C epif, hence
int(epif) # @.

(iii) = (iv) If int(epif) # @, then there exists an open set U and an open interval
I C Rsuch that U x I C epif, hence U C domf, i.e., int(domf) # @. Consider any
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compact set C C int(domf) and let B be the Euclidean unit ball. For every r > 0 the
set C+rB is compact, and the family of closed sets {(C+rB)\ int(domf), r > 0} has
an empty intersection. In view of the compactness of C + rB some finite subfamily
of this family must have an empty intersection, hence for some » > 0, we must have
(C+rB)\int(domf) = @, i.e., C+rB C int(domf). By Proposition 2.3 the function
f is continuous on int(domf). Denote by w; and , the maximum and the minimum
of f over C + rB. Let x, X’ be two distinct points in C and let z = x + Tl(;__;/lf. Then
z € C + rB C int(domf). But

/

xX—x
x=(1—-a)x +oaz, a:u
r+llx—x|

and z,x’ € domf, hence
f) = (1= a)f () +af () = &) + a(f(z) —f())
and consequently

f) —f() < a(fx) —f(x) < a(ur — p2)

M1 — U2
<ylx=¥I. y= —

By symmetry, we also have f(x') — f(x) < y|lx — x'||. Hence, for all x, x’ such that
xeC,xX eC:

[F(x) =fOD] < yllx =]l

proving the Lipschitz property of f over C.
(iv)= (v) and (v)= (i): obvious. O

2.5 Convex Inequalities

A convex inequality in x is an inequality of the form f(x) < 0 orf(x) < O wherefisa
convex function. Note that an inequality like f(x) > 0 or f(x) > 0, with f(x) convex,
is not convex but reverse convex, because it becomes convex only when reversed.
A system of inequalities is said to be consistent if it has a solution, i.e., if there exists
at least one value x satisfying all the inequalities; it is inconsistent otherwise. Many
mathematical problems reduce to investigating the consistency (or inconsistency) of
a system of inequalities.

Proposition 2.18 Let fy,f1, ... ,fm be convex functions, finite on some nonempty
convex set D C R”. If the system

xeD, fix)<0i=0,1,....m (2.14)
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is inconsistent, then there exist multipliers A; > 0, i = 0,1,...,m, such that
oA > 0and
Mafo() + Y Aifix) =0 VxeD. (2.15)
i=1
If in addition
WeD [ <0i=1,....m (2.16)

then Ao > 0, so that one can take Ao = 1.

Proof Consider the set C of all vectors y = (o, y1,...,ym) € R"*! for each of
which there exists an x € D satisfying

fi(x) <y i=0.1,....m. (2.17)

As can readily be verified, C is a nonempty convex set and the inconsistency of
the system (2.14) means that 0 ¢ C. By Lemma 1.2 there is a hyperplane in R"*!
properly separating O from C, i.e., a vector A = (Ao, A1, ..., A,) 7 0 such that

Y Ayi=0 ¥y= (oY ym) €C. (2.18)
i=0

If x € D then for every ¢ > 0, we have f;(x) < fi(x) + e fori = 0,1,...,m, so
(folx) + &, ..., fiu(x) + &) € C and hence,

> Aifi(x) + ) = 0.

i=0

Since & > 0 can be arbitrarily small, this implies (2.15). Furthermore, A; > 0,
i=0,1,...,mbecause if A; < 0 for some j, then by fixing, for an arbitrary x € D,
all y; > fi(x),i # j, while letting y; — 400, we would have > /" A;y; — —o0,
contrary to (2.18). Finally, under (2.16), if Ay = 0 then ) " A; > 0, hence
by (2.16) Y Afi(x") < 0, contradicting the inequality Y " Afi(x") > 0
from (2.15). Therefore, Ay > 0 as was to be proved. O

Corollary 2.6 Let D be a convex set in R", g,f two convex functions finite on D. If
2(x®) < 0 for some x° € D, while f(x) > 0 for all x € D satisfying g(x) > 0, then
there exists a real number A > 0 such that f(x) + Ag(x) > 0 Vx € D.

Proof Apply the above Proposition for fy = f,fi = g. O

A more general result about inconsistent systems of convex inequalities is the
following:
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Theorem 2.3 (Generalized Farkas—Minkowski Theorem) Let f;, i € I} C
{1,...,m}, be affine functions on R", and let fy and f;, i € I := {1,...,m}\ I, be
convex functions finite on some convex set D C R". If there exists x° satisfying

X ernD, (") <0G el), (x°) <0(ieh). (2.19)

while the system

xeD, fix) <0(i=1,...,m), fo(x) <0, (2.20)
is inconsistent, then there exist numbers A; > 0,i =1, ..., m, such that
fo@) + D Afix) =0 VxeD. (2.21)

i=1

Proof By replacing I; with {i| f;(x°) = 0} we can assume f;(x") = 0 for every
i € I;. Arguing by induction on m, observe first that the theorem is true for m = 1.
Indeed, in this case, if I; = @ the theorem follows from Proposition 2.18, so we
can assume that I; = {1}, i.e., fi(x) is affine. In view of the fact f; (x°) = 0 for
X € 1D, if fi(x) > 0 Vx € D, then fi(x) = 0 Vx € D and (2.21) holds with
A = 0. On the other hand, if there exists x € D satisfying f; (x) < O then, since the
system x € D, fi(x) < 0,fy(x) < 0 is inconsistent, again the theorem follows from
Proposition 2.18. Thus, in any event the theorem is true when m = 1. Assuming
now that the theorem is true for m = k — 1 > 1, consider the case m = k. The
hypotheses of the theorem imply that the system

xeD, fix) <0@(=1,...,k—1), max{fi(x),fo(x)} <O (2.22)

is inconsistent, and since the function max{f;(x),fo(x)} is convex, there exists, by
the induction hypothesis, t;, > 0,i = 1,...,k — 1, such that

k—1

max{fi(x).fo(x)} + Y _tfi(x) =0 VxeD. (2.23)

i=1
We show that this implies the inconsistency of the system

k—1

xe€D, Y tfi(x) <0, fi(x) <0, fyx) < 0. (2.24)

i=1

Indeed, from (2.23) it follows that no solution of (2.24) exists with fi(x) < O.
Furthermore, if there exists x € D satisfying (2.24) with f;(x) = O then, setting
X = ax® + (1 — a)x with @ € (0,1), we would have ¥ € D, Y| 1i(x') <
0,£(x) < 0and fo(x) < afy(x’) + (1 — a)fy(x) < O for sufficiently small o > 0.
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Since this contradicts (2.23), the system (2.24) is inconsistent and, again by the
induction hypothesis, there exist & > 0 and A; > 0 such that

k—1

H@) 40 1fi(x) + Mfi(x) =0 VxeD. (2.25)

i=1
This is the desired conclusion with A; = 6f; > Ofori=1,...,k— 1. O

Corollary 2.7 (Farkas’ Lemma) Let A be an m x n matrix, and let p € R".
If {p.x) > 0 for all x € R" satisfying Ax > 0 then p = AT for some
A=A, ..., A =0.

Proof Apply the above theorem for D = R”, fy(x) = (p,x), and f.(x) = —(d’, x),

i=1,...,m, where @ is the i-th row of A. Then there exist nonnegative A1, ..., A,
such that (p,x)—> """, A;(a’,x) > O forallx € R", hence (p,x)—) i, A;{(a’,x) =0
forallx e R", ie,p =) i, Lid'. O
Theorem 2.4 Let fi, ..., fn be convex functions finite on some convex set D in R",

and let A be a k x n matrix, b € riA(D). If the system
xeD, Ax=0b, filx) <0,i=1,...,m (2.26)

is inconsistent, then there exist a vector t € R™ and nonnegative numbers Ay, ..., A,
summing up to 1 such that

(t.Ax—b)+ Y Afi(x) =0 VxeD. (2.27)
i=1
Proof Define E = {x € D | Ax = b}. Since the system
x€E, filx)<0,i=1,...,m

is inconsistent, there exist, by Proposition 2.18, nonnegative numbers Ay, ..., A,,,
not all zero, such that

D Afix) =0 VxekE. (2.28)
i=1

By dividing )i~ A;, we may assume » ;- A; = 1. Obviously, the convex function
f(x) := >, Afi(x) is finite on D. Consider the set C of all (y,yy) € Rf x R for
which there exists an x € D satisfying

Ax—b =y, f(x) <yo.
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Since by (2.28) 0 ¢ C, and since C is convex there exists, again by Lemma 1.2, a
vector (¢, 1) € R¥ x R such that

inf [{¢,y) + toyo] > O, sup [{(#,y) + toyo] > O. (2.29)
(y.y0)€C (y.y0)EC

If tp < O then by fixing x € D,y = Ax — b and letting yo — 400 we would have
(t,¥) + toyo — —oo, contradicting (2.29). Consequently 7, > 0. We now contend
that #p > 0. Suppose the contrary, that f, = 0, so that {t,y) > 0 V(y,y9) € C, and
hence

(t.y) >0 VyeA(D)—b.

Since by hypothesis b € riA(D), i.e., 0 € 1i(A(D) — b), this implies (t,y) = 0 Vy €
A(D), hence (t,y) + toyo = 0 for all (y,yy) € C, contradicting (2.29). Therefore,
to > 0 and we can take 7o = 1. Then the left inequality (2.29), where y = Ax — b,
yo = f(x) 4 & for x € D, yields the desired relation (2.27) by making ¢ |, 0. |

2.6 Approximation by Affine Functions

A general method of nonlinear analysis is linearization, i.e., the approximation of
convex functions by affine functions. The basis for this approximation is provided
by the next result on the structure of closed convex functions which is merely the
analytical equivalent form of the corresponding theorem on the structure of closed
convex sets (Theorem 1.5).

Theorem 2.5 A proper closed convex function f on R" is the upper envelope
(pointwise supremum) of the family of all affine functions h on R" minorizing f .

Proof We first show that for any (x°, %) ¢ epif there exists (a, ) € R” x R such
that

(a,x) —t <a < (a,x°)—1° VY(x,1) € epif. (2.30)

Indeed, since epif is a closed convex set there exists by Theorem 1.3 a hyperplane
strongly separating (x°, #°) from epif, i.e., an affine function (a, x) + yt such that

(a,x) + yt <a < (a,x°)y + yi® V(x,1) € epif.

It is easily seen that y < 0 because if y > 0 then by taking a point X € domf
and an arbitrary r > f(x), we would have (x,7) € epif, hence (a,x) + yt < «
for all + > f(x), which would lead to a contradiction as ¢t — —+o00. Furthermore,
if xX° € domf then y = 0 would imply (a,x°) < (a,x°), which is absurd. Hence,
in this case, y < 0, and by dividing @ and « by —y, we can assume y = —1, so
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that (2.30) holds. On the other hand, if X ¢ domf and y = 0, we can consider an
x! € domf and ! < f(x!), so that (x', ') ¢ epif and by what has just been proved,

there exists (b, ) € R" x R satisfying
(b,x) —t < B < (b.x")y—1' V(x,1) € epif.
For any 6 > 0 we then have for all (x, f) € epif :
(b+0a,x)—t=((b,x) —1t)+ 6{a,x) < B+ O,

while (b + 0a, x°) — 1 = ((b,x°) —1°) + 0(a.x") > B + O« for sufficiently large 0
because o < {(a, x°). Thus, for > 0 large enough, setting @’ = b+0a, o’ = B+0a,
we have

(d.x)—t<ad <(d,x")y =1 V(x.1) € epif,

ie., (d,a’) satisfies (2.30). Note that (2.30) implies {a,x) —a < f(x) Vx, i.e., the
affine function i(x) = (a,x) — « minorizes f(x). Now let Q be the family of all
affine functions 4 minorizing f. We contend that

f(x) = sup{h(x)| h € Q}. (2.31)

Suppose the contrary, that f(x°) > u = sup{h(x)| h € Q} for some x°. Then
(x°, ;) ¢ epif and by the above there exists (a, ) € R" x R satisfying (2.30) for
* = u.Hence, h(x) = (a.x)—a € Qand o < {a,x°)—pu,ie., h(x") = (a,x")—a >
W, a contradiction. Thus (2.31) holds, as was to be proved. O

Corollary 2.8 For any function f : R" — [—00, +00] the closure of the convex hull
of f is equal to the upper envelope of all affine functions minorizing f.

Proof An affine function i minorizes f if and only if it minorizes cl(convf), hence
the conclusion. o

Proposition 2.19 Any proper convex function f has an affine minorant. If x° €
int(domf) then an affine minorant h exists which is exact at x°, i.e., such that

h(x%) = f(x°).

Proof Indeed, the collection Q in Theorem 2.5 for cl(f) is nonempty. If x° €
int(domf) then (x°,f(x")) is a boundary point of the convex set epif. Hence by
Theorem 1.5 there exists a supporting hyperplane to epif at this point, i.e., there
exists (a, @) € R" x R such that either a # 0 or & # 0 and

(a,x) —at < (a,x°) —af(x®) V(x,1) € epif.
As in the proof of Theorem 2.5, it is readily seen that « < 0. Furthermore, if

a = 0 then the above relation implies that {a,x) < (a,x°) for all x in some open
neighborhood U of x° contained in domf, and hence that a = 0, a contradiction.
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Therefore, o« < 0, so we can take « = —1. Then {(a,x) — t < {(a,x°) — f(x°) for all
(x, 1) € epif and the affine function

h(x) = {a,x —xo) +f(x0)

satisfies h(x) < f(x) Yx and A(x°) = F(x°). O

2.7 Subdifferential

Given a proper function f on R", a vector p € R" is called a subgradient of f at a
point x¥ if

P.x—x" + (%) <f(x) V. (2.32)

The set of all subgradients of f at x° is called the subdifferential of f at x° and is
denoted by 9f (x°) (Fig.2.2). The function f is said to be subdifferentiable at x° if

(") # 0.
Theorem 2.6 Let f be a proper convex function on R". For any bounded set

C C int(domf) the set | ¢ 0f (x) is nonempty and bounded. In particular, 3f (x°)
is nonempty and bounded at every x° € int(domf).

Proof By Proposition 2.19 if x° € int(domf) then f has an affine minorant £ (x)
such that 2(x°) = f(x°), i.e., h(x) = (p,x — x°) + f(x°) for some p € I (x°).
Thus, 9f(x°) # @ for every x° € int(domf). Consider now any bounded set C C
int(domf). As we saw in the proof of Theorem 2.2, there is r > 0 such that C +
rB C int(domf), where B denotes the Euclidean unit ball. By definition, for any

)

1%

Fig. 2.2 The set 9f (x°)
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x € Cand p € df(x), we have (p,y — x) + f(x) < f(y) Vy, but by Theorem 2.2,
there exists y > 0 such that |f(x) — f(y)| < y|ly — x| for all y € C + rB. Hence
[{p,y —x)| < ylly—x| forally € C + rB, i.e., [{p,u)| < y|lu| for all u € B. By
taking u = p/||p|| this implies [|p|| < y, so the set | ¢ 9f(x) is bounded. |

Corollary 2.9 Let f be a proper convex function on R". For any bounded convex
subset C of int(domf) there exists a positive constant 'y such that

f(x) = sup{h(x)| h € Qy} VxeC, (2.33)

where every h € Qq has the form h(x) = {(a,x) —a with |a|| < y.

Proof Tt suffices to take as Qg the family of all affine functions A (x) = {a,x —y) +
f(y), withy € C, a € of (y). O

Corollary 2.10 Let f : D — R be a convex function defined and continuous on a
convex set D with nonempty interior. If the set U{df (x)| x € intD} is bounded, then
f can be extended to a finite convex function on R".

Proof For each point y € intD take a vector p, € df(y) and consider the affine
function /,(x) = f(y) + (py,x — y). The function f(x) = sup{h,(x)| y € intD} is
convex on R” as the upper envelope of a family of affine functions. If a is any fixed
point of D then hy(x) = f(y) + (py,a —y) + (py.x —a) < f(a) + {(py,x —a) <
f(a) + ||pyll-|lx — al|. Since ||p,|| is bounded on intD the latter inequality shows that
—00 < f(x) < 400 Vx € R". Thus, f(x) is a convex finite function on R”. Finally,
since obviously f(x) = f(x) for every x € intD it follows from the continuity of
both f(x) and f(x) on D that f(x) = f(x) Vx € D. O

Example 2.1 (Positively Homogeneous Convex Function) Letf : R" — Rbe a
positively homogeneous convex function, i.e., a convex function f : R” — R such
that f(Ax) = Af(x) VA > 0. Then

IO ={peR"| (p.x°) =f(°), (p.x) <f(x) Vx} (2.34)

Proof if p € 3f(x") then (p,x — x°) + f(x°) < f(x) Vx. Setting x = 2x° yields
(p,xo) + (%) < 2f(x9), i.e., (p,xo) < f(x9), then setting x = 0 yields —(p, xO) <
—f(x"), hence (p,x°) = f(x°). (Note that this condition is trivial and can be omitted
if X% = 0). Furthermore, (p.x — x°) = (p.x) — (p.x°) = (p,x) — f(x°), hence
(p,x) < f(x) Yx. Conversely, if p belongs to the set on the right-hand side of (2.34)
then obviously (p, x —x°) < f(x) —f(x°), so p € If (x°). O

If, in addition, f(—x) = f(x) > 0 Vx then the condition (p,x) < f(x) Vx is

equivalent to |(p, x)| < f(x) Vx. In particular:

1. If f(x) = ||x|| (Euclidean norm) then

{p| Ipl <1} (unit ball) if x* = 0

0y __
PEI = o) ifx0 £ 0.

(2.35)
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2. If f(x) = max{|x;| | i = 1, ..., n} (Tchebycheff norm) then

conv{tey,...,Le,} ifx0=0

2.36
conv{(signx")x¥ | i € Lo} ifx* # 0, (2.36)

A0 = {

where I, = {i | |x;| = f(x)}.
3. If Q is a symmetric positive semidefinite matrix and f(x) = +/{x, Ox) (elliptic

norm) then
o _ 4P| (p.x) < /{x, 0x) Vx} if x° € KerQ
8f(x ) - § {(on)/ /(XO, on)} ifxO ¢ KCI'Q. (237)

Example 2.2 (Distance Function) Let C be a closed convex set in R”, and f(x) =
min{|ly — x|| | y € C}. Denote by mc(x) the projection of x on C, so that
[we(x) — x| = min{lly —x|| | y € C}and (x — 7c(x).y = 7c(x)) = 0Vy e C
(see Proposition 1.15). Then

Ne(x®) NB(0,1)ifx° e C
If () = % O e () . (2.38)
{u—xo—niu_())n} if 2" ¢ C,

where N¢(x%) denotes the outward normal cone of C at x° and B(0, 1) the Euclidean
unit ball.

Proof Let x° € C, so that f(x”) = 0. Then p € 9f(x") implies (p,x — x°) <
f(x) Vx, hence, in particular, (p,x —x°) < 0 Vx € C,i.e., p € Nc(x°); furthermore,
(p.x—x%) < f(x) < ||x—x°| Vx, hence ||p|| < 1,i.e.,p € B(0,1). Conversely, if p €
Ne(x®)NB(0, 1) then (p, x— c(x)) < |x—mc(x)|| <f(x), and {p, wc(x) —x°) <0,
consequently (p,x —x%) = (p,x — mc(x)) + (p, wc(x) — %) < f(x) = f(x) —f(x0)

for all x, and so p € 9f (x°).
Turning to the case x° ¢ C, observe that p € df (x°) implies (p, x —x°) +f(x°) <
f(x) Vx, hence, setting x = ¢ (x°) yields (p, mc(x°) — x°) + [mc(x?) —x°| < 0,
ie., (p.x° — mc(x%)) > ||x° — ¢ (x%)||. On the other hand, setting x = 2x° — 7 (x°)
yields (p, x° — (X)) + [ (x?) = x°|| < 2[|mc(x®) =20, e, (p,x° — 7)) <
e (@®) — x°)|. Thus, (p.x° — 7c(x°)) = ||mc(x’) — x°|| and consequently p =
0

ﬁ?gg;”. Conversely, the last equality implies (p, X’ —7c(x%)) = |x*—7c(x")| =

F&O), (p.x=mc(x) < [x—=mc()]| = f(x), hence (p, x—x°) +-(x°) = (p,x—x) +
(p. 2" —7c(x") = (p.x—71c(x)) = (p.x— () + (P, 7 (¥) — 2 (X)), < []x—
7e()|| = f(x) for all x (note that (p, ¢ (x) —mc(x°)) < 0 because p € Ne(c(x0))).
Therefore, (p,x — x°) + f(x°) < f(x) for all x, proving that p € 9f(x°). O

Observe from the above examples that there is a unique subgradient (which is
just the gradient) at every point where f is differentiable. This is actually a general
fact which we are now going to establish.
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Letf : R" — [—o00, +00] be any function and let x° be a point where f is finite.
If for some u # 0 the limit (finite or infinite)

o G 4 ) — ()
mm
240 A

exists, then it is called the directional derivative of f at x° in the direction u, and is
denoted by f/(x°; u).

Proposition 2.20 Let f be a proper convex function and x° € domf. Then:
() f'(x"; u) exists for every direction u and satisfies

JOO+ ) —f(x%)
7 ;

/0. 0. I f 2
(7w inf (2.39)

(ii) The function u — f'(x°; u) is convex and homogeneous and p € 3f (x°) if and
only if

(p.u) <f'(.u) Vu. (2.40)

(iii) Iff is continuous at x° then f'(x°; u) is finite and continuous at every u € R",
the subdifferential 3f (x°) is compact and

£ u) = max{(p,u) | pedf(x®))}. (2.41)

Proof

(i) For any given u # 0 the function ¢(1) = f(x° 4+ Au) is proper convex on the
real line, and 0 € domg. Therefore, its right derivative ¢/, (0) = f’ (x°; u) exists
(but may equal +o0 if 0 is an endpoint of domg). The relation (2.39) follows
from the fact that [¢(1) — ¢(0)]/A is nonincreasing as A | 0.

(i) The homogeneity of f/(x°; u) is obvious. The convexity then follows from the

relations
04 A _F(+0
Fe%u+v) = Aiggf(x + 2("‘1' v)) —f(x")
2
< igp L O M) — ) 410+ Av) — ()
T A>0 A

=1 (") + ().

Setting x = x” + Au we can turn the subgradient inequality (2.32) into the
condition

(pou) < [FG° 4+ Au) —fGO)]/A Yu, VA >0,

which is equivalent to {p, u) < infy-o[f(x* + Au) — f(x°)]/A, VYu, ie., by (i),
(p,u) <f'(x°u) Yu.
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(iii) Iff is continuous at x° then there is a neighborhood U of 0 such that f(x° + u)
is bounded above on U. Since by (i) f'(x%;u) < f(x° + u) — f(x°), it follows
that f/(x°; u) is also bounded above on U, and hence is finite and continuous
on R" (Theorem 2.2). The Condition (2.40) then implies that 9f (x) is closed
and hence compact because it is bounded by Theorem 2.6. In view of the
homogeneity of f'(x°; u), an affine minorant of it which is exact at some point
must be of the form (p, u), with (p, u) < f'(x% u) Yu, i.e., by (i), p € I (x?).
By Corollary 2.9, we then have f/(x°; u) = max{(p,u) | p € f(x°)}. O

According to the usual definition, a function f is differentiable at a point x° if
there exists a vector V£ (x") (the gradient of f at x°) such that

SE +u) = 0+ (VFE),u) + o(flul).
This is equivalent to

B FEO 4+ Au) — F(x0)
1mm =
) A

(V") u), Yu#0,

so the directional derivative f’(x°; u) exists, and is a linear function of u.

Proposition 2.21 Let f be a proper convex function and x° € domf. If f is
differentiable at x° then Vf(x°) is its unique subgradient at x°.

Proof If f is differentiable at x° then f'(x°%u) = (Vf(x"),u), so by (ii) of
Proposition 2.20, a vector p is a subgradient f at x° if and only if (p,u) <
(VF(x®), u) Yu, ie., if and only if p = Vf(x°). O

One can prove conversely that if f has a unique subgradient at x then f is
differentiable at x° (see, e.g., Rockafellar 1970).

2.8 Subdifferential Calculus

A convex function f may result from some operations on convex functions f;,i € 1.
(cf Sect. 2.2). It is important to know how the subdifferential of f can be computed
in terms of the subdifferentials of the f; s.

Proposition 2.22 Letf;, i = 1,...,m, be proper convex functions on R". Then for
everyx € R":

d (Z ﬁ(x)) D) i)
i=1 i=1
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If there exists a point a € N, domf;, where every function f;, except perhaps one,
is continuous, then the above inclusion is in fact an equality for every x € R".

Proof 1Tt suffices to prove the proposition for m = 2 because the general case will
follow by induction. Furthermore, the first part is straightforward, so we only need
to prove the second part. If p € 3(f; + f>)(x°), then the system

x—y=0, ix) +L0) —AE) —HE") — (p.x—2x") <0

is inconsistent. Define D = domf] x domf, and A(x,y) := x — y. By hypothesis,
/i is continuous at a € domf; N domf, so there is a ball U around O such that
a+U C domfj, hence U = (a+U)—a C domf; —domf, = A(D), i.e., 0 € intA(D).
Therefore, by Theorem 2.4 there exists t € R" such that

(t.x =) + i) + L) —AG") =LE) = (px—=2")] = 0

for all x € R"” and all y € R". Setting y = x° yields (p —t,x — x°) < fi(x) —f1(x°)
Vx € R, ie., p—t € 91 (x°). Then setting x = x° yields {t,y —x°) < fo(y) —fo(x?)
Vy e R% ie., t € 3f(x°). Thus, p = (p — 1) + t € I (x°) + 9f(x?), as was to be
proved. O

Proposition 2.23 Let A : R" — R™ be a linear mapping and g be a proper convex
function on R™. Then for every x € R" :
AT9g(Ax) C d(g o A)(x).

If g is continuous at some point in Im(A) (the range of A) then the above inclusion
is in fact an equality for every x € R".
Proof The first part is straightforward. To prove the second part, consider any p €
9(g 0 A)(x°). Then the system

Ax—y =0, g(y) — g(Ax") — (p,x —x") <0, x e R", y e R"

is inconsistent. Define D = R” x domg, B(x,y) = Ax — y. Since there is a point
b € ImA N int(domg), we have b € intB(D), so by Theorem 2.4 there exists t € R™
such that

(t.Ax—y) + g(y) — g(Ax") — (p.x —x°) = 0

for all x € R” and all y € R™. Setting y = 0 then yields (A7t — p, x) — g(Ax®) +
{p,x°) > 0 Vx € R", hence p = ATt, while setting x = x° yields {t,y — Ax°) <
g(») — g(Ax%), i.e., t € 0g(Ax°). Therefore, p € ATdg(Ax°). O

Proposition 2.24 Let g(x) = (g1(x),...,gm(x)), where each g; is a convex
functions from R" to R, let ¢ : R™" — R be a convex function, component-wise
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increasing, i.e., such that ¢(t) > @(i') whenever t; > tl/., i =1,...,m. Then the
function f = ¢ o g is convex and

o) =13 sip' | p' € 0gi(x). (s1.....5m) € Ip(g(x))y - (2.42)
i=1

Proof The convexity of f(x) follows from an obvious extension of Proposition 2.8

which corresponds to the case m = 1. To prove (2.42), letp = > ", s;p’ withp’ €
0gi(x"), s € dp(g(x")). First observe that (s,y — g(x)) < @(y) — ¢(g(x°)) Yy € R
implies, forally = g(x*)+uwithu < 0: (s,u) < p(g(x*)+u)—p(g(x")) < 0Vu <
0, hence s > 0. Now (p,x —x°) = Y1t si(p,x—2%) < 37, silgi(x) — &:(x%)] =
{5,8(0) — g(x”)) = ¢(g(x) — @(g(x")) = f(x) —f(x") for all x € R". Therefore
p € 9f(x"), i.e., the right-hand side of (2.42) is contained in the left-hand side. To
prove the converse, let p € 9f(x"), so that the system

xeR, yeR" gx)<y; i=1,....,m (2.43)
P = p(g(x") — (p,x—2") <0 (2.44)

is inconsistent, while the system (2.43) has a solution. By Proposition 2.18 there
exists s € R such that

9() — 9(g(") = (p.x = x°) + (s,8(0) =) = 0
forall x € R,y € R™. Setting x = x° yields ¢(y) — ¢(g(x®)) > (s,y — g(x")) for
all y € R™, which means that s € d¢(g(x")). On the other hand, setting y = g(x°)
yields (p,x —x%) < Y7 si[gi(x) — g:i(x°)] for all x € R", which means that p €
(X", sigi(x")), hence by Proposition 2.22, p = > s;p' with p’ € 9g;(x°). O

Note that when ¢(y) is differentiable at g(x) the above formula (2.42) is similar
to the classical chain rule, namely:

9
dpog)) =Y a—j(g(x»ag,-(x).
i=1 7!

Proposition 2.25 Ler f(x) = max{g|(x),...,gn(x)}, where each g; is a convex
function from R" to R. Then

df (x) = conv{Uadg;(x)| i € I(x)}, (2.45)

where 1(x) = {i | f(x) = g(x)}.
Proof If p € 3f (x°) then the system

8ix) —f(xo)—(p,x—xo) <0 i=1,....m
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is inconsistent. By Proposition 2.18, there exist A; > 0 such that Z:’;l Ai = land
S Ailgi(x) — F(x°) — (p, x —x°)] > 0. Setting x = x°, we have

> Ailg) — ] = o,
i¢1(x0)

with g;(x%) —f(x°) < 0 for every i ¢ I(x°). This implies that A; = 0 for all i ¢ I(x°).
Hence

Y Algio) — i) — (px—x)] = 0

i€l(x0)

for all x € R" and 50 p € 3(}_,¢;(,0) 4igi(x)). By Proposition 2.22, p = 3~/ 0, 7',
with p' € dg;(x°). Thus 3f(x°) C conv{Udg;(x)| i € I(x°)}. The converse inclusion
can be verified in a straightforward manner. O

2.9 Approximate Subdifferential

A proper convex function f on R" may have an empty subdifferential at certain
points. In practice, however, one often needs only a concept of approximate
subdifferential .

Given a positive number ¢ > 0, a vector p € R" is called an e-subgradient of f
at point x° if

Px—x"Y + (%) <f(x) +¢ V. (2.46)

The set of all s-subgradients of f at x° is called the e-subdifferential of f at x°, and
is denoted by 9,1 (x") (Fig.2.3).

Fig. 2.3 The set 9.f(x°)



66 2 Convex Functions

Proposition 2.26 For any proper closed convex function f on R", and any given
e > 0 the s-subdifferential of f at any point x° € domf is nonempty. If C is a
bounded subset of int(dom f) then the set U,ec0.f (x) is bounded.

Proof Since the point (x°,f(x°) — &) ¢ epif, there exists p € R” such that
(p.x = x% < f(x) = (f(x°) — &) Vx (see (2.30) in the proof of Theorem 2.5).
Thus, d.f(x") # @. The proof of the second part of the proposition is analogous to
that of Theorem 2.6. O

Note that 9,f(x") is unbounded when x° is a boundary point of domf.

Proposition 2.27 Let x°,x' € domf. If p € 3,f(x°) (¢ > 0) then p € 3,f(x") for
n = (") —f&0) = {p,x' =x°) + &> 0.

Proof If {p,x — x°) < f(x) — f(x°) + & for all x then {(p,x —x') = (p,x — %) +
p. 2" —=x" <fx) —f(x®) + & — (p,x! —x°) = f(x) —f(x") + 7 for all x. O

A function f(x) is said to be strongly convex on a convex set C if there exists
r > 0 such that

FU(1=)xt + Ax?)
< (1= 2)f & + A () — (1= VAr|xt — 7| (2.47)

forall x', x> € C, and all A € [0, 1]. The number » > 0 is then called the modulus of
strong convexity of f(x). Using the identity

(1= A" =212 = (1= D2+ AP = (1= 2)x" + 272

for all x!,x?> € R", and all A € [0, 1], it is easily verified that a convex function f (x)
is strongly convex with modulus of strong convexity r if and only if the function
f(x) = r||x||? is convex.

Proposition 2.28 [ff(x) is a strongly convex function on R" with modulus of strong
convexity r then for any x° € R" and e > 0 :

A (x°) 4+ B(0,2+/re) C 3. (x"), (2.48)

where B(0, a) denotes the ball of radius a around 0.

Proof Let p € 9f(x"). Since F(x) := f(x) — r|x|| is convex and p — 2rx’ € dF(x°)
we can write

@) =FC) = (x> = 11017 = (p — 2m%, x = x%)
for all x, hence

F@ —=f() = (pox =) + rllx =22,
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Let us determine a vector u such that
0112 0 n
rllx—x"||° > {(u,x —x°) —e Vx € R". (2.49)

The convex quadratic function 7|jx — x°||> — (i, x — x°) achieves its minimum at
the point X such that 2r(x — x°) —u = 0, i.e., ¥ —x° = 2. This minimum is
2 _ 2 . .
equal to r[%]2 — % = %. Thus, by choosing u such that |u||> < 4re, ie.,

u € B(0,2./re) we will have (2.49), hence p + u € 9.f(x°). |
Corollary 2.11 Let f(x) = %(x Ox) + (x,a), where a € R"'.and Q is an n X n
symmetric positive definite matrix. Let r > 0 be the smallest eigenvalue of Q. Then

Ox+a+uedf(x)

for any u € R such that ||u| < 2./re.

Proof Clearly f(x) — r||x||? is convex (as its smallest eigenvalue is nonnegative), so
f(x) is a strongly convex function to which the above proposition applies. O

2.10 Conjugate Functions

Given an arbitrary function f : R" — [—o0, +00], we consider the set of all
affine functions 4 minorizing f. It is natural to restrict ourselves to proper functions,
because an improper function either has no affine minorant (if f(x) = —oo for
some x) or is minorized by every affine function (if f(x) is identical to 4-00).
Observe that if (p, x) —a < f(x) for all x then @ > {p, x) —f(x) Vx. The function

f*(p) = sup{{p.x) —f()}. (2.50)

x€R”

which is clearly closed and convex is called the conjugate of f.
For instance, the conjugate of the function f(x) = ¢ (x) (indicator function of
a set C, see Sect.2.1) is the function f*(p) = sup(p,x) = sc(p) (support function
eC

of C). The conjugate of an affine function f(x) = (¢, x) — « is the function

too,p#c

1) = supl(p.) — fex) by = § DT

Two less trivial examples are the following:

Example 2.3 The conjugate of the proper convex function f(x) = ¢*, x € R, is by
definition f*(p) = sup{px — ¢*}. Obviously, f*(p) = 0 for p = 0 and f*(p) = +o0

for p < 0. For p > 0, the function px — ¢* achieves a maximum at x = £ satisfying
p = ¢, s0f*(p) = plogp — p. Thus,
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0, p=0
[ (p) = | +oo. p<0
plogp—p,p>0.

The conjugate of * (p) is in turn the function f**(x) = sup{px—f*(p)} = sup{px—
P

plogp +p|lp >0} ="

Example 2.4 The conjugate of the function f(x) = é Yol 1 < < oo,
is

1 n
) = EZW, 1< B < oo,
i=1

where 1/a + 1/8 = 1. Indeed,

f*(p) = sup § Zpixi - é Z |in°‘} .
* li=1 i=1

By differentiation, we find that the supremum on the right-hand side is achieved at
x = & satisfying p; = |&;|% 'sign§;, hence

n 1 1 n
* — iot 1—=)=— iﬂ'
fp) i§=1 |l ( a) 3 i§=1 |pil

Proposition 2.29 Let f : R" — [—o00,+00] be an arbitrary proper function.
Then:

i) f&) +f*(p) = (p.x)  VxeR" VpeR"
(i) f**(x) < f(x) Vx, and f** = f if and only if f is convex and closed;
(iii) f**(x) = sup{h(x)| & affine, h < f}, i.e., f**(x) is the largest closed convex
function minorizing f(x) : f** = cl(conv)f.

Proof (i) is obvious, and from (i) f**(x) = sup,{(p,x)—f*(p)} < f(x). Let Q be the
set of all affine functions majorized by f. For every h € Q, say h(x) = (p,x) —«, we
have (p, x) —a < f(x) Vx, hence a > sup {{p,x) —f(x)} = f*(p), and consequently
h(x) < {p,x) —f*(p) VYx. Thus

sup{h| h € O} < sup{(p.x) —f*(p)} = ™", (2.51)
p

If f is convex and closed then, since it is proper, by Theorem 2.5 it is just equal to the
function on the left-hand side of (2.51) and since f > f**, it follows that f = f**.
Conversely, if f = f** then f is the conjugate of f*, hence is convex and closed.
Turning to (iii) observe that if O = @ then f*(p) = sup {(p,x) — f(x)} = +oo for



2.11 Extremal Values of Convex Functions 69

all p and consequently, f** = —oo. But in this case, sup{h| h € Q} = —o0, too,
hence f** = sup{h| h € Q}. On the other hand, if there is & € Q then from (2.51)
h < f**; conversely, if 1 < f** then h < f (because f** < f). In this case, since
f**(x) < f(x) < +o0 at least for some x, and f**(x) > —oo Vx (because there is an
affine function minorizing /**), it follows that f** is proper. By Theorem 2.5, then
f** = sup{h| h affine h < f**} = sup{h| h € Q}. This proves the equality in (iii),
and so, by Corollary 2.8, f** = cl(conv)f. |

2.11 Extremal Values of Convex Functions

The smallest and the largest values of a convex function on a given convex set are
often of particular interest.

Let f : R" — [—o00,+00] be an arbitrary function, and C an arbitrary set
in R". A point xX° € C N domf is called a global minimizer of f(x) on C if
—00 < f(x%) < f(x) for all x € C. It is called a local minimizer of f(x) on
C if there exists a neighborhood U(x") of x° such that —oco < f(x°) < f(x) for
all x € C N UK"). The concepts of global maximizer and local maximizer are
defined analogously. For an arbitrary function f on a set C we denote the set of all
global minimizers (maximizers) of f on C by argmin,ecf (x) (argmax,ecf(x), resp.).
Since min,ec f(x) = —maxyec(—f(x)) the theory of the minimum (maximum) of
a convex function is the same as the theory of the maximum (minimum, resp.) of a
concave function.

2.11.1 Minimum

Proposition 2.30 Ler C be a nonempty convex set in R, and f : R" — R be a
convex function. Any local minimizer of f on C is also global. The set argmig f(x) is
xe

a convex subset of C.

Proof Let x° € C be a local minimizer of f and U(x’) be a neighborhood such that
f(&x%) < f(x) Vx € CN U@K"). For any x € C we have x) 1= (1 —A)x® 4+ Ax €
C N UX°) for sufficiently small A > 0. Then f(x°) < f(x3) < (1 =A)f(x°) + Af (%),
hence f(x°) < f(x), proving the first part of the proposition. If @ = minf(C) then
argminyecf (x) coincides with the set C N {x| f(x) < «} which is a convex set by the
convexity of f(x) (Proposition 2.11). O

Remark 2.1 A real-valued function f on a convex set C is said to be strictly convex
on C if

A =x! + 22 < (1= Df (1) + Af ()

for any two distinct points x', x> € C and 0 < A < 1. For such a function f the set
argmin,ecf(x), if nonempty, is a singleton, i.e., a strictly convex function f(x) on
C has at most one minimizer over C. In fact, if there were two distinct minimizers
x', x? then by strict convexity f (’#) < f(x"), which is impossible.
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Proposition 2.31 Let C be a convex set in R", and f : R* — [—00, +00] a convex
function which is finite on C. For a point X° € C to be a minimizer of f on C it is

necessary and sufficient that
0 € f(x°) + Ne(x%), (2.52)

where N¢(x°) denotes the (outward) normal cone of C at x°. (cf Sect. 1.6)

Proof 1If (2.52) holds there is p € 9f(x") N —N¢(x°). For every x € C, since p €
of (x°), we have (p,x —x°) < f(x) —f(x°), ie., f(x°) < f(x) — (p.x — x°); on the
other hand, since p € —N¢(x°), we have (p,x —x°) > 0, hence f(x°) < f(x), i.e., x°
is a minimizer. Conversely, if x° € argmin, .f(x) then the system

(x,y) eCxR", x—y=0, f(y) —f(xo) <0

is inconsistent. Define D := C x R" and A(x,y) := x — y, so that A(D) = C — R".
For any ball U around 0, x° + U C R”, hence U = x° — (x* + U) C A(D), and so
0 € intA(D). Therefore, by Theorem 2.4, there exists a vector p € R" such that

(P.x—y) +f) —f(*) >0 V(x,y) e CxR".

Letting y = x° yields {(p,x —x°) > 0 Vx € C,ie,p € —Nc(x°), then letting
x = 10 yields f(y) — f(x°) > (p.y —x°) Vy € R", ie., p € 3f(x°). Thus, p €
—Nc(x%) N 9F(x°), completing the proof. |

Corollary 2.12 Under the assumptions of the above proposition, an interior point
x° of C is a minimizer if and only if 0 € 9f (x°).

Proof Indeed, Nc(x°) = {0} if x° € intC. O

Proposition 2.32 Let C be a nonempty compact set in R", f : C — R an arbitrary
continuous function, f¢ the convex envelope of f over C. Then any global minimizer
of f(x) on C is also a global minimizer of f°(x) on convC.

Proof Let X € C be a global minimizer of f(x) on C. Since f¢ is a minorant
of f, we have f°(x°) < fFf(%. If fx°) < f(x°) then the convex function
h(x) = max{f(x"),f°(x)} would be a convex minorant of f larger than f¢, which
is impossible. Thus, f¢(x°) = f(x°) and f¢(x) = h(x) Vx € convC. Hence,
(0 = f(x°) < f°(x) Yx € convC, i.e., x° is also a global minimizer of f¢(x)
on convC. O

2.11.2 Maximum

In contrast with the minimum, a local maximum of a convex function may not be
global. Generally speaking, local information is not sufficient to identify a global
maximizer of a convex function.
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Proposition 2.33 Let C be a convex set in R*, and f : C — R be a convex function.
Iff (x) attains its maximum on C at a point x° € riC then f(x) is constant on C. The
set argmax f(x) is a union of faces of C.

xX€

Proof Suppose that f attains its maximum on C at a point x° € riC and let x be an
arbitrary point of C. Since x° € riC there is y € C such that x° = Ax + (1 — A)y for
some A € (0,1). Then f(x°) < Af(x) + (1 — A)f(y), hence Af (x) > f(x°) — (1 = 1)
fO) = &%) = (1= Df ) = A (x). Thus f(x) > f(x°), hence f(x) = f(x"),
proving the first part of the proposition. The second part follows, because for any
maximizer x° there is a face F of C such that x° € riF : then by the previous

argument, any point of this face is a global minimizer. O

Proposition 2.34 Let C be a closed convex set, and f : C — R be a convex
function. If C contains no line and f(x) is bounded above on every halfline of C
then

sup{f(x)| x € C} = sup{f(x)| x € V(C)},

where V(C) is the set of extreme points of C. If the maximum of f (x) is attained at
all on C, it is attained on V(C).

Proof By Theorem 1.7, C = convV(C) + K, where K is the convex cone generated
by the extreme directions of C. Any point of C which is actually not an extreme
point belongs to a halfline emanating from some v € V(C) in the direction of a ray
of K. Since f(x) is finite and bounded above on this halfline, its maximum on the
halfline is attained at v (Proposition 2.12, (ii)). Therefore, the supremum of f(x) on
C is reduced to the supremum on convV(C). The conclusion then follows from the
fact that any x € convV(C) is of the form x = Y_,., A;v', with |I| < +oo,v’ €
V(C), A = 0,Y ;A = 1, hence f(x) < Y i, Af (v) < maxier f(v7). O

Corollary 2.13 A real-valued convex function f(x) on a polyhedron C containing
no line is either unbounded above on some unbounded edge or attains its maximum
at an extreme point of C.

Corollary 2.14 A real-valued convex function f(x) on a compact convex set C
attains its maximum at an extreme point of C.

The latter result is in fact true for a wider class of functions, namely for
quasiconvex functions. As was defined in Sect. 2.3, these are functions f : R" —
[—00, +00] such that for any real number «, the level set L, := {x € R"| f(x) < a}
is convex, or equivalently, such that

S = x" + Ax%) < max{f(x').f ()} (2.53)
for any x',x*> € Cand any A € [0, 1].

To see that Corollary 2.14 extends to quasiconvex functions, just note that a
compact convex set C is the convex hull of its extreme points (Corollary 1.13), so
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any x € C can be represented as x = Y ,., A;v’, where v’ are extreme points, A; > 0
and >,.; A; = 1.If f(x) is a quasiconvex function finite on C, and & = maxe; f(v"),
then v' € CNL,, Vi € I, hence x € C N L,, because of the convexity of the set
C N L,. Therefore, f(x) < a = max,e; f(v'), i.e., the maximum of f on C is attained
at some extreme point.

A function f(x) is said to be quasiconcave if —f(x) is quasiconvex. A convex
(concave) function is of course quasiconvex (quasiconcave), but the converse may
not be true, as can be demonstrated by a monotone nonconvex function of one
variable. Also it is easily seen that an upper envelope of a family of quasiconvex
functions is quasiconvex, but the sum of two quasiconvex functions may not be
quasiconvex.

2.12 Minimax and Saddle Points

2.12.1 Minimax

Given a function f(x,y) : C x D — R we can compute inf.ecf(x,y) and
sup,ep f(x,y). Itis easy to see that there always holds

sup inf f(x,y) < inf supf(x,y).
yeD xeC XECyED

Indeed, infiecf(x,y) =< f(z,y) Yz € C,y € D, so sup,epinfrecf(x,y) <
supyepf(z.y) Yz € C, hence sup,cp infrec f(x, y) < infrec sup,ep f(z, ).

We would like to know when the reverse inequality is also true, i.e., when there
holds the minimax equality

y = sup inf f(x,y) = inf supf(x,y) ;= n.
yeD xeC x€C yeD

Investigations on this question date back to von Neumann (1928). A classical result
of his states that if C,D are compact and f(x,y) is convex in x, concave in y
and continuous in each variable then the minimax equality holds. Since minimax
theorems have found important applications, there has been a great deal of work on
the extension of von Neumann’s theorem. Almost all these extensions are based
either on the separation theorem of convex sets or a fixed point argument. The
most important result in this direction is due to Sion (1958). Later a more general
minimax theorem was established by Tuy (1974) without any appeal to separation
or fixed point argument. We present here a simplified version of the latter result
which is also a refinement of Sion’s theorem.

Theorem 2.7 Let C,D be two closed convex sets in R",R™, respectively, and let
f(x,y) : C x D — R be a function quasiconvex, lower semi-continuous in x and
quasiconcave, upper semi-continuous in y. Assume that

(*) There exists a finite set N C D such that sup,cy f(x,y) — +ooasx € C,
x| = +o0.
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Then there holds the minimax equality

inf sup f(x,y) = sup inf f(x, y). (2.54)
XGCyGD yeD xeC

Proof Since the inequality infyec sup,ep f(x,y) = sup ing f(x,y) is trivial, it suffices
yeD X€
to show the reverse inequality:

inf sup f(x,y) < supinf f(x, y). (2.55)
xeC yeD yeD xeC

Let n := sup,¢p infrec f(x,y). If n = +o0o then (2.55) is obvious, so we can assume
n < +oo0. For an arbitrary o > 1 define

Cu(y) = x € Clf(x,y) = aj.

Since sup,¢p infrec < &, we have Cy(y) # @ Yy € D. If we can show that

(G # 0. (2.56)

YED

i.e., there is x € C satisfying f(x,y) < « for all y € D, then infiec Sup,ep <
o and since this is true for every o > 7 it will follow that infiec supyep < 7,
proving (2.55). Thus, all is reduced to establishing (2.56). This will be done in three
stages. To simplify the notation, from now on we shall omit the subscript « and
write simply C(a), C(b), etc. ..

I. Let us first show that for every pair a,b € D the two sets C(a) and C(b)
intersect. Assume the contrary, that

Cla) N Cb) = 9. (2.57)

Consider an arbitrary A € [0, 1] and let yy = (1 — A)a + Ab. If x € C(yy),

i.e., f(x,y;) < athen min{f(x,a).f(x,b)} < f(x.y)) < a by quasiconcavity of
f(x,.), hence, either f(x,a) < « or f(x, b) < a. Therefore,

C(y)) C C(a) U C(D). (2.58)

Since C(y,) is convex it follows from (2.58) that C(y;) cannot meet both sets

C(a) and C(b) which are disjoint by assumption (2.57). Consequently, for every
A € [0, 1], one and only one of the following alternatives occurs:

(@) C(ya) € C(a):  (b) C(y2) C C(b).
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Denote by M,(M,, resp.) the set of all A € [0, 1] satisfying (a) (satisfying (b),
resp.). Clearly 0 € M,, 1 € M, M, U M, = [0, 1] and, analogously to (2.58):

C(y) C COR) UCHs,) VA € AL Al (2.59)

Therefore, A € M, implies [0, A] C M,, and A € M}, implies [A, 1] C M,. Let
s = supM, = inf M, and assume, for instance, that s € M, (the argument is
similar if s € M},). We show that (2.57) leads to a contradiction.

Since @ > n > infiecf(x,ys), we have f(X,y;) < « for some X € C. By
upper semi-continuity of f (%, .) there is & > 0 such that f(X, y;4+.) < « and so
X € C(ys+¢). Butx € C(ys) C C(a), hence C(ys+:) C C(a), ie., s + & € M,,
contradicting the definition of s. Thus (2.57) cannot occur and we must have
Cla)NC(b) #@foralla,be C,a <.

We now show that any finite collection C(y'), ..., C(y*) with y!,... .y € D
has a nonempty intersection. By (I) this is true for k = 2. Assuming this is true
for k = h—1 let us consider the case k = h. Set C' = C(y"), C'(y) = C'NC(y).
From part I we know that C'(y) # @ for every y € D. This means that for all
a>n: VyeD IxelC f(xy) =< a,sothat sup,pinfiec f(x,y) < a.
Since n = supyepinfrecf(x,y) =< sup,epinfrec f(x,y), it follows that n =
sup,cp infrec’ f(x,y). So all the hypotheses of the theorem still hold when C
is replaced by C'. It then follows from the induction assumption that the sets
C'(y"),....C'(y"") have a nonempty intersection. Thus the family {C,(y),y €
D} has the finite intersection property.

Finally, for every y € D let C*(y) = {x € C| f(x,y) < a,sup,eyf(x,2) < a}.
Then C*(y) C CV := {x € C| sup,eyf(x,2) < o} and the set C" is compact
because if it were not so there would exist a sequence x* € CV such that || x*| —
+00, contradicting assumption (*). On the other hand, for any finite set E C D
clearly NyerC* (y) = NyepunC(y), so by part I NyepC* (y) # @, i.e., the family
{C*(y),y € D} has the finite intersection property. Since every C*(y) is a subset
of the compact set CV it follows that NyepCy (y) = NyepC*(y) # @, i.e. (2.56)
must hold. O

Remark 2.2 In view of the symmetry in the roles of x, y Theorem 2.7 still holds if
instead of condition (*) one assumes that

(") There exists a finite set M C C such that infiep f(x,y) —> —0c0 as y €
D, |yl = +oo.

The proof is analogous, using D, (x) := {y € D| f(x,y) > o} witha > y :=

infyec supyep f(x,y) (instead of Co(y) with @ < n := sup,epinfrecf(x,y)) and
proving that NyecDy (x) # 0.
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2.12.2 Saddle Point of a Function

A pair (x,y) € C x D is called a saddle point of the function f(x,y) : C x D — R if
f&xy) =fxy) =fxy) VxeC, VyeD. (2.60)
This means
min(x,y) = f(x,y) = maxf(x,y),
xeC y€D
so in a neighborhood of the point (¥, ¥, f(X,y)) the set epif := {(x,y,1)| (x,y) €
Cx D, teR, f(x,y) <t} reminds the image of a saddle (or a mountain pass).
Proposition 2.35 A point (x,y) € C x D is a saddle point of f(x,y) : C x D — R
if and only if
max inf f(x,y) = minsupf(x,y). (2.61)
y€D x€C x€C yep
Proof We have

(2.60) € sup,epf(%.y) < f(55) < infyecf(x,5)
& infrec sup,epf(x.y) < sup,ep /() < f(EF)

S infxECf(x» y) S SupyeD infoCf(x, y)

Since always infyec supyepf(x,y) = supyep infrecf(x,y) we must have equality
everywhere in the above sequence of inequalities. Therefore, (2.60) must be
equivalent to (2.61). O

As a consequence of Theorem 2.7 and Remark 2.2 we can now state

Proposition 2.36 Assume that C C R", D C R" are nonempty closed convex sets
and the function f(x,y) : C x D — R is quasiconvex l.s.c in x and quasiconcave
u.s.c. in'y. If both the following conditions hold:

() There exists a finite set N C D such that sup,eyf(x,y) — 400 as x €
C, xll = +o0;

(ii) There exists a finite set M C C such that infiepy f(x,y) — +o00 asy €
D, |yl = +o0:

then there exists a saddle point (X,y) for the function f(x, y).

Proof If (i) holds, we have minyec supyepf(x,y) = sup,ep infrecf(x,y) by The-
orem 2.7. If (ii) holds, we have infyec sup,epf(x,y) = maxyep infrecf(x,y) by
Remark 2.2. Hence the condition (2.61). O
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2.13 Convex Optimization

We assume that the reader is familiar with convex optimization problems, i.e.,
optimization problems of the form

min{f(x)| gi(x) <0(=1,...,m), x) =0(G=1,....,p), x€ 2}, (2.62)

where 2 C R” is a closed convex set, f, g1, ..., gy, are convex functions finite on
an open domain containing £2, hy, ..., h,, are affine functions.

In this section we study a generalization of problem (2.62), where the convex
inequality constraints are understood in a generalized sense.

2.13.1 Generalized Inequalities

a. Ordering Induced by a Cone

A cone K C R" induces a partial ordering <, on R” such that
x<ky & y—xeKk.

We also write x =g y to mean y <k x. In the case K = R this is the usual ordering
X<y &xi<y,i=1,...,m
The following properties of the ordering < are straightforward:

(i) transitivity: x <g vy, y Sk 2 => X 3¢ Z;

(ii) reflexivity: x <k x Vx € R";
(iii) preservation under addition: x <g y, X’ <x ¥y = x+x ¢y +;
(iv) preservation under nonnegative scaling: x <x y, ¢ > 0 = ax <g oy.

The ordering induced by a cone K is of particular interest when K is closed, solid
(i.e., has nonempty interior), and pointed (i.e., contains no line: x € K = —x ¢ K).
In that case a relation x <k yis called a generalized inequality. We also write x <g y
to mean that y — x € intK and call such a relation a strict generalized inequality.

Generalized inequalities enjoy the following important properties:

) x 2k y, y <k x > x=y
(i) x Ax x;
(iii) ¥ <k Y5, = x, Y >y = x=¢y;
(iv) If x <k y then for &, v small enough x + u <g y + v;
V) x<xy, uXx=>x+u=<gy+uv;
(vi) The set {z| x <g z <k y} is bounded.

k

For instance, (ii) is true because x < x implies 0 = x — x € intK, which
is impossible as K is pointed; (vi) holds because the set E = {z| x <x z <k y}
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is closed, so if there exists {z*} C E,||z*|| — +oo then, up to a subsequence,

Z/|1z*l — wu with |lu|| = 1 and since ﬁ € @+ K ﬁ € g — K. letting

k — +ooyields u € K,u € —K, hence by (i) u = 0 conflicting with [Ju| = 1.

b. Dual Cone
The dual cone of a cone K is by definition the cone
K*={yeR" {x,y) >0Vx €K}

Note that K* = —K?°, where K? is the polar of K (Sect. 1.8). As can easily be seen:

(i) K* is a closed convex cone;

(i) K* is also the dual cone of the closure of K;
(iii) (K*)* = clK;
(iv) If x € intK then {x,y) > 0 Vy € K*\ {0}.

A cone K is said to be self-dual if K* = K. Clearly the orthant R’} is a self-dual
cone.

Lemma 2.1 IfK is a closed convex cone then
y¢K & A eK* (A,y) <0.

Proof By (iii) above K = (K*)* soy ¢ K if and only if y ¢ (K*)*, hence if and
only if there exists A € K* satisfying (A,y) < 0. O

¢. K-Convex Functions

Given a convex cone K C R” inducing an ordering <x on R” a map g : R* — R”
is called K-convex if for every x,x2 e R"and 0 < o < 1 we have the generalized
inequality

glox' + (1 —a)x?) ¢ ag(x') + (1 — )¢ (). (2.63)
For instance, the map g : R" — R"™ is R’} -convex (or component-wise convex) if

each function g;(x),i = 1...,m, is convex.

Lemma22 If g : R" — R™ is a K-convex map then for every A € K*

the function (A, g(x)) = > i, Xigi(x) is convex in the usual sense and the set

{x € R"| g(x) < O} is convex.

Proof For every x', x*> € R", we have by (2.63)

ag(xh) 4+ (1 —a)g(x?) — glax! + (1 —a)x?) € K.
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Since A € K* it follows that
(A og(x") + (1 —a)g(x®) — glax) + (1 — )g(x*)) > 0,

hence a (A, g(x")) + (1 —a)(A, g(x")) > (A, g(ax") + (1 — a)g(x?)), proving that
the function (A, g(x)) is convex.
Further, by (2.2), if g(xl) <k 0, g(xz) <g 0 then

glax)) + (1 —a)x?) <k ag(x") + (1 —a)g(x?) < 0,

proving that the set {x| g(x) <k 0} is convex. O

2.13.2 Generalized Convex Optimization

A generalized convex optimization problem is a problem of the form
min{f (x)| gi(x) <k, 0 (i=1,...,m), h(x) =0, x € 2}, (2.64)

where f : R” — R is a convex function, K; is a closed, solid, pointed convex cone
inR% g : R" - R% i = 1,...,m, is K;-convex, finite on the whole R", & :
R"™ — RR? is an affine map, and £2 C R" is a closed convex set. By Lemma 2.2 the
constraint set of this problem is convex, so this is also a problem of minimizing a
convex function over a convex set.

Let A; € K be the Lagrange multiplier associated with the generalized inequality
gi(x) =k, 0 and u € R’ the Lagrange multiplier associated with the equality
h(x) = 0. So the Lagrangian of the problem is the function

Lx A ) i=£(0) + Y (A gi(0) + (. h(x)),

i=1
where A; € Ki*, i=1,...,m,and u € RP. The dual Lagrange function is

m

PO ) = inf L(v. A o) = PG + (ki) + (M)},

I=1

Since ¢(A, ) is the lower envelope of a family of affine functions in (4, ), it is a
concave function. Setting K* = K| x---x Ky, A = (A1, ..., A,) we can show that

sup  L(x,A, pn)

AEK* uERP

| f) ifgix) 2, 0(=1,...,m), h(x) =0;
" | 400 otherwise
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In fact, if g;(x) <k, 0 (i = 1,...,m), h(x) = O then the supremum is attained for
A = 0,u = 0 and equals f(x). On the other hand, if h(x) # O there is u € R?
satisfying (u, h(x)) > 0 and for A = 0 the supremum is equal to supy. o{f(x) +
(O, h(x))} = +oo. If thereisani = 1,...,m with g;(x) Zk, 0 then by Lemma 2.1
there is A; € K satisfying (A;, g;(x)) > 0, hence for u = 0,1; = 0 Vj # i, the
supremum equals supg. o{f (x) + 0(A;, gi(x))} = +o0.

Thus, the problem (2.64) can be written as

inf  sup  L(x, A, pn).
YE82 ) ek* peRp

The dual problem is
sup inf L(x, A, ),
AeK* peRp X€82
that is,
sup  ¢(A, p). (2.65)
AEK* ueRP
Theorem 2.8

(1) (weak duality) The optimal value in the dual problem never exceeds the optimal
value in the primal problem (2.64).

(ii) (strong duality) The optimal values in the two problems are equal if the Slater
condition holds, i.e., if

Ixeint? h(x) =0, g(x) <¢ 0, i=1,...,m.

Proof (i) is straightforward, we need only prove (ii). By Lemma 2.2 for every A; €
K} the function (A;, gi(x)) is convex (in the usual sense), finite on R” and hence
continuous. So L(x, A, 1) is a convex continuous function in x € £2 for every fixed
(A, u) € D:= K} x---xKyxRP and affine in (A, u) € D for every fixed x € h(£2).

Since i : R" — R? is an affine map, without loss of generality it can be assumed
that A(£2) = RP. Since h(x) = 0 and X € int§2, we have 0 € intf2, so for every
j=1,....pthereis an @ € £ such that h(</) has its j-th component equal to 1,
and all other components equal to 0. Then for sufficiently small ¢ > 0, we have
Xi=x+eld—-x) e, ¥ =x—e(@—x) €2, andso

gW) <0G =1,....,m), hj(¥) >0, hj(¥) =0 Vi #
gW) <0G =1,...,m), hi(¥) <0, hi(¥) =0 Vi # .
LetM = {x¥,%,j=1,...,p}. Forevery (A, ) € D\ {0} we can write

m P
PO 1) = ml;;[; igi(0) + ) whi(x)] <0

j=1
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hence, 6 := max{p(A, u)| A € RY, u € R, ||A|| + ||u¢]l = 1} < 0. Consequently,

min L(x, (3, 1)) < maxf(x) + mm{z N + 3 1)

j=1

= maxf(x) + (Al + [|£IDo — —o0

as (A, ) € D, |A|| + |||l = +oo. So the function L(x, (A, i)) satisfies condition
(") in Remark 2.2 with C = 2,y = (A, u). By virtue of this Remark,

1nf sup L(x, (A, pn)) = max 1nf L(x, (A, pn)),
2 (A.weD AW)ED

completing the proof of (ii). O

The difference between the optimal values in the primal and dual problems is
called the duality gap. Theorem 2.8 says that for problem (2.64) the duality gap is
never negative and is zero if Slater condition is satisfied.

2.13.3 Conic Programming

Let K C R™ be a closed, solid, and pointed convex cone, let c € R" and let A be an
m X n matrix, and b € R™. Then the following optimization problem:

min{(c, x)| Ax < b} (2.66)

is called a conic programming problem.
Since A(ax! + (1 — a)x?) — [0Ax! + (1 —a)Ax*] =0 €K, ie,

Afax! + (1 —a)x?) =g aAx' + (1 —a)Ax,

for all x',x> € R",0 < « < 1, the map x — b — Ax is K-convex. So a conic
program is nothing but a special case of the above considered problem (2.64) when
m=1,K; =K, f(x) = {c,x),g1(x) =b—Ax,h = 0,2 = R".

The Lagrangian of problem (2.66) is

L(X,y) = (c,x) + (y7b_Ax> = <C_ATy7x) + <b’y> (y ZK 0)
But, as can easily be seen,

(b,y) if ATy =x

inf L(x,y) = .
xeR” x.) —oo otherwise
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so the dual of the conic programming problem (2.66) is the problem
max{(b,y)| A"y = c. y = 0}. (2.67)

Clearly linear programming is a special case of conic programming when K = R, .
However, while strong duality always holds for linear programming (except only
when both the primal and the dual problems are infeasible), it is not so for conic
programming. By Theorem 2.8 a sufficient condition for strong duality in conic
programming is

dx AX >k b.

2.14 Semidefinite Programming

2.14.1 The SDP Cone

Given a symmetric n X n matrix A = [a;] (i.e., a matrix A such that AT = A) the
trace of A, written Tr(A), is the sum of its diagonal elements:

TI'(A) = Zaii.
i=1

From the definition it is readily seen that

Tr(eA + BB) = oTr(A) + BTr(B), Tr(AB) = Tr(BA)
Tr(A) =X+ -+ A,

where A;,i = 1,...,n, are the eigenvalues of A, the latter equality being derived
from the development of the characteristic polynomial det(Al, — A).

Consider now the space S” of all n x n symmetric matrices. Using the concept of
trace we can introduce an interior product' in §" defined as follows:

(A.B) = Tr(AB) = Y _ ayby = vec(4)" vec(B).
ij

where vec(A) denotes the n x n column vector whose elements are elements of the
matrix A in the order ajy,--- ,di,, A1, , Ao, "+, Anls Gyy. The norm of a matrix
A associated with this inner product is the Frobenius norm given by

'Sometimes also written as A ® B and called dot product.
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1/2

IAllF = (A.AD'? = (Tr(ATA) /2 = | Y " af
iy

The set of semidefinite positive matrices X € S forms a convex cone S'| called the
SDP cone (semidefinite positive cone). For any two matrices A, B € S" we write
A =< B to mean that B — A is semidefinite positive. In particular, A > 0 means A is a
semidefinite positive matrix.

Lemma 2.3 The cone S"+ is closed, convex, solid, pointed, and self-dual, i.e.,
St = (S
Proof We prove only the self-dual property. By definition
(1) ={Y eS| Tr(YX) > 0VX € S" }.
Let Y € S . For every X € 8’|, we have
Tr(YX) = Tr(YX'/2x"/?) = Tr(x"/?yx'/?) > 0,

where the last inequality holds because the matrix X'/2YX!'/? is semidefinite
positive. Therefore, 87 C (S’,)*. Conversely, let Y € (S’,)*. For any u € R",
we have

n

n n
Tr(Yuu") = Zyl,-u,-ul +-+ Zyniuiun = Yiuiuj = u’ Yu.
1

i=1 i=1 ij=

The matrix uu’ is obviously semidefinite positive, while the trace of Yuu! is
nonnegative by assumption, so the product u” Yu is nonnegative. Since u is arbitrary,

this means ¥ € 8", . Hence, (S',)* C §';. |

A map F : R" — S™ is said to be convex, or more precisely, convex with respect
to matrix inequalities if it is S’_‘”_-convex, i.e., such that for every X,Y € S" and
0<r<1

FX+ (1 —-0Y) XtF(X)+ (1 —0)F(Y).

For instance, the map X +— X2 is convex because for every u € R™ the function
u"X?u = || Xu||? is convex quadratic with respect to the components of X and so

u'AX + (1= D)X)%u < A" X2u + (1 — Vu’ X%u,

which implies (AX + (1 — 1)X)? < AX? + (1 — 1)X?. Analogously, the function
X — XXT is convex.
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2.14.2 Linear Matrix Inequality

A linear matrix inequality (LMI) is a generalized inequality

A0+X1A1 ++ann = 0
where x € R" is the variable and A; € S7,i = 0, 1, ..., n, are given p X p symmetric
matrices. The inequality sign < is understood with respect to the cone Sﬁ_ : the

notation P < 0 means the matrix P is semidefinite negative. Obviously, A(x) :=
Ay + ZZ=1 XAy € S]_L and each element of this matrix is an affine function of x :

Ax) = [a;(0)], a;(x) = ag + Zasxk.
k=1

Therefore an LMI can also be defined as an inequality of the form
A(x) <0,

where A(x) is a square symmetric matrix whose every element is an affine function
of x.
By definition

Ax) 20 & (. Ax)y) =0 Vy e R,
so setting C := {x € R"| A(x) < 0}, we have
C = Nyerr{x € R"| (y,A(x)y) < 0}.

Since for every fixed y the set {x € R"| (y, A(x)y) < 0} is a halfspace, we see that the
solution set C of an LMI is a closed convex set. In other words, an LMI is nothing
but a specific convex inequality which is equivalent to an infinite system of linear
inequalities.

Obviously, the inequality A(x) > 0 is also an LMI, determining a convex
constraint for x. Furthermore, a finite system of LMI’s of the form

AVx) <0,...,A™x) <0
can be equivalently written as the single LMI

Diag(AV (x),--- , A" (x)) < 0.
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2.14.3 SDP Programming

A semidefinite program (SDP) is a problem of minimizing a linear function under
an LMI constraint, i.e., a problem of the form

(SDP) min{{c,x)| Ag + x1A; + ... + x,A, < 0}.

Clearly this is a special case of generalized convex optimization. Specifically, (SDP)
can be rewritten in the form (2.64), withm = 1,f(x) = (¢, x), g1(x) = Ayg + x141 +
e+ xALK = Sﬁ_

To form the dual problem to (SDP) we associate with the LMI constraint a dual
variable ¥ € (§%)* = S (see Lemma 2.3), so the Lagrangian is

L(x,Y) = cTx + Tr(Y (Ao + x1A| + -+ + x,4,)).

The dual function is

oY) = inf{L(x, Y)| x € R"}.

Since L(x, Y) is affine in x it is unbounded below, except if it is identically zero, i.e.,
if ¢; + Tr(YA;) = 0,i = 1,...,n, in which case L(x, Y) = Tr(AyY). Therefore,

Tr(AgY if Tr(A;Y) +¢; =0,i=1,...,n
—00 otherwise

p(Y) =
Consequently, the dual of (SDP) is
(SDD)  max{Tr(A¢Y)| Tr(A;Y) +¢;=0,i=1,....,n,Y = YT > 0}.
Writing this problem in the form

max{{Ao, V)| (A1, Y) = —cii=1,...,,Y = 0} (2.68)

we see that (SDP) reminds a linear program in standard form.
By Theorem 2.8 strong duality holds for (SDP) if Slater condition is satisfied

X Ag+ XA + - + XA, (2.69)

2.15 Exercises

1 Let f(x) be a convex function and C = domf C R”. Show that for all x', x> € C
and A ¢ [0, 1] such that Ax' + (1 = A)x*> € C:

SO+ (1= = A (1) + (1= Df ().
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2 A real-valued function f(f), —oo < t < 400, is strictly convex (cf Remark 2.1)
if it has a strictly monotonically increasing derivative f’(¢). Apply this result to
f(t) = €' and show that for any positive numbers «/, . . . a;

k 1/k |k
(n%‘) = % Zai
i=1 i=1

with equality holding only when oy = ... = .

3 A function f(x) is strongly convex (cf Sect.2.9) on a convex set C if and only if
there exists » > 0 (modulus of strong convexity) such that f(x) — r||x||* is convex.
Show that:

S =0x" +24x%) = (1= f () + A () = (1= DArfa' — ||

forall x!,x2 € Cand A ¢ [0, 1] such that Ax' + (1 —A)x*> € C.
4 Show that if f(x) is strongly convex on R” (with modulus of strong convexity r)
then for any x° € R” and p € 9f(x°) :

f) —f(°) = (p,x —x°) + rlx —x°||* Vx € R,

5 Notations being the same as in Exercise 4, show that for any x!,x*> € R”" and
p' € I ('), p* € () :

(p = PPl =) = ol = 2P
6 If f(x) is strongly convex on a convex set C then for any x” € C the level set
{x € C| f(x) < f(x")} is bounded.
7 Let C be a nonempty convex set in R”, f : C — R a convex function,

Lipschitzian with constant L on C. The function

F(x) = inf{f (y) + Llx —ylll y € C}
is convex, Lipschitzian with constant L on the whole space and satisfies F(x) =
flx) Vx e C.

8 Show that if 9. (x") is a singleton for some x° € domf and & > 0, then f(x) is an
affine function.

9 For a proper convex function f : p € df(x") if and only if (p, —1) is an outward
normal to the set epif at point (x°, f(x°)).

10 Let M be a nonempty set in R*, s : M — R an arbitrary function, £ an n X n
matrix. The function
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@(x) = max{{x, Ey) — h(y)| y € M}

is convex and for every x° € domg, if y° € argmaxyeM{(xO, Ey) — h(y)} then E)° €
o (xY).

11 Let f : R* — R be a convex function, X a closed convex subset of R",A €
R™" B € R™P ¢ € R™. Show that the function ¢(y) = min{f(x)| Ax + By <
c,x € X} is convex and for every y° € domg, if A is a Kuhn-Tucker vector for the

problem min{f(x)| Ax + By® < c,x € X} then the vector B’ 1 is a subgradient of ¢
at yO.
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