
Chapter 2
Convex Functions

2.1 Definition and Basic Properties

Given a function f W S ! Œ�1; C1� on a nonempty set S � R
n; the sets

domf D fx 2 Sj f .x/ < C1g
epif D f.x; ˛/ 2 S � Rj f .x/ � ˛g

are called the effective domain and the epigraph of f .x/; respectively. If domf ¤ ;
and f .x/ > �1 for all x 2 S, then we say that the function f .x/ is proper.

A function f W S ! Œ�1; C1� is called convex if its epigraph is a convex set in
R

n �R: This is equivalent to saying that S is a convex set in R
n and for any x1; x2 2 S

and � 2 Œ0; 1�, we have

f ..1 � �/x1 C �x2/ � .1 � �/f .x1/ C �f .x2/ (2.1)

whenever the right-hand side is defined. In other words (2.1) must always hold
unless f .x1/ D �f .x2/ D ˙1: By induction it can be proved that if f .x/ is
convex then for any finite set x1; : : : ; xk 2 S and any nonnegative numbers �1; : : : ; �k

summing up to 1, we have
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�if .xi/

whenever the right-hand side is defined. A function f .x/ is said to be concave on
S if �f .x/ is convex; affine on S if f .x/ is finite and both convex and concave. An
affine function on R

n has the form f .x/ D ha; xi C ˛; with a 2 R
n; ˛ 2 R; because

its epigraph is a halfspace in R
n � R containing no vertical line.
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40 2 Convex Functions

For a given nonempty convex set C � R
n we can define the convex functions:

• the indicator function of C W ıC.x/ D
�

0 if x 2 C
C1 if x … C

• the support function (see Sect. 1.8) sC.x/ D supy2Chy; xi
• the distance function dC.x/ D infy2C kx � yk:

The convexity of ıC.x/ is obvious; that of the two other functions can be verified
directly or derived from Propositions 2.5 and 2.9 below.

Proposition 2.1 If f .x/ is an improper convex function on R
n then f .x/ D �1 at

every relative interior point x of its effective domain.

Proof By the definition of an improper convex function, f .x0/ D �1 for at least
some x0 2 domf (unless domf D ;/: If x 2 ri.domf / then there is a point x0 2 domf
such that x is a relative interior point of the line segment Œx0; x0�: Since f .x0/ < C1;

it follows from x D �x0 C .1 � �/x0 with � 2 .0; 1/; that f .x/ � �f .x0/ C .1 � �/

f .x0/ D �1: ut
From the definition it is straightforward that a function f .x/ on R

n is convex if
and only if its restriction to every straight line in R

n is convex. Therefore, convex
functions on R

n can be characterized via properties of convex functions on the real
line.

Theorem 2.1 A real-valued function f .x/ on an open interval .a; b/ � R is convex
if and only if it is continuous and possesses at every x 2 .a; b/ finite left and right
derivatives

f 0�.x/ D lim
t"0

f .x C t/ � f .x/

t
; f 0C.x/ D lim

t#0

f .x C t/ � f .x/

t

such that f 0C.x/ is nondecreasing and

f 0�.x/ � f 0C.x/; f 0C.x1/ � f 0�.x2/ for x1 < x2: (2.2)

Proof

(i) Let f .x/ be convex. If 0 < s < t and x C t < b then the point .x C s; f .x C s//
is below the segment joining .x; f .x// and .x C t; f .x C t//; so

f .x C s/ � f .x/

s
� f .x C t/ � f .x/

t
: (2.3)

This shows that the function t 7! Œf .x C t/ � f .x/�=t is nonincreasing as t # 0:

Hence it has a limit f 0C.x/ (finite or D �1/: Analogously, f 0�.x/ exists (finite or
D C1/: Furthermore, setting y D x C s; t D s C r, we also have

f .x C s/ � f .x/

s
� f .y C r/ � f .y/

r
; (2.4)
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which implies f 0C.x/ � f 0C.y/ for x < y; i.e., f 0C.x/ is nondecreasing. Finally,
writing (2.4) as

f .y � s/ � f .y/

�s
� f .y C r/ � f .y/

r
:

and letting �s " 0; r # 0 yields f 0�.y/ � f 0C.y/; proving the left part of (2.2)
and at the same time the finiteness of these derivatives. The continuity of f .x/

at every x 2 .a; b/ then follows from the existence of finite f 0�.x/ and f 0C.x/:

Furthermore, setting x D x1; y C r D x2 in (2.4) and letting s; r ! 0 yields the
right part of (2.2).

(ii) Now suppose that f .x/ has all the properties mentioned in the Proposition and
let a < c < d < b: Consider the function

g.x/ D f .x/ � f .c/ � .x � c/
f .d/ � f .c/

d � c
:

Since for any x D .1��/cC�d, we have g.x/ D f .x/� f .c/��Œf .d/� f .c/� D
f .x/ � Œ.1 � �/f .c/ C �f .d/�; to prove the convexity of f .x/ it suffices to show
that g.x/ � 0 for any x 2 Œc; d�: Suppose the contrary, that the maximum of
g.x/ over the segment Œc; d� is positive (this maximum exists because f .x/ is
continuous). Let e 2 Œc; d� be the point where this maximum is attained. Note
that g.c/ D g.d/ D 0; (hence c < e < d/ and from its expression, g.x/ has
the same properties as f .x/; namely: g0�.x/; g0C.x/ exist at every x 2 .c; d/;

g0�.x/ � g0C.x/; g0C.x/ is nondecreasing and g0C.x1/ � g0�.x2/ for x1 � x2:

Since g.e/ � g.x/ 8x 2 Œc; d�, we must have g0�.e/ � 0 � g0C.e/; consequently
g0�.e/ D g0C.e/ D 0; and hence, since g0C.x/ is nondecreasing, g0C.x/ � 0 8x 2
Œe; d�: If g0�.y/ � 0 for some y 2 .e; d� then g0C.x/ � g0�.y/ � 0 hence g0.x/ D 0

for all x 2 Œe; y/; from which it follows that g.y/ D g.e/ > 0: Since g.d/ D
0; there must exist y 2 .e; d/ with g0�.y/ > 0: Let x1 2 Œy; d/ be the point
where g.x/ attains its maximum over the segment Œy; d�: Then g0C.x1/ � 0;

contradicting g0C.y/ � g0�.y/ > 0: Therefore g.x/ � 0 for all x 2 Œc; d�; as was
to be proved. ut

Corollary 2.1 A differentiable real-valued function f .x/ on an open interval is
convex if and only if its derivative f 0 is a nondecreasing function. A twice
differentiable real-valued function f .x/ on an open interval is convex if and only
if its second derivative f 00 is nonnegative throughout this interval. ut
Proposition 2.2 A twice differentiable real-valued function f .x/ on an open convex
set C in R

n is convex if and only if for every x 2 C its Hessian matrix

Qx D .qij.x//; qij.x/ D @2f

@xi@xj
.x1; : : : ; xn/



42 2 Convex Functions

is positive semidefinite, i.e.,

hu; Qxui � 0 8u 2 R
n:

Proof The function f is convex on C if and only if for each a 2 C and u 2 R
n the

function 'a;u.t/ D f .a C tu/ is convex on the open real interval ftj a C tu 2 Cg: The
proposition then follows from the preceding corollary since an easy computation
yields '00.t/ D hu; Qxui with x D a C tu: ut

In particular, a quadratic function

f .x/ D 1

2
hx; Qxi C hx; ai C ˛;

where Q is a symmetric n � n matrix, is convex on R
n if and only if Q is positive

semidefinite. It is concave on R
n if and only if its matrix Q is negative semidefinite.

Proposition 2.3 A proper convex function f on R
n is continuous at every interior

point of its effective domain.

Proof Let x0 2 int.domf /: Without loss of generality one can assume x0 D 0: By
Theorem 2.1, for each i D 1; : : : ; n the restriction of f to the open interval ftj x0 C
tei 2 int.domf /g is continuous relative to this interval. Hence for any given " > 0

and for each i D 1; : : : ; n, we can select ıi > 0 so small that jf .x/ � f .x0/j � " for
all x 2 Œ�ıiei; Cıiei�: Let ı D minfıij i D 1; : : : ; ng and B D fxj kxk1 � ıg: Denote
ui D ıei; uiCn D �ıei; i D 1; : : : ; n: Then, as seen in the proof of Corollary 1.6,
any x 2 B is of the form x D P2n

iD1 �iui; with
P2n

iD1 �i D 1; 0 � �i � 1; hence
f .x/ � P2n

iD1 �if .ui/; and consequently, f .x/ � f .x0/ � P2n
iD1 �iŒf .xi/ � f .x0/�:

Therefore,

jf .x/ � f .x0/j �
2nX

iD1

�ijf .x/ � f .x0/j � "

for all x 2 B; proving the continuity of f .x/ at x0: ut
Proposition 2.4 Let f be a real-valued function on a convex set C � R

n: If for
every x 2 C there exists a convex open neighborhood Ux of x such that f is convex
on Ux \ C then f is convex on C:

Proof It suffices to show that for every a 2 C; u 2 R
n; the function '.t/ D f .aC tu/

is convex on the interval � WD ftj a C tu 2 Cg: But from the hypothesis, this
function is convex in a neighborhood of every t 2 �; hence is continuous and has
left and right derivatives '0�.t/ � '0C.t/ which are non decreasing in a neighborhood
of every t 2 �. These derivatives thus exist and satisfy the conditions described in
Theorem 2.1 on the whole interval �: Hence, '.t/ is convex. ut
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Fig. 2.1 Convex piecewise affine function

For example, let f .x/ W R ! R be a piecewise convex function on the real line,
i.e., a function such that the real line can be partitioned into a finite number of
intervals �i; i D 1; : : : ; N; in each of which f .x/ is convex. Then f .x/ is convex if
and only if it is convex in the neighborhood of each breakpoint (endpoint of some
interval �i/: In particular, a piecewise affine function on the real line is convex if and
only if at each breakpoint the left slope is at most equal to the right slope (in other
words, the sequence of slopes is nondecreasing) (see Fig. 2.1).

2.2 Operations That Preserve Convexity

A function with a complicated expression may be built up from a number of
simpler ingredient functions via certain standard operations. The convexity of such a
function can often be established indirectly, by proving that the ingredient functions
are known convex functions, whereas the operations involved in the composition of
the ingredient functions preserve convexity. It is therefore useful to be familiar with
some of the most important operations which preserve convexity.

Proposition 2.5 A positive combination of finitely many proper convex functions
on R

n is convex. The upper envelope (pointwise supremum) of an arbitrary family
of convex functions is convex.

Proof If f .x/ is convex and ˛ � 0, then ˛f .x/ is obviously convex. If f1 and f2 are
proper convex functions on R

n; then it is also evident that f1 C f2 is convex. This
proves the first part of the proposition. The second part follows from the facts that
if f .x/ D supffi.x/j i 2 Ig; then epif D \i2Iepifi; and the intersection of a family of
convex sets is a convex set. ut
Proposition 2.6 Let ˝ be a convex set in R

n, G a convex set in R
m; '.x; y/ a real-

valued convex function on ˝ � G: Then the function

f .x/ D inf
y2G

'.x; y/

is convex on ˝.
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Proof Let x1; x2 2 ˝ and x D �x1 C .1 � �/x2 with � 2 Œ0; 1�: For each i D 1; 2

select a sequence fyi;kg � G such that

'.xi; yi;k/ ! inf
y2G

'.xi; y/:

By convexity of ';

f .x/ � '.x; �y1;k C .1 � �/y2;k/ � �'.x1; y1;k/ C .1 � �/'.x2; y2;k/;

hence, letting k ! 1 yields

f .x/ � �f .x1/ C .1 � �/f .x2/:

ut
Proposition 2.7 If gi.x/; i D 1; : : : ; m; are concave positive functions on a convex
set C � R

n then their geometric mean

f .x/ D
"

mY
iD1

gi.x/

#1=m

(2.5)

is a concave function (so �f .x/ is a convex function) on C:

Proof Let T D ft 2 R
mCj Qm

iD1 ti � 1g: We show that for any fixed x 2 C W
"

mY
iD1

gi.x/

#1=m

D 1

m
min
t2T

(
mX

iD1

tigi.x/

)
: (2.6)

Indeed, observe that the right-hand side of (2.6) is equal to

1

m
min

(
mX

iD1

tigi.x/j
mY

iD1

ti D 1; ti > 0; i D 1; : : : ; m

)

since if
Qm

iD1 ti > 1 then by replacing ti with t0i � ti such that
Qm

iD1 t0i D 1;

we can only decrease the value of
Pm

iD1 tigi.x/: Therefore, it can be assumed thatQm
iD1 ti D 1 and hence

mY
iD1

tigi.x/ D
mY

iD1

gi.x/: (2.7)

Since tigi.x/ > 0; i D 1; : : : ; m; and for fixed x the product of these positive
numbers is constant [D Qm

iD1 gi.x/ by (2.7)] their sum is minimal when these
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numbers are equal (by theorem on arithmetic and geometric mean). That is,
taking account of (2.7), the minimum of

Pm
iD1 tigi.x/ is achieved when tigi.x/ D

Œ
Qm

iD1 gi.x/�1=m 8i D 1; : : : ; m; hence (2.6). Since for fixed t 2 T the function
x 7! 't.x/ WD 1

m

Pm
iD1 tigi.x/ is concave by Proposition 2.5, their lower envelope

inft2T 't.x/ D Œ
Qm

iD1 gi.x/�1=m is concave by the same proposition. ut
An interesting concave function of the class (2.5) is the geometric mean:

f .x/ D
�

.x1x2 � � � xn/1=n if x1 � 0; : : : ; xn � 0

�1 otherwise

which corresponds to the case when gi.x/ D xi:

Proposition 2.8 Let g.x/ W Rn ! .�1; C1/ be a convex function and let '.t/ W
R ! .�1; C1/ be a nondecreasing convex function. Then f .x/ D '.g.x// is
convex on R

n:

Proof The proof is straightforward. For any x1; x2 2 R
n and � 2 Œ0; 1� we have

g..1 � �/x1 C �x2/ � .1 � �/g.x1/ C �g.x2/

hence

'.g..1 � �/x1 C �x2// � .1 � �/'.g.x1// C �'.g.x2//:

ut
For example, by this proposition the function f .x/ D Pm

iD1 ciegi.x/ is convex if ci > 0

and each gi.x/ is convex proper.
Given the epigraph E of a convex function f .x/, one can restore f .x/ by the

formula

f .x/ D infftj .x; t/ 2 Eg: (2.8)

Conversely, given a convex set E � R
nC1 the function f .x/ defined by (2.8) is

a convex function on R
n by Proposition 2.6. Therefore, if f1; : : : ; fm are m given

convex functions, and E � R
nC1 is a convex set resulting from some operation on

their epigraphs E1; : : : ; Em; then one can use (2.8) to define a corresponding new
convex function f .x/:

Proposition 2.9 Let f1; : : : ; fm be proper convex functions on R
n: Then

f .x/ D inf

(
mX

iD1

fi.x
i/j xi 2 R

n;

mX
iD1

xi D x

)

is a convex function on R
n:
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Proof Indeed, f .x/ is defined by (2.8), where E D E1 C � � � C Em and Ei D epifi,
i D 1; : : : ; m: ut

The above constructed function f .x/ is called the infimal convolution of the
functions f1; : : : ; fm: For example, the convexity of the distance function dC.x/ D
inffkx � yk j y 2 Cg associated with a convex set C follows from the above
proposition because dC.x/ D infyfkx�ykCıC.y/g D inffkx1kCıC.x2/j x1Cx2 D xg:

Let g.x/ now be a nonconvex function, so that its epigraph is a nonconvex set.
The relation (2.8) where E D conv.epig/ defines a function f .x/ called the convex
envelope or convex hull of g.x/ and denoted by convg: Since E is the smallest
convex set containing the epigraph of g it is easily seen that convg is the largest
convex function majorized by g:

When C is a subset of Rn; the convex envelope of the function

gjC D
�

g.x/ if x 2 C
C1 if x … C

is called the convex envelope of g over C:

Proposition 2.10 Let g W Rn ! R: The convex envelope of g over a set C � R
n

such that dim(aff C/ D k is given by

f .x/ D inf

(
kC1X
iD1

�ig.xi/j xi 2 C; �i � 0;

kC1X
iD1

�i D 1;

kC1X
iD1

�ix
i D x

)
:

Proof Let X D C � f0g � R
n � R; B D f.0; t/j 0 � t � 1g � R

n � R and define
E D f.x; g.x//j x 2 Cg D S

.x;0/2X..x; 0/ C g.x/B/: Then X is a Caratheodory core
of E (cf Sect. 1.4) and since dim(aff X/ D k; by Proposition 1.14, we have

convE D
(

.x; t/ D
kC1X
iD1

�i.x
i; g.xi//j xi 2 C; �i � 0;

kC1X
iD1

�i D 1

)
:

But clearly for every .x; t/ 2 epig there is � � t such that .x; �/ 2 E; so for every
.x; t/ 2 conv.epig/ there is � � t such that .x; �/ 2 convE: Therefore, (convg/.x/ D
infftj .x; t/ 2 conv.epig/g D infftj .x; t/ 2 convEg D inffPkC1

iD1 �ig.xi/j xi 2 C;

�i � 0;

kC1X
iD1

�ix
i D x;

kC1X
iD1

�i D 1g: ut

Corollary 2.2 The convex envelope of a concave function g W R
n ! R over a

polytope D in R
n with vertex set V is the function

f .x/ D min

(
nC1X
iD1

�ig.vi/j vi 2 V; �i � 0;

nC1X
iD1

�i D 1;

nC1X
iD1

�iv
i D x

)
:
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Proof By the above proposition, (convg/.x/ � f .x/ but any x 2 D is of the form

x D PnC1
iD1 �iv

i; with vi 2 V; �i � 0;

nC1X
iD1

�i D 1; hence f .x/ � PnC1
iD1 �ig.vi/ (by

definition of f .x//; while
PnC1

iD1 �ig.vi/ � g.x/ by the concavity of g: Therefore,
f .x/ � g.x/ 8x 2 D; and since f .x/ is convex, we must have f .x/ � .convg/.x/; and
hence f .x/ D .convg/.x/: ut

2.3 Lower Semi-Continuity

Given a function f W Rn ! Œ�1; C1� the sets

fxj f .x/ � ˛g; fxj f .x/ � ˛g

where ˛ 2 Œ�1; C1� are called lower and upper level sets, respectively, of f :

Proposition 2.11 The lower (upper, resp.) level sets of a convex (concave, resp.)
function f .x/ are convex.

Proof This property is equivalent to

f ..1 � �/x1 C �x2/ � maxff .x1/; f .x2/g 8� 2 .0; 1/ (2.9)

for all x1; x2 2 R
n; which is an immediate consequence of the definition of convex

functions. ut
Note that the converse of this proposition is not true. For example, a real-valued

function on the real line which is nondecreasing has all its lower level sets convex,
but may not be convex. A function f .x/ whose every nonempty lower level set
is convex (or, equivalently, which satisfies (2.9) for all x1; x2 2 R

n/; is said to
be quasiconvex. If every nonempty upper level set is convex, f .x/ is said to be
quasiconcave.

Proposition 2.12 For any proper convex function f W
(i) The maximum of f over any line segment is attained at one endpoint.

(ii) If f .x/ is finite and bounded above on a halfline, then its maximum over the
halfline is attained at the origin of the halfline.

(iii) If f .x/ is finite and bounded above on an affine set then it is constant on this
set.

Proof

(i) Immediate from Proposition 2.11.
(ii) If f .b/ > f .a/ then for any x D b C �.b � a/ with � � 0; we have

b D 1
1C�

xC �
1C�

a; hence .1C�/f .b/ � f .x/C�f .a/; (whenever f .x/ < C1/;
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i.e., f .x/ � �Œf .b/ � f .a/� C f .b/; which implies f .x/ ! C1 as � ! C1:

Therefore, if f .x/ is finite and bounded above on a halfline of origin a; one
must have f .b/ � f .a/ for every b on this halfline.

(iii) Let M be an affine set on which f .x/ is finite. If f .b/ > f .a/ for a; b 2 M;

then by (ii), f .x/ is unbounded above on the halfline in M from a through b:

Therefore, if f .x/ is bounded above on M; it must be constant on M: ut
A function f from a set S � R

n to Œ�1; C1� is said to be lower semi-continuous
(l.s.c.) at a point x 2 S if

lim inf
y2S

y!x

f .y/ � f .x/:

It is said to be upper semi-continuous (u.s.c.) at x 2 S if

lim sup
y2S

y!x

f .y/ � f .x/:

A function which is both lower and upper semi-continuous at x is continuous at x in
the ordinary sense.

Proposition 2.13 Let S be a closed set in R
n: For an arbitrary function f W S !

Œ�1; C1� the following conditions are equivalent:

(i) The epigraph of f is a closed set in R
nC1I

(ii) For every ˛ 2 R the set fx 2 Sj f .x/ � ˛g is closed;
(iii) f is lower semi-continuous throughout S:

Proof (i)) (ii). Let x� 2 S; x� ! x; f .x�/ � ˛: Since .x�; ˛/ 2 epif ; it follows
from the closedness of epif that .x; ˛/ 2 epif ; i.e., f .x/ � ˛; proving (ii).

(ii))(iii). Let x� 2 S; x� ! x: If lim�!1 f .x�/ < f .x/ then there is ˛ < f .x/

such that f .x�/ � ˛ for all sufficiently large �: From (ii) it would then follow that
f .x/ � ˛; a contradiction. Therefore lim�!1 f .x�/ � f .x/; proving (iii).

(iii)) (i). Let .x�; t�/ 2 epif ; (i.e., f .x�/ � t�/ and .x�; t�/ ! .x; t/: Then from
(iii), we have liminff .x�/ � f .x/; hence t � f .x/; i.e., .x; t/ 2 epif : ut
Proposition 2.14 Let f be a l.s.c. proper convex function. Then all the nonempty
lower level sets fxj f .x/ � ˛g; ˛ 2 R; have the same recession cone and the same
lineality space. The recession cone is made up of 0 and the directions of halflines
over which f is bounded above, while the lineality space is the space parallel to the
affine set on which f is constant.

Proof By Proposition 2.13 every lower level set C˛ WD fxj f .x/ � ˛g is closed.
Let � D f�uj � � 0g: If f is bounded above on a halfline �a D a C �; then
f .a/ 2 R (because f is proper) and by Proposition 2.12 f .x/ � f .a/ 8x 2 �a: For
any nonempty C˛; ˛ 2 R; consider a point b 2 C˛ and let ˇ D maxff .a/; ˛g so that
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ˇ 2 R and �a � Cˇ: Since Cˇ is closed and b 2 Cˇ it follows from Lemma 1.1 that
�b � Cˇ; i.e., f .x/ is finite and bounded above on �b: Then by Proposition 2.12,
f .x/ � f .b/ � ˛ 8x 2 �b; hence �b � C˛: Thus, if f is bounded above on a halfline
�a then � is a direction of recession for every nonempty C˛; ˛ 2 R: The converse
is obvious. Therefore, the recession cone of C˛ is the same for all ˛ and is made up
of 0 and all directions of halflines over which f is bounded above. The rest of the
proposition is straightforward. ut

The recession cone and the lineality space common to each lower level set of f
are also called the recession cone and the constancy space of f ; respectively.

Corollary 2.3 If the lower level set fxj f .x/ � ˛g of a l.s.c. proper convex function
f is nonempty and bounded for one ˛ then it is bounded for every ˛:

Proof Any lower level set of f is a closed convex set. Therefore, it is bounded if and
only if its recession cone is the singleton f0g (Corollary 1.8). ut
Corollary 2.4 If a l.s.c. proper convex function f is bounded above on a halfline
then it is bounded above on every parallel halfline emanating from a point of domf :

If it is constant on a line then it is constant on every parallel line passing through a
point of domf :

Proof Immediate. ut

Proposition 2.15 Let f be any proper convex function on R
n: For any y 2 R

n; there
exists t 2 R such that .y; t/ belongs to the lineality space of epif if and only if

f .x C �y/ D f .x/ C �t 8x 2 domf ; 8� 2 R: (2.10)

When f is l.s.c., this condition is satisfied provided for some x 2 domf the function
� 7! f .x C �y/ is affine.

Proof .y; t/ belongs to the lineality space of epif if and only if for any x 2 domf W
.x; f .x// C �.y; t/ 2 epif 8� 2 R; i.e., if and only if

f .x C �y/ � �t � f .x/ 8� 2 R:

By Proposition 2.12 applied to the proper convex function '.�/ D f .xC�t/��t; this
is equivalent to saying that '.�/ D constant, i.e., f .x C �y/ � �t D f .x/ 8� 2 R:

This proves the first part of the proposition. If f is l.s.c., i.e., epif is closed, then
.y; t/ belongs to the lineality space of epif provided for some x 2 domf the line
f.x; f .x// C �.y; t/j � 2 Rg is contained in epif (Lemma 1.1). ut

The projection of the lineality space of epif on R
n; i.e., the set of vectors y for

which there exists t such that .y; t/ belongs to the lineality space of epif ; is called
the lineality space of f : The directions of these vectors y are called directions in
which f is affine. The dimension of the lineality space of f is called the lineality of f :
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By definition, the dimension of a convex function f is the dimension of its domain.
The number dimf � linealityf which is a measure of the nonlinearity of f is then
called the rank of f W

rankf D dimf � linealityf : (2.11)

Corollary 2.5 If a proper convex function f of full dimension on R
n has rank k then

there exists a k � n matrix B with rankB D k such that for any b 2 B.domf / the
restriction of f to the affine set Bx D b is affine.

Proof Let L be the lineality space of f : Since dim L D n � k; there exists a k � n
matrix B of rank k such that L D fu 2 R

nj Bu D 0g: If b D Bx0 for some x0 2 domf
then for any x such that Bx D b, we have B.x � x0/ D 0; hence, denoting by
u1; : : : ; uh a basis of L; x D x0 CPh

iD1 �iui: By Proposition 2.15 there exist ti 2 R
such that f .x0 CPh

iD1 �iui/ D f .x0/ CPh
iD1 �iti for all � 2 R

h: Therefore, f .x/ is
affine on the affine set Bx D b: ut

Given any proper function f on R
n; the function whose epigraph is the closure of

epif is the largest l.s.c. minorant of f : It is called the l.s.c. hull of f or the closure of
f , and is denoted by clf : Thus, for a proper function f ;

epi.clf / D cl.epif /: (2.12)

A proper convex function f is said to be closed if clf D f (so for proper convex
functions, closed is synonym of l.s.c.). An improper convex function is said to be
closed only if f � C1 or f � �1 (so if f .x/ D �1 for some x then its closure is
the constant function �1/:

Proposition 2.16 The closure of a proper convex function f is a proper convex
function which agrees with f except perhaps at the relative boundary points of domf :

Proof Since epif is convex, cl(epif /, i.e., epi(clf /, is also convex (Proposition 1.10).
Hence by Proposition 2.13, clf is a closed convex function. Now the condition (2.12)
is equivalent to

clf .x/ D lim inf
y!x

f .y/ 8x 2 R
n: (2.13)

If x 2 ri.domf / then by Proposition 2.3 f .x/ D lim
y!x

f .y/; hence, by (2.13), f .x/ D
clf .x/: Furthermore, if x … cl.domf / then f .y/ D C1 for all y in a neighborhood
of x and the same formula (2.13) shows that clf .x/ D C1: Thus the second half of
the proposition is true. It remains to prove that clf is proper. For every x 2 ri.domf /;

since f is proper, �1 < clf .x/ D f .x/ < C1: On the other hand, if clf .x/ D
�1 at some relative boundary point x of domf D dom.clf / then for an arbitrary

y 2 ri.domf /, we have clf
�

xCy
2

�
� 1

2
clf .x/ C 1

2
clf .y/ D �1: Noting that xCy

2
2

ri.domf / this contradicts what has just been proved and thereby completes the proof.
ut
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2.4 Lipschitz Continuity

By Proposition 2.3 a convex function is continuous relative to the relative interior
of its domain. In this section we present further continuity properties of convex
functions.

Proposition 2.17 Let f be a convex function on R
n and D a polyhedron contained

in domf : Then f is u.s.c. relative to D; so that if f is l.s.c. f is actually continuous
relative to D:

Proof Consider any x 2 D: By translating if necessary, we can assume that
x D 0: Let e1; : : : ; en be the unit vectors of Rn and C the convex hull of the set
fe1; : : : ; en; �e1; : : : ; �eng: This set C is partitioned by the coordinate hyperplanes
into simplices Si; i D 1; : : : ; 2n; with a common vertex at 0. Since D is a polyhedron,
each Di D Si\D is a polytope and obviously D\C D [2n

iD1Di: Now let fxkg � D\C
be any sequence such that xk ! 0; f .xk/ ! �: Then at least one Di; say D1, contains
an infinite subsequence of fxkg: For convenience we also denote this subsequence
by fxkg: If V1 is the set of vertices of D1 other than 0, then each xk is a convex
combination of 0 and elements of V1 W xk D .1 �P

v2V1
�k

v/0 CP
v2V1

�k
vv; with

�k
v � 0;

P
v2V1

�k
v � 1: By convexity of f we can write

f .xk/ � .1 �
X
v2V1

�k
v/f .0/ C

X
v2V1

�k
vf .v/:

As k ! C1; since xk ! 0; it follows that �k
v ! 0 8v; hence � � f .0/; i.e.,

lim sup f .xk/ � f .0/:

This proves the upper semi-continuity of f at 0 relative to D: ut
Theorem 2.2 For a proper convex function f on R

n the following assertions are
equivalent:

(i) f is continuous at some point;
(ii) f is bounded above on some open set;

(iii) int.epif / ¤ ;I
(iv) int.domf / ¤ ; and f is Lipschitzian on every bounded set contained in

int.domf /I
(v) int.domf / ¤ ; and f is continuous there.

Proof (i) ) (ii) If f is continuous at a point x0, then there exists an open
neighborhood U of x0 such that f .x/ < f .x0/ C 1 for all x 2 U:

(ii) ) (iii) If f .x/ � c for all x in an open set U, then U � Œc; C1/ � epif ; hence
int.epif / ¤ ;:

(iii) ) (iv) If int(epif / ¤ ;, then there exists an open set U and an open interval
I � R such that U � I � epif ; hence U � domf ; i.e., int(domf / ¤ ;: Consider any
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compact set C � int.domf / and let B be the Euclidean unit ball. For every r > 0 the
set CCrB is compact, and the family of closed sets f.CCrB/nint.domf /; r > 0g has
an empty intersection. In view of the compactness of C C rB some finite subfamily
of this family must have an empty intersection, hence for some r > 0, we must have
.CCrB/n int.domf / D ;; i.e., CCrB � int.domf /: By Proposition 2.3 the function
f is continuous on int(domf /: Denote by 	1 and 	2 the maximum and the minimum
of f over C C rB: Let x; x0 be two distinct points in C and let z D x C r.x�x0/

kx�x0k : Then
z 2 C C rB � int.domf /: But

x D .1 � ˛/x0 C ˛z; ˛ D kx � x0k
r C kx � x0k

and z; x0 2 domf ; hence

f .x/ � .1 � ˛/f .x0/ C ˛f .z/ D f .x0/ C ˛.f .z/ � f .x0//

and consequently

f .x/ � f .x0/ � ˛.f .z/ � f .x0/ � ˛.	1 � 	2/

� �kx � x0k; � D 	1 � 	2

r
:

By symmetry, we also have f .x0/ � f .x/ � �kx � x0k: Hence, for all x; x0 such that
x 2 C; x0 2 C W

jf .x/ � f .x0/j � �kx � x0k;

proving the Lipschitz property of f over C:

(iv)) (v) and (v)) (i): obvious. ut

2.5 Convex Inequalities

A convex inequality in x is an inequality of the form f .x/ � 0 or f .x/ < 0 where f is a
convex function. Note that an inequality like f .x/ � 0 or f .x/ > 0; with f .x/ convex,
is not convex but reverse convex, because it becomes convex only when reversed.
A system of inequalities is said to be consistent if it has a solution, i.e., if there exists
at least one value x satisfying all the inequalities; it is inconsistent otherwise. Many
mathematical problems reduce to investigating the consistency (or inconsistency) of
a system of inequalities.

Proposition 2.18 Let f0; f1; : : : ; fm be convex functions, finite on some nonempty
convex set D � R

n: If the system

x 2 D; fi.x/ < 0 i D 0; 1; : : : ; m (2.14)
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is inconsistent, then there exist multipliers �i � 0; i D 0; 1; : : : ; m; such thatPm
iD0 �i > 0 and

�0f0.x/ C
mX

iD1

�ifi.x/ � 0 8x 2 D: (2.15)

If in addition

9x0 2 D fi.x
0/ < 0 i D 1; : : : ; m (2.16)

then �0 > 0; so that one can take �0 D 1:

Proof Consider the set C of all vectors y D .y0; y1; : : : ; ym/ 2 R
mC1 for each of

which there exists an x 2 D satisfying

fi.x/ < yi; i D 0; 1; : : : ; m: (2.17)

As can readily be verified, C is a nonempty convex set and the inconsistency of
the system (2.14) means that 0 … C: By Lemma 1.2 there is a hyperplane in R

mC1

properly separating 0 from C; i.e., a vector � D .�0; �1; : : : ; �m/ ¤ 0 such that

mX
iD0

�iyi � 0 8y D .y0; y1; : : : ; ym/ 2 C: (2.18)

If x 2 D then for every " > 0, we have fi.x/ < fi.x/ C " for i D 0; 1; : : : ; m; so
.f0.x/ C "; : : : ; fm.x/ C "/ 2 C and hence,

mX
iD0

�i.fi.x/ C "/ � 0:

Since " > 0 can be arbitrarily small, this implies (2.15). Furthermore, �i � 0;

i D 0; 1; : : : ; m because if �j < 0 for some j; then by fixing, for an arbitrary x 2 D;

all yi > fi.x/; i ¤ j; while letting yj ! C1; we would have
Pm

iD0 �iyi ! �1;

contrary to (2.18). Finally, under (2.16), if �0 D 0 then
Pm

iD1 �i > 0; hence
by (2.16)

Pm
iD1 �ifi.x0/ < 0; contradicting the inequality

Pm
iD1 �ifi.x0/ � 0

from (2.15). Therefore, �0 > 0 as was to be proved. ut
Corollary 2.6 Let D be a convex set in R

n; g; f two convex functions finite on D: If
g.x0/ < 0 for some x0 2 D; while f .x/ � 0 for all x 2 D satisfying g.x/ � 0; then
there exists a real number � � 0 such that f .x/ C �g.x/ � 0 8x 2 D:

Proof Apply the above Proposition for f0 D f ; f1 D g: ut
A more general result about inconsistent systems of convex inequalities is the

following:
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Theorem 2.3 (Generalized Farkas–Minkowski Theorem) Let fi; i 2 I1 �
f1; : : : ; mg; be affine functions on R

n; and let f0 and fi; i 2 I2 WD f1; : : : ; mg n I1; be
convex functions finite on some convex set D � R

n: If there exists x0 satisfying

x0 2 riD; fi.x
0/ � 0 .i 2 I1/; fi.x

0/ < 0 .i 2 I2/: (2.19)

while the system

x 2 D; fi.x/ � 0 .i D 1; : : : ; m/; f0.x/ < 0; (2.20)

is inconsistent, then there exist numbers �i � 0; i D 1; : : : ; m; such that

f0.x/ C
mX

iD1

�ifi.x/ � 0 8x 2 D: (2.21)

Proof By replacing I1 with fij fi.x0/ D 0g we can assume fi.x0/ D 0 for every
i 2 I1: Arguing by induction on m; observe first that the theorem is true for m D 1:

Indeed, in this case, if I1 D ; the theorem follows from Proposition 2.18, so we
can assume that I1 D f1g; i.e., f1.x/ is affine. In view of the fact f1.x0/ D 0 for
x0 2 riD; if f1.x/ � 0 8x 2 D; then f1.x/ D 0 8x 2 D and (2.21) holds with
� D 0: On the other hand, if there exists x 2 D satisfying f1.x/ < 0 then, since the
system x 2 D; f1.x/ � 0; f0.x/ < 0 is inconsistent, again the theorem follows from
Proposition 2.18. Thus, in any event the theorem is true when m D 1: Assuming
now that the theorem is true for m D k � 1 � 1; consider the case m D k: The
hypotheses of the theorem imply that the system

x 2 D; fi.x/ � 0 .i D 1; : : : ; k � 1/; maxffk.x/; f0.x/g < 0 (2.22)

is inconsistent, and since the function maxffk.x/; f0.x/g is convex, there exists, by
the induction hypothesis, ti � 0; i D 1; : : : ; k � 1; such that

maxffk.x/; f0.x/g C
k�1X
iD1

tifi.x/ � 0 8x 2 D: (2.23)

We show that this implies the inconsistency of the system

x 2 D;

k�1X
iD1

tifi.x/ � 0; fk.x/ � 0; f0.x/ < 0: (2.24)

Indeed, from (2.23) it follows that no solution of (2.24) exists with fk.x/ < 0:

Furthermore, if there exists x 2 D satisfying (2.24) with fk.x/ D 0 then, setting
x0 D ˛x0 C .1 � ˛/x with ˛ 2 .0; 1/, we would have x0 2 D;

Pk�1
iD1 tifi.x0/ �

0; fk.x0/ < 0 and f0.x0/ � ˛f0.x0/ C .1 � ˛/f0.x/ < 0 for sufficiently small ˛ > 0:
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Since this contradicts (2.23), the system (2.24) is inconsistent and, again by the
induction hypothesis, there exist � � 0 and �k � 0 such that

f0.x/ C �

k�1X
iD1

tifi.x/ C �kfk.x/ � 0 8x 2 D: (2.25)

This is the desired conclusion with �i D � ti � 0 for i D 1; : : : ; k � 1: ut
Corollary 2.7 (Farkas’ Lemma) Let A be an m � n matrix, and let p 2 R

n:

If hp; xi � 0 for all x 2 R
n satisfying Ax � 0 then p D AT� for some

� D .�1; : : : ; �m/ � 0:

Proof Apply the above theorem for D D R
n; f0.x/ D hp; xi; and fi.x/ D �hai; xi;

i D 1; : : : ; m; where ai is the i-th row of A: Then there exist nonnegative �1; : : : ; �m

such that hp; xi�Pm
iD1 �ihai; xi � 0 for all x 2 R

n; hence hp; xi�Pm
iD1 �ihai; xi D 0

for all x 2 R
n; i.e., p D Pm

iD1 �iai: ut
Theorem 2.4 Let f1; : : : ; fm be convex functions finite on some convex set D in R

n;

and let A be a k � n matrix, b 2 riA.D/: If the system

x 2 D; Ax D b; fi.x/ < 0; i D 1; : : : ; m (2.26)

is inconsistent, then there exist a vector t 2 R
m and nonnegative numbers �1; : : : ; �m

summing up to 1 such that

ht; Ax � bi C
mX

iD1

�ifi.x/ � 0 8x 2 D: (2.27)

Proof Define E D fx 2 D j Ax D bg: Since the system

x 2 E; fi.x/ < 0; i D 1; : : : ; m

is inconsistent, there exist, by Proposition 2.18, nonnegative numbers �1; : : : ; �m;

not all zero, such that

mX
iD1

�ifi.x/ � 0 8x 2 E: (2.28)

By dividing
Pm

iD1 �i, we may assume
Pm

iD1 �i D 1: Obviously, the convex function
f .x/ WD Pm

iD1 �ifi.x/ is finite on D: Consider the set C of all .y; y0/ 2 R
k � R for

which there exists an x 2 D satisfying

Ax � b D y; f .x/ < y0:
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Since by (2.28) 0 … C; and since C is convex there exists, again by Lemma 1.2, a
vector .t; t0/ 2 R

k � R such that

inf
.y;y0/2C

Œht; yi C t0y0� � 0; sup
.y;y0/2C

Œht; yi C t0y0� > 0: (2.29)

If t0 < 0 then by fixing x 2 D; y D Ax � b and letting y0 ! C1 we would have
ht; yi C t0y0 ! �1; contradicting (2.29). Consequently t0 � 0: We now contend
that t0 > 0: Suppose the contrary, that t0 D 0; so that ht; yi � 0 8.y; y0/ 2 C; and
hence

ht; yi � 0 8y 2 A.D/ � b:

Since by hypothesis b 2 riA.D/; i.e., 0 2 ri.A.D/ � b/; this implies ht; yi D 0 8y 2
A.D/; hence ht; yi C t0y0 D 0 for all .y; y0/ 2 C; contradicting (2.29). Therefore,
t0 > 0 and we can take t0 D 1: Then the left inequality (2.29), where y D Ax � b;

y0 D f .x/ C " for x 2 D; yields the desired relation (2.27) by making " # 0. ut

2.6 Approximation by Affine Functions

A general method of nonlinear analysis is linearization, i.e., the approximation of
convex functions by affine functions. The basis for this approximation is provided
by the next result on the structure of closed convex functions which is merely the
analytical equivalent form of the corresponding theorem on the structure of closed
convex sets (Theorem 1.5).

Theorem 2.5 A proper closed convex function f on R
n is the upper envelope

(pointwise supremum) of the family of all affine functions h on R
n minorizing f :

Proof We first show that for any .x0; t0/ … epif there exists .a; ˛/ 2 R
n � R such

that

ha; xi � t < ˛ < ha; x0i � t0 8.x; t/ 2 epif : (2.30)

Indeed, since epif is a closed convex set there exists by Theorem 1.3 a hyperplane
strongly separating .x0; t0/ from epif ; i.e., an affine function ha; xi C � t such that

ha; xi C � t < ˛ < ha; x0i C � t0 8.x; t/ 2 epif :

It is easily seen that � � 0 because if � > 0 then by taking a point x 2 domf
and an arbitrary t � f .x/; we would have .x; t/ 2 epif ; hence ha; xi C � t < ˛

for all t � f .x/; which would lead to a contradiction as t ! C1: Furthermore,
if x0 2 domf then � D 0 would imply ha; x0i < ha; x0i; which is absurd. Hence,
in this case, � < 0; and by dividing a and ˛ by �� , we can assume � D �1; so
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that (2.30) holds. On the other hand, if x0 … domf and � D 0; we can consider an
x1 2 domf and t1 < f .x1/, so that .x1; t1/ … epif and by what has just been proved,
there exists .b; ˇ/ 2 R

n � R satisfying

hb; xi � t < ˇ < hb; x1i � t1 8.x; t/ 2 epif :

For any � > 0 we then have for all .x; t/ 2 epif W

hb C �a; xi � t D .hb; xi � t/ C �ha; xi < ˇ C �˛;

while hb C �a; x0i � t0 D .hb; x0i � t0/ C �ha; x0i > ˇ C �˛ for sufficiently large �

because ˛ < ha; x0i: Thus, for � > 0 large enough, setting a0 D bC�a; ˛0 D ˇC�˛,
we have

ha0; xi � t < ˛0 < ha0; x0i � t0 8.x; t/ 2 epif ;

i.e., .a0; ˛0/ satisfies (2.30). Note that (2.30) implies ha; xi � ˛ � f .x/ 8x; i.e., the
affine function h.x/ D ha; xi � ˛ minorizes f .x/: Now let Q be the family of all
affine functions h minorizing f : We contend that

f .x/ D supfh.x/j h 2 Qg: (2.31)

Suppose the contrary, that f .x0/ > 	 D supfh.x/j h 2 Qg for some x0: Then
.x0; 	/ … epif and by the above there exists .a; ˛/ 2 R

n � R satisfying (2.30) for
t0 D 	: Hence, h.x/ D ha; xi�˛ 2 Q and ˛ < ha; x0i�	; i.e., h.x0/ D ha; x0i�˛ >

	; a contradiction. Thus (2.31) holds, as was to be proved. ut
Corollary 2.8 For any function f W Rn ! Œ�1; C1� the closure of the convex hull
of f is equal to the upper envelope of all affine functions minorizing f :

Proof An affine function h minorizes f if and only if it minorizes cl(convf /; hence
the conclusion. ut
Proposition 2.19 Any proper convex function f has an affine minorant. If x0 2
int.domf / then an affine minorant h exists which is exact at x0; i.e., such that
h.x0/ D f .x0/:

Proof Indeed, the collection Q in Theorem 2.5 for cl(f / is nonempty. If x0 2
int.domf / then .x0; f .x0// is a boundary point of the convex set epif : Hence by
Theorem 1.5 there exists a supporting hyperplane to epif at this point, i.e., there
exists .a; ˛/ 2 R

n � R such that either a ¤ 0 or ˛ ¤ 0 and

ha; xi � ˛t � ha; x0i � ˛f .x0/ 8.x; t/ 2 epif :

As in the proof of Theorem 2.5, it is readily seen that ˛ � 0: Furthermore, if
˛ D 0 then the above relation implies that ha; xi � ha; x0i for all x in some open
neighborhood U of x0 contained in domf ; and hence that a D 0, a contradiction.
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Therefore, ˛ < 0; so we can take ˛ D �1: Then ha; xi � t � ha; x0i � f .x0/ for all
.x; t/ 2 epif and the affine function

h.x/ D ha; x � x0i C f .x0/

satisfies h.x/ � f .x/ 8x and h.x0/ D f .x0/: ut

2.7 Subdifferential

Given a proper function f on R
n; a vector p 2 R

n is called a subgradient of f at a
point x0 if

hp; x � x0i C f .x0/ � f .x/ 8x: (2.32)

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is
denoted by @f .x0/ (Fig. 2.2). The function f is said to be subdifferentiable at x0 if
@f .x0/ ¤ ;:

Theorem 2.6 Let f be a proper convex function on R
n: For any bounded set

C � int.domf / the set
S

x2C @f .x/ is nonempty and bounded. In particular, @f .x0/

is nonempty and bounded at every x0 2 int.domf /:

Proof By Proposition 2.19 if x0 2 int.domf / then f has an affine minorant h.x/

such that h.x0/ D f .x0/; i.e., h.x/ D hp; x � x0i C f .x0/ for some p 2 @f .x0/:

Thus, @f .x0/ ¤ ; for every x0 2 int.domf /: Consider now any bounded set C �
int.domf /: As we saw in the proof of Theorem 2.2, there is r > 0 such that C C
rB � int.domf /; where B denotes the Euclidean unit ball. By definition, for any

p,x− x0

x0 x0

f (x)

f (x0)

Fig. 2.2 The set @f .x0/
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x 2 C and p 2 @f .x/, we have hp; y � xi C f .x/ � f .y/ 8y; but by Theorem 2.2,
there exists � > 0 such that jf .x/ � f .y/j � �ky � xk for all y 2 C C rB: Hence
jhp; y � xij � �ky � xk for all y 2 C C rB; i.e., jhp; uij � �kuk for all u 2 B: By
taking u D p=kpk this implies kpk � �; so the set

S
x2C @f .x/ is bounded. ut

Corollary 2.9 Let f be a proper convex function on R
n: For any bounded convex

subset C of int.domf / there exists a positive constant � such that

f .x/ D supfh.x/j h 2 Q0g 8x 2 C; (2.33)

where every h 2 Q0 has the form h.x/ D ha; xi � ˛ with kak � �:

Proof It suffices to take as Q0 the family of all affine functions h.x/ D ha; x � yi C
f .y/; with y 2 C; a 2 @f .y/: ut
Corollary 2.10 Let f W D ! R be a convex function defined and continuous on a
convex set D with nonempty interior. If the set [f@f .x/j x 2 intDg is bounded, then
f can be extended to a finite convex function on R

n:

Proof For each point y 2 intD take a vector py 2 @f .y/ and consider the affine
function hy.x/ D f .y/ C hpy; x � yi: The function Qf .x/ D supfhy.x/j y 2 intDg is
convex on R

n as the upper envelope of a family of affine functions. If a is any fixed
point of D then hy.x/ D f .y/ C hpy; a � yi C hpy; x � ai � f .a/ C hpy; x � ai �
f .a/ C kpyk:kx � ak: Since kpyk is bounded on intD the latter inequality shows that
�1 < Qf .x/ < C1 8x 2 R

n: Thus, Qf .x/ is a convex finite function on R
n: Finally,

since obviously Qf .x/ D f .x/ for every x 2 intD it follows from the continuity of
both f .x/ and Qf .x/ on D that Qf .x/ D f .x/ 8x 2 D: ut
Example 2.1 (Positively Homogeneous Convex Function) Let f W Rn ! R be a
positively homogeneous convex function, i.e., a convex function f W Rn ! R such
that f .�x/ D �f .x/ 8� > 0: Then

@f .x0/ D fp 2 R
n j hp; x0i D f .x0/; hp; xi � f .x/ 8xg (2.34)

Proof if p 2 @f .x0/ then hp; x � x0i C f .x0/ � f .x/ 8x: Setting x D 2x0 yields
hp; x0i C f .x0/ � 2f .x0/; i.e., hp; x0i � f .x0/; then setting x D 0 yields �hp; x0i �
�f .x0/; hence hp; x0i D f .x0/: (Note that this condition is trivial and can be omitted
if x0 D 0/: Furthermore, hp; x � x0i D hp; xi � hp; x0i D hp; xi � f .x0/; hence
hp; xi � f .x/ 8x: Conversely, if p belongs to the set on the right-hand side of (2.34)
then obviously hp; x � x0i � f .x/ � f .x0/; so p 2 @f .x0/: ut

If, in addition, f .�x/ D f .x/ � 0 8x then the condition hp; xi � f .x/ 8x is
equivalent to jhp; xij � f .x/ 8x: In particular:

1. If f .x/ D kxk (Euclidean norm) then

@f .x0/ D
� fp j kpk � 1g (unit ball) if x0 D 0

fx0=kx0kg if x0 ¤ 0:
(2.35)
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2. If f .x/ D maxfjxij j i D 1; : : : ; ng (Tchebycheff norm) then

@f .x0/ D
�

convf˙e1; : : : ; ˙eng if x0 D 0

convf.signx0
i /x0

i j i 2 Ix0g if x0 ¤ 0;
(2.36)

where Ix D fi j jxij D f .x/g:
3. If Q is a symmetric positive semidefinite matrix and f .x/ D phx; Qxi (elliptic

norm) then

@f .x0/ D
(

fp j hp; xi � phx; Qxi 8xg if x0 2 KerQ
f.Qx0/=

phx0; Qx0ig if x0 … KerQ:
(2.37)

Example 2.2 (Distance Function) Let C be a closed convex set in R
n; and f .x/ D

minfky � xk j y 2 Cg: Denote by 
C.x/ the projection of x on C; so that
k
C.x/ � xk D minfky � xk j y 2 Cg and hx � 
C.x/; y � 
C.x/i � 0 8y 2 C
(see Proposition 1.15). Then

@f .x0/ D
(

NC.x0/ \ B.0; 1/ if x0 2 Cn
x0�
C.x0/

kx0�
C.x0/k
o

if x0 … C;
(2.38)

where NC.x0/ denotes the outward normal cone of C at x0 and B.0; 1/ the Euclidean
unit ball.

Proof Let x0 2 C; so that f .x0/ D 0: Then p 2 @f .x0/ implies hp; x � x0i �
f .x/ 8x; hence, in particular, hp; x � x0i � 0 8x 2 C; i.e., p 2 NC.x0/I furthermore,
hp; x�x0i � f .x/ � kx�x0k 8x; hence kpk � 1; i.e., p 2 B.0; 1/: Conversely, if p 2
NC.x0/\B.0; 1/ then hp; x�
C.x/i � kx�
C.x/k � f .x/; and hp; 
C.x/�x0i � 0;

consequently hp; x � x0i D hp; x � 
C.x/i C hp; 
C.x/ � x0i � f .x/ D f .x/ � f .x0/

for all x; and so p 2 @f .x0/:

Turning to the case x0 … C; observe that p 2 @f .x0/ implies hp; x � x0i C f .x0/ �
f .x/ 8x; hence, setting x D 
C.x0/ yields hp; 
C.x0/ � x0i C k
C.x0/ � x0k � 0;

i.e., hp; x0 � 
C.x0/i � kx0 � 
C.x0/k: On the other hand, setting x D 2x0 � 
C.x0/

yields hp; x0 � 
C.x0/i C k
C.x0/ � x0k � 2k
C.x0/ � x0k; i.e., hp; x0 � 
C.x0/i �
k
C.x0/ � x0k: Thus, hp; x0 � 
C.x0/i D k
C.x0/ � x0k and consequently p D

x0�
C.x0/

kx0�
C.x0/k : Conversely, the last equality implies hp; x0�
C.x0/i D kx0�
C.x0/k D
f .x0/; hp; x�
C.x/i � kx�
C.x/k D f .x/; hence hp; x�x0iCf .x0/ D hp; x�x0iC
hp; x0 � 
C.x0/i D hp; x � 
C.x0/i D hp; x � 
C.x/i C hp; 
C.x/ � 
C.x0/i; � kx �

C.x/k D f .x/ for all x (note that hp; 
C.x/�
C.x0/i � 0 because p 2 NC.
C.x0///:

Therefore, hp; x � x0i C f .x0/ � f .x/ for all x; proving that p 2 @f .x0/: ut
Observe from the above examples that there is a unique subgradient (which is

just the gradient) at every point where f is differentiable. This is actually a general
fact which we are now going to establish.
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Let f W Rn ! Œ�1; C1� be any function and let x0 be a point where f is finite.
If for some u ¤ 0 the limit (finite or infinite)

lim
�#0

f .x0 C �u/ � f .x0/

�

exists, then it is called the directional derivative of f at x0 in the direction u, and is
denoted by f 0.x0I u/:

Proposition 2.20 Let f be a proper convex function and x0 2 domf : Then:

(i) f 0.x0I u/ exists for every direction u and satisfies

f 0.x0I u/ D inf
�>0

f .x0 C �u/ � f .x0/

�
I (2.39)

(ii) The function u 7! f 0.x0I u/ is convex and homogeneous and p 2 @f .x0/ if and
only if

hp; ui � f 0.x0; u/ 8u: (2.40)

(iii) If f is continuous at x0 then f 0.x0I u/ is finite and continuous at every u 2 R
n;

the subdifferential @f .x0/ is compact and

f 0.x0I u/ D maxfhp; ui j p 2 @f .x0/g: (2.41)

Proof

(i) For any given u ¤ 0 the function '.�/ D f .x0 C �u/ is proper convex on the
real line, and 0 2 dom': Therefore, its right derivative '0C.0/ D f 0.x0I u/ exists
(but may equal C1 if 0 is an endpoint of dom'/: The relation (2.39) follows
from the fact that Œ'.�/ � '.0/�=� is nonincreasing as � # 0:

(ii) The homogeneity of f 0.x0I u/ is obvious. The convexity then follows from the
relations

f 0.x0I u C v/ D inf
�>0

f .x0 C �
2
.u C v// � f .x0/

�
2

� inf
�>0

f .x0 C �u/ � f .x0/ C f .x0 C �v/ � f .x0/

�

D f 0.x0I u/ C f 0.x0I v/:

Setting x D x0 C �u we can turn the subgradient inequality (2.32) into the
condition

hp; ui � Œf .x0 C �u/ � f .x0/�=� 8u; 8� > 0;

which is equivalent to hp; ui � inf�>0Œf .x0 C �u/ � f .x0/�=�; 8u; i.e., by (i),
hp; ui � f 0.x0I u/ 8u:
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(iii) If f is continuous at x0 then there is a neighborhood U of 0 such that f .x0 C u/

is bounded above on U: Since by (i) f 0.x0I u/ � f .x0 C u/ � f .x0/; it follows
that f 0.x0I u/ is also bounded above on U; and hence is finite and continuous
on R

n (Theorem 2.2). The Condition (2.40) then implies that @f .x0/ is closed
and hence compact because it is bounded by Theorem 2.6. In view of the
homogeneity of f 0.x0I u/; an affine minorant of it which is exact at some point
must be of the form hp; ui; with hp; ui � f 0.x0I u/ 8u; i.e., by (ii), p 2 @f .x0/:

By Corollary 2.9, we then have f 0.x0I u/ D maxfhp; ui j p 2 @f .x0/g: ut
According to the usual definition, a function f is differentiable at a point x0 if

there exists a vector rf .x0/ (the gradient of f at x0/ such that

f .x0 C u/ D f .x0/ C hrf .x0/; ui C o.kuk/:

This is equivalent to

lim
�#0

f .x0 C �u/ � f .x0/

�
D hrf .x0/; ui; 8u ¤ 0;

so the directional derivative f 0.x0I u/ exists, and is a linear function of u:

Proposition 2.21 Let f be a proper convex function and x0 2 domf : If f is
differentiable at x0 then rf .x0/ is its unique subgradient at x0:

Proof If f is differentiable at x0 then f 0.x0I u/ D hrf .x0/; ui; so by (ii) of
Proposition 2.20, a vector p is a subgradient f at x0 if and only if hp; ui �
hrf .x0/; ui 8u; i.e., if and only if p D rf .x0/: ut

One can prove conversely that if f has a unique subgradient at x0 then f is
differentiable at x0 (see, e.g., Rockafellar 1970).

2.8 Subdifferential Calculus

A convex function f may result from some operations on convex functions fi; i 2 I:
(cf Sect. 2.2). It is important to know how the subdifferential of f can be computed
in terms of the subdifferentials of the f 0

i s.

Proposition 2.22 Let fi; i D 1; : : : ; m; be proper convex functions on R
n: Then for

every x 2 R
n W

@

 
mX

iD1

fi.x/

!
	

mX
iD1

@fi.x/:
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If there exists a point a 2 \m
iD1domfi; where every function fi; except perhaps one,

is continuous, then the above inclusion is in fact an equality for every x 2 R
n:

Proof It suffices to prove the proposition for m D 2 because the general case will
follow by induction. Furthermore, the first part is straightforward, so we only need
to prove the second part. If p 2 @.f1 C f2/.x0/; then the system

x � y D 0; f1.x/ C f2.y/ � f1.x0/ � f2.x0/ � hp; x � x0i < 0

is inconsistent. Define D D domf1 � domf2 and A.x; y/ WD x � y: By hypothesis,
f1 is continuous at a 2 domf1 \ domf2; so there is a ball U around 0 such that
aCU � domf1; hence U D .aCU/�a � domf1�domf2 D A.D/; i.e., 0 2 intA.D/:

Therefore, by Theorem 2.4 there exists t 2 R
n such that

ht; x � yi C Œf1.x/ C f2.y/ � f1.x0/ � f2.x0/ � hp; x � x0i� � 0

for all x 2 R
n and all y 2 R

n: Setting y D x0 yields hp � t; x � x0i � f1.x/ � f1.x0/

8x 2 R
n; i.e., p � t 2 @f1.x0/: Then setting x D x0 yields ht; y � x0i � f2.y/ � f2.x0/

8y 2 R
n; i.e., t 2 @f2.x0/: Thus, p D .p � t/ C t 2 @f1.x0/ C @f2.x0/; as was to be

proved. ut
Proposition 2.23 Let A W Rn ! R

m be a linear mapping and g be a proper convex
function on R

m: Then for every x 2 R
n W

AT@g.Ax/ � @.g ı A/.x/:

If g is continuous at some point in Im.A/ .the range of A/ then the above inclusion
is in fact an equality for every x 2 R

n:

Proof The first part is straightforward. To prove the second part, consider any p 2
@.g ı A/.x0/: Then the system

Ax � y D 0; g.y/ � g.Ax0/ � hp; x � x0i < 0; x 2 R
n; y 2 R

m

is inconsistent. Define D D R
n � domg; B.x; y/ D Ax � y: Since there is a point

b 2 ImA \ int.domg/, we have b 2 intB.D/; so by Theorem 2.4 there exists t 2 R
m

such that

ht; Ax � yi C g.y/ � g.Ax0/ � hp; x � x0i � 0

for all x 2 R
n and all y 2 R

m: Setting y D 0 then yields hATt � p; xi � g.Ax0/ C
hp; x0i � 0 8x 2 R

n; hence p D ATt; while setting x D x0 yields ht; y � Ax0i �
g.y/ � g.Ax0/; i.e., t 2 @g.Ax0/: Therefore, p 2 AT@g.Ax0/: ut
Proposition 2.24 Let g.x/ D .g1.x/; : : : ; gm.x//; where each gi is a convex
functions from R

n to R; let ' W R
m ! R be a convex function, component-wise
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increasing, i.e., such that '.t/ � '.t0/ whenever ti � t0i; i D 1; : : : ; m: Then the
function f D ' ı g is convex and

@f .x/ D
(

mX
iD1

sip
i j pi 2 @gi.x/; .s1; : : : ; sm/ 2 @'.g.x//

)
: (2.42)

Proof The convexity of f .x/ follows from an obvious extension of Proposition 2.8
which corresponds to the case m D 1: To prove (2.42), let p D Pm

iD1 sipi with pi 2
@gi.x0/; s 2 @'.g.x0//: First observe that hs; y � g.x0/i � '.y/ � '.g.x0// 8y 2 R

m

implies, for all y D g.x0/Cu with u � 0 W hs; ui � '.g.x0/Cu/�'.g.x0// � 0 8u �
0; hence s � 0: Now hp; x � x0i D Pm

iD1 sihpi; x � x0i � Pm
iD1 siŒgi.x/ � gi.x0/� D

hs; g.x/ � g.x0/i � '.g.x// � '.g.x0// D f .x/ � f .x0/ for all x 2 R
n: Therefore

p 2 @f .x0/; i.e., the right-hand side of (2.42) is contained in the left-hand side. To
prove the converse, let p 2 @f .x0/; so that the system

x 2 R
n; y 2 R

m; gi.x/ < yi i D 1; : : : ; m (2.43)

'.y/ � '.g.x0// � hp; x � x0i < 0 (2.44)

is inconsistent, while the system (2.43) has a solution. By Proposition 2.18 there
exists s 2 R

mC such that

'.y/ � '.g.x0// � hp; x � x0i C hs; g.x/ � yi � 0

for all x 2 R
n; y 2 R

m: Setting x D x0 yields '.y/ � '.g.x0// � hs; y � g.x0/i for
all y 2 R

m; which means that s 2 @'.g.x0//: On the other hand, setting y D g.x0/

yields hp; x � x0i � Pm
iD1 siŒgi.x/ � gi.x0/� for all x 2 R

n; which means that p 2
@.
Pm

iD1 sigi.x0//; hence by Proposition 2.22, p D Pm
iD1 sipi with pi 2 @gi.x0/: ut

Note that when '.y/ is differentiable at g.x/ the above formula (2.42) is similar
to the classical chain rule, namely:

@.' ı g/.x/ D
mX

iD1

@'

@yi
.g.x//@gi.x/:

Proposition 2.25 Let f .x/ D maxfg1.x/; : : : ; gm.x/g; where each gi is a convex
function from R

n to R: Then

@f .x/ D convf[@gi.x/j i 2 I.x/g; (2.45)

where I.x/ D fi j f .x/ D gi.x/g:
Proof If p 2 @f .x0/ then the system

gi.x/ � f .x0/ � hp; x � x0i < 0 i D 1; : : : ; m
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is inconsistent. By Proposition 2.18, there exist �i � 0 such that
Pm

iD1 �i D 1 andPm
iD1 �iŒgi.x/ � f .x0/ � hp; x � x0i� � 0: Setting x D x0, we have

X
i…I.x0/

�iŒgi.x
0/ � f .x0/� � 0;

with gi.x0/� f .x0/ < 0 for every i … I.x0/: This implies that �i D 0 for all i … I.x0/:

Hence X
i2I.x0/

�iŒgi.x/ � gi.x
0/ � hp; x � x0i� � 0

for all x 2 R
n and so p 2 @.

P
i2I.x0/ �igi.x0//: By Proposition 2.22, p D P

i2I.x0/ pi;

with pi 2 @gi.x0/: Thus @f .x0/ � convf[@gi.x0/j i 2 I.x0/g: The converse inclusion
can be verified in a straightforward manner. ut

2.9 Approximate Subdifferential

A proper convex function f on R
n may have an empty subdifferential at certain

points. In practice, however, one often needs only a concept of approximate
subdifferential .

Given a positive number " > 0; a vector p 2 R
n is called an "-subgradient of f

at point x0 if

hp; x � x0i C f .x0/ � f .x/ C " 8x: (2.46)

The set of all "-subgradients of f at x0 is called the "-subdifferential of f at x0, and
is denoted by @"f .x0/ (Fig. 2.3).

f (x0)− ε

x00 x

f (x0)

Fig. 2.3 The set @"f .x0/
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Proposition 2.26 For any proper closed convex function f on R
n; and any given

" > 0 the "-subdifferential of f at any point x0 2 domf is nonempty. If C is a
bounded subset of int(dom f / then the set [x2C@"f .x/ is bounded.

Proof Since the point .x0; f .x0/ � "/ … epif ; there exists p 2 R
n such that

hp; x � x0i < f .x/ � .f .x0/ � "/ 8x (see (2.30) in the proof of Theorem 2.5).
Thus, @"f .x0/ ¤ ;: The proof of the second part of the proposition is analogous to
that of Theorem 2.6. ut

Note that @"f .x0/ is unbounded when x0 is a boundary point of domf :

Proposition 2.27 Let x0; x1 2 domf : If p 2 @"f .x0/ ." � 0/ then p 2 @�f .x1/ for
� D f .x1/ � f .x0/ � hp; x1 � x0i C " � 0:

Proof If hp; x � x0i � f .x/ � f .x0/ C " for all x then hp; x � x1i D hp; x � x0i C
hp; x0 � x1i � f .x/ � f .x0/ C " � hp; x1 � x0i D f .x/ � f .x1/ C � for all x: ut

A function f .x/ is said to be strongly convex on a convex set C if there exists
r > 0 such that

f ..1 � �/x1 C �x2/

� .1 � �/f .x1/ C �f .x2/ � .1 � �/�rkx1 � x2k2 (2.47)

for all x1; x2 2 C; and all � 2 Œ0; 1�: The number r > 0 is then called the modulus of
strong convexity of f .x/: Using the identity

.1 � �/�kx1 � x2k2 D .1 � �/kx1k2 C �kx2k2 � k.1 � �/x1 C �x2k2

for all x1; x2 2 R
n; and all � 2 Œ0; 1�; it is easily verified that a convex function f .x/

is strongly convex with modulus of strong convexity r if and only if the function
f .x/ � rkxk2 is convex.

Proposition 2.28 If f .x/ is a strongly convex function on R
n with modulus of strong

convexity r then for any x0 2 R
n and " � 0 W

@f .x0/ C B.0; 2
p

r"/ � @"f .x0/; (2.48)

where B.0; ˛/ denotes the ball of radius ˛ around 0.

Proof Let p 2 @f .x0/: Since F.x/ WD f .x/ � rkxk2 is convex and p � 2rx0 2 @F.x0/

we can write

f .x/ � f .x0/ � r.kxk2 � kx0k2/ � hp � 2rx0; x � x0i

for all x; hence

f .x/ � f .x0/ � hp; x � x0i C rkx � x0k2:
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Let us determine a vector u such that

rkx � x0k2 � hu; x � x0i � " 8x 2 R
n: (2.49)

The convex quadratic function rkx � x0k2 � hu; x � x0i achieves its minimum at
the point x such that 2r.x � x0/ � u D 0; i.e., x � x0 D u

2r : This minimum is

equal to rŒ u
2r �2 � kuk2

2r D �kuk2

4r : Thus, by choosing u such that kuk2 � 4r"; i.e.,
u 2 B.0; 2

p
r"/ we will have (2.49), hence p C u 2 @"f .x0/: ut

Corollary 2.11 Let f .x/ D 1
2
hx; Qxi C hx; ai; where a 2 R

n;and Q is an n � n
symmetric positive definite matrix. Let r > 0 be the smallest eigenvalue of Q: Then

Qx C a C u 2 @"f .x/

for any u 2 R
n such that kuk � 2

p
r":

Proof Clearly f .x/ � rkxk2 is convex (as its smallest eigenvalue is nonnegative), so
f .x/ is a strongly convex function to which the above proposition applies. ut

2.10 Conjugate Functions

Given an arbitrary function f W R
n ! Œ�1; C1�, we consider the set of all

affine functions h minorizing f : It is natural to restrict ourselves to proper functions,
because an improper function either has no affine minorant (if f .x/ D �1 for
some x/ or is minorized by every affine function (if f .x/ is identical to C1/:

Observe that if hp; xi�˛ � f .x/ for all x then ˛ � hp; xi� f .x/ 8x: The function

f �.p/ D sup
x2Rn

fhp; xi � f .x/g: (2.50)

which is clearly closed and convex is called the conjugate of f :

For instance, the conjugate of the function f .x/ D ıC.x/ (indicator function of
a set C; see Sect. 2.1) is the function f �.p/ D sup

x2C
hp; xi D sC.p/ (support function

of C/: The conjugate of an affine function f .x/ D hc; xi � ˛ is the function

f �.p/ D sup
x

fhp; xi � hc; xi C ˛g D
� C1; p ¤ c

˛; p D c:

Two less trivial examples are the following:

Example 2.3 The conjugate of the proper convex function f .x/ D ex; x 2 R; is by
definition f �.p/ D sup

x
fpx � exg: Obviously, f �.p/ D 0 for p D 0 and f �.p/ D C1

for p < 0: For p > 0; the function px � ex achieves a maximum at x D � satisfying
p D e� ; so f �.p/ D p log p � p: Thus,
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f �.p/ D
8<
:

0; p D 0

C1; p < 0

p log p � p; p > 0:

The conjugate of f �.p/ is in turn the function f ��.x/ D sup
p

fpx� f �.p/g D supfpx�
p log p C pj p > 0g D ex:

Example 2.4 The conjugate of the function f .x/ D 1
˛

Pn
iD1 jxij˛; 1 < ˛ < C1;

is

f �.p/ D 1

ˇ

nX
iD1

jpijˇ; 1 < ˇ < C1;

where 1=˛ C 1=ˇ D 1: Indeed,

f �.p/ D sup
x

(
nX

iD1

pixi � 1

˛

nX
iD1

jxij˛
)

:

By differentiation, we find that the supremum on the right-hand side is achieved at
x D � satisfying pi D j�ij˛�1sign�i; hence

f �.p/ D
nX

iD1

j�ij˛
�

1 � 1

˛

�
D 1

ˇ

nX
iD1

jpijˇ:

Proposition 2.29 Let f W R
n ! Œ�1; C1� be an arbitrary proper function.

Then:

(i) f .x/ C f �.p/ � hp; xi 8x 2 R
n; 8p 2 R

nI
(ii) f ��.x/ � f .x/ 8x; and f �� D f if and only if f is convex and closed;

(iii) f ��.x/ D supfh.x/j h affine; h � f g; i.e., f ��.x/ is the largest closed convex
function minorizing f .x/ W f �� D cl.conv/f :

Proof (i) is obvious, and from (i) f ��.x/ D suppfhp; xi�f �.p/g � f .x/: Let Q be the
set of all affine functions majorized by f : For every h 2 Q; say h.x/ D hp; xi�˛; we
have hp; xi�˛ � f .x/ 8x; hence ˛ � supxfhp; xi� f .x/g D f �.p/; and consequently
h.x/ � hp; xi � f �.p/ 8x: Thus

supfhj h 2 Qg � sup
p

fhp; xi � f �.p/g D f ��; (2.51)

If f is convex and closed then, since it is proper, by Theorem 2.5 it is just equal to the
function on the left-hand side of (2.51) and since f � f ��; it follows that f D f ��:

Conversely, if f D f �� then f is the conjugate of f �, hence is convex and closed.
Turning to (iii) observe that if Q D ; then f �.p/ D supxfhp; xi � f .x/g D C1 for
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all p and consequently, f �� � �1: But in this case, supfhj h 2 Qg D �1; too,
hence f �� D supfhj h 2 Qg: On the other hand, if there is h 2 Q then from (2.51)
h � f ��I conversely, if h � f �� then h � f (because f �� � f /: In this case, since
f ��.x/ � f .x/ < C1 at least for some x; and f ��.x/ > �1 8x (because there is an
affine function minorizing f ��/; it follows that f �� is proper. By Theorem 2.5, then
f �� D supfhj h affine h � f ��g D supfhj h 2 Qg: This proves the equality in (iii),
and so, by Corollary 2.8, f �� D cl.conv/f : ut

2.11 Extremal Values of Convex Functions

The smallest and the largest values of a convex function on a given convex set are
often of particular interest.

Let f W R
n ! Œ�1; C1� be an arbitrary function, and C an arbitrary set

in R
n: A point x0 2 C \ domf is called a global minimizer of f .x/ on C if

�1 < f .x0/ � f .x/ for all x 2 C: It is called a local minimizer of f .x/ on
C if there exists a neighborhood U.x0/ of x0 such that �1 < f .x0/ � f .x/ for
all x 2 C \ U.x0/: The concepts of global maximizer and local maximizer are
defined analogously. For an arbitrary function f on a set C we denote the set of all
global minimizers (maximizers) of f on C by argminx2Cf .x/ (argmaxx2Cf .x/; resp.).
Since minx2C f .x/ D � maxx2C.�f .x// the theory of the minimum (maximum) of
a convex function is the same as the theory of the maximum (minimum, resp.) of a
concave function.

2.11.1 Minimum

Proposition 2.30 Let C be a nonempty convex set in R
n; and f W R

n ! R be a
convex function. Any local minimizer of f on C is also global. The set argmin

x2C
f .x/ is

a convex subset of C:

Proof Let x0 2 C be a local minimizer of f and U.x0/ be a neighborhood such that
f .x0/ � f .x/ 8x 2 C \ U.x0/: For any x 2 C we have x� WD .1 � �/x0 C �x 2
C \ U.x0/ for sufficiently small � > 0: Then f .x0/ � f .x�/ � .1 � �/f .x0/ C �f .x/;

hence f .x0/ � f .x/; proving the first part of the proposition. If ˛ D min f .C/ then
argminx2Cf .x/ coincides with the set C \ fxj f .x/ � ˛g which is a convex set by the
convexity of f .x/ (Proposition 2.11). ut
Remark 2.1 A real-valued function f on a convex set C is said to be strictly convex
on C if

f ..1 � �/x1 C �x2/ < .1 � �/f .x1/ C �f .x2/

for any two distinct points x1; x2 2 C and 0 < � < 1: For such a function f the set
argminx2Cf .x/; if nonempty, is a singleton, i.e., a strictly convex function f .x/ on
C has at most one minimizer over C: In fact, if there were two distinct minimizers
x1; x2 then by strict convexity f . x1Cx2

2
/ < f .x1/; which is impossible.
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Proposition 2.31 Let C be a convex set in R
n; and f W Rn ! Œ�1; C1� a convex

function which is finite on C: For a point x0 2 C to be a minimizer of f on C it is
necessary and sufficient that

0 2 @f .x0/ C NC.x0/; (2.52)

where NC.x0/ denotes the (outward) normal cone of C at x0: (cf Sect. 1.6)

Proof If (2.52) holds there is p 2 @f .x0/ \ �NC.x0/: For every x 2 C; since p 2
@f .x0/, we have hp; x � x0i � f .x/ � f .x0/; i.e., f .x0/ � f .x/ � hp; x � x0iI on the
other hand, since p 2 �NC.x0/; we have hp; x � x0i � 0; hence f .x0/ � f .x/; i.e., x0

is a minimizer. Conversely, if x0 2 argminx2Cf .x/ then the system

.x; y/ 2 C � R
n; x � y D 0; f .y/ � f .x0/ < 0

is inconsistent. Define D WD C � R
n and A.x; y/ WD x � y; so that A.D/ D C � R

n:

For any ball U around 0, x0 C U � R
n; hence U D x0 � .x0 C U/ � A.D/; and so

0 2 intA.D/: Therefore, by Theorem 2.4, there exists a vector p 2 R
n such that

hp; x � yi C f .y/ � f .x0/ � 0 8.x; y/ 2 C � R
n:

Letting y D x0 yields hp; x � x0i � 0 8x 2 C; i.e., p 2 �NC.x0/; then letting
x D x0 yields f .y/ � f .x0/ � hp; y � x0i 8y 2 R

n; i.e., p 2 @f .x0/: Thus, p 2
�NC.x0/ \ @f .x0/; completing the proof. ut
Corollary 2.12 Under the assumptions of the above proposition, an interior point
x0 of C is a minimizer if and only if 0 2 @f .x0/:

Proof Indeed, NC.x0/ D f0g if x0 2 intC: ut
Proposition 2.32 Let C be a nonempty compact set in R

n; f W C ! R an arbitrary
continuous function, f c the convex envelope of f over C: Then any global minimizer
of f .x/ on C is also a global minimizer of f c.x/ on convC:

Proof Let x0 2 C be a global minimizer of f .x/ on C: Since f c is a minorant
of f , we have f c.x0/ � f .x0/: If f c.x0/ < f .x0/ then the convex function
h.x/ D maxff .x0/; f c.x/g would be a convex minorant of f larger than f c; which
is impossible. Thus, f c.x0/ D f .x0/ and f c.x/ D h.x/ 8x 2 convC: Hence,
f c.x0/ D f .x0/ � f c.x/ 8x 2 convC, i.e., x0 is also a global minimizer of f c.x/

on convC: ut

2.11.2 Maximum

In contrast with the minimum, a local maximum of a convex function may not be
global. Generally speaking, local information is not sufficient to identify a global
maximizer of a convex function.
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Proposition 2.33 Let C be a convex set in R
n; and f W C ! R be a convex function.

If f .x/ attains its maximum on C at a point x0 2 riC then f .x/ is constant on C: The
set argmax

x2C
f .x/ is a union of faces of C:

Proof Suppose that f attains its maximum on C at a point x0 2 riC and let x be an
arbitrary point of C: Since x0 2 riC there is y 2 C such that x0 D �x C .1 � �/y for
some � 2 .0; 1/: Then f .x0/ � �f .x/ C .1 � �/f .y/; hence �f .x/ � f .x0/ � .1 � �/

f .y/ � f .x0/ � .1 � �/f .x0/ D �f .x0/: Thus f .x/ � f .x0/; hence f .x/ D f .x0/;

proving the first part of the proposition. The second part follows, because for any
maximizer x0 there is a face F of C such that x0 2 riF W then by the previous
argument, any point of this face is a global minimizer. ut
Proposition 2.34 Let C be a closed convex set, and f W C ! R be a convex
function. If C contains no line and f .x/ is bounded above on every halfline of C
then

supff .x/j x 2 Cg D supff .x/j x 2 V.C/g;

where V.C/ is the set of extreme points of C: If the maximum of f .x/ is attained at
all on C; it is attained on V.C/:

Proof By Theorem 1.7, C D convV.C/ C K; where K is the convex cone generated
by the extreme directions of C: Any point of C which is actually not an extreme
point belongs to a halfline emanating from some v 2 V.C/ in the direction of a ray
of K: Since f .x/ is finite and bounded above on this halfline, its maximum on the
halfline is attained at v (Proposition 2.12, (ii)). Therefore, the supremum of f .x/ on
C is reduced to the supremum on convV.C/: The conclusion then follows from the
fact that any x 2 convV.C/ is of the form x D P

i2I �iv
i; with jIj < C1; vi 2

V.C/; �i � 0;
P

i2I �i D 1; hence f .x/ � P
i2I �if .vi/ � maxi2I f .vi/: ut

Corollary 2.13 A real-valued convex function f .x/ on a polyhedron C containing
no line is either unbounded above on some unbounded edge or attains its maximum
at an extreme point of C:

Corollary 2.14 A real-valued convex function f .x/ on a compact convex set C
attains its maximum at an extreme point of C:

The latter result is in fact true for a wider class of functions, namely for
quasiconvex functions. As was defined in Sect. 2.3, these are functions f W Rn !
Œ�1; C1� such that for any real number ˛; the level set L˛ WD fx 2 R

nj f .x/ � ˛g
is convex, or equivalently, such that

f ..1 � �/x1 C �x2/ � maxff .x1/; f .x2/g (2.53)

for any x1; x2 2 C and any � 2 Œ0; 1�:

To see that Corollary 2.14 extends to quasiconvex functions, just note that a
compact convex set C is the convex hull of its extreme points (Corollary 1.13), so
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any x 2 C can be represented as x D P
i2I �iv

i; where vi are extreme points, �i � 0

and
P

i2I �i D 1: If f .x/ is a quasiconvex function finite on C; and ˛ D maxi2I f .vi/;

then vi 2 C \ L˛; 8i 2 I; hence x 2 C \ L˛; because of the convexity of the set
C \ L˛: Therefore, f .x/ � ˛ D maxi2I f .vi/; i.e., the maximum of f on C is attained
at some extreme point.

A function f .x/ is said to be quasiconcave if �f .x/ is quasiconvex. A convex
(concave) function is of course quasiconvex (quasiconcave), but the converse may
not be true, as can be demonstrated by a monotone nonconvex function of one
variable. Also it is easily seen that an upper envelope of a family of quasiconvex
functions is quasiconvex, but the sum of two quasiconvex functions may not be
quasiconvex.

2.12 Minimax and Saddle Points

2.12.1 Minimax

Given a function f .x; y/ W C � D ! R we can compute infx2C f .x; y/ and
supy2D f .x; y/: It is easy to see that there always holds

sup
y2D

inf
x2C

f .x; y/ � inf
x2C

sup
y2D

f .x; y/:

Indeed, infx2C f .x; y/ � f .z; y/ 8z 2 C; y 2 D; so supy2D infx2C f .x; y/ �
supy2D f .z; y/ 8z 2 C; hence supy2D infx2C f .x; y/ � infz2C supy2D f .z; y/:

We would like to know when the reverse inequality is also true, i.e., when there
holds the minimax equality

� WD sup
y2D

inf
x2C

f .x; y/ D inf
x2C

sup
y2D

f .x; y/ WD �:

Investigations on this question date back to von Neumann (1928). A classical result
of his states that if C; D are compact and f .x; y/ is convex in x; concave in y
and continuous in each variable then the minimax equality holds. Since minimax
theorems have found important applications, there has been a great deal of work on
the extension of von Neumann’s theorem. Almost all these extensions are based
either on the separation theorem of convex sets or a fixed point argument. The
most important result in this direction is due to Sion (1958). Later a more general
minimax theorem was established by Tuy (1974) without any appeal to separation
or fixed point argument. We present here a simplified version of the latter result
which is also a refinement of Sion’s theorem.

Theorem 2.7 Let C; D be two closed convex sets in R
n;Rm; respectively, and let

f .x; y/ W C � D ! R be a function quasiconvex, lower semi-continuous in x and
quasiconcave, upper semi-continuous in y: Assume that

(*) There exists a finite set N � D such that supy2N f .x; y/ ! C1 as x 2 C;

kxk ! C1:
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Then there holds the minimax equality

inf
x2C

sup
y2D

f .x; y/ D sup
y2D

inf
x2C

f .x; y/: (2.54)

Proof Since the inequality infx2C supy2D f .x; y/ � sup
y2D

inf
x2C

f .x; y/ is trivial, it suffices

to show the reverse inequality:

inf
x2C

sup
y2D

f .x; y/ � sup
y2D

inf
x2C

f .x; y/: (2.55)

Let � WD supy2D infx2C f .x; y/: If � D C1 then (2.55) is obvious, so we can assume
� < C1: For an arbitrary ˛ > � define

C˛.y/ D fx 2 Cj f .x; y/ � ˛g:

Since supy2D infx2C < ˛; we have C˛.y/ ¤ ; 8y 2 D: If we can show that

\
y2D

C˛.y/ ¤ ;; (2.56)

i.e., there is x 2 C satisfying f .x; y/ � ˛ for all y 2 D; then infx2C supy2D �
˛ and since this is true for every ˛ > � it will follow that infx2C supy2D � �;

proving (2.55). Thus, all is reduced to establishing (2.56). This will be done in three
stages. To simplify the notation, from now on we shall omit the subscript ˛ and
write simply C.a/; C.b/; etc. . .

I. Let us first show that for every pair a; b 2 D the two sets C.a/ and C.b/

intersect. Assume the contrary, that

C.a/ \ C.b/ D ;: (2.57)

Consider an arbitrary � 2 Œ0; 1� and let y� D .1 � �/a C �b: If x 2 C.y�/;

i.e., f .x; y�/ � ˛ then minff .x; a/; f .x; b/g � f .x; y�/ � ˛ by quasiconcavity of
f .x; :/; hence, either f .x; a/ � ˛ or f .x; b/ � ˛: Therefore,

C.y�/ � C.a/ [ C.b/: (2.58)

Since C.y�/ is convex it follows from (2.58) that C.y�/ cannot meet both sets
C.a/ and C.b/ which are disjoint by assumption (2.57). Consequently, for every
� 2 Œ0; 1�; one and only one of the following alternatives occurs:

.a/ C.y�/ � C.a/I .b/ C.y�/ � C.b/:
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Denote by Ma.Mb; resp.) the set of all � 2 Œ0; 1� satisfying (a) (satisfying (b),
resp.). Clearly 0 2 Ma; 1 2 Mb; Ma [ Mb D Œ0; 1� and, analogously to (2.58):

C.y�/ � C.y�1/ [ C.y�2/ 8� 2 Œ�1; �2�: (2.59)

Therefore, � 2 Ma implies Œ0; �� � Ma; and � 2 Mb implies Œ�; 1� � Mb: Let
s D sup Ma D inf Mb and assume, for instance, that s 2 Ma (the argument is
similar if s 2 Mb/: We show that (2.57) leads to a contradiction.

Since ˛ > � � infx2C f .x; ys/; we have f .x; ys/ < ˛ for some x 2 C: By
upper semi-continuity of f .x; :/ there is " > 0 such that f .x; ysC"/ < ˛ and so
x 2 C.ysC"/: But x 2 C.ys/ � C.a/; hence C.ysC"/ � C.a/; i.e., s C " 2 Ma;

contradicting the definition of s: Thus (2.57) cannot occur and we must have
C.a/ \ C.b/ ¤ ; for all a; b 2 C; ˛ < �:

II. We now show that any finite collection C.y1/; : : : ; C.yk/ with y1; : : : ; yk 2 D
has a nonempty intersection. By (I) this is true for k D 2: Assuming this is true
for k D h�1 let us consider the case k D h: Set C0 D C.yh/; C0.y/ D C0 \C.y/:

From part I we know that C0.y/ ¤ ; for every y 2 D: This means that for all
˛ > � W 8y 2 D 9x 2 C0 f .x; y/ � ˛; so that supy2D infx2C0 f .x; y/ � ˛:

Since � D supy2D infx2C f .x; y/ � supy2D infx2C0 f .x; y/; it follows that � D
supy2D infx2C0 f .x; y/: So all the hypotheses of the theorem still hold when C
is replaced by C0: It then follows from the induction assumption that the sets
C0.y1/; : : : ; C0.yh�1/ have a nonempty intersection. Thus the family fC˛.y/; y 2
Dg has the finite intersection property.

III. Finally, for every y 2 D let C�.y/ D fx 2 Cj f .x; y/ � ˛; supz2N f .x; z/ � ˛g:
Then C�.y/ � CN WD fx 2 Cj supz2N f .x; z/ � ˛g and the set CN is compact
because if it were not so there would exist a sequence xk 2 CN such that kxkj !
C1; contradicting assumption (*). On the other hand, for any finite set E � D
clearly \y2EC�.y/ D \y2E[NC.y/; so by part II \y2EC�.y/ ¤ ;; i.e., the family
fC�.y/; y 2 Dg has the finite intersection property. Since every C�.y/ is a subset
of the compact set CN it follows that \y2DC˛.y/ D \y2DC�.y/ ¤ ;; i.e. (2.56)
must hold. ut

Remark 2.2 In view of the symmetry in the roles of x; y Theorem 2.7 still holds if
instead of condition (*) one assumes that

(!) There exists a finite set M � C such that infx2M f .x; y/ ! �1 as y 2
D; kyk ! C1:

The proof is analogous, using D˛.x/ WD fy 2 Dj f .x; y/ � ˛g with ˛ > � WD
infx2C supy2D f .x; y/ (instead of C˛.y/ with ˛ < � WD supy2D infx2C f .x; y/) and
proving that \x2CD˛.x/ ¤ ;:
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2.12.2 Saddle Point of a Function

A pair .x; y/ 2 C � D is called a saddle point of the function f .x; y/ W C � D ! R if

f .x; y/ � f .x; y/ � f .x; y/ 8x 2 C; 8y 2 D: (2.60)

This means

min
x2C

.x; y/ D f .x; y/ D max
y2D

f .x; y/;

so in a neighborhood of the point .x; y; f .x; y// the set epif WD f.x; y; t/j .x; y/ 2
C � D; t 2 R; f .x; y/ � tg reminds the image of a saddle (or a mountain pass).

Proposition 2.35 A point .x; y/ 2 C � D is a saddle point of f .x; y/ W C � D ! R

if and only if

max
y2D

inf
x2C

f .x; y/ D min
x2C

sup
y2D

f .x; y/: (2.61)

Proof We have

.2.60/ , supy2D f .x; y/ � f .x; y/ � infy2C f .x; y/

, infx2C supy2D f .x; y/ � supy2D f .x; y/ � f .x; y/

� infx2C f .x; y/ � supy2D infx2C f .x; y/:

Since always infx2C supy2D f .x; y/ � supy2D infx2C f .x; y/ we must have equality
everywhere in the above sequence of inequalities. Therefore, (2.60) must be
equivalent to (2.61). ut

As a consequence of Theorem 2.7 and Remark 2.2 we can now state

Proposition 2.36 Assume that C � R
n; D � R

m are nonempty closed convex sets
and the function f .x; y/ W C � D ! R is quasiconvex l.s.c in x and quasiconcave
u.s.c. in y: If both the following conditions hold:

(i) There exists a finite set N � D such that supy2N f .x; y/ ! C1 as x 2
C; kxk ! C1I

(ii) There exists a finite set M � C such that infx2M f .x; y/ ! C1 as y 2
D; kyk ! C1I

then there exists a saddle point .x; y/ for the function f .x; y/:

Proof If (i) holds, we have minx2C supy2D f .x; y/ D supy2D infx2C f .x; y/ by The-
orem 2.7. If (ii) holds, we have infx2C supy2D f .x; y/ D maxy2D infx2C f .x; y/ by
Remark 2.2. Hence the condition (2.61). ut
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2.13 Convex Optimization

We assume that the reader is familiar with convex optimization problems, i.e.,
optimization problems of the form

minff .x/j gi.x/ � 0 .i D 1; : : : ; m/; hj.x/ D 0 .j D 1; : : : ; p/; x 2 ˝g; (2.62)

where ˝ � R
n is a closed convex set, f ; g1; : : : ; gm are convex functions finite on

an open domain containing ˝; h1; : : : ; hm are affine functions.
In this section we study a generalization of problem (2.62), where the convex

inequality constraints are understood in a generalized sense.

2.13.1 Generalized Inequalities

a. Ordering Induced by a Cone

A cone K � R
n induces a partial ordering 
K on R

n such that

x 
K y , y � x 2 K:

We also write x �K y to mean y 
K x: In the case K D R
nC this is the usual ordering

x � y , xi � yi; i D 1; : : : ; m:

The following properties of the ordering 
K are straightforward:

(i) transitivity: x 
K y; y 
K z ) x 
K zI
(ii) reflexivity: x 
K x 8x 2 R

nI
(iii) preservation under addition: x 
K y; x0 
K y0 ) x C x0 
K y C y0I
(iv) preservation under nonnegative scaling: x 
K y; ˛ > 0 ) ˛x 
K ˛y:

The ordering induced by a cone K is of particular interest when K is closed, solid
(i.e., has nonempty interior), and pointed (i.e., contains no line: x 2 K ) �x … K/:

In that case a relation x 
K y is called a generalized inequality. We also write x �K y
to mean that y � x 2 intK and call such a relation a strict generalized inequality.

Generalized inequalities enjoy the following important properties:

(i) x 
K y; y 
K x ) x D yI
(ii) x 6�K xI

(iii) xk 
K yk; xk ! x; yk ! y ) x 
K yI
(iv) If x �K y then for u; v small enough x C u �K y C vI
(v) x �K y; u 
K) x C u �K y C vI

(vi) The set fzj x 
K z 
K yg is bounded.

For instance, (ii) is true because x �K x implies 0 D x � x 2 intK; which
is impossible as K is pointed; (vi) holds because the set E D fzj x 
K z 
K yg
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is closed, so if there exists fzkg � E; kzkk ! C1 then, up to a subsequence,
zk=kzkk ! u with kuk D 1 and since zk

kzkk 2 x
kzkk C K; zk

kzkk 2 x
kzkk � K; letting

k ! C1 yields u 2 K; u 2 �K; hence by (i) u D 0 conflicting with kuk D 1:

b. Dual Cone

The dual cone of a cone K is by definition the cone

K� D fy 2 R
nj hx; yi � 0 8x 2 Kg:

Note that K� D �Ko; where Ko is the polar of K (Sect. 1.8). As can easily be seen:

(i) K� is a closed convex cone;
(ii) K� is also the dual cone of the closure of KI

(iii) .K�/� D clKI
(iv) If x 2 intK then hx; yi > 0 8y 2 K� n f0g:

A cone K is said to be self-dual if K� D K: Clearly the orthant RnC is a self-dual
cone.

Lemma 2.1 If K is a closed convex cone then

y … K , 9� 2 K� h�; yi < 0:

Proof By (iii) above K D .K�/� so y … K if and only if y … .K�/�; hence if and
only if there exists � 2 K� satisfying h�; yi < 0: ut

c. K-Convex Functions

Given a convex cone K � R
m inducing an ordering 
K on R

m a map g W Rn ! R
m

is called K-convex if for every x1; x2 2 R
n and 0 � ˛ � 1 we have the generalized

inequality

g.˛x1 C .1 � ˛/x2/ 
K ˛g.x1/ C .1 � ˛/g.x2/: (2.63)

For instance, the map g W Rn ! R
m is R

mC-convex (or component-wise convex) if
each function gi.x/; i D 1 : : : ; m; is convex.

Lemma 2.2 If g W R
n ! R

m is a K-convex map then for every � 2 K�
the function h�; g.x/i D Pm

iD1 �igi.x/ is convex in the usual sense and the set
fx 2 R

nj g.x/ 
K 0g is convex.

Proof For every x1; x2 2 R
n, we have by (2.63)

˛g.x1/ C .1 � ˛/g.x2/ � g.˛x1 C .1 � ˛/x2/ 2 K:
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Since � 2 K� it follows that

h�; ˛g.x1/ C .1 � ˛/g.x2/ � g.˛x1/ C .1 � ˛/g.x2/i � 0;

hence ˛h�; g.x1/i C .1 � ˛/h�; g.x1/i � h�; g.˛x1/ C .1 � ˛/g.x2/i; proving that
the function h�; g.x/i is convex.

Further, by (2.2), if g.x1/ 
K 0; g.x2/ 
K 0 then

g.˛x1/ C .1 � ˛/x2/ 
K ˛g.x1/ C .1 � ˛/g.x2/ 
K 0;

proving that the set fxj g.x/ 
K 0g is convex. ut

2.13.2 Generalized Convex Optimization

A generalized convex optimization problem is a problem of the form

minff .x/j gi.x/ 
Ki 0 .i D 1; : : : ; m/; h.x/ D 0; x 2 ˝g; (2.64)

where f W Rn ! R is a convex function, Ki is a closed, solid, pointed convex cone
in R

si ; gi W R
n ! R

si ; i D 1; : : : ; m; is Ki-convex, finite on the whole R
n; h W

R
n ! R

p is an affine map, and ˝ � R
n is a closed convex set. By Lemma 2.2 the

constraint set of this problem is convex, so this is also a problem of minimizing a
convex function over a convex set.

Let �i 2 K�
i be the Lagrange multiplier associated with the generalized inequality

gi.x/ 
Ki 0 and 	 2 R
p the Lagrange multiplier associated with the equality

h.x/ D 0: So the Lagrangian of the problem is the function

L.x; �; 	/ WD f .x/ C
mX

iD1

h�i; gi.x/i C h	; h.x/i;

where �i 2 K�
i ; i D 1; : : : ; m; and 	 2 R

p: The dual Lagrange function is

'.�; 	/ D inf
x2˝

L.x; �; 	/ D inf
x2˝

ff .x/ C
mX

ID1

h�i; gi.x/i C h	; h.x/ig:

Since '.�; 	/ is the lower envelope of a family of affine functions in .�; 	/; it is a
concave function. Setting K� D K�

1 � � � � � K�
m; � D .�1; : : : ; �m/ we can show that

sup
�2K�;	2Rp

L.x; �; 	/

D
�

f .x/ if gi.x/ 
Ki 0 .i D 1; : : : ; m/; h.x/ D 0I
C1 otherwise
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In fact, if gi.x/ 
Ki 0 .i D 1; : : : ; m/; h.x/ D 0 then the supremum is attained for
� D 0; 	 D 0 and equals f .x/: On the other hand, if h.x/ ¤ 0 there is 	 2 R

p

satisfying h	; h.x/i > 0 and for � D 0 the supremum is equal to sup�>0ff .x/ C
h�	; h.x/ig D C1: If there is an i D 1; : : : ; m with gi.x/ 6
Ki 0 then by Lemma 2.1
there is �i 2 K�

i satisfying h�i; gi.x/i > 0; hence for 	 D 0; �j D 0 8j ¤ i; the
supremum equals sup�>0ff .x/ C �h�i; gi.x/ig D C1:

Thus, the problem (2.64) can be written as

inf
x2˝

sup
�2K�;	2Rp

L.x; �; 	/:

The dual problem is

sup
�2K�;	2Rp

inf
x2˝

L.x; �; 	/;

that is,

sup
�2K�;	2Rp

'.�; 	/: (2.65)

Theorem 2.8

(i) (weak duality) The optimal value in the dual problem never exceeds the optimal
value in the primal problem (2.64).

(ii) (strong duality) The optimal values in the two problems are equal if the Slater
condition holds, i.e., if

9x 2 int˝ h.x/ D 0; gi.x/ �Ki 0; i D 1; : : : ; m:

Proof (i) is straightforward, we need only prove (ii). By Lemma 2.2 for every �i 2
K�

i the function h�i; gi.x/i is convex (in the usual sense), finite on R
n and hence

continuous. So L.x; �; 	/ is a convex continuous function in x 2 ˝ for every fixed
.�; 	/ 2 D WD K�

1 �� � ��K�
m �R

p and affine in .�; 	/ 2 D for every fixed x 2 h.˝/:

Since h W Rn ! R
p is an affine map, without loss of generality it can be assumed

that h.˝/ D R
p: Since h.x/ D 0 and x 2 int˝, we have 0 2 int˝; so for every

j D 1; : : : ; p there is an aj 2 ˝ such that h.aj/ has its j-th component equal to 1,
and all other components equal to 0. Then for sufficiently small " > 0, we have
xi WD x C ".aj � x/ 2 ˝; Oxj WD x � ".aj � x/ 2 ˝; and so

gi.xj/ < 0 .i D 1; : : : ; m/; hj.xj/ > 0; hj.xj/ D 0 8i ¤ j

gi.Oxj/ < 0 .i D 1; : : : ; m/; hj.Oxj/ < 0; hi.Oxj/ D 0 8i ¤ j:

Let M D fxj; Oxj; j D 1; : : : ; pg: For every .�; 	/ 2 D n f0g we can write


.�; 	/ WD min
x2M

Œ

mX
iD1

�igi.x/ C
pX

jD1

	jhj.x/� < 0
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hence, � WD maxf
.�; 	/j � 2 R
mC; 	 2 R

p; k�k C k	k D 1g < 0: Consequently,

min
x2M

L.x; .�; 	// � max
x2M

f .x/ C min
x2M

f
mX

iD1

�igi.x/ C
pX

jD1

	jhj.x/g

� max
x2M

f .x/ C .k�k C k	k/� ! �1

as .�; 	/ 2 D; k�k C k	k ! C1: So the function L.x; .�; 	// satisfies condition
(!) in Remark 2.2 with C D ˝; y D .�; 	/: By virtue of this Remark,

inf
x2˝

sup
.�;	/2D

L.x; .�; 	// D max
.�;	/2D

inf
x2˝

L.x; .�; 	//;

completing the proof of (ii). ut
The difference between the optimal values in the primal and dual problems is

called the duality gap. Theorem 2.8 says that for problem (2.64) the duality gap is
never negative and is zero if Slater condition is satisfied.

2.13.3 Conic Programming

Let K � R
m be a closed, solid, and pointed convex cone, let c 2 R

n and let A be an
m � n matrix, and b 2 R

m: Then the following optimization problem:

minfhc; xij Ax 
K bg (2.66)

is called a conic programming problem.
Since A.˛x1 C .1 � ˛/x2/ � Œ˛Ax1 C .1 � ˛/Ax2� D 0 2 K; i.e.,

A.˛x1 C .1 � ˛/x2/ �K ˛Ax1 C .1 � ˛/Ax2;

for all x1; x2 2 R
n; 0 � ˛ � 1; the map x 7! b � Ax is K-convex. So a conic

program is nothing but a special case of the above considered problem (2.64) when
m D 1; K1 D K; f .x/ D hc; xi; g1.x/ D b � Ax; h � 0; ˝ D R

n:

The Lagrangian of problem (2.66) is

L.x; y/ D hc; xi C hy; b � Axi D hc � ATy; xi C hb; yi .y �K 0/:

But, as can easily be seen,

inf
x2Rn

L.x; y/ D
� hb; yi if ATy D x

�1 otherwise
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so the dual of the conic programming problem (2.66) is the problem

maxfhb; yij ATy D c; y �K 0g: (2.67)

Clearly linear programming is a special case of conic programming when K D R
nC.

However, while strong duality always holds for linear programming (except only
when both the primal and the dual problems are infeasible), it is not so for conic
programming. By Theorem 2.8 a sufficient condition for strong duality in conic
programming is

9x Ax 
K b:

2.14 Semidefinite Programming

2.14.1 The SDP Cone

Given a symmetric n � n matrix A D Œaij� (i.e., a matrix A such that AT D A) the
trace of A; written Tr(A), is the sum of its diagonal elements:

Tr.A/ WD
nX

iD1

aii:

From the definition it is readily seen that

Tr.˛A C ˇB/ D ˛Tr.A/ C ˇTr.B/; Tr.AB/ D Tr.BA/

Tr.A/ D �1 C � � � C �n

where �i; i D 1; : : : ; n; are the eigenvalues of A; the latter equality being derived
from the development of the characteristic polynomial det.�In � A/.

Consider now the space Sn of all n � n symmetric matrices. Using the concept of
trace we can introduce an interior product1 in Sn defined as follows:

hA; Bi D Tr.AB/ D
X

i;j

aijbij D vec.A/Tvec.B/;

where vec.A/ denotes the n � n column vector whose elements are elements of the
matrix A in the order a11; � � � ; a1n; a21; � � � ; a2n; � � � ; an1; ann: The norm of a matrix
A associated with this inner product is the Frobenius norm given by

1Sometimes also written as A � B and called dot product.
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kAkF D .hA; Ai/1=2 D .Tr.ATA/1=2 D
0
@X

i;j

a2
ij

1
A

1=2

:

The set of semidefinite positive matrices X 2 Sn forms a convex cone SnC called the
SDP cone (semidefinite positive cone). For any two matrices A; B 2 Sn we write
A 
 B to mean that B � A is semidefinite positive. In particular, A � 0 means A is a
semidefinite positive matrix.

Lemma 2.3 The cone SnC is closed, convex, solid, pointed, and self-dual, i.e.,

SnC D .SnC/�:

Proof We prove only the self-dual property. By definition

.SnC/� D fY 2 SnCj Tr.YX/ � 0 8X 2 SnCg:

Let Y 2 SnC. For every X 2 SnC, we have

Tr.YX/ D Tr.YX1=2X1=2/ D Tr.X1=2YX1=2/ � 0;

where the last inequality holds because the matrix X1=2YX1=2 is semidefinite
positive. Therefore, SnC � .SnC/�: Conversely, let Y 2 .SnC/�: For any u 2 R

n,
we have

Tr.YuuT/ D
nX

iD1

y1iuiu1 C � � � C
nX

iD1

yniuiun D
nX

i;jD1

yijuiuj D uTYu:

The matrix uuT is obviously semidefinite positive, while the trace of YuuT is
nonnegative by assumption, so the product uTYu is nonnegative. Since u is arbitrary,
this means Y 2 SnC: Hence, .SnC/� � SnC: ut

A map F W Rn ! Sm is said to be convex, or more precisely, convex with respect
to matrix inequalities if it is SmC-convex, i.e., such that for every X; Y 2 Sn and
0 � t � 1

F.tX C .1 � t/Y/ 
 tF.X/ C .1 � t/F.Y/:

For instance, the map X 7! X2 is convex because for every u 2 R
m the function

uTX2u D kXuk2 is convex quadratic with respect to the components of X and so

uT.�X C .1 � �/X/2u � �uTX2u C .1 � �/uTX2u;

which implies .�X C .1 � �/X/2 
 �X2 C .1 � �/X2: Analogously, the function
X 7! XXT is convex.
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2.14.2 Linear Matrix Inequality

A linear matrix inequality (LMI) is a generalized inequality

A0 C x1A1 C � � � C xnAn 
 0

where x 2 R
n is the variable and Ai 2 Sp; i D 0; 1; : : : ; n; are given p � p symmetric

matrices. The inequality sign 
 is understood with respect to the cone Sp
C W the

notation P 
 0 means the matrix P is semidefinite negative. Obviously, A.x/ WD
A0 CPn

kD1 xkAk 2 Sp
C and each element of this matrix is an affine function of x W

A.x/ D Œaij.x/�; aij.x/ D a0
ij C

nX
kD1

ak
ijxk:

Therefore an LMI can also be defined as an inequality of the form

A.x/ 
 0;

where A.x/ is a square symmetric matrix whose every element is an affine function
of x:

By definition

A.x/ 
 0 , hy; A.x/yi � 0 8y 2 R
p;

so setting C WD fx 2 R
nj A.x/ 
 0g, we have

C D \y2Rpfx 2 R
nj hy; A.x/yi � 0g:

Since for every fixed y the set fx 2 R
nj hy; A.x/yi � 0g is a halfspace, we see that the

solution set C of an LMI is a closed convex set. In other words, an LMI is nothing
but a specific convex inequality which is equivalent to an infinite system of linear
inequalities.

Obviously, the inequality A.x/ � 0 is also an LMI, determining a convex
constraint for x: Furthermore, a finite system of LMI’s of the form

A.1/.x/ 
 0; : : : ; A.m/.x/ 
 0

can be equivalently written as the single LMI

Diag.A.1/.x/; � � � ; A.m/.x// 
 0:
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2.14.3 SDP Programming

A semidefinite program .SDP/ is a problem of minimizing a linear function under
an LMI constraint, i.e., a problem of the form

.SDP/ minfhc; xij A0 C x1A1 C : : : C xnAn 
 0g:

Clearly this is a special case of generalized convex optimization. Specifically, .SDP/

can be rewritten in the form (2.64), with m D 1; f .x/ D hc; xi; g1.x/ D A0 C x1A1 C
: : : C xnAn; K1 D Sp

C:

To form the dual problem to .SDP/ we associate with the LMI constraint a dual
variable Y 2 .Sp

C/� D Sp
C (see Lemma 2.3), so the Lagrangian is

L.x; Y/ D cTx C Tr.Y.A0 C x1A1 C � � � C xnAn//:

The dual function is

'.Y/ D inffL.x; Y/j x 2 R
ng:

Since L.x; Y/ is affine in x it is unbounded below, except if it is identically zero, i.e.,
if ci C Tr.YAi/ D 0; i D 1; : : : ; n; in which case L.x; Y/ D Tr.A0Y/: Therefore,

'.Y/ D
�

Tr.A0Y if Tr.AiY/ C ci D 0; i D 1; : : : ; n
�1 otherwise

Consequently, the dual of .SDP/ is

.SDD/ maxfTr.A0Y/j Tr.AiY/ C ci D 0; i D 1; : : : ; n; Y D YT � 0g:

Writing this problem in the form

maxfhA0; Yij hAi; Yi D �ci; i D 1; : : : ; ; Y � 0g (2.68)

we see that .SDP/ reminds a linear program in standard form.
By Theorem 2.8 strong duality holds for .SDP/ if Slater condition is satisfied

9x A0 C x1A1 C � � � C xnAn: (2.69)

2.15 Exercises

1 Let f .x/ be a convex function and C D domf � R
n: Show that for all x1; x2 2 C

and � … Œ0; 1� such that �x1 C .1 � �/x2 2 C W

f .�x1 C .1 � �/x2/ � �f .x1/ C .1 � �/f .x2/:
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2 A real-valued function f .t/; �1 < t < C1; is strictly convex (cf Remark 2.1)
if it has a strictly monotonically increasing derivative f 0.t/: Apply this result to
f .t/ D et and show that for any positive numbers ˛1; : : : ˛kI

 
kY

iD1

˛i

!1=k

� 1

k

kX
iD1

˛i

with equality holding only when ˛1 D : : : D ˛k:

3 A function f .x/ is strongly convex (cf Sect. 2.9) on a convex set C if and only if
there exists r > 0 (modulus of strong convexity) such that f .x/ � rkxk2 is convex.
Show that:

f ..1 � �/x1 C �x2/ � .1 � �/f .x1/ C �f .x2/ � .1 � �/�rkx1 � x2k2

for all x1; x2 2 C and � … Œ0; 1� such that �x1 C .1 � �/x2 2 C:

4 Show that if f .x/ is strongly convex on R
n (with modulus of strong convexity r/

then for any x0 2 R
n and p 2 @f .x0/ W

f .x/ � f .x0/ � hp; x � x0i C rkx � x0k2 8x 2 R
n:

5 Notations being the same as in Exercise 4, show that for any x1; x2 2 R
n and

p1 2 @f .x1/; p2 2 @f .x2/ W

hp1 � p2; x1 � x2i � rkx1 � x2k2:

6 If f .x/ is strongly convex on a convex set C then for any x0 2 C the level set
fx 2 Cj f .x/ � f .x0/g is bounded.

7 Let C be a nonempty convex set in R
n; f W C ! R a convex function,

Lipschitzian with constant L on C: The function

F.x/ D infff .y/ C Lkx � ykj y 2 Cg

is convex, Lipschitzian with constant L on the whole space and satisfies F.x/ D
f .x/ 8x 2 C:

8 Show that if @"f .x0/ is a singleton for some x0 2 domf and " > 0; then f .x/ is an
affine function.

9 For a proper convex function f W p 2 @f .x0/ if and only if .p; �1/ is an outward
normal to the set epif at point .x0; f .x0//:

10 Let M be a nonempty set in R
n; h W M ! R an arbitrary function, E an n � n

matrix. The function
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'.x/ D maxfhx; Eyi � h.y/j y 2 Mg

is convex and for every x0 2 dom'; if y0 2 argmaxy2Mfhx0; Eyi � h.y/g then Ey0 2
@'.x0/:

11 Let f W R
n ! R be a convex function, X a closed convex subset of Rn; A 2

R
m�n; B 2 R

m�p; c 2 R
m: Show that the function '.y/ D minff .x/j Ax C By �

c; x 2 Xg is convex and for every y0 2 dom'; if � is a Kuhn–Tucker vector for the
problem minff .x/j Ax C By0 � c; x 2 Xg then the vector BT� is a subgradient of '

at y0:
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