
Chapter 2
Authentication and Secret-Key Cryptology

2.1 Introduction

The transmission of information in a communication process faces various threats.
These threats arise if during the transmission, the messages are at the mercy of unau-
thorized actions of an adversary, that is, if the channel used for the communication
is insecure. Basically there are three attacks the communicants have to be aware of
when using an information transmission system. An adversary might observe the
communication and gain information about it, he might insert false messages or he
might replace legally sent messages by false messages. The protection against the
first attack is a question of secrecy and the protection against the latter two attacks
is a question of authenticity.

The need to protect communication has been appreciated for thousands of years.
It is not surprising that most of the historical examples arise from the battleground,
where secrecy and authenticity of messages is directly related to a potential loss of
life. But apart from those military applications, the fast development of information
technology has led to a number of economical applications in our days. From elec-
tronic fund transfer in international banking networks to the transmission of private
electronic mail, there are vast amounts of sensitive information routinely exchanged
in computer networks that demand for protection.

From ancient times on up to now, the authenticity of documents or letters has
been guaranteed by the usage of seals and handwritten signatures, which are difficult
to imitate. In order to guarantee secrecy, people have used methods in which the
very existence of a message is hidden. Those techniques are known as concealment
systems, including, for instance, the usage of invisible ink or the microscopical
reduction of messages to hide them in meaningless text. An historical example of
such a concealment goes back to the Greeks. Learning that the Persian king Darius
was about to attack Greece, a Greek living in Persia scratched a warning message
on a wooden writing tablet, then covered the tablet with wax so that it looked like a
fresh writing surface. He sent it to Sparta, where Gorgo, the wife of the Spartan king
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56 2 Authentication and Secret-Key Cryptology

Leonidas, guessed that the blank wax writing surface covered something important,
scraped it off and discovered the message that enabled the Greeks to prepare for
Darius’ attack and to defeat him ([16], pp. 38).

We will not deal with such physical devices for information protection but dis-
cuss a different method known as encryption or cryptographic coding, which allows
a mathematical treatment. The idea is to transform the messages before transmission
in order to make them unintelligible and difficult to forge for an adversary. Perhaps
one of the first who employed such a method was Julius Caesar when replacing in his
correspondence each letter by its third successor (cyclically) in the Latin alphabet
([15], pp. 83). The general usage of such a cryptosystem can be imagined as follows.
Sender and receiver agree upon one of several possible methods to transform the
messages. Using this method the sender transforms an actual message and transmits
the result over the insecure channel. The receiver, knowing which method was used
by the sender, can invert the transformation and resolve the original message. The
possible transformations are usually referred to as keys and the transformed mes-
sages sent over the insecure channel are referred to as cryptograms. Further, the
transformation of the original message into the cryptogram done by the sender is
called encryption and the opposite action by the receiver is called decryption.

The mathematical model to analyze secrecy systems of this type was introduced
by Shannon [24] in 1949.Hiswork on this subject is generally accepted as the starting
point of the scientific era of cryptology. As indicated, cryptosystems have been used
for more than 2000 years and they were thought to be secure if no one who had
tried to break them, had succeeded. Shannon’s theory made it possible to prove the
security of cryptosystems and to give bounds on the amount of information, which
has to be securely transmitted to achieve this provable security.

The problem of authenticity, when a cryptosystem is used, was treated much later
than Shannon’s development of a theory for secrecy systems. The systematic study
of authentication problems is the work of G.J. Simmons [28]. Although he is not
among the originators of the earliest publication [12] from 1974 on this subject, the
authors of this paper already mentioned that Simmons drew their attention to the
model considered ([12], pp. 406).

The successful usage of a cryptosystem of the described form is primarily based
on the ability of the sender and the receiver to agree upon a key to be used for the
encryption and to keep this key secret. Therefore one has to assume that they can
use a secure channel to exchange the identity of that key. Systems of this type are
called secret-key cryptosystems. One might object that if sender and receiver have
a secure channel at their disposal, they could use it directly for the transmission of
the messages, but it might be possible that the secure channel is only available at
some time instance before the transmission of the messages. Furthermore the secure
channel might be unsuitable for the transmission of the messages, for instance, if
it has a capacity that is too small. Hence, the assumption that a secure channel is
available can be justified in a lot of cases and, in particular, systems with a small
number of keys compared to the number of messages are of practical interest.

An example of a secret-key cryptosystem is the DES (data encryption standard),
which was developed at IBM around 1974 and adopted as a national standard for
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the USA in 1977. It uses keys specified by binary strings of length 56 and encrypts
using these keys messages given as binary strings of length 64 [7].

We will analyze both the authentication and the secrecy problem on a theoretical
level, where we assume that the adversary has infinite computing power. In 1976
Diffie and Hellman [9] invented a new type of cryptosystems where a secure channel
to exchange the key is no longer needed. Each participant has a publically available
key and a secret private key. These so called public-key cryptosystems are mostly
based on an intractability assumption on the adversaries ability to solve a certain
computational problem, like the factorization of large composite integers or the
evaluation of the discrete logarithm, and are in this way based on a bound on the
computational power of the adversary. Those systems are beyond the scope of this
section.

The present chapter is organized as follows. In Sect. 2.1 the models of secret-key
cryptology and authentication are introduced. We start with the classical model of a
secrecy system formulated by Shannon [24]. As a measure for the secrecy provided
by such a system the entropy criterion and the opponent’s error probability when
decrypting will be introduced and a relation between these criteria will be derived.
In order to analyze the authentication problem we extend the so far discussed model
in such a way that the adversary is allowed to become an active wiretapper, which
means that he has more influence on the communication channel. We introduce the
two different actions an opponent can try in order to deceive the receiver, namely,
the so called impersonation attack and the substitution attack and we define the
corresponding success probabilities PI and PS , respectively.

Although the model of the classical secrecy system is extended, it is still possible
to analyze the introduced criteria for secrecy. Especially the class of authentication
systems with no secrecy at all is of interest for some applications.

Section2.3 is concerned with the authentication problem. We begin with deriving
some general bounds on PI and PS . The derivation of Simmons’ bound for PI leads
to the definition of perfect authenticity. We will see that, in general, authenticity and
secrecy are two independent attributes of a cryptosystem (Sect. 2.3.1).

Then we will analyze the special class of authentication systems without secrecy.
We derive the bound on PS in such a case, which was originally proved in [12] and in
a more general form in [2]. We show that a certain generalization to a larger class of
message sources is not possible and we derive from the proof given in [2] necessary
and sufficient conditions that an authentication system achieves the lower bound on
PS (Sect. 2.3.2).

The problem of the maximal number of messages in an authentication system
under certain constraints on the success probabilities of the opponent will be treated
in the next section. We study the behavior of the maximal number of messages for
large values of Kp2, where K is the number of keys and p is an upper bound on the
opponent’s success probability. The problem is still not completely solved and we
derive the known upper and lower bounds. A typical result is that M ∼ exp(K · f (p))

where M is the number of messages and f is some positive function. The special
shape of f is up to now not exactly known. The difference between the upper and
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lower bounds for M consists (for small p) essentially of a factor of order log 1
p in the

exponent of the bounds (Sect. 2.3.3).
The observation that the receiver’s decision problem to accept a received message

or not, can be viewed as an hypothesis testing problemwill lead to a simpler derivation
of information-theoretic lower bounds on the opponent’s success probability. This
approach, which was made in [19], allows also to generalize the model in several
directions (Sect. 2.3.4).

In Sect. 2.4 we start the analyzation of secrecy systems with the derivation of
some upper bounds on the secrecy measured by the entropy criterion. This leads to
Shannon’s result that a necessary condition for perfect secrecy is that the number
of keys is at least as big as the number of messages. Afterwards we introduce the
notions of regular and canonical ciphers and derive a lower bound on the secrecy
for every locally regular cipher (Sects. 2.4.1 and 2.4.2). Furthermore we give an
explicit construction of a good locally regular cipher and derive various bounds for
the secrecy of this cipher (Sect. 2.4.3). Finally we present an approach to extend the
model with a source coder and a (private) randomizer (Sects. 2.4.4 and 2.4.5).

In Sect. 2.4 we shall take a closer look at public-key cryptology. In Shannon’s
original model of a cryptosystem it is assumed that the cryptanalyst has unlimited
computational power and hence is able to decipher the cryptogram immediately,
once he knows the key. Shannon already remarked that this assumption often is not
realistic. In their pioneering paper “New Directions in Cryptography” Diffie and
Hellman [9] introduced public-key cryptology. They presented a protocol using only
one key, which is a one-way function. In order to encrypt and decrypt the message,
sender i and receiver j have to rise a special value to the power ai (resp. aj). This
can be done very fast by repeated squaring. In principle ai and aj are known to the
cryptanalyst, since they are stored in a public directory. However, they are published
in the form bi = wai and bj = waj , where w is a primitive element in a finite field.
In order to conclude from bi to ai, the cryptanalyst has to take the discrete logarithm
ai = logw bi and for this task up to now no efficient algorithm is known. So, the
cryptanalyst has all the necessary information to obtain the original message, but
he cannot do this in a reasonable amount of time. There are several advantages of
public-key cryptology compared to secret-key cryptology:

(1) the existence of a secure channel is no longer required;
(2) communication is faster, since the key has not to be transmitted;
(3) most public-key protocols are extendable to multi-user systems;
(4) public-key protocols also can be designed for further purposes, such as verifica-

tion of identity, digital signatures, etc.

Whereas in secret-key cryptology the mathematical tools mostly stem from Infor-
mation Theory, in public-key cryptology we need some background in Complexity
Theory (one-way functions, zero-knowledge proofs) and in Number Theory, since
most of the protocols we shall present are based on the hardness of integer factor-
ization. We shall only present the ideas and facts which are important to understand
the protocols presented and refer the reader to standard literature in the respective
sections.
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2.2 Models and Notation

2.2.1 Secret-Key Cryptology

In this paragraph the models of secret-key cryptology and authentication will be
introduced. In bothmodelswe have three actors, a sender, a receiver and an opponent.
Sender and receiver act together against the opponent. The sender has to inform the
receiver about the state of a message source, in presence of the opponent who has
access to the communication channel. The two models differ mainly in the abilities
and actions of the opponent.

The opponent reads what is transmitted by the sender. The aim of sender and
receiver is to avoid that the opponent can obtain any information from the transmitted
message. To this aim sender and receiver share a secret key which is not known to the
opponent. The sender uses this key to encrypt the original message into a different
message, the so called cryptogram. This cryptogram is transmitted over the insecure
channel to the receiver who can reconstruct the original message using the key. As
the opponent does not know the secret key he hopefully can do nothing useful with
the cryptogram. Such a secrecy system is depicted in Fig. 2.1, later this model will
be extended with a randomizer and a source coder.

For the components of this model the following notation is used:

• Message Source (M, P)

whereM � {1, . . . , M} is a set of M messages and P is a probability distribution
on M.

Message
Source

Sender
(Encrypter)

Opponent
(Cryptanalyst)

Receiver
(Decrypter)

Key Source

Fig. 2.1 A secret-key crypto system
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• Key Source (C, Q)

where C � {c1, . . . , cK} is a set of K keys and Q is a probability distribution on C.
Every key cz is a mapping cz : M → M′ from the set of messages M to the
set of cryptograms M′, i.e., the sender encrypts the message m ∈ M into the
cryptogram cz(m) ∈ M′, if the key with index z is used. In order to enable the
receiver to reconstruct the original message we have to require

cz(m1) �= cz(m2) (2.2.1)

for all m1, m2 ∈ M, m1 �= m2, z ∈ {1, . . . , K}.
This implies that |cz(M)| = M for all z ∈ {1, . . . , K}. When considering secrecy
systems it is usually also assumed that ci(M) = cj(M) for all i, j ∈ {1, . . . , K}
and therefore one can identify M and M′ via isomorphy and regard the keys cz

as permutations on M.
The pair (C, Q) is also referred to as cipher.

• Random variables X, Y , Z
It is often convenient to work with random variables for message, cryptogram and
key rather then with the probability distributions P and Q itself, i.e.:
Let X be a random variable with values inM and distribution PX = P.
Let Z be a random variable with values in {1, . . . , K} and distribution PZ with
PZ(z) = Q(cz) for all z ∈ {1, . . . , K}.
Let Y be a random variable with values in M′(=M) and distribution PY , which
is determined by the common distribution PXZ . If not explicitly stated in another
way, then we assume that the message and the key are generated by independent
random experiments, i.e., PXZ = PXPZ and therefore

PY (m′) =
∑

m∈M
PX(m)

∑

z:cz(m)=m′
PZ(z) for all m′ ∈ M. (2.2.2)

In order to avoid trivialities we assume that we have more than one message
(M ≥ 2) and we will only deal with messages and keys that occur with strictly
positive probability, otherwise they are irrelevant at all. We therefore assume that

PX(m) > 0 and PZ(z) > 0 for all m ∈ M, z ∈ {1, . . . , K}.

The triple (X, Z, C) is referred to as secrecy system.

The Opponent’s Knowledge

The secrecy provided by such a cryptosystem should be measured according to the
fact that the value of the secret key can be kept unknown to the opponent but nothing
more. This means it should not be assumed that one can prevent the opponent from
getting information about other elements of the secrecy system. This is known as
Kerckhoffs’ Principle1 in cryptology, which means that the opponent is assumed to

1First enunciated by A. Kerckhoffs (1835–1903) ([15], pp. 235).
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know all details of the cryptosystem except for the value of the secret key, espe-
cially we also assume that the opponent has full knowledge about the probability
distributions of messages and keys. Of course this worst-case assumption is quite
pessimistic. Nevertheless in the long run it might not be too difficult for an opponent
to get information about the design of the cryptosystem.

Measurements for Secrecy

We will introduce two measures for the secrecy provided by a cryptosystem of this
type.

Entropy Criterion As the opponent reads the cryptogram m′ ∈ M which is a real-
ization of the random variable Y and tries to draw conclusions about the original
message m ∈ M which is a realization of the random variable X, it is natural to use
the average uncertainty about the state of the message source given the observation
of the cryptogram. This is expressed by the conditional entropy

H(X|Y).

A ‘very good’ secrecy system will not decrease the uncertainty about X if Y is
observed, i.e., H(X|Y) = H(X). This leads to the following definition.

Definition 21 A secrecy system is perfect if X and Y are independent.

Cryptanalyst’s Error Probability Beside the entropy criterion, already studied by
Shannon [24], Ahlswede [1] considered as a measure for secrecy the cryptanalyst’s
error probability in deciding which message was sent.

Given a secrecy system by X, Z and C the probability of decrypting correctly is

λc(X, Z, C) =
∑

m′∈M
max
m∈M

PXY (m, m′),

assuming that the cryptanalyst is using the maximum-likelihood decision rule, which
is best possible. Therefore the opponent’s error probability is

λ(X, Z, C) = 1 − λc(X, Z, C).

Lemma 4 The two criteria for secrecy are not unrelated, namely for every secrecy
system

λc ≥ 2−H(X|Y).

Proof
− logλc = − log

∑

m′∈M
max
m∈M

PXY (m, m′)

≤ − log
∑

m′∈M

∑

m∈M
PX|Y (m|m′)PXY (m, m′)
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≤ −
∑

m′∈M

∑

m∈M
PXY (m, m′) logPX|Y (m|m′)

= H(X|Y),

where the first inequality is due to the fact that the maximum is greater than the
average of terms and the second one follows by application of Jensen’s inequality
for the ∪-convex function − log. �
This lemma can be used to convert lower bounds on λ into lower bounds on H(X|Y)

and upper bounds on H(X|Y) into upper bounds on λ.
Apart from the two measurements introduced so far, as a further criterion for

secrecy Hellman [13] considered the average number of spurious decipherments.

2.2.2 Authentication

In general, authentication theory is concernedwith providing evidence to the receiver
of a message that it was sent by a specified and legitimate sender, even in presence of
an opponent who can send fraudulent messages to the receiver or intercepts legally
sent messages and replaces them by fraudulent ones.

In the model of secret-key cryptology the encryption with a secret key was done
in order to guarantee secrecy, i.e., an opponent cannot decipher the cryptogram. In
the model of authentication the encryption with a secret key is used to guarantee the
authenticity of a transmitted message, which means that the encryption is done in
such a way that the receiver recognizes if a fraudulent cryptogram was inserted by
an opponent. So in this model the opponent is considered to be more powerful in
the sense that he has more influence on the communication channel than before. The
opponent can try two types of attacks:

• He can intercept a legally sent cryptogram and replace it by a different one.
This is the so called substitution attack.

• He can send a fraudulent cryptogram to the receiver, even when no cryptogram
was transmitted by the sender.
This is the so called impersonation attack.

The opponent tries to deceive the receiver about the actual value of the random
variable X. In the case of a successful substitution attack the receiver believes the
random variable X to attain a value different from the true one. In the case of a
successful impersonation attack the receiver believes the random variable X to attain
some value but actually the message source has not generated a message. In both
cases the aim of the opponent is to misinform the receiver about the state of the
message source. (In fact this is the basic aim. For instance, it would be not very
useful for a cheater to make his bank believe that on his account is a less amount of
money than there actually is. Therefore one might think about more ambitious aims
for the opponent. This will be treated in Sect. 2.3.4).
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Such an authentication system is depicted in Figs. 2.2 and 2.3. In Fig. 2.2 a substi-
tution attack is shown. In case of an impersonation attack the opponent simply sends
a cryptogram to the receiver, sender and message source are thought to be inactive.
Such a situation is shown in Fig. 2.3.

We will use the same notation for the components of this model as before:

• Message Source (M, P).
• Key Source (C, Q).
• Keys cz : M → M′, z ∈ {1, . . . , K}.
• Random Variables X, Y , Z for messages,cryptograms and keys, respectively.

Message
Source

Sender
(Encrypter)

Opponent
(Cryptanalyst)

Receiver
(Decrypter)

Key Source

Fig. 2.2 A substitution attack

Fig. 2.3 An impersonation
attack

Sender
(Encrypter)

Opponent
(Cryptanalyst)

Receiver
(Decrypter)

Key Source
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In addition to this we need a random variable Y ′ for the cryptogram the opponent
inserts. We use Y ′ for both cases of impersonation- and substitution attacks. To
specify when the opponent is successful, we need the following definition.

Definition 22 A cryptogram y ∈ M′ is valid under the key cz ∈ C if y is in the range
of cz, i.e., y ∈ cz(M).

If the opponent inserts a cryptogram y′, then the receiver does not detect the deception,
if the cryptogram y′ is valid under the secret key used by sender and receiver. On
the other hand if y′ is not valid under the secret key, then the receiver is sure that
the cryptogram does not come from the sender and must have been inserted by the
opponent.

Definition 23 Theopponent is considered to be successful in each case if the receiver
accepts the inserted y′ as a valid cryptogram.

We call a probability distribution PY ′ on M′ an impersonation strategy and a
family {PY ′|Y (·|y) : y ∈ M′} of conditional distributions on M′ with PY ′|Y (y|y) =
0 for all y ∈ M′ a substitution strategy.

Let PI and PS denote the probabilities for the opponent using his optimal strategy
to be successful in an impersonation attack and in a substitution attack, respectively.

Remark 8 1. Note that in a substitution attack we force the opponent to replace
the intercepted cryptogram y by a different cryptogram y′ because otherwise he
would not misinform the receiver about the state of the message source.

2. In the model of secret-key cryptology it was assumed M = M′. Now this does
not make sense any longer because it would imply that every cryptogram is valid
under every key, thereforePI = PS = 1 and one cannot guarantee any authenticity
of messages. Therefore we will allow in this context thatM andM′ are different
sets with |M′| ≥ |M|.

The triple (X, Z, C) is referred to as authentication system or authentication code.
Such an authentication system can either provide no secrecy, i.e., H(X|Y) = 0, or

it can provide some degree of secrecy, i.e., H(X|Y) > 0. Sometimes authentication
codes without secrecy are called cartesian or systematic in the literature.

For this model of authentication we will keep the assumption of Section“The
Opponent’s Knowledge” that the opponent knows all details of the elements of the
system except for the value of the secret key. In fact, Simmons [26, 27], who intro-
duced this model, had a different notion. He thought of a game-theoretic authentica-
tion model. This means sender and receiver play against the opponent. In a game one
needs to define the strategy sets of the players. Clearly the strategies for the opponent
are the distributions introduced in Definition 23. The strategies of sender and receiver
Simmons then defined as the possible distributions PZ of the keys. Therefore he had
to assume that the opponent does not know the key statistics. This approach has not
further been developed in literature and we will keep Kerckhoffs’ assumption, which
means that also PZ is fixed and known to the opponent.
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Remark 9 In order to avoid confusion it should be noted that in a lot of papers
concerning authentication theory (for example those of Simmons) a different notation
is used. Messages are called source states, cryptograms are called messages and keys
are called encoding rules.

2.3 Authentication

2.3.1 General Bounds and Perfectness

InShannon’smodel of secret-key cryptology itwas clear how todefine the perfectness
of the system. In the authentication model it is no longer obvious, when one can say
that a system provides perfect authenticity. We will see that a complete protection
against deception is impossible. Therefore we have to start with the analysis to what
degree the opponent is able to deceive the receiver.

Hence, we try to give lower bounds on the probabilities PI and PS . It should be
noted that there is no general relationship of the form PS ≥ PI , as one might think at
first sight because in a substitution attack the opponent has the additional information
about a valid cryptogram.Recall that in a substitution attack the opponent is restricted
to choose a cryptogram different from the original one, as he wants to misinform the
receiver. The next example shows that this can lead to a situation with PS < PI .

Example 3 Let us define an authentication system as follows:

• Two messages, M � {1, 2}, which occur each with probability 1
2 , i.e., PX(1) �

PX(2) � 1
2 .

• 3 keys, C � {c1, c2, c3}, with PZ(z) � 1
3 for all z ∈ {1, 2, 3}.

• 3 possible cryptograms, M′ � {y1, y2, y3} and the encryption is done according
to the following table.

y1 y2 y3
c1 1 2
c2 1 2
c3 2 1

For instance, the message 2 is encrypted using the key c3 to the cryptogram y1 or
formally c3(2) = y1.

Clearly PI = 2
3 , as Pr(yi valid) = 2

3 for all i ∈ {1, 2, 3}.
But after having observed any valid cryptogram, the probability that a different

one is also valid under the used key is always 1
2 .

Therefore PS = 1
2 < 2

3 = PI .
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Combinatorial Bounds

Theorem 31 For every authentication system

PI ≥ M

|M′| and PS ≥ M − 1

|M′| − 1
.

Proof The statement immediately follows by consideration of the following imper-
sonation strategy and substitution strategy, respectively.

• Impersonation: The opponent chooses y ∈ M′ according to the uniform distribu-
tion, i.e., PY ′(y) = 1

|M′| for all y ∈ M′.
• Substitution: Observing y ∈ M′ the opponent chooses y′ �= y according to the
uniform distribution fromM′\{y}, i.e., PY ′|Y (y′|y) = 1

|M′|−1 for all y′ �= y.

As these strategies are not necessarily optimal, by calculation of the corresponding
success probabilities we obtain lower bounds on PI and PS , namely

PI ≥
K∑

z=1

PZ(z)
|cz(M)|
|M′| = M

|M′|

and similarly

PS ≥
K∑

z=1

PZ(z)
|cz(M)| − 1

|M′| − 1
= M − 1

|M′| − 1
,

where we used that |cz(M)| = M, as cz is injective. �

Remark 10 1. Note that in Example 3 the bounds hold with equality.
2. If we consider also randomized ciphers (i.e., some messages may be mapped to

different cryptograms under the same key according to some probability distrib-
ution), then we have |cz(M)| ≥ M and therefore equality in the bounds is only
possible if the cipher is not randomized.

3. PI = 0 or PS = 0 is impossible (recall that M ≥ 2).

Simmons’ Bound

In this section we present the basic information-theoretic lower bound on PI , first
given by Simmons [26, 27].

Before this, note that one can get two rough bounds on PI and PS in terms of
entropy simply by bounding the probabilities of guessing the key correctly (in case
of a substitution attack after observing the cryptogram y). Doing this we get:

PI ≥ 2−H(Z) and PS ≥ 2−H(Z|Y).
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The derivation of this type of bounds is done in Sect. 2.3.4, where we will treat the
bound on PS in a more general context. The next theorem shows that it is possible
to add H(Z|Y) in the exponent of the bound for PI .

Theorem 32 (Simmons) For every authentication system

PI ≥ 2−I(Y∧Z).

At first sight this bound may look somewhat strange, as it tells us that PI can be
made small only if the cryptogram gives away much information about the key. But
recall that in an impersonation attack the opponent does not have access to a legally
sent cryptogram. Furthermore one could interprete the bound from the receivers
viewpoint. The receiver can only hope for a small PI if his knowledge of the key
gives him a lot information about the cryptogram.

The proof for Simmons’ bound presented below was taken from Johannesson and
Sgarro [14]. It is simpler than Simmons’ original derivation and one easily sees how
the bound can be strengthened.

Proof of the theorem. The best impersonation attack for the opponent is to choose a
cryptogram y ∈ M′ with maximal probability of validity, i.e.,

PI = max
y∈M′ Pr(y valid) = max

y∈M′

∑

z:φ(y,z)=1

PZ(z), (2.3.1)

where the function φ is defined as follows

φ(y, z) �
{
1,

0,

if PYZ(y, z) > 0

otherwise,

i.e., φ(y, z) is equal to one exactly if y is a valid cryptogram under the key cz.
Now we calculate I(Y ∧ Z) and apply the log-sum inequality.

I(Y ∧ Z) =
∑

y

PY (y)
∑

z

PZ|Y (z|y) log PZ|Y (z|y)
PZ(z)

.

We can restrict the summation to terms with φ(y, z) = 1 (because only for these we
have PZ|Y (z|y) > 0) and apply the log-sum inequality. In this way we obtain
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I(Y ∧ Z) =
∑

y

PY (y)
∑

z:φ(y,z)=1

φ(y, z)PZ|Y (z|y) log φ(y, z)PZ|Y (z|y)
φ(y, z)PZ(z)

.

≥
∑

y

PY (y) (
∑

z:φ(y,z)=1

φ(y, z)PZ|Y (z|y) )

︸ ︷︷ ︸
=1

log

=1︷ ︸︸ ︷∑

z:φ(y,z)=1

φ(y, z)PZ|Y (z|y)
∑

z:φ(y,z)=1

φ(y, z)PZ(z)

︸ ︷︷ ︸
Pr(y valid)

= −
∑

y

PY (y) log Pr(y valid) ≥ − log max
y

Pr(y valid) = − logPI .�

Corollary 1 Necessary and sufficient conditions for equality in Simmons’ bound
are:

1. Pr(y valid) is constant in y.

2. PZ (z)PY (y)
PYZ (y,z) is constant for all (y, z) with PYZ(y, z) > 0.

Proof The first condition follows from the last inequality in the proof and the con-
dition for equality in the log-sum inequality is in our case:

PZ|Y (z|y) Pr(y valid) = PZ(z) for all (y, z)withφ(y, z) = 1,

which is equivalent to condition 2. aswe saw already that Pr(y valid)must be constant
in y. �

Strengthening of Simmons’ Bound

The first strengthening by Johannesson and Sgarro [14] is easily derived by the
following observation. From Eq. (2.3.1) it is clear that Pr(y valid) and therefore also
PI is independent of the distribution PX of messages, but the mutual information
I(Y ∧ Z) is not, in general. This implies that if we change our distribution PX of
messages to some PX̄ in such a way that the function φ is kept unchanged, then we
get a new value 2−I(Ȳ∧Z) which is also a bound for PI in our original authentication
system. Therefore we obtain a stronger bound in the following way.

Proposition 2 (Johannesson, Sgarro)

PI ≥ 2− inf I(Y∧Z),

where the infimum is taken over all distributions PX which leave φ unchanged.

In the next example we show that this new bound can return values, which are strictly
better than those of the former bound.
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Example 4 Let us define an authentication system in the following way.

• Two messages, M � {1, 2} with PX(1) � p ≤ 1
2 (w.l.o.g.).

• Four equiprobable keys, C � {c1, . . . , c4} with PZ(z) � 1
4 for all z ∈ {1, . . . , 4}.

• Four cryptograms, M′ � {y1, . . . , y4}.
The encryption is shown in the table below.

y1 y2 y3 y4
c1 1 2
c2 2 1
c3 1 2
c4 2 1

For this authentication system we have PI = 1
2 and PS = 1 − p ≥ 1

2 , which
implies PD = 1 − p.

I(Y ∧ Z) = H(Y) − H(Y |Z) = log 4 − h(p) = 2 − h(p), where h is the binary
entropy, i.e., h(p) � −p log p − (1 − p) log(1 − p). Therefore 2−I(Y∧Z) = 2h(p)

4 ≤ 1
2

with equality exactly if p = 1
2 .

Hence, the strengthened bound for PI is sharp and the old bound is not sharp for
p �= 1

2 .

We could strengthen the bound by observing that PI is independent of PX (if φ
is kept unchanged). We can obtain a further strengthening by analyzing on what PI

depends. Again from Eq. (2.3.1) it is clear that PI depends only on the (marginal)
distribution of Z and on the function φ. Thus, given that these are kept fixed, both the
message distribution and any correlation of X and Z are totally irrelevant. Therefore
we get a new bound:

Theorem 33 (Johannesson, Sgarro)

PI ≥ 2− inf I(Y∧Z),

where now the infimum is taken over all (possibly dependent) random couples (X, Z)

such that

1. Z has the same marginal distribution as for the given system
2. the resulting function φ is the same as for the given system.

Again this new bound can return values that are strictly better than those of the
previously considered bounds, which is shown in the next example.

Example 5 Let us define an authentication system in the following way:

• Two messages, M � {1, 2} with PX(1) � p.
• Two equiprobable keys, C � {c1, c2} with PZ(1) � PZ(2) � 1

2 .
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• Three cryptograms M′ � {y1, y2, y3}.
The encryption is done according to the following table.

y1 y2 y3
c1 1 2
c2 2 1

For this authentication code we have PI = 1, because Pr(y1 valid) = 1 and I(Y ∧
Z) = H(Y) − H(Y |Z) = 1 + 1

2h(p) − h(p) = 1 − 1
2h(p).

If we take p = 1
2 , then I(Y ∧ Z) is minimized and we obtain the (old) bound

PI ≥ 2− 1
2 = 1√

2
, which is not sharp. Suppose now that X and Z are no longer

independent and assume that X and Z return the same values with probability close
to one (we cannot say with probability equal to 1 because this would change φ). Then
with probability close to one Y = y1 and therefore I(Y ∧ Z) = H(Y) − H(Y |Z) ≤
H(Y) ≈ 0. So the newbound gives the correct estimatePI = 1 for the original system
where X and Z are independent.

There are also nondegenerate examples (PI < 1) with this effect (see [14]).

Perfectness

Up to now we derived lower bounds on PI . With each of these lower bounds we
obtain also a lower bound on the probability of deception PD, which we define as
PD � max{PI , PS}. For instance,

PD ≥ 2−I(Y∧Z) (2.3.2)

Simmons [26, 27] defined perfect authenticity to mean that equality holds in (2.3.2).
In this case, he noted that the information capacity of the transmitted cryptogram
is used either to inform the receiver as to the state of the message source or else to
confound the opponent.

Definition 24 An authentication system is perfect if

PD = 2−I(Y∧Z).

One could also think of perfect authenticity to mean that equality holds in (2.3.2),
where instead of Simmons’ bound the stronger bound onPI from Theorem 33 is used
on the right-hand side. However we will keep the original definition by Simmons.
This was also done by Massey [18] who noted that the information that Y gives
about Z , I(Y ∧ Z), is a measure of how much of the secret key is used to provide
authenticity. Therefore, if the stronger bound 2− inf I(Y∧Z) is greater than 2−I(Y∧Z),
then this indicates that the authentication system is wasting part of the information
I(Y ∧ Z) and therefore should not be called ‘perfect’.
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Remark 11 1. Note that we may have to call a system perfect although it provides
no authenticity at all, i.e., PD = 1. For instance, the “One-Time Pad” described
in Example 7 provides perfect secrecy and Y and Z are independent. Therefore
PD = 2−I(Y∧Z) = 1.

2. The authentication system of Example 4 provides for p = 1
2 both perfect secrecy

and perfect authenticity with PD = 1
2 . For p �= 1

2 it still provides perfect secrecy
but has no longer perfect authenticity. The next example shows an authentication
system with perfect authenticity but without perfect secrecy. Therefore we can
say that in general authenticity and secrecy are two independent attributes of
a cryptographic system. Massey [18] says that this is a lesson that is too often
forgotten in practice.

Example 6 Let us define an authentication system in the following way:

• Two messages M � {1, 2}, with PX(1) � PX(2) � 1
2 .

• Four keys, C � {c1, . . . , c4}, which are chosen according to the uniform distribu-
tion.

• Four cryptograms M′ � y1, . . . , y4}.
The encryption is shown in the following table.

y1 y2 y3 y4
c1 1 2
c2 1 2
c3 1 2
c4 1 2

For this authentication system we have PI = PS = 1
2 , I(Y ∧ Z) = H(Y) −

H(Y |Z) = log 4 − log 2 = 1 and therefore PI = PS = 2−I(Y∧Z), which means that
the system provides perfect authenticity but it is clearly not perfectly secret as
H(X|Y) = 0 �= 1 = H(X).

A Bound on PS

In this sectionwe derive a bound onPS presented in [23] which is based on Simmons’
bound for PI .

Definition 25 For every cryptogram y ∈ M′ let K(y) � {z ∈ {1, . . . , K} : PY ,Z

(y, z) > 0} be the set of key-indices such that y is a valid cryptogram under the
corresponding keys.

Let PS(y) denote the probability of successful substitution after observing that
Y = y.

If the opponent intercepts y and substitutes y′ then his probability of success is
PZ|Y (K(y′)|y). Therefore PS(y) can be written as

PS(y) = max
y′ �=y

PZ|Y (K(y′)|y). (2.3.3)
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We will now obtain a lower bound on PS = ∑
y PY (y) PS(y) by bounding PS(y)

below. Therefore let us define for every y ∈ M′ random variables Yy, with values in
M′\{y}, and Zy, with values in {1, . . . , K}, as follows

PZy(z) � PZ|Y (z|y) and PYy|Zy(y
′|z) � PY |Z(y′|z)

ay(z)
for all y′ �= y, (2.3.4)

where ay(z) �
∑

y′ �=y PY |Z(y′|z) is the normalization constant such that PYy|Zy( · |z)
is a probability distribution. Note that ay(z) is always greater 0 because M ≥ 2 and
there are M valid cryptograms for every key.

Although one cannot assure that there always exists an authentication system
which induces this random couple (Yy, Zy), we can (formally) look at the corre-
sponding probability of successful impersonation, since this only depends on the
joint distribution of Yy and Zy (recall (2.3.1) and the definition of φ). We denote this
probability by PI(y). Then from (2.3.1) it follows

PI(y) = max
y′ �=y

PZy(K(y′)) = max
y′ �=y

PZ|Y (K(y′)|y) = PS(y).

Hence, we can apply to PS(y) the lower bound from Theorem 32 and get

PS(y) ≥ 2−I(Yy∧Zy).

Therefore the next theorem is immediate.

Theorem 34 (Sgarro) For every authentication code

PS ≥
∑

y

PY (y) 2−I(Yy∧Zy),

where Yy and Zy are defined in (2.3.4).

Remark 12 As already mentioned we can bound PS by 2−H(Z|Y) and given some
value y ∈ M′ we havePS(y) ≥ 2−H(Z|Y=y) (compare also Sect. 2.3.4). The bound just
derived returns always values at least as good as this bound because by definition of
Zy we obtain

−I(Yy ∧ Zy) = −H(Zy) + H(Zy|Yy)

= −H(Z|Y = y) + H(Zy|Yy) ≥ −H(Z|Y = y).

2.3.2 Authentication Codes Without Secrecy

Nowwediscuss authentication codeswithout secrecy,whichmeans that the opponent
knows the state of the message source after observing the correct cryptogram, i.e.,
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H(X|Y) = 0. This applies to situations where secrecy is not required or can not be
guaranteed (for instance if the opponent has full access to the message source) but
the authenticity of messages is still desired.

Preliminaries

In those cases a convenient method of enciphering is the following.We consider only
keys cz which produce cryptograms y of the form

cz(m) = y = (m, n),

where n is an extra symbol (string) dependent on m and z which is simply added
to the clear message m. We can restrict ourselves, w.l.o.g., to this class of keys
because if we are given an arbitrary set ofK keys {c′

1, . . . , c′
K}, we can define cz(m) �

(m, c′
z(m)) for all z ∈ {1, . . . , K}, m ∈ M. This modification leads to a set ofK keys

{c1, . . . , cK } of the desired form and for the opponent the situation is as before since
m was already uniquely determined by c′

z(m).
Keys of this form have the property that for different messages the sets of possible

cryptograms are always disjoint, i.e.,

ci(m) �= cj(m
′) for all i, j ∈ {1, . . . , K}, m, m′ ∈ M, m �= m′.

The second part n of such a cryptogram y = (m, n) is the so called authenticator [12].
It is used by the receiver to check if he can accept the cryptogram as an authentic one.
If the opponent is successful in an impersonation attack or in a substitution attack,
respectively, he knows in addition to the general case also exactly to which message
the receiver decrypts the fraudulent cryptogram.

For instance, in a substitution attack the opponent replaces the original cryptogram
(m, n) by a fraudulent one (m′, n′)withm′ �= m. Hewill be successful if the secret key
is also consistentwith (m′, n′), i.e., if z ∈ K((m′, n′)) (recallDefinition 25) andZ = z.
For ease of notation we will omit sometimes the brackets of (m, n). For instance,
we write K(m, n) = K((m, n)) and for the success probability after observing the
cryptogram y = (m, n) we write PS(m, n) instead of PS((m, n)) (recall Definition
25).

Note that for every message m the sets K(m, n) form a partition of {1, . . . , K},
i.e.,

⋃
n
K(m, n) = {1, . . . , K} and the sets are disjoint.

We denote as PS(m′, n′, m, n) the probability of successful substitution of (m, n)

with (m′, n′).

PS(m
′, n′, m, n) �

{
PZ (K(m,n)∩K(m′,n′))

PZ (K(m,n))
,

0,

m′ �= m

m′ = m.
(2.3.5)

For a chosen substitution strategy of the opponent {PY ′|Y ( · |m, n) : (m, n) ∈ M′}
(recall Definition 23) his success probability PS,Y ′ is given by
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PS,Y ′ �
∑

m,n,m′,n′
PY ′Y (m′, n′, m, n) PS(m

′, n′, m, n). (2.3.6)

From (2.3.5) and (2.3.6) it follows that an optimal strategy for the opponent is to
select (m�, n�) for given (m, n) such that

PZ(K(m, n) ∩ K(m�, n�)) = max
m′ �=m, n′ PZ(K(m, n) ∩ K(m′, n′)), (2.3.7)

i.e., an optimal strategy for the opponent is given by

PY ′|Y (m′, n′|m, n) =
{
1,

0,

if (m′, n′) = (m�, n�)

otherwise,
(2.3.8)

where (m�, n�) is in each case the maximizer in (2.3.7) dependent on (m, n) (if
(m�, n�) is not unique, one can choose any of the maximizers).

We denote as PS(m) the probability of successful substitution if the message m
occurs. Then with (2.3.5) and (2.3.8) it follows

PS(m) =
∑

n

PY |X(m, n|m) PS(m
�, n�, m, n)

=
∑

n

PZ(K(m, n)) PS(m
�, n�, m, n) =

∑

n

PZ(K(m, n) ∩ K(m�, n�)),

(2.3.9)

where (m�, n�) is in each case the maximizer in (2.3.7) dependent on (m, n).

The Lower Bound on PS in the Case of No Secrecy

The bound on PS presented in Theorem 35 was first given by Gilbert, MacWilliams
and Sloane and proved in [12] for the case of an equiprobable message distribu-
tion. It can be generalized to arbitrary distributions PX with the property PX(m) ≤
1
2 for all m ∈ M as it was done by Bassalygo in [2]. We will present this derivation.

In order to get a lower estimate on PS one can consider the following two strate-
gies, which are not optimal in general. The strategies are described as follows. If
the original cryptogram is (m, n) then in both strategies the message m′, which
shall be substituted for m, is chosen at random from the M − 1 messages different
from m (according to the uniform distribution). The two strategies differ only in the
choice of n′ given (m, n) and m′. In the first strategy n′ is chosen with probability

PS(m′,n′,m,n)∑
n′′ PS(m′,n′′,m,n)

, i.e., the opponent uses as weights for the authenticators their success

probabilities. In the second strategy n′ is chosen optimal given (m, n) and m′.
To describe the strategies formally let Y ′

1 and Y ′
2 be the corresponding random

variables for strategy 1 and 2, respectively. Then we define

PY ′
1|Y (m′, n′|m, n) � 1

M − 1

PS(m′, n′, m, n)∑
n′′ PS(m′, n′′, m, n)
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and PY ′
2|Y (m′, n′|m, n) �

{ 1
M−1 ,

0,

n′ = n�

n′ �= n�,

where n� is chosen for given m, n, m′ in such a way that

PZ(K(m, n) ∩ K(m′, n�)) = max
n′ PZ(K(m, n) ∩ K(m′, n′))

(if n� is not unique we choose any of the maximizers).
We denote as PS,Y ′

1
and PS,Y ′

2
the success probabilities for these strategies. It

was shown in [12] that for equiprobable messages PS ≥ PS,Y ′
2
≥ 2− H(Z)

2 ≥ 1√
K
. To

generalize this result for other distributions on M a lower bound on the sum of
the probabilities of successful substitution of m with m′ and m′ with m for the first
strategy, which is presented in the next lemma, is essential.

Definition 26 For any substitution strategy of the opponent and any two messages
m and m′ let PS,Y ′(m′, m) be the probability of successful substitution of message m
with message m′.

Lemma 5 For any two messages m, m′ ∈ M, m �= m′

PS,Y ′
1
(m′, m) + PS,Y ′

1
(m, m′) ≥ 21−

H(Z)

2 .

Proof Let m, m′ ∈ M, m �= m′. By (2.3.5) and the choice of Y ′
1 it follows that

PS,Y ′
1
(m′, m) =

∑

n

PY |X(m, n|m)
∑

n′

PS(m′, n′, m, n)∑
n′′ PS(m′, n′′, m, n)

PS(m
′, n′, m, n)

=
∑

n

PZ(K(m, n))
∑

n′

PZ(K(m, n) ∩ K(m′, n′))2

PZ(K(m, n))
∑

n′′ PZ(K(m, n) ∩ K(m′, n′′))

=
∑

n,n′

PZ(K(m, n) ∩ K(m′, n′))2

PZ(K(m, n))
, (2.3.10)

wherewe used in the last step that
⋃
n′′
K(m′, n′′) = {1, . . . , K} and the sets are disjoint.

Therefore,
PS,Y ′

1
(m′, m) + PS,Y ′

1
(m, m′)

=
∑

n,n′
PZ(K(m, n) ∩ K(m′, n′))2

(
1

PZ(K(m, n))
+ 1

PZ(K(m′, n′))

)
.

As for every a, b > 0 1
a + 1

b ≥ 2√
ab

(with equality iff a = b), we obtain

PS,Y ′
1
(m′, m) + PS,Y ′

1
(m, m′)
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≥ 2
∑

n,n′
PZ(K(m, n) ∩ K(m′, n′))

PZ(K(m, n) ∩ K(m′, n′))√
PZ(K(m, n))PZ(K(m′, n′))

.

Note that {1, . . . , K} = ⋃
n,n′

K(m, n) ∩ K(m′, n′) and the sets are disjoint. Therefore
∑

n,n′ PZ(K(m, n) ∩ K(m′, n′)) = 1 and we can exploit the∩-convexity of ln and get

ln
(
PS,Y ′

1
(m′, m) + PS,Y ′

1
(m, m′)

)

≥ ln 2 +
∑

n,n′
PZ(K(m, n) ∩ K(m′, n′)) ln

PZ(K(m, n) ∩ K(m′, n′))√
PZ(K(m, n))PZ(K(m′, n′))

= ln 2 + 1

2

∑

n,n′
PZ(K(m, n) ∩ K(m′, n′)) lnPZ(K(m, n) ∩ K(m′, n′))

+1

2

∑

n,n′
PZ(K(m, n) ∩ K(m′, n′)) ln

PZ(K(m, n) ∩ K(m′, n′))
PZ(K(m, n))PZ(K(m′, n′))

︸ ︷︷ ︸
�

≥ ln 2 + 1

2

∑

n,n′
PZ(K(m, n) ∩ K(m′, n′)) lnPZ(K(m, n) ∩ K(m′, n′)),

whereweused in the last step that the term � is greater thanor equal to 0,which follows
from the inequality ln x ≥ 1 − 1

x (it can also be seen directly by the observation that
the sum is up to a positive factor an I-divergence, which is always nonnegative).

Multiplying both sides of the inequality with log e and applying the grouping
axiom of the entropy function yields the desired result.

log
(
PS,Y ′

1
(m′, m) + PS,Y ′

1
(m, m′)

)

≥ log 2 + 1

2

∑

z

PZ(z) logPZ(z) = 1 − 1

2
H(Z). �

Theorem 35 (Gilbert, Mac Williams, Sloane-Bassalygo) If the distribution PX sat-
isfies PX(m) ≤ 1

2 for all m ∈ M, then

PS ≥ 2− H(Z)

2 ≥ 1√
K

.
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Proof

PS =
∑

m∈M
PX(m) PS(m) ≥

∑

m∈M
PX(m)max

m′ �=m
PS,Y ′

1
(m′, m). (2.3.11)

Let q � minm∈M maxm′ �=m PS,Y ′
1
(m′, m).

If q ≥ 2− H(Z)

2 , then we are done and, as we did not use any restriction on PX in this
case, the theorem is valid for any distribution PX . So let us assume that q < 2− H(Z)

2 .
Let m0 ∈ M be a message such that

q = max
m′ �=m0

PS,Y ′
1
(m′, m0)

and let m ∈ M be any message with m �= m0. Then from the definition of m0 and
Lemma 5 it follows that

q + max
m′ �=m

PS,Y ′
1
(m′, m) ≥ PS,Y ′

1
(m, m0) + PS,Y ′

1
(m0, m) (2.3.12)

≥ 21−
H(Z)

2 . (2.3.13)

Hence, for all m ∈ M with m �= m0 we have

max
m′ �=m

PS,Y ′
1
(m′, m) ≥ 21−

H(Z)

2 − q.

Together with (2.3.11) this implies

PS ≥ PX(m0) q + (1 − PX(m0))(2
1− H(Z)

2 − q)

= (1 − PX(m0))2
1− H(Z)

2 − q (1 − 2PX(m0)︸ ︷︷ ︸
≥0

)

≥ (1 − PX(m0))2
1− H(Z)

2 − 2− H(Z)

2 (1 − 2PX(m0))

= 21−
H(Z)

2 − 2− H(Z)

2 = 2− H(Z)

2 . (2.3.14)

�

Impossibility of a Generalization

In this section we show that the constant 1
2 in the assumptions of Theorem 35 is

best possible, i.e., a generalization of the theorem in the form that the condition
“PX(m) ≤ 1

2 for all m” is weakened to “PX(m) ≤ c for all m” where c is a constant
> 1

2 is not possible.
We need the following auxiliary result.
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Lemma 6

lim
a→∞

(
1 + a −

√
a2 + a

)
= 1

2

Proof

1 + a −
√

a2 + a − 1

2
=
√

a2 + a + 1

4
−
√

a2 + a ≥ 0

and on the other hand the ∩-convexity of the square-root function implies

√
a2 + a + 1

4
−
√

a2 + a ≤ 1

4

1

2
√

a2 + a
. �

Now let a ∈ N. We define an authentication code with two messages, M � {1, 2},
and K � a2 + a keys, which are chosen according to the uniform distribution.

The enciphering is defined by specifying the bundles K(m, n) in the following
way:

K(1, n) � {(n − 1)(a + 1) + 1, . . . , n(a + 1)}

for all n ∈ {1, . . . , a} and

K(2, n) � {n, n + (a + 1), n + 2(a + 1), . . . , n + (a − 1)(a + 1)}

for all n ∈ {1, . . . , a + 1}.
For the first message we have a bundles of cardinality a + 1 and
for the second message we have a + 1 bundles of cardinality a. Note that

|K(1, n) ∩ K(2, n′)| = |{(n − 1)(a + 1) + n′}| = 1

for all n ∈ {1, . . . , a} and n′ ∈ {1, . . . , a + 1}. Therefore we can easily calculate PS .
According to (2.3.9) we obtain

PS(1) =
a∑

n=1

1

K
= a

a2 + a
= 1

a + 1

and PS(2) =
a+1∑

n=1

1

K
= a + 1

a2 + a
= 1

a
.

Let c � PX(1), then

PS = c
1

a + 1
+ (1 − c)

1

a
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and we have PS < 1√
K

= 1√
a2+a

, if c 1
a+1 + (1 − c) 1a < 1√

a2+a
or equivalently

c > 1 + a −
√

a2 + a.

Hence, with Lemma 6 we get that if PX(1) > 1
2 , then for large enough a, we obtain

PS < 1√
K
.

Conditions for Equality

Now we concentrate on the case where PZ is the uniform distribution. For this case
necessary and sufficient conditions for the equality PS = 1√

K
were given in [12].

As there the bound was proved for equiprobable messages and the conditions were
derived from that proof, we have to give a new proof which is based on our derivation
on the bound on PS . Therefore we will make use of two lemmas stated in [2].

Definition 27 For any message m ∈ Mwe denote byN (m) = {n : (m, n) = cz(m)

for some z ∈ {1, . . . , K}} the set of possible authenticators attached to message m.

Lemma 7 For given PZ and any two messages m, m′ ∈ M, m �= m′

PS,Y ′
1
(m′, m) ≥ 1

|N (m′)| .

Proof From the ∪-convexity of x �→ x2 it follows that for any finite index set I

∑

i∈I
z2i ≥ 1

|I|

(
∑

i∈I
zi

)2

, (2.3.15)

with equality exactly if all zi are equal. Applying this to (2.3.10) we obtain

PS,Y ′
1
(m′, m) =

∑

n∈N (m)

∑

n′∈N (m′)

PZ(K(m, n) ∩ K(m′, n′))2

PZ(K(m, n))

≥
∑

n∈N (m)

1

PZ(K(m, n))

1

|N (m′)|

⎛

⎝
∑

n′∈N (m′)

PZ(K(m, n) ∩ K(m′, n′))

⎞

⎠
2

=
∑

n∈N (m)

1

|N (m′)|PZ(K(m, n))

= 1

|N (m′)| . �

Lemma 8 If PZ is the uniform distribution then for any two messages m, m′ ∈
M, with m �= m′
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PS,Y ′
1
(m′, m) ≥ |N (m)|

K
.

Proof

PS,Y ′
1
(m′, m) =

∑

n,n′

|K(m, n) ∩ K(m′, n′)|2
K |K(m, n)|

≥
∑

n

∑

n′

|K(m, n) ∩ K(m′, n′)|
K |K(m, n)| =

∑

n∈N (m)

1

K

= |N (m)|
K

,

with equality exactly if |K(m, n) ∩ K(m′, n′)| ≤ 1 for all n, n′. �

Now we can derive necessary and sufficient conditions that an authentication code
achieves PS = 1√

K
. These conditions are as follows:

1. |N (m)| = √
K for all m ∈ M.

2. |K(m, n) ∩ K(m′, n′)| = 1 for all m �= m′, n ∈ N (m), n′ ∈ N (m′).
3. |K(m, n)| = √

K for all m ∈ M, n ∈ N (m).

Note that condition 1 and 2 imply condition 3 and therefore one could as well elimi-
nate 3. from this list (|K(m, n)| = ∑

n′∈N (m′) |K(m, n) ∩ K(m′, n′)| = ∑
n′∈N (m′) 1 =

|N (m′)| = √
K).

Theorem 36 Let PZ be the uniform distribution. If conditions 1. and 2. are satisfied,
then PS = 1√

K
and on the other hand if PS = 1√

K
and the assumption of Theorem 35

holds, then conditions 1. and 2. are satisfied.

Proof First of all we show that condition 1. and 2. are sufficient. From (2.3.9) it
follows that for every message m ∈ M

PS(m) =
∑

n

∑

K(m,n)∩K(m�,n�)

1

K

= |N (m)| 1
K

= 1√
K

.

Therefore also PS = 1√
K
.

Now we show the necessity. Assume that PS = 1√
K
.

Case 1: In the proof of Theorem 35 we have q ≥ 1√
K
.
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Then it follows

max
m′ �=m

PS,Y ′
1
(m′, m) = 1√

K
for all m ∈ M.

Hence, for any m′ �= m Lemma 7 implies

1√
K

≥ PS,Y ′
1
(m′, m) ≥ 1

|N (m′)| .

Therefore |N (m)| ≥ 1√
K
for all m ∈ M and Lemma 8 implies

1√
K

= max
m′ �=m

PS,Y ′
1
(m′, m) ≥ |N (m)|

K
for all m ∈ M.

Hence, we also have |N (m)| ≤ 1√
K
for all m ∈ M and therefore |N (m)| = 1√

K
for all m ∈ M. FurthermoreLemmas 7 and 8 holdwith equality for everym, m′, m �=
m′. Thus, the corresponding conditions for equality imply |K(m, n) ∩ K(m′, n′)| =
1 for all m �= m′, n ∈ N (m), n′ ∈ N (m′), which shows that conditions 1. and 2. are
satisfied.

Case 2: q < 1√
K
.

Then in the proof of Theorem 35 for every m �= m0, (2.3.14) implies that equality
holds in (2.3.12) and (2.3.13), i.e.,

max
m′ �=m0

PS,Y ′
1
(m′, m0) + max

m′ �=m
PS,Y ′

1
(m′, m)

= PS,Y ′
1
(m, m0) + PS,Y ′

1
(m0, m) = 2√

K
.

Then Lemma 7 implies 1√
K

> q = PS,Y ′
1
(m, m0) ≥ 1

|N (m)| or

|N (m)| >
√

K

and Lemma 8 implies 1√
K

> PS,Y ′
1
(m, m0) ≥ |N (m0)|

K or

|N (m0)| <
√

K .

Together we have
|N (m0)| < |N (m)|. (2.3.16)

But note that for m and m0 Lemma 5 holds with equality. For instance, the first
inequality in the proof of this lemma must hold with equality and this means:
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If K(m0, n) ∩ K(m, n′) �= ∅, then |K(m0, n)| = |K(m, n′)|,

for all m, n′ ∈ N (m), n ∈ N (m0).

As this is a contradiction to (2.3.16), we see that if PS = 1√
K
, then q ≥ 1√

K
and

therefore conditions 1. and 2. are necessarily satisfied. �

A Construction

We will come now to a construction which is taken from [12]. We will define an
authentication code which achieves PS = 1√

K
(for certain values of K) and possesses

the maximal possible number of messages under that constraint.
In order to see what is the maximal number of messages M, assume that we are

given an authentication code with PS = 1√
K
. Then we know that conditions 1. and 2.

(and therefore also 3.) are satisfied. Now we list all unordered pairs of key-indices
which are together in some bundle K(m, n), where m ∈ M, n ∈ N (m). As we have
M messages,

√
K bundles for each message and

√
K elements in each bundle, we

get with this procedure M
√

K
(√K

2

)
pairs. Condition 2. implies that all these pairs

are different and therefore their number must be less or equal the total number of
unordered pairs of key-indices. This shows that

M
√

K

(√
K

2

)
≤
(

K

2

)
or equivalently M ≤ √

K + 1. (2.3.17)

Our construction applies for the case that K is an even prime power. So, let us
assume that K = p2k where p is prime and k ∈ N. We make use of the projective
plane constructed from GF(q), where q = pk . This has

• q2 + q + 1 points
• q2 + q + 1 lines
• q + 1 points on each line
• q + 1 lines through each point.

Recall that for every projective plane two different lines intersect in exactly one point
and two different points uniquely determine a line, on which both points lie.

We select arbitrarily a line to play a special role. According to [12] we call this
line the equator. The points on the equator represent the messages. All other points
in the projective plane represent the keys (K = q2 + q + 1 − (q + 1) = q2 = p2k).
Then a message and a key uniquely determine a line through their representations
in the projective plane. Therefore this line will stand for the cryptogram to which
the message is encrypted using the key. From now on we will make no difference
anymore betweenmessage, key, cryptogram and their representation in the projective
plane.

This authentication system provides no secrecy as a cryptogram and the equator
intersect in exactly one point, which is therefore the encrypted message.



2.3 Authentication 83

In order to see if PS = 1√
K
, we have to check if conditions 1. and 2. are satisfied:

1. As through the point m we have q + 1 lines of which one is the equator, it follows

|N (m)| = q + 1 − 1 = q = √
K .

2. Let m �= m′, n ∈ N (m), n′ ∈ N (m′). The lines (m, n) and (m′, n′) are different
(if not m and m′ would lie on this line and therefore (m, n) and (m′, n′) would be
the equator, which is impossible). Hence, there is exactly one intersection point
of the lines (m, n) and (m′, n′) (which again cannot lie on the equator because
m �= m′) and we obtain

|K(m, n) ∩ K(m′, n′)| = 1.

Therefore the authentication code satisfies conditions 1. and 2. andwe havePS = 1√
K
.

Note that equality holds in (2.3.17),

M = q + 1 = √
K + 1.

2.3.3 Estimates on the Number of Messages Given
the Success Probability of the Opponent

In this section we ask how many messages can be included in an authentication code
under some constraints on the success probabilities of the opponent.We saw in the last
section that a first result for this sort of question was already given in [12]. In [3] Bas-
salygo and Burnashev considered the case of authentication codes without secrecy.
These results will be presented in Section “The Number of Messages for Authenti-
cation Codes Without Secrecy Given the Probability of Deception”. Recently they
gave in [4] an approach for the problem under a slightly modified constraint by
connecting it to the problem of identification and the problem of the maximal cardi-
nality of pairwise separated measures in the L1-metric. This approach includes also
cases of authentication codes without secrecy. We present the results relevant for the
authentication problem in the Section on “Pairwise Separated Measures”.

The Number of Messages for Authentication Codes Without Secrecy Given
the Probability of Deception

Definition 28 Let Pmax
S � max

m∈M
PS(m) denote the maximal probability of successful

substitution.

Burnashev and Bassalygo [3] require for the authentication codes under consider-
ation to have the property that Pmax

S does not exceed some given (usually small)
constant p ≥ 0 and ask for the maximal number of messages under this constraint.
This requirement can be justified because an authentication code with Pmax

S ≤ p has
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the property PD ≤ p as well. Clearly, if Pmax
S ≤ p, then also PS ≤ p but this holds for

PI as well, which is shown in the next theorem.

Theorem 37 For any authentication code without secrecy

Pmax
S ≥ PI . (2.3.18)

Proof Let m0 ∈ M and n0 ∈ N (m0) such that (m0, n0) is an optimal choice for the
impersonation attack, i.e.,

PI = Pr((m0, n0) valid) = PZ(K(m0, n0)).

Now the idea is to bound for any m �= m0 the value of PS(m) below by choosing
the strategy to substitute always (m0, n0). Let m ∈ M, m �= m0. Then with (2.3.9)
it follows

PS(m) ≥
∑

n∈N (m)

PZ(K(m, n) ∩ K(m0, n0)).

Therefore, as {K(m, n) : n ∈ N (m)} is a partition of {1, . . . , K}, we obtain

PS(m) ≥ PZ(K(m0, n0)) = PI .

Hence, the statement follows from Pmax
S ≥ PS(m) ≥ PI . �

Remark 13 We have seen in Example 3 that there are authentication codes (with
secrecy) for which the statement (2.3.18) does not hold.

Corollary 2 If for an authentication code without secrecy there exist m0, m1 ∈
M, m0 �= m1 and n0 ∈ N (m0), n1 ∈ N (m1) such that PI = PZ(K(m0, n0)) =
PZ(K(m1, n1)), i.e., if the optimal choice for an impersonation attack is not unique
with respect to messages, then

PS ≥ PI .

Proof In this case it follows directly from the proof of Theorem 37 that for any
m ∈ Mwe have that PS(m) ≥ PI and therefore PS = ∑

m∈M PX(m) PS(m) ≥ PI . �
Clearly Pmax

S depends on the number of messages M, the definition of the K keys in
C and the distribution PZ , i.e., Pmax

S = Pmax
S (M, C, PZ). If the parameters M, K and

PZ are given, then sender and receiver try to minimize Pmax
S by using the K keys

in the best possible way. Therefore it is natural to introduce the minimal achievable
probability p(M, K, PZ) of successful substitution as

p(M, K, PZ) � min
C

Pmax
S (M, C, PZ).

Now the question is how large can M be if K and PZ are given and we require that
p(M, K, PZ) does not exceed a given value p. The maximal M with this property will
be denoted as
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M(K, PZ , p).

In other words if M ≤ M(K, PZ , p), then there exists C = {c1, . . . , cK } with Pmax
S

(M, C, PZ) ≤ p.
If PZ is the uniform distribution, M(K, PZ , p) will be denoted as

Me(K, p).

As Pmax
S ≥ 1√

K
, we have to analyze the cases where Kp2 ≥ 1. We saw in Section “A

Construction” that Me(K, 1√
K
) = √

K + 1, if K is an even prime power. Burnashev
and Bassalygo studied in [3] the asymptotic behaviour of M(K, PZ , p) for large
values of K p2 and gave the following results.

Theorem 38 For 0 < p ≤ 1
2 the following inequality holds

logMe(K, p) ≥ K p2

8
+ 2 log p − 6.2 .

Theorem 39 For 0 < p < 1 the following inequality holds

logM(K, PZ , p) ≤ 64K p2 log
2

p
+ 2 logK .

Derivation of the Lower Bound The lower bound will be proved by a construction.
The idea is the following. For given C, every message m ∈ M induces a partition
of the set {1, . . . , K} into sets K(m, n), n ∈ N (m). If we have equiprobable keys,
(2.3.9) implies that a “rather good” authentication code (with small Pmax

S ) must have
the property that all the intersections of partition elements of the different partitions
are sufficiently small.

C is completely determined by specifying partitions of {1, . . . , K} for each mes-
sage. We do this by dividing the set {1, . . . , K} for every message m ∈ M into sets
of cardinality a (the parameter a will be chosen later and we assume for the moment
that K

a is an integer). With this property each of our partitions has K
a elements and we

want to form the partitions additionally in such a way that the following condition is
satisfied.

Any two elements of any two different partitions have no more than ap0 common
elements.

Here 0 < p0 < p ≤ 1
2 is a parameter, which will be chosen later. We will refer

to these properties by saying that a collection of partitions satisfies the intersection
property.

After adjusting the parameters we will have to show that our construction leads
to an authentication code with the desired property Pmax

S ≤ p but first of all, in order
to get a bound on M we ask how many partitions of the described form we can find.
Let N(K, a) denote the number of all possible partitions of the set {1, . . . , K} into
sets with a elements. Clearly, we have
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N(K, a) =
(K

a

)(K−a
a

) · · · (a
a

)
(

K
a

)! . (2.3.19)

If M is the maximal number of partitions with the intersection property, then

N(K, a) ≤ M
K

a
N(K − a, a)

a∑

i=i0

(
a

i

)(
K − a

a − i

)
, (2.3.20)

where i0 is the smallest integer strictly greater than ap0.
The validity of this inequality can be seen as follows. Take a maximal collection

of partitions with the intersection property. The maximality implies that if we take
any of the N(K, a) partitions we find an element in it and an element of one of the
partitions of our maximal collection such that they have more than ap0 common
elements. Therefore we can get any of the N(K, a) partitions by a transformation of
a partition of the maximal collection in the following way. First we choose one of
the M partitions from which we choose one of its K

a partition elements. From the a
elements of this set we keep i in it (i ≥ i0) and exchange the remaining a − i with
some of the K − a other elements. Then the other partition elements are formed from
the K − a remaining elements.

The right-hand side of the inequality (2.3.20) counts the number of such transfor-
mations.

From (2.3.20) we get a lower bound on M, which is

M ≥ a N(K, a)

K N(K − a, a)
∑a

i=i0

(a
i

)(K−a
a−i

) = a2
(K

a

)

K2
∑a

i=i0

(a
i

)(K−a
a−i

) .

Now we use the following inequality which can easily be verified2

(K−a
a−i

)
(K

a

) ≤
(

K − a

K

)a−i ( a

K − a

)i

and we obtain

M ≥ a2

K2
∑a

i=i0

(a
i

) (
K−a

K

)a−i ( a
K−a

)i
= a2−a(K − a)a

K2
∑a

i=i0

(a
i

) (
(K−a)2

a K

)a−i

2

(K−a
a−i

)
(K

a

) = K − a

K
· · · K − 2a + i + 1

K − a + i + 1︸ ︷︷ ︸
a−i factors

a

K − a + i
· · · a − i + 1

K − a + 1︸ ︷︷ ︸
i factors

≤
(

K − a

K

)a−i ( a

K − a

)i

.
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= a2−a(K − a)a

K2
∑a−i0

j=0

(a
j

) (
a K

(K−a)2

)−j .

Further we use the inequality

b∑

j=0

(
a

j

)
z−j ≤ z−b exp

(
a h

(
b

a

))
for 0 < z ≤ a − b

b
, b ≤ a,

which holds because for any 0 < x ≤ 1

b∑

j=0

(
a

j

)
z−j ≤ 1

xb

b∑

j=0

(
a

j

)(
x

z

)j

≤ 1

xb

a∑

j=0

(
a

j

)(
x

z

)j

= 1

xb

(
1 + x

z

)a

and with the substitution x = bz
a−b we get

= 1

zb

(
a − b

b

)b ( a

a − b

)a

= 1

zb
exp(a h(

b

a
)).

In our case the condition z ≤ a−b
b turns out to be

a K

(K − a)2
≤ i0

a − i0
, (2.3.21)

which we have to check after our choice of the parameters. If it holds we can bound
M by

M ≥
a2−a

(
(K−a)2

a K

)i0−a
(K − a)a

K2 exp
(
a h

( a−i0
a

))

≥
a2−a

(
(K−a)2

a K

)ap0−a
(K − a)a

K2 exp (a h(p0))

= a2

K2
exp

(
a (1 − 2p0)︸ ︷︷ ︸

≥0

log
K

K − a
+ ap0 log

K

a
− a h(p0)

)

≥ a2

K2
exp

(
ap0 log

Kp0
ae

)
, (2.3.22)

Now we pass to the general case, where K is not necessarily a multiple of a.
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Let

p0 � pe2

1 + e2
and a �

⌈
pK

1 + e2

⌉
.

Let K0 ≤ K be the largest integer divisible by a, i.e., K0 �
⌊

K
a

⌋
a. Now we define C

by choosing the partitions as follows.We select an arbitrary subset of {1, . . . , K}with
K − K0 elements to form a partition element for every partition. From the remaining
K0 elements of {1, . . . , K}we form a collection of partitions such that the intersection
property holds.

First of all we show that the resulting authentication code possesses the desired
property Pmax

S ≤ p. Let m ∈ M. Then

PS(m) =
∑

n

1

K

∣∣K(m, n) ∩ K(m�, n�)
∣∣ ≤ K − K0

K
+ K0

a
· ap0

K
.

By definition of K0 we have K − K0 ≤ a − 1 and therefore

PS(m) ≤ a − 1

K
+ K0

K
p0 ≤ a − 1

K
+ p0 ≤ pK

K(1 + e2)
+ pe2

1 + e2
= p.

In order to apply our estimate for M we have to check if (2.3.21) is satisfied.
W.l.o.g. we may assume that pK > 70 (see (2.3.25)). Then a = � p0K

e2 � ≤ p0K
e and

K0
K = �K

a � a
K ≥ 1 − a

K ≥ 1 − p0
e . Therefore

aK0

(K0 − a)2
≤

p0
e

(K0
K − p0

e )2
≤

p0
e

(1 − 2 p0
e )2

≤ p0
1 − p0

≤ i0
a − i0

,

where we used that p0 ≤ 1
2 and ap0 ≤ i0. As (2.3.21) holds the number Me(K, p)

must satisfy the last inequality for M, which is (2.3.22), with K replaced by K0, i.e.,

Me(K, p) ≥ a2

K2
0

exp

(
ap0 log

K0p0
ae

)

≥ p2

(1 + e2)2
exp

(
pK

1 + e2
· pe2

1 + e2
log

K0pe

a(1 + e2)

)

= p2

(1 + e2)2
exp

(
Kp2e2

(1 + e2)2
log

1

z

)
, (2.3.23)

with z � a(1+e2)
K0pe .
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The value z satisfies the following inequalities

z =
⌈

pK
1+e2

⌉
(1 + e2)

K0pe
≥ K

K0e
≥ 1

e

and

z ≤
(

pK
1+e2 + 1

)
(1 + e2)

K0pe
= 1

e
· 1 + 1+e2

pK

1 − K−K0
K

≤ 1

e
· 1 + 1+e2

pK

1 − a−1
K

≤ 1

e
· 1 + 1+e2

pK

1 − p
1+e2

.

Combining these two inequalities, yields

1

e
≤ z ≤ 1

e
· 1 + 1+e2

pK

1 − p
1+e2

(2.3.24)

and as log 1
z is monotonically decreasing in z, it attains its minimal value at the

right-hand side of (2.3.24). Substituting this into (2.3.23) we get

Me(K, p) ≥ p2

(1 + e2)2
exp

(
Kp2e2

(1 + e2)2
(log e)

(
1 + ln

1 − p
1+e2

1 + 1+e2
pK

))
.

Taking the logarithm on both sides of the inequality we get that if pK > 70 and p ≤ 1
2

logMe(K, p) ≥ 2 log p − 2 log(1 + e2)︸ ︷︷ ︸
≈6.14

+Kp2
e2 log e

(1 + e2)2

⎛

⎝1 + ln
1 − 1

2
1+e2

1 + 1+e2
70

⎞

⎠

︸ ︷︷ ︸
≈0.12502

≥ Kp2

8
+ 2 log p − 6.2.

If pK ≤ 70, the statement is trivial because in this case

exp(
Kp2

8
− 6.2)p2 ≤ exp(

70

16
− 6.2) ≤ 0.3. (2.3.25)

Hence, the proof of Theorem 38 is complete.

Derivation of the Upper Bound First of all we will derive an upper bound for
Me(K, p) and then generalize this bound to arbitrary key distributions PZ .
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Let us assume we are given an authentication code with Pmax
S ≤ p. As we

have seen before every message m ∈ M induces a partition of {1, . . . , K} into
sets K(m, n). Every such partition element must have a cardinality less than pK .
Assume on the contrary that |K(m, n)| > pK for some m ∈ M, n ∈ N (m). Then for
any m′ ∈ M with m′ �= m we would have PS(m′) ≥ ∑

n′
1
K |K(m′, n′) ∩ K(m, n)| =

1
K |K(m, n)| > p, which is a contradiction.

Moreover, there exists for every message m ∈ M a certain element Am of the
corresponding partition with the property that the cardinality of the intersection of
Am with any element of any other partition does not exceed p|Am|. This follows from
the next lemma.

Lemma 9 If for an authentication code without secrecy Pmax
S ≤ p, then for every

m ∈ M there exists n ∈ N (m) with the property

PZ(K(m, n) ∩ K(m′, n′)) ≤ p PZ(K(m, n)) for any m′ �= m, n′ ∈ N (m′).

Proof Assume on the contrary that for m ∈ M there exists no such K(m, n). This
means that for every n ∈ N (m) there exists m′ ∈ M m′ �= m and n′ ∈ N (m′) such
that PZ(K(m, n) ∩ K(m′, n′)) > p PZ(K(m, n)). Therefore we get by substituting
(m, n) with (m′, n′) the desired contradiction PS(m) >

∑
n p PZ(K(m, n)) = p. �

From the obtained set {Am : m ∈ M} we can take out a maximal subset {Am1 , . . . ,

AmN } such that all the Ami have the same cardinality. We denote this cardinality by
w. Then this subset has the following properties:

1. |Ami | = w ≤ �pK� for all i = 1, . . . , N .

2. |Ami ∩ Amj | ≤ �pw� for all i, j = 1, . . . , N i �= j.
3. N ≥ M

pK .

Properties 1 and 2 are clear by construction of the set {Am1 , . . . ,AmN }. Property
3 follows from the fact that all the sets Am have cardinalities less than pK and the
number of setsAm with some same cardinality is less thanN . ThereforeN · pK ≥ M.

We can also give an upper bound for N , which is well known in coding theory
and combinatorics (see the remark below) but we will give its derivation here. Let
l � �pw� and let t > l. Then property 2 implies that all possible subsets of the sets
Am1 , . . . ,AmN , which have t elements, are different. Therefore the total number of
subsets obtained in this way is less than the total number of t-elementary subsets of
{1, . . . , K}, i.e., N · (wt

) ≤ (K
t

)
, or

N ≤
(K

t

)
(
w

t

) for all t > l.

As the right hand side attains its minimal value for t = l + 1 we obtain

N ≤ K(K − 1) · · · (K − l)

w(w − 1) · · · (w − l)
. (2.3.26)
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Remark 14 If we consider the characteristic vectors of the setsAmi , then we obtain a
constant weight code with weight w and Hamming distance between the codewords
at least 2(w − l). The upper bound in (2.3.26) is nothing else than the Johnson bound
(see [17], pp. 527) for the cardinality of such a code.

If we combine the two estimates for N ((2.3.26) and property 3.) we get an upper
bound for M. As we do not know the concrete value of w we maximize over w.

M ≤ pK max
1≤w≤pK

K(K − 1) · · · (K − l)

w(w − 1) · · · (w − l)

≤ pK max
1≤w≤pK

K

w
·
(

K − l

w − l

)l

≤ pK2 max
1≤w≤pK

(
K − pw

w − pw

)pw

= pK2 exp

(
p max
1≤w≤pK

w log
K − pw

w − pw

)
.

The maximized function is ∩-convex in w and the first derivative is positive at
w = pK provided that p ≤ 0.42. Hence, in this case the function attains its maximum
atw = pK . By substituting this into the last termwe obtain the following Proposition.

Proposition 3 If p ≤ 0.42, then the following inequality holds

Me(K, p) ≤ pK2 exp

(
Kp2 log

1 + p

p

)
.

Nowwe would like to transform this result to the case of an arbitrary key distribution
PZ .

Definition 29 If PZ is the uniform distribution then let

pe(M, K) � p(M, K, PZ)

and let p(M, K) denote the minimal achievable probability of successful substitution
for K keys and M messages, i.e.,

p(M, K) � min
PZ

p(M, K, PZ).

Lemma 10 Let K ⊂ {1, . . . , K} with |K| = N. Then the following statements hold.

(a)
p(M, K, PZ) ≥ PZ(K) p(M, N).
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(b) If PZ satisfies also the condition PZ(z) ≥ β for all z ∈ K, then

p(M, K, PZ) ≥ βN pe(M, N).

Proof We start with (a). Recall that

p(M, K, PZ) = min
C

Pmax
S (M, C, PZ). (2.3.27)

Let C be a minimizer in (2.3.27). Then for all m ∈ M it follows

p(M, K, PZ) ≥ PS(m) ≥
∑

n

PZ(K(m, n) ∩ K(m′, n′))

where m′ = m′(m, n) �= m and n′ = n′(m, n) are chosen according to some not nec-
essarily optimal decision rule. Hence,

p(M, K, PZ) ≥ PZ(K)
∑

n

PZ(K(m, n) ∩ K(m′, n′) ∩ K)

PZ(K)

Let C ′ ⊂ C be the subset of keys with index inK. If we take for m′(m, n) and n′(m, n)

the opponents’s optimal decision rule for the authentication code, where the keys are
chosen from C ′ according to the distribution PZ (·)

PZ (K)
, then we can conclude from the

last inequality and the definition of p(M, N) that

p(M, K, PZ) ≥ PZ(K) Pmax
S (M, C ′,

PZ(·)
PZ(K)

)

≥ PZ(K) p(M, N,
PZ(·)
PZ(K)

) ≥ PZ(K) p(M, N),

which completes the proof of (a).
Now we prove (b). Let C be a minimizer in (2.3.27) again. Then

p(M, K, PZ) = Pmax
S (M, C, PZ) ≥ max

m∈M
∑

n

PZ(K(m, n) ∩ K(m′, n′))

≥ max
m∈M

∑

n

PZ(K(m, n) ∩ K(m′, n′) ∩ K)

≥ β N max
m∈M

∑

n

|K(m, n) ∩ K(m′, n′) ∩ K|
N
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and if m′(m, n) and n′(m, n) are chosen such that the last expression is maximized,
then we obtain

p(M, K, PZ) ≥ β N pe(M, N). �

In order to prove Theorem 39 we will derive a sequence of upper bounds for
M(K, PZ , p) and in the limit we get the bound of the theorem.

Let us start with the following result.

Proposition 4 The following statements hold.

(a) If M ≥ 2K then p(M, K) = 1.
(b) If 0 < p < 1 then for arbitrary PZ

�logM(K, PZ , p)� ≤ Kp.

Proof Let M ≥ 2K and suppose PS(m) ≤ p for all m ∈ M and some p ≤ 1. In order
to prove (a) we have to show that p = 1.

We know from Lemma 9 that for every m ∈ M there exists an elementAm of the
corresponding partition with PZ(Am ∩ K(m′, n′)) ≤ p PZ(Am) for any m′ �= m and
n′ ∈ N (m′).

In particular we have

PZ(Am ∩ Am′) ≤ p PZ(Am) for all m′ �= m.

As there are 2K − 1 nonempty subsets of {1, . . . , K} and as M > 2K − 1 we can find
m′ �= m with Am = Am′ . If p < 1, then it follows

PZ(Am) = PZ(Am ∩ Am′) ≤ p PZ(Am) < PZ(Am)

which is a contradiction and therefore necessarily p = 1.
In order to prove (b) let K ⊂ {1, . . . , K} be the subset with the �logM� most

probable key-indices. Then we apply part (a) of Lemma 10 and get

p(M, K, PZ) ≥ PZ(K) p(M, �logM�).

By the choice ofK it follows that PZ(K) ≥ �logM�
K and we have already proved in (a)

that p(M, �logM�) = 1. Therefore

�logM� ≤ K p(M, K, PZ). �

In the sequel we only have to consider the case p < 1
4 because for p ≥ 1

4 the bound
in Proposition 4 (b) is stronger than the bound of Theorem 39 (for p ≥ 1

4 it holds that
64Kp2 log 2

p + 2 logK ≥ 64Kp2 ≥ 16Kp ≥ Kp).
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We assume the keys to be enumerated such that

PZ(1) ≥ · · · ≥ PZ(K).

Then necessarily PZ(1) < 1
4 because otherwise Pmax

S ≥ 1
4 and therefore p ≥ 1

4 .
Let K ⊂ {1, . . . , K} be the maximal subset consisting of the first N key-indices

such that PZ(K) ≤ 1
2 .

Then clearly PZ(K) > 1
4 and PZ(z) ≥ 1

2K for all z ∈ K (assume on the contrary
that PZ(N) < 1

2K then PZ(z) < 1
2K for all z ≥ N and therefore PZ(K) > 1 − (K −

N) 1
2K > 1

2 , which is a contradiction).
We now apply Lemma 10 (a) and get p ≥ p(M, K, PZ) ≥ PZ(K) p(M, N) ≥

p(M,N)

4 and therefore
p(M, N) ≤ 4p < 1. (2.3.28)

From part (b) of Lemma 10 we get p ≥ 1
2K N pe(M, N) or

pe(M, N) ≤ 2Kp

N
. (2.3.29)

Combining (2.3.28) and Proposition 4 (b) we see that M must satisfy the inequality

logM ≤ 4pN + 1 ≤ 4pN log
2

p
+ 2 logK . (2.3.30)

Combining (2.3.29) and the bound of Proposition 3 we get

logM ≤ logMe(N, pe(M, N))

≤ logMe(N,
2Kp

N
) ≤ 4K2p2

N
log

2

p
+ 2 logK, (2.3.31)

where we have to assume that 2Kp
N ≤ 0.42 in order to apply Proposition 3 but oth-

erwise 4pN ≤ 64Kp2 and therefore the bound in (2.3.30) would be sharper then the
bound of Theorem 39.

Combining (2.3.30) and (2.3.31) yields

logM ≤ 4pmin{N,
K2p

N
} log 2

p
+ 2 logK

≤ 4Kp
3
2 log

2

p
+ 2 logK, (2.3.32)

where the last inequality can be verified as follows: if N ≤ K2p
N , then N ≤ Kp

1
2 and

if K2p
N < N , then K

N < 1√
p and therefore K2p

N ≤ Kp
1
2 .
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So we have obtained from the bound Kp the stronger bound (for sufficiently small
p) 4Kp

3
2 log 2

p + 2 logK . We now repeat the procedure using instead of the bound
Kp the new bound, i.e., we combine the inequalities

logM ≤ 4N(4p)
3
2 log

2

p
+ 2 logK

and

logM ≤ 4
K2p2

N
log

2

p
+ 2 logK ≤ 8

K2p2

N
log

2

p
+ 2 logK

to

logM ≤ (4p)
3
2 4min{N,

K2p2− 3
2

N
} log 2

p
+ 2 logK

≤ 16Kp
7
4 log

2

p
+ 2 logK .

Generally, if after the nth step we have the inequality

logM ≤ CnKpαn log
2

p
+ 2 logK

then in the (n + 1)th step we obtain the same type of inequality with coefficients
Cn+1 and αn+1 that satisfy

C2
n+1 = 64Cn and αn+1 = 1 + αn

2
.

(Note that in the (n + 1)th step the inequality logM ≤ 4K2p2

N log 2
p + 2 logK has to

be weakened to logM ≤ βn+1
K2p2

N log 2
p + 2 logK with βn+1 � 64

4αn ≥ 4 to adjust the
min term in the right way.)

As limn→∞ αn = 2 and limn→∞ Cn = 64 we obtain that M(K, PZ , p)must satisfy
the inequality

logM(K, PZ , p) ≤ 64K p2 log
2

p
+ 2 logK,

which completes the proof of Theorem 39.

Remark 15 1. For small p the principal difference of the upper and the lower bound
consists of an additional factor of order ln 1

p . Burnashev and Bassalygo [3, 4]
say that they do not know which of the bounds can be improved.

2. The estimates on the number M(K, PZ , p) should certainly depend on the distri-
bution PZ . Burnashev and Bassalygo [3] conjectured that this dependence is as
follows
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C1 + C2p2 exp(H(Z)) < logM(K, PZ , p) < C3 + C4p2 log
1

p
exp(H(Z))

where C1, . . . , C4 are constants.

Pairwise Separated Measures

Nowwe will return to the general case and no longer restrict ourselves to the class of
authentication codes without secrecy. If we consider the problem of the last section,
then the lower bound we gave there remains valid as we have only enlarged our
possibilities to build authentication codes. The problem how the secrecy provided by
an authentication code attaches the answer to the question of the maximal number
of messages given the probability of deception has not been treated rigorously. In
this section the constraint on the success probability of the opponent, which has to
be fulfilled by the authentication codes, is sharpened compared to the last section.
This will allow us to use as an upper bound for the maximal number of messages the
maximal number of pairwise separated measures.

Definition 30 Let K � {1, . . . , K} and μ1, . . . ,μM be probability measures on K.
Further let p be a constant with 0 ≤ p ≤ 1. The L1-norm of a function μ : K → R is

||μ|| �
∑

z∈K
|μ(z)|.

The set {μi : i = 1, . . . , M} is called p-pairwise separated if

||μi − μj|| ≥ 2(1 − p)

for any i, j = 1, . . . , M i �= j.

When working with the L1 distance of probability measures the following identity
is useful.

Lemma 11 For two probability measures μ and ν on K

||μ − ν|| = 2

(
1 −

∑

z∈K
min{μ(z), ν(z)}

)
.

Proof

||μ − ν|| =
∑

z:μ(z)≥ν(z)

(μ(z) − ν(z)) +
∑

z:ν(z)>μ(z)

(ν(z) − μ(z))

=
∑

z:μ(z)≥ν(z)

μ(z) +
∑

z:ν(z)>μ(z)

ν(z) −
∑

z∈K
min{μ(z), ν(z)}

=
∑

z∈K
μ(z) +

∑

z∈K
ν(z) − 2

∑

z∈K
min{μ(z), ν(z)} = 2 − 2

∑

z∈K
min{μ(z), ν(z)}. �
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Definition 31 For a given constant 0 ≤ p < 1 we denote byMsep(K, p) the maximal
cardinality of a set of p-pairwise separated probability measures on K.

In [6] the following inequality for the value Msep(K, p) was proved

Msep(K, p) ≤
(

2

1 − p

)K−1

. (2.3.33)

The main analytical result in [4] consists of an improvement of this bound for small
p, which makes it valuable for the problem of the maximal number of messages in
an authentication code.

Theorem 40 (Burnashev and Bassalygo) For any 0 < p < 1 the following inequal-
ity holds

Msep(K, p) ≤ K + 1

p2
+ 1

2p2
exp

(
p2K

(1 − √
p)3

log
2e

p2

)
.

In order to prove Theorem 40 we need the following Lemma.

Lemma 12 Let {μ1, . . . ,μM} be a set of δ-pairwise separated probability measures
on K and let Ki � {z ∈ K : μi(z) > 0} be the support of μi for any i = 1, . . . , M.
Then the following statements hold.

(a) If max{μi(z) : z ∈ K, i = 1, . . . , M} ≤ μ, then

M ≤ (1 − δ)μK

1 − δμK
, provided that 1 − δμK > 0.

(b) If μi(z) ≥ μ ≥ δ
K for all z ∈ Ki and all i = 1, . . . , M, then

M ≤ (1 − δ)μK

2δ
exp

(
δ

μ
log

2eμK

δ(1 − δ)

)
.

Proof We start with (a). As {μ1, . . . ,μM} is δ-pairwise separated it follows that

M∑

i=1

M∑

j=1

||μi − μj|| ≥ 2(1 − δ)M(M − 1). (2.3.34)

Nowwebound this sum fromabove using the identity of Lemma11 and the inequality
min{μi(z),μj(z)} ≥ μi(z)μj(z)

μ
, which holds by the assumption made in (a).
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M∑

i=1

M∑

j=1

||μi − μj|| ≤ 2

⎛

⎝M2 − 1

μ

M∑

i=1

M∑

j=1

∑

z∈K
μi(z)μj(z)

⎞

⎠

= 2

⎛

⎝M2 − 1

μ

∑

z∈K

(
M∑

i=1

μi(z)

)2
⎞

⎠

≤ 2

⎛

⎝M2 − 1

μK

(
∑

z∈K

M∑

i=1

μi(z)

)2
⎞

⎠ = 2M2

(
1 − 1

μK

)
,

(2.3.35)

where we applied (2.3.15) to get the last inequality. Combining (2.3.34) and (2.3.35)
leads to (

1 − δμK

μK

)
M ≤ (1 − δ)

and this proves (a).
Now we prove (b). As {μ1, . . . ,μM} is δ-pairwise separated and the assumption

made in (b) implies that μ ≤ min{μi(z),μj(z)} for all z ∈ Ki ∩ Kj it follows that for
i �= j

|Ki ∩ Kj| · μ ≤
∑

z∈K
min{μi(z),μj(z)} ≤ δ.

Therefore |Ki ∩ Kj| ≤
⌊

δ
μ

⌋
for i �= j. Let T �

⌊
δ
μ

⌋
. This implies that the number

of measures μi with |Ki| > T does not exceed
( K

T+1

)
(otherwise there would be

two measures μi and μj (i �= j) with |Ki ∩ Kj| ≥ T + 1) and clearly the number of
measures μi with |Ki| ≤ T does not exceed

(K
T

)
Msep(T , δ). Therefore

M ≤
(

K

T + 1

)
+
(

K

T

)
Msep(T , δ) ≤ K

T

(
K

T

)
Msep(T , δ).

Using the bound given in (2.3.33) for the value Msep(T , δ) and the inequality
(n

k

) ≤
(

ne
k

)k
, which can be verified using Stirling’s formula,3 we obtain

M ≤ K

T

(
Ke

T

)T ( 2

1 − δ

)T−1

= (1 − δ)K

2T
exp

(
T log

(
2Ke

(1 − δ)T

))

3
(n

k

) ≤ ( n
k

)k
(1 + k

n−k )n−ke
1

12n − 1
12k+1 − 1

12(n−k)+1 + 1
2 ln( n

2πk(n−k)
)

≤ ( ne
k

)k
e

1
2n − 1

6n+1 + 1
2 ln( n

2π(n−1) ) ≤ ( ne
k

)k .
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≤ (1 − δ)μK

2δ
exp

(
δ

μ
log

(
2eμK

δ(1 − δ)

))
. �

Proof of the theorem. Let {μ1, . . . ,μM} be a set of p-pairwise separated probability
measures onK. It contains notmore thanK measuresμi withmaxz μi(z) > p because
otherwise there would be some i �= j and a z with min{μi(z),μj(z)} > p, which
implies ||μi − μj|| < 2(1 − p). Therefore below we assume that all the measures μi

satisfy maxz μi(z) ≤ p and derive for that case an upper bound to which we have to
add K in the end.

Fix now parameters μ and ε such that 0 < p < ε < 1 and 0 < μ (the parameters
will be chosen later) and let Ki(μ) � {z ∈ K : μi(z) ≥ μ}. First we upper bound
the number M1 of measures μi with μi(Kc

i (μ)) ≥ 1 − ε. We may assume that these
measures are μ1, . . . ,μM1 and introduce on their basis new probability measures νi

with supports Kc
i (μ) in the following way.

νi(z) � μi(z)

μi(Kc
i (μ))

for all z ∈ Kc
i (μ) and i = 1, . . . , M1.

For these measures we obtain the following relation.

||νi − νj|| ≥ 2

⎛

⎝1 −
∑

z∈Kc
i (μ)∩Kc

j (μ)

min{μi(z),μj(z)}
1 − ε

⎞

⎠ ≥ 2

(
1 − p

1 − ε

)

for all i, j = 1 . . . , M1, i �= j. Furthermore

max
z∈K

νi(z) <
μ

μi(Kc
i (μ))

≤ μ

1 − ε
for all i = 1, . . . , M1.

Thus we can apply Lemma 12 (a) to bound M1.

M1 ≤ (1 − p
1−ε

)
μ

1−ε
K

1 − p
1−ε

μ
1−ε

K
= (1 − ε − p)μK

(1 − ε)2 − pμK
≤ μK

(1 − ε)2 − pμK
, (2.3.36)

provided that
(1 − ε)2 − pμK > 0. (2.3.37)

Now we consider the remaining M2 = M − M1 measures μi with μi(Ki(μ)) ≥ ε. As
all the values μi(z) do not exceed p there exists in every set Ki(μ) a subset K′

i(μ)

such that ε ≤ μi(Ki(μ)) ≤ ε + p. We introduce new probability measures σi with
supports K′

i(μ) in the following way.

σi(z) � μi(z)

μi(K′
i(μ))

for all z ∈ K′
i(μ) and i = M1 + 1, . . . , M.
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For these measure we obtain the following relation.

||σi − σj|| ≥ 2

⎛

⎝1 −
∑

z∈K′
i(μ)∩K′

j(μ)

min{μi(z),μj(z)}
ε

⎞

⎠ ≥ 2
(
1 − p

ε

)

for all i, j = M1 + 1, . . . , M i �= j. Furthermore

σi(z) ≥ μ

ε + p
for all z ∈ K′

i(μ) and i = M1 + 1, . . . , M.

Thus we can apply Lemma 12 (b) to bound M2.

M2 ≤ (1 − p
ε
)

μ
ε+p K

2 p
ε

exp

(
p
ε
μ

ε+p

log
2e μ

ε+p K
p
ε
(1 − p

ε
)

)

≤ μK

2p
exp

(
p(p + ε)

με
log

2eμKε

p(ε − p2

ε
)

)

≤ μK

2p
exp

(
p(p + ε)

με
log

2eμKε

p(ε − p)

)
, (2.3.38)

provided that the assumption made in Lemma 12 (b) holds, which is in this case

μ

ε + p
≥ p

εK
. (2.3.39)

We choose the parameters ε and μ as follows

ε � √
p and μ �

(1 − √
p)3(1 + √

p)

pK
.

Then clearly 0 < p < ε < 1 and 0 < μ.
Furthermore we have to check for this choice of parameters that (2.3.37) and

(2.3.39) hold. (2.3.37) holds as

(1 − ε)2 − pμK = (1 − √
p)2 − (1 − √

p)3(1 + √
p) = (1 − √

p)2p > 0



2.3 Authentication 101

and (2.3.39) holds, provided that p ≤ 1
4 because then

μ

ε + p
= (1 − p)(1 − √

p)2

pK(p + √
p)

≥
(1 − 1

4 )(1 −
√

1
4 )

2

1
4K( 14 +

√
1
4 )

≥ 1

K
≥

√
p

K
= p

εK
.

Hence, if p ≤ 1
4 we get from (2.3.36) and (2.3.38) that

M ≤ K + M1 + M2

≤ K + 1 − p

p2
+ (1 − √

p)3(1 + √
p)

2p2
exp

(
Kp2

(1 − √
p)3

log
2e(1 − √

p)(1 − p)

p2

)

≤ K + 1

p2
+ 1

2p2
exp

(
Kp2

(1 − √
p)3

log
2e

p2

)

If 1
4 < p < 1, then the last bound is weaker than (2.3.33), as we have the factor
p2

(1−√
p)3

in the exponent. This completes the proof of Theorem 40. �

Now we will require that the authentication codes satisfy the condition

P�
S � max

y∈M′ PS(y) ≤ p (2.3.40)

for some given constant p > 0, i.e., (recall Definition 25 and (2.3.3)) that for any
cryptogram y ∈ M′ the probability of a successful substitution with any cryptogram
y′ ∈ M′, y′ �= y, does not exceed p.

In the case of an authentication code without secrecy we have Pmax
S ≤ P�

S . There-
fore the requirement made in (2.3.40) is stronger than Pmax

S ≤ p and we have PD ≤ p
if (2.3.40) holds. However the deficiency of this approach is that, in general (for
authentication codes with some degree of secrecy), we cannot assure PD ≤ p if
(2.3.40) holds, which can be seen in Example 3 again.

Definition 32 For any 0 < p < 1 let M�(K, p) denote the maximal number of mes-
sages in an authentication code with K keys such that P�

S ≤ p.

The next lemma enables us to use as an upper bound for M�(K, p) upper bounds
for the maximal cardinality of a set of pairwise separated probability measures.

Lemma 13 Let 0 < p < 1. If P�
S ≤ p for an authentication code, then the set

{PZ|Y ( · |y) : y ∈ M′} of probability measures on the set {1, . . . , K} is p-pairwise
separated.

Proof Let y, y′ ∈ M′, y �= y′. According to Definition 25 the support of PZ|Y ( · |y′)
is K(y′). As PS(y) ≤ p it follows from (2.3.3) that

PZ|Y (K(y′)|y) ≤ p (2.3.41)
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Using Lemma 11 and (2.3.41) we obtain

||PZ|Y ( · |y) − PZ|Y ( · |y′)|| = 2

(
1 −

K∑

z=1

min{PZ|Y (z|y), PZ|Y (z|y′)}
)

= 2

⎛

⎝1 −
∑

z∈K(y′)

min{PZ|Y (z|y), PZ|Y (z|y′)}
⎞

⎠

≥ 2
(
1 − PZ|Y (K(y′)|y)) ≥ 2(1 − p). �

With this notion the next theorem is immediate.

Theorem 41 For any 0 < p < 1 the following inequality holds

M�(K, p) ≤ K + 1

p2
+ 1

2p2
exp

(
p2K

(1 − √
p)3

log
2e

p2

)
.

Proof The statement follows directly from the previous Lemma, the bound on the
cardinality of a set of pairwise separated measures given in Theorem 40 and the fact
that for any authentication code M ≤ |M′|. �

Remark 16 1. We exploited the fact that an authentication code induces a prob-
ability distribution PZY on the set {1, . . . , K} × M′ such that the measure of
the support of PZ|Y ( · |y′) under PZ|Y ( · |y) is less than p for any y′ �= y. For the
moment let us denote such a configuration as a (|M′|, K, p)-configuration. Bur-
nashev and Bassalygo [4] looked abstractly on such configurations, i.e., where
not necessarily the probability distribution is induced by some cipher and a
message source, and denoted as Maut,1(K, p) the maximal M such that there
exists a (M, K, p)-configuration. Furthermore they denoted as Maut,2(K, p) the
maximal number of messages in a generalized authentication code (where keys
and messages are not necessarily generated independently) such that P�

S ≤ p.
Clearly, Maut,1(K, p) ≤ Maut,2(K, p), because we can define for an optimal
(M, K, p)-configuration the encryption by cz(m) = m for all z = 1, . . . , K . On
the other hand we saw already that an authentication code with P�

S ≤ p induces
a (|M′|, K, p)-configuration (this is also true if messages and keys are no longer
chosen independently). As for any authentication code we have M ≤ |M′|
it follows Maut,2(K, p) ≤ Maut,1(K, p). Therefore the values Maut,1(K, p) and
Maut,2(K, p) coincide.

2. In [4] the value Maut,1(K, p) was bounded by Msep(K, 2p) but it is also possible
to bound it directly by Msep(K, p) similarly to the derivation of Lemma 13 and
Theorem 41. This gives a better result as Msep(K, p) ≤ Msep(K, 2p).
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2.3.4 Authentication as an Hypothesis Testing Problem

In this paragraph we present an elegant approach byMaurer [19] to give information-
theoretic lower bounds on the success probabilities of the opponent in a generalized
model. The key point is the interpretation of the receiver’s decision whether the
received cryptogram is authentic or not as a decision for one of two hypotheses.

Generalizations

We generalize the model in the following ways.

• The sender wants to inform the receiver about a sequence of messages produced
by a source at some time instances. We denote by X1, X2, . . . , Xi, . . . the random
variables for those messages.

• Each message is encrypted separately to some cryptogram. We denote by Y1,

Y2, . . . , Yi, . . . the corresponding random variables. The cryptogram sent at time
i depends on the secret key, the message produced at time i and possibly also on
the previous messages. Therefore in this context a key cz can be described as a

mapping cz :
∞⋃

i=1
Mi −→ M′ such that yi = cz(m1, . . . , mi).

• We assume that the receiver is synchronized, i.e., he knows the message num-
ber i. In order to enable the receiver to decrypt correctly we have to assume
that the message mi produced at time i is uniquely determined by the previous
messages m1, . . . , mi−1 and cryptograms y1, . . . , yi and the secret key. Therefore,
by induction, mi is uniquely determined by m1, . . . , mi−1, yi and the secret key
(also by y1, . . . , yi and the secret key itself). In other words we require that for
all i ∈ N and all m1, . . . , mi, m′

i ∈ M with mi �= m′
i we have cz(m1, . . . , mi) �=

cz(m1, . . . , mi−1, m′
i) for all z ∈ {1, . . . , K}.

• The opponent can choose between impersonation and substitution. In an imper-
sonation attack at time i he waits until he has seen the first i − 1 cryptograms
y1, . . . , yi−1, which he lets pass unchanged to the receiver and then sends a fraud-
ulent cryptogram y′

i. We denote by Y ′
i the corresponding random variable. In a

substitution attack at time i the opponent lets pass the first i − 1 cryptograms
y1, . . . , yi−1, intercepts yi and replaces it by a different cryptogram y′

i.• Up to now the receiver has accepted a cryptogram as authentic if and only if
it is consistent with the secret key. Now we will allow, at least for purposes of
calculation, the receiver to reject a valid cryptogram with some probability. This
generalization is important because it establishes the link to the standard hypothesis
testing scenario.

We will also refine our notion when the opponent is considered to be successful in
an impersonation attack and substitution attack, respectively. Suppose the receiver
accepted the fraudulent cryptogram y′

i as a valid cryptogram. Then he decodes
y1, . . . , yi−1, y′

i to some message m′
i. We distinguish now three cases. The opponent

is considered to be successful when

(a) the receiver accepts the fraudulent cryptogram y′
i as a valid cryptogram (this is

the case we considered so far).
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(b) the receiver accepts the fraudulent cryptogram y′
i as a valid cryptogram and

the message m′
i is known to the opponent. In other words the opponent is only

considered to be successful if he also guesses the message m′
i correctly.

(c) the receiver accepts the fraudulent cryptogram y′
i as a valid cryptogram and the

message m′
i was chosen by the opponent before. Of course this type of attack

depends on the particular value m′
i.

Note that in an authentication code without secrecy case (a) and (b) coincide as the
cryptograms uniquely determine the message and therefore the opponent will always
guess correctly.

Definition 33 We distinguish the three described cases by denoting the correspond-
ing attacks as impersonation attack and substitution attack of type (a), (b) and (c),
respectively. We denote the success probabilities for the opponent using an optimal
strategy for an attack of the type (a), (b) and (c) by

Pa
I,i, Pb

I,i and Pc
I,i,m′

i
,

for an impersonation attack at time i, respectively, and by

Pa
S,i, Pb

S,i and Pc
S,i,m′

i
,

for a substitution attack at time i, respectively.
For a particular observed sequence y1, . . . , yi−1 of cryptograms and, in case of a

substitution attack also for a fixed intercepted cryptogram yi, we denote the corre-
sponding success probabilities by

Pa
I,i(y1, . . . , yi−1), Pb

I,i(y1, . . . , yi−1) and Pc
I,i(y1, . . . , yi−1),

respectively, for an impersonation attack at time i and by

Pa
S,i(y1, . . . , yi), Pb

S,i(y1, . . . , yi) and Pc
S,i,m′

i
(y1, . . . , yi),

respectively, for a substitution attack at time i.

With this notion, for instance, Pa
I,i is the expected value of Pa

I,i(y1, . . . , yi−1), i.e.,

Pa
I,i =

∑

(y1,...,yi−1)

PY1...Yi−1(y1, . . . , yi−1)P
a
I,i(y1, . . . , yi−1).

Some Results on Hypothesis Testing

We collect some results of the theory of hypothesis testing. Suppose we have to
decide which of two hypotheses, H0 or H1, is true and we know from some random
experiment the outcome of a random variable U with values in some set U . The
distribution of U depends on which of the two hypotheses is true. Under H0 let U
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be distributed according to P and under H1 let U be distributed according to Q.
A decision rule assigns to each possible value u ∈ U one of the two hypotheses.
Therefore a decision rule may be viewed as a partition of U into two sets U0 and U1

such that we vote for H0 if U ∈ U0 and vote for H1 otherwise. There are two types
of possible errors that may occur when making a decision. Accepting hypothesis H1

when actuallyH0 is true is called an error of the first kind andwewill typically denote
the probability of this event by α. Accepting hypothesis H0 when actually H1 is true
is called an error of the second kind and we will typically denote the probability of
this event by β. The optimal decision rule is given by the Neyman–Pearson Theorem
which states that, for a givenmaximal tolerable probability β of an error of the second
kind, α can be minimized by assuming hypothesis H0 if and only if

log
P(u)

Q(u)
≥ T (2.3.42)

for some threshold T (see for instance [5]).
Note that only the existence of T , but not its specific value is given by the theorem.

The term on the left-hand side of (2.3.42) is called the log-likelihood ratio. The
expected value of the log-likelihood ratio with respect to P is the I-divergence

D(P||Q) =
∑

u∈U
P(u) log

P(u)

Q(u)
,

which is nonnegative and equal to zero exactly if the two distributions P and Q are
identical.

The I-divergence and the error probabilities in an hypothesis test of the described
form are related at follows.

Lemma 14 The probabilities α and β of an error of the first and second kind,
respectively, satisfy

d(α,β) ≤ D(P||Q),

where d(α,β) � α log α
1−β

+ (1 − α) log 1−α
β

.
In particular, for α = 0 we have

β ≥ 2−D(P||Q).

Proof Let {U0,U1} be the partition of U induced by the used decision rule. Then

α =
∑

u∈U1

P(u) and β =
∑

u∈U0

Q(u).
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Therefore

d(α,β) =
⎛

⎝
∑

u∈U1

P(u)

⎞

⎠ log

∑
u∈U1

P(u)
∑

u∈U1
Q(u)

+
⎛

⎝
∑

u∈U0

P(u)

⎞

⎠ log

∑
u∈U0

P(u)
∑

u∈U0
Q(u)

≤
∑

u∈U1

P(u) log
P(u)

Q(u)
+
∑

u∈U0

P(u) log
P(u)

Q(u)
= D(P||Q),

where we applied the log-sum inequality. �

Later we will deal with the case where the random variableU is given as a random
couple U = (S, T), the distribution P will be the actual joint distribution PST and the
distribution Q will be the product of the marginal distributions PSPT . In that case the
I-divergence D(P||Q) turns out to be the mutual information I(S ∧ T).

D(P||Q) =
∑

s,t

PST (s, t) log
PST (s, t)

PS(s)PT (t)

= H(S) + H(T) − H(S, T) = H(S) − H(S|T) = I(S ∧ T).

Suppose now that the distributions P and Q depend on the value v of an additional
random variable V with values in V , which is known to the testing person, i.e., we
have a collection of pairs (Pv, Qv) of conditional distributions each pair occurring
with probability PV (v). The decision rule may depend on the value v of V and for
each v ∈ V we denote by α(v) and β(v) the probabilities of an error of the first and
second kind, respectively, given that V = v.

Lemma 15 The average probabilities of an error of the first and second kind
given by

α �
∑

v∈V
PV (v)α(v) and β �

∑

v∈V
PV (v)β(v),

respectively, satisfy
d(α,β) ≤

∑

v∈V
PV (v)D(Pv||Qv).

Proof As the function d is ∪-convex we can apply Jensen’s inequality and get

d(α,β) ≤
∑

v∈V
PV (v)d(α(v),β(v)).

Lemma 14 implies that for every v ∈ V
d(α(v),β(v)) ≤ D(Pv||Qv)

and this completes the proof. �
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We may go another step further. Lemma 15 holds of course also for distributions
conditioned on the event that a further random variable W takes on a particular value
w known to the testing person, i.e., for pairs (Pv,w, Qv,w) of distributions. We denote
by α(v,w) and β(v,w) the two error probabilities. The following corollary follows
directly from Lemma 15.

Corollary 3 The average probabilities (over V) of an error of the first and second
kind given by

α(w) �
∑

v∈V
PV (v)α(v,w) and β(w) �

∑

v∈V
PV (v)β(v,w),

respectively, satisfy

d(α(w),β(w)) ≤
∑

v∈V
PV (v)D(Pv,w||Qv,w).

Let us look again at the special case where U = (S, T) and the distributions Pv =
PST |V ( · |v) andQv = PS|V ( · |v)PT |V ( · |v)dependon thevalueof the randomvariable
V . Then the expression on the right-hand side in the statement of Lemma 15 becomes

∑

v∈V
PV (v)D(Pv||Qv) =

∑

v∈V
PV (v) I(S ∧ T |V = v) = I(S ∧ T |V ).

Similarly if Pv,w = PST |V W ( · |v,w) and Qv,w = PS|V W ( · |v,w)PT |V W ( · |v,w) then
the right-hand side in Corollary 3 becomes

∑

v∈V
PV (v)D(Pv,w||Qv,w) =

∑

v∈V
PV (v) I(S ∧ T |V = v, W = w)

= I(S ∧ T |V, W = w).

The Receivers Hypothesis Testing Problems

Let us now describe howwe canmake these methods applicable to the authentication
problem.

Basically the receiver is faced with the following two hypotheses:
H0—the received cryptogram is authentic.
H1—the received cryptogram has been inserted by the opponent.
The two probabilitiesα and β of an error of the first and second kind, respectively,

become:
α—probability of rejecting a valid cryptogram.
β—probability of accepting a fraudulent cryptogram.

Note that the behavior of the receiver considered so far implies α = 0.
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Let us consider an impersonation attack of the type (a) at time i. The receiver
and the opponent have seen the first i − 1 cryptograms Y1 = y1, . . . , Yi−1 = yi−1.
Let us denote by Ȳi the random variable for the ith cryptogram (under H0 we have
Ȳi = Yi and under H1 we have Ȳi = Y ′

i ). The receiver knows the secret key, i.e., he
knows the value of Z . Given the value of the random couple (Ȳi, Z) the receiver has
to decide which of the two hypotheses is true. If H0 is true then (Ȳi, Z) is distributed
according to

PYiZ|Y1...Yi−1( · |y1, . . . , yi−1). (2.3.43)

The opponent chooses the fraudulent cryptogram y′
i depending on y1, . . . , yi−1 but

without further knowledge about the value of Z . Therefore, if H1 is true, then (Ȳi, Z)

is distributed according to

PY ′
i |Y1...Yi−1( · |y1, . . . , yi−1)PZ|Y1...Yi−1( · |y1, . . . , yi−1). (2.3.44)

Onepossible but generally not optimal impersonation strategy for the opponentwould
be to select y′

i according to the actual distribution of Yi given Y1 = y1, . . . , Yi−1 =
yi−1, i.e., he chooses

PY ′
i |Y1...Yi−1( · |y1, . . . , yi−1) = PYi|Y1...Yi−1( · |y1, . . . , yi−1). (2.3.45)

Now we can derive the following theorem.

Theorem 42 For every authentication system

Pa
I,i(y1, . . . , yi−1) ≥ 2−I(Yi∧Z|Y1=y1,...,Yi−1=yi−1)

and
Pa

I,i ≥ 2−I(Yi∧Z|Y1,...,Yi−1). (2.3.46)

Proof Let Y1 = y1, . . . , Yi−1 = yi−1 be given. Suppose the opponent chooses his
impersonation strategy according to (2.3.45). Let us denote by PI,Y ′(y1, . . . , yi−1)

his success probability when following this strategy and by PI,Y ′ the correspond-
ing average success probability. Suppose the receiver selects some decision rule
giving him α(y1, . . . , yi−1) as the probability of rejecting a valid cryptogram and
β(y1, . . . , yi−1) as the probability of accepting a fraudulent cryptogram.

Then Lemma 14 implies

d(α(y1, . . . , yi−1),β(y1, . . . , yi−1)) ≤ I(Yi ∧ Z|Y1 = y1, . . . , Yi−1 = yi−1).

Denoting by α and β the corresponding average error probability we get from
Lemma 15

d(α,β) ≤ I(Yi ∧ Z|Y1, . . . , Yi−1).
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Selecting the decision rule for the receiver as before which means that he accepts
the cryptogram exactly if it is consistent with the secret key and the previous i − 1
cryptograms we get α(y1, . . . , yi−1) = 0 and β(y1, . . . , yi−1) = PI,Y ′(y1, . . . , yi−1).
This implies

PI,Y ′(y1, . . . , yi−1) ≥ 2−I(Yi∧Z|Y1=y1,...,Yi−1=yi−1)

and
PI,Y ′ ≥ 2−I(Yi∧Z|Y1,...,Yi−1).

Therefore we obtain from

Pa
I,i(y1, . . . , yi−1) ≥ PI,Y ′(y1, . . . , yi−1) and Pa

I,i ≥ PI,Y ′

the desired result. �

Remark 17 Note that in the case when i = 1, (2.3.46) is Simmons’ bound of Theo-
rem 32.

Let us analyze an impersonation attack of type (b) at time i, i.e., the opponent is
only considered to be successful if he also guesses the message to which the receiver
decodes the fraudulent cryptogram to correctly. Now a strategy for the opponent
consists of a distribution PX ′

i Y
′
i |Y1,...,Yi−1( · |y1, . . . , yi−1) where the value of Y ′

i is the
fraudulent cryptogram and the value of X ′

i is the message the opponent guesses.
Consider now the ‘fictive’ hypothesis testing scenario, where in addition to values
of the random variables Ȳi and Z the receiver also gets a value of X̄i, which is under
hypothesis H0 equal to Xi and under H1 equal to X ′

i . This means that if H0 is true
than the receiver is told the correct message and if H1 is true the receiver is told the
message the opponent guesses. One possible but generally not optimal impersonation
strategy for the opponent would be to select the pair (m′

i, y′
i) according to the actual

distribution of (Xi, Yi) given Y1 = y1, . . . , Yi−1 = yi−1, i.e., he chooses

PX ′
i Y

′
i |Y1...Yi−1( · |y1, . . . , yi−1) = PXiYi|Y1...Yi−1( · |y1, . . . , yi−1). (2.3.47)

Then it follows that if H0 is true then (X̄i, Ȳi, Z) is distributed according to

PXiYiZ|Y1...Yi−1( · |y1, . . . , yi−1)

and if H1 is true then (X̄i, Ȳi, Z) is distributed according to

PXiYi|Y1...Yi−1( · |y1, . . . , yi−1)PZ|Y1...Yi−1( · |y1, . . . , yi−1).

Now we can derive the following theorem.

Theorem 43 For every authentication system

Pb
I,i(y1, . . . , yi−1) ≥ 2−I(XiYi∧Z|Y1=y1,...,Yi−1=yi−1)
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and
Pb

I,i ≥ 2−I(XiYi∧Z|Y1,...,Yi−1).

Proof Let Y1 = y1, . . . , Yi−1 = yi−1 be given. Suppose the opponent chooses his
impersonation strategy according to (2.3.47). Let us denote by PI,Y ′(y1, . . . , yi−1)

his success probability when following this strategy and by PI,Y ′ the corresponding
average success probability. Suppose the receiver selects some decision rule giving
himα(y1, . . . , yi−1) as the probability of an error of the first kind and β(y1, . . . , yi−1)

as the probability of an error of the second kind in the above described hypothesis
testing scenario. Then Lemmas 14 and 15 imply

d(α(y1, . . . , yi−1),β(y1, . . . , yi−1)) ≤ I(XiYi ∧ Z|Y1 = y1, . . . , Yi−1 = yi−1)

and
d(α,β) ≤ I(XiYi ∧ Z|Y1, . . . , Yi−1)

for the average error probabilities α and β.
Now suppose the receiver selects the decision rule in such a way that he votes for

H0 exactly if the value of Ȳi is a valid cryptogram under the secret key and he would
decode it to the message given by X̄i.

Thenwe getα(y1, . . . , yi−1) = α = 0, β(y1, . . . , yi−1) = PI,Y ′(y1, . . . , yi−1) and
β = PI,Y ′ . As Pb

I,i(y1, . . . , yi−1) ≥ PI,Y ′(y1, . . . , yi−1) and Pb
I,i ≥ PI,Y ′ , we obtain the

desired result. �

Let us analyze an impersonation attack of type (c), when the opponent is only
considered to be successful if the receiver accepts the fraudulent cryptogram and
decodes it to some message, which was chosen by the opponent. Let this message
be m′

i ∈ M. We consider the following ‘fictive’ hypothesis testing scenario. Sup-
pose Y1 = y1, . . . , Yi−1 = yi−1 are given and the message source produces at time i
the message m′

i, i.e., Xi = m′
i. Let us assume the receiver knows this. As in case (a)

the receiver now sees some value of the random couple (Ȳi, Z) and has to decide
if the cryptogram he got is authentic or not. Again we may consider a generally not
optimal impersonation strategy for the opponent given by

PY ′
i |Y1...Yi−1( · |y1, . . . , yi−1) = PYi|Y1...Yi−1Xi( · |y1, . . . , yi−1, m′

i). (2.3.48)

If H0 is true than (Ȳi, Z) is distributed according to

PYiZ|Y1...Yi−1Xi( · |y1, . . . , yi−1, m′
i)

and if H1 is true then (Ȳi, Z) is distributed according to

PYi|Y1...Yi−1Xi( · |y1, . . . , yi−1, m′
i)PZ|Y1...Yi−1( · |y1, . . . , yi−1),
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which is (as Z and Xi are independent) the same as

PYi|Y1...Yi−1Xi( · |y1, . . . , yi−1, m′
i)PZ|Y1...Yi−1Xi( · |y1, . . . , yi−1, m′

i)

With this the following conclusion is no more difficult.

Theorem 44 For every authentication system

Pc
I,i(y1, . . . , yi−1) ≥ 2−I(Yi∧Z|Y1=y1,...,Yi−1=yi−1,Xi=m′

i)

and
Pc

I,i ≥ 2−I(Yi∧Z|Y1,...,Yi−1,Xi=m′
i).

Proof Weproceed analogously to the proofs of the Theorems 42 and 43 using instead
of Lemma15 theCorollary 3 for the above described hypothesis test. Then the desired
result is obtained for the receiver’s decision rule to accept H0 exactly if the observed
cryptogram is valid under the secret key and would be decoded to m′

i. �

For the substitution attacks of the three described forms (a), (b) and (c), respectively,
we can derive a lower bound on the success probability simply by giving a lower
bound on the opponent’s probability to guess the correct value of Z because, when
guessing the secret key correctly, the opponent can launch any of the described
attacks.

Let S be a random variable with values in some finite set S. The probability to
guess a value of S correctly knowing only PS is maxs∈S PS(s). As the entropy of S
is the expected value of − logPS(S) we obtain

− log

(
max
s∈S

PS(s)

)
= min

s∈S

(
− logPS(s)

)
≤ H(S)

and therefore
max
s∈S

PS(s) ≥ 2−H(S).

Knowing in addition the value of a further random variable T we get by applying
Jensen’s inequality that the (average) probability of guessing S correctly is bounded
by ∑

t

PT (t)2−H(S|T=t) ≥ 2−H(S|T).

This applies to our situation in the following way.

Theorem 45 For every authentication system

Pa
S,i(y1, . . . , yi) ≥ 2−H(Z|Y1=y1,...,Yi=yi)
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and
Pa

S,i ≥ 2−H(Z|Y1,...,Yi).

These bounds also hold for the types (b) and (c) of substitution attacks.

Proof In a substitution attack at time i the opponent knows a sequence of values of
Y1, . . . , Yi and therefore the result follows from the previously made remarks. �

We can combine the bounds derived for impersonation attacks and substitution
attacks in the following way.

Theorem 46 For every authentication system

max{Pa
I,1, . . . , Pa

I,n, Pa
S,n} ≥ 2− H(Z)

n+1 for all n ∈ N.

Proof Recall that

n∑

i=1

I(Yi ∧ Z|Y1 . . . Yi−1)

=
(

H(Z) − H(Z|Y1)
)

+
(

H(Z|Y1) − H(Z|Y1Y2)
)

+ · · ·
· · · +

(
H(Z|Y1 . . . Yn−1) − H(Z|Y1 . . . Yn)

)

= H(Z) − H(Z|Y1 . . . Yn) = I(Y1 . . . Yn ∧ Z).

(Sometimes this is called “Chain Rule of Mutual Information”.)
Applying the bound of Theorem 42 for Pa

I,i and the bound of Theorem 45 for Pa
S,n

we obtain that

−
n∑

i=1

logPa
I,i − logPa

S,n ≤
n∑

i=1

I(Yi ∧ Z|Y1 . . . Yi−1) + H(Z|Y1 . . . Yn) = H(Z)

and therefore
− log

(
max{Pa

I,1, . . . , Pa
I,n, Pa

S,n}
)

≤ − log

(
1

n + 1

(
n∑

i=1

Pa
I,1 + Pa

S,n

))
≤ H(Z)

n + 1
,

where we used the fact that − log is a monotonically decreasing and ∪-convex
function. �
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Remark 18 The last result can be interpreted as follows. If an authentication system
is used to authenticate n messages the opponent can choose the type of attack that
gives him the highest success probability. For a cipher of a given size (measured in
terms of the entropy H(Z)) Theorem 46 states that the achievable authenticity for n
messages corresponds at most to the difficulty of guessing the secret key of a cipher
whose size is n + 1 times smaller than the size of the actual cipher.

2.4 Secret-Key Cryptology

The information-theoretic approach to secret-key cryptology was introduced by
Shannon [24] as already mentioned. The problems of these “classical” secrecy sys-
tems were further discussed in papers by Ahlswede [1] and Hellman [13]. In this
section we concentrate on some new results and approaches of Shtarkov [25] con-
cerning the following problems.

1. Evaluation or estimation of H(X|Y) for a given cipher (C, Q) and different dis-
tributions PX . This is meaningful for incomplete information on the distribution
PX and/or different constraints on the choice of the cipher.

2. Determination of the optimal (or close to optimal) cipher, if the number of keys
and the message distribution is given.

Furthermore the model is extended with a source coder and a randomizer.

2.4.1 Preliminaries

Conditions for Perfectness and Upper Bounds for Secrecy

Westartwith the derivationof somegeneral upper bounds for the secrecymeasuredby
theopponent’s averageuncertainty about themessage after observing the cryptogram.
These are combined in the next theorem.

Theorem 47 For every secrecy system

H(X|Y) ≤ min{H(X), H(Z|Y)} ≤ min{H(X), H(Z)}
≤ min{H(X), logK} ≤ logK . (2.4.1)

Proof The statement immediately follows if we can showH(X|Y) ≤ H(Z|Y). Recall
that cryptogram and key determine the message, i.e., H(X|Y , Z) = 0 and therefore

H(X|Y) ≤ H(X, Z|Y) = H(X|Y , Z) + H(Z|Y) = H(Z|Y). �
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Keeping this in mind we can derive necessary conditions for the perfectness of a
cipher.

Theorem 48 If a secrecy system is perfect, then

H(Z) ≥ H(X).

Proof Recall that a secrecy system is said to be perfect, if the random variables for
the message and the cryptogram are independent, i.e., H(X) = H(X|Y). Combining
this with (2.4.1) yields the desired result. �

Theorem 49 If a secrecy system is perfect, then

K ≥ M.

Proof Recall that we have assumed all messages and keys to occur with probability
strictly greater than 0. Therefore the fact that X and Y are independent implies for
any y ∈ M

PX|Y (m|y) = PX(m) for all m ∈ M.

Hence, for every m ∈ M there exists at least one key z ∈ {1, . . . , K} such that m =
c−1

z (y). As the keys are injective this implies K ≥ |M|. �

These are quite pessimistic results, which tell us that perfect secrecy requires that
the uncertainty about the key must be at least as big as the uncertainty about the
message and that the secrecy system must contain more keys than messages.

Example 7 We show that it is possible to guarantee perfect secrecy with K = M
keys. Let

cz(m) � (m + z)modM for all m, z ∈ {1, . . . , M}

and let the keys be equiprobable, i.e., PZ(z) � 1
M for all z ∈ {1, . . . , M}.

This cipher has the property that for every message m ∈ M and every cryptogram
y ∈ M there exists exactly one key cz with cz(m) = y and therefore we immediately
get that PX|Y (m|y) = PX(m). Hence, H(X|Y) = H(X), which means that the secrecy
system is perfect. Moreover it is perfect independent of the kind of distribution PX

and one can speak therefore of a robustly perfect cipher. Note that if K = M, then
every regular and canonical cipher (what will be defined in the next section) has the
here described properties.

The idea to use of K = M keys in such a way that a message and a cryptogram is
consistent with exactly one key was first developed by G.S. Vernam in 1926 ([18],
pp. 7). He enciphered messages given as binary strings by adding binary strings
of the same length componentwise modulo 2, that is, in the Vernam cipher each
single message bit is enciphered with a new randomly chosen key bit. As the key
bits are used only one time those systems are called One-Time Systems (or One-Time
Pads in some contexts). They are only used for transmission of highly confidential
information because of the large number of keys.
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Regular and Canonical Ciphers

Usually we will restrict ourselves to ciphers where the keys are equiprobable.

Definition 34 A cipher (C, Q) is canonical, if Q is the uniform distribution.

From now on we will always assume ciphers to be canonical. This restriction is
usually done [1, 13, 24, 25] and it does not seem to be severe but this has not been
proved.

Definition 35 A cipher (C, Q) is regular, if |{c−1
z (y) : z ∈ {1, . . . , K}}| = K for any

cryptogram y ∈ M.

Now suppose we are given a number S ∈ N and two partitions X = {Xi : i =
1, . . . , S} and Y = {Yi : i = 1, . . . , S} of the setM.

Definition 36 A cipher (C, Q) is locally regular (with respect to (X ,Y)) if:

1. |Xi| = |Yi| for all i ∈ {1, . . . , S}.
2. cz(Xi) ⊂ Yi for all z ∈ {1, . . . , K}, i ∈ {1, . . . , S}.
3. (C, Q) is a regular cipher.

Remark 19 By definition every locally regular cipher is regular and every regular
cipher is locally regular at least with respect to the trivial partitions (X ,Y) which
consist only of the setM.

Using “random ciphers” Shannon [24] gave the following lower bound on H(X|Y)

(under the additional AEP hypothesis on the message source).

H(X|Y) ≥ logK + H(X) − logM.

With our notion of regular ciphers, we get this bound for every regular cipher and
without any assumption on the message source (M, PX), just by observing that
H(Y |X) = logK in those situations and therefore

H(X|Y) = H(X, Y) − H(Y)

= H(Y |X) + H(X) − H(Y) = logK + H(X) − H(Y).

≥ logK + H(X) − logM (2.4.2)

IfH(X) = logM, i.e., if the source is compressed, then the bound is tight but for gen-
eral X it is rather poor. In the Sect. 2.4.3 we give a better bound by evaluating H(X|Y)

for a certain cipher. Ahlswede considers in [1] the class of message sources (M, PX)

with H(X) ≥ H0 for some constant 0 ≤ H0 ≤ logM. Then (2.4.2) obviously implies
for any such source

H(X|Y) ≥ logK + H0 − logM. (2.4.3)
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This bound reflects a robustified model, where one drops the assumption that sender
and receiver know the message statistics. The opponent is still granted to know it
exactly but sender and receiver only have to know a lower bound on the entropy of
the source. In [1] it was also shown that the bound (2.4.3) is essentially best possible
for this class of sources.

2.4.2 The Lower Bound for Locally Regular Ciphers

We now derive the fundamental result of Shtarkov in [25], where he gives a lower
bound on H(X|Y) for any locally regular cipher, which uses as information about
the message statistics the relation of the greatest to the smallest probability of the
messages in each of the sets Xi (recall Definition 36). Essential for the derivation of
this bound is the Schur-concavity of the entropy function.

Lemma 16 Let P and Q be two probability distributions on {1, . . . , K} with
P(1) ≥ · · · ≥ P(K) and Q(1) ≥ · · · ≥ Q(K). Furthermore let P(1) = Q(1) and
P(K) = Q(K). If P has the property that all the probabilities P(i) are equal to
P(1) or P(K), i.e., if there exists an n ∈ {1, . . . , K − 1} with P(1) = · · · = P(n) and
P(n + 1) = · · · = P(K), then

H(P) ≤ H(Q).

Proof The statement follows from the Schur-concavity of the entropy function, if
we can show that P Schur-dominates Q, i.e., if

j∑

i=1

P(i) ≥
j∑

i=1

Q(i) for all j ∈ {1, . . . , K}.

Let j ∈ {1, . . . , K}.
Case 1: j ≤ n, then

j∑

i=1

P(i) = j P(1) = j Q(1) ≥
j∑

i=1

Q(i).

Case 2: j > n, then

j∑

i=1

P(i) = 1 −
K∑

i=j+1

P(i) = 1 − (K − j) P(K) = 1 − (K − j) Q(K)

≥ 1 −
K∑

i=j+1

Q(i) =
j∑

i=1

Q(i).�
�
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Theorem 50 (Shtarkov) Let (C, Q) be a locally regular cipher with respect to
(X ,Y). Let

ρi �
max
m∈Xi

PX(m)

min
m∈Xi

PX(m)
for all i = 1, . . . , S. (2.4.4)

Then

H(X|Y) ≥ logK − (log e)
S∑

i=1

Pi δ(ρi), (2.4.5)

where
Pi �

∑

m∈Xi

PX(m)

and
δ : [1,∞[→ R

δ(1) � 0

δ(ρ) �

⎧
⎨

⎩
ln(ρ − 1) − ln ln ρ − 1 + ln ρ

ρ−1 ,

ln
(

ρ K
ρ+K−1

)
− K−1

ρ+K−1 ln ρ,

1 < ρ ≤ T

ρ > T
(2.4.6)

and T = T(K) is the greatest solution of the equation

(T ln T − T + 1) K = (T − 1)2 (2.4.7)

Proof δ′(ρ) = (ρ ln ρ+1−ρ)(ρ−1−ln(ρ))

ρ ln ρ(ρ−1)2 ≥ 0, if 1 < ρ < T(K).

δ′(ρ) = (K−1) ln ρ
(K+ρ−1)2 ≥ 0, if T(K) < ρ.

Hence, as the function δ is continuous we see that it is monotonically increasing.
From the local regularity of the cipher follows that

H(X|Y) =
∑

y∈M
PY (y) H(X|Y = y) =

S∑

i=1

∑

y∈Yi

PY (y)H(X|Y = y)

≥
S∑

i=1

Pi min
y∈Yi

H(X|Y = y).

Thus we are done if we can show that for any i ∈ {1, . . . , S}

H(X|Y = y) ≥ logK − (log e)δ(ρi) for all y ∈ Yi. (2.4.8)

because this implies (2.4.5). So let i ∈ {1, . . . , S} and y ∈ Yi.
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Case 1: ρi = 1.
In this case all messages in Xi are equiprobable and therefore for any m ∈

Xi PX|Y (m|y) = 1
K provided that PX|Y (m|y) > 0.

This implies H(X|Y = y) = logK and as δ(ρi) is defined to be 0 in this case the
estimate (2.4.8) holds.

Case 2: ρi > 1.
Let

ρi(y) �
max
m∈Xi

PX|Y (m|y)
min
m∈Xi

PX|Y (m|y) ,

where the minimum is taken only over terms strictly greater than 0.
If for m, m′ ∈ Xi PX|Y (m|y) > 0 and PX|Y (m′|y) > 0, then the local regularity of

the cipher implies that PX|Y (m|y)
PX|Y (m′ |y) = PX (m) 1

K

PX (m′) 1
K

= PX (m)

PX (m′) . If all these conditional probabil-

ities would be greater than 0, then we would have ρi(y) = ρi, but if |Xi| > K then
some of the conditional probabilities are equal to 0 and therefore we get ρi(y) ≤ ρi,
in general. If we take into account that δ is monotonically increasing then we see
that it suffices to show (2.4.8) with ρi replaced with ρi(y). In order to get this lower
estimate we ask for what probability distribution PX|Y (·|y) the entropy H(X|Y = y)
is minimal if ρi is given.

Let ci denote the smallest probability of such a distribution (then ρi ci is the largest)
then we know from Lemma 16 a lower bound on the entropy given by the entropy of
the distribution with ni values equal to ρi ci and K − ni values equal to ci, which is

− ni ρi ci log ρi ci − (K − ni)ci log ci, (2.4.9)

where ni is determined by the equation ni ρi ci + (K − ni) ci = 1 and therefore

ni = 1 − K ci

ci (ρi − 1)
. (2.4.10)

If we substitute (2.4.10) into (2.4.9), we can minimize over ci. The first and second
derivative of (2.4.9) with respect to ci are

1

ln 2
(

ρi K

ρi − 1
ln ρi − 1

ci
)

and
1

c2i ln 2
> 0.

In this way we obtain that (2.4.9) is minimal for c�
i and n�

i , where

c�
i = ρi − 1

K ρi ln ρi
and n�

i = K
ρi ln ρi − ρi + 1

(ρi − 1)2
.
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If we substitute these values in (2.4.9), then we get as a lower bound for H(X|Y = y)
the bound in (2.4.8), where δ is defined by the first expression in (2.4.6).

Now notice that we have ni ≥ 1 as an additional restriction. So if n�
i < 1, which

is the case if ρi > T(K), then we get a sharper lower bound by taking n�
i = 1 and

correspondingly c�
i = 1

ρi+K−1 . Substituting these terms into (2.4.9) we obtain again
the bound (2.4.8) now with δ defined in the second expression of (2.4.6). �

Corollary 4 Let

ρ �
max
m∈M

PX(m)

min
m∈M

PX(m)
. (2.4.11)

With the assumptions of Theorem 50 it follows

H(X|Y) ≥ logK − (log e) δ(max
1≤i≤S

ρi)

≥ logK − (log e) δ(ρ). (2.4.12)

Proof The bounds follow from (2.4.5), ρi ≤ ρ for all i ∈ {1, . . . , S} and the fact that
the function δ is monotonically increasing. �

Remark 20 1. Equation (2.4.7) has always the solution T = 1. For K ≥ 3 there
exists exactly one other solution greater 1.

2. The lower bound on H(X|Y) is always nontrivial, in the sense that the term in
(2.4.12) is always nonnegative because we have seen that it is a value of the
entropy function.

2.4.3 A Simple Cipher

Suppose that the probabilities PX(m) are ordered in such a way that

PX(1) ≥ · · · ≥ PX(M). (2.4.13)

Furthermore let K ≤ M. We consider now the problem of constructing a good cipher
if the distribution PX and the number of keys K is given. A natural approach to the
solution of this problem was given by Ahlswede [1], who defined a locally regular
cipher with respect to (X ,Y) with

X � {Xi : i = 1, . . . , S} and Y � {Yi : i = 1, . . . , S},

where S �
⌊

M
K

⌋
,

Xi � Yi � {(i − 1) K + 1, . . . , i K} i = 1, . . . , S − 1
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and XS � YS � {(S − 1) K + 1, . . . , M}.

Let (C, Q) be any locally regular cipher with respect to (X ,Y).
It is clear that this choice of the cipher provides the minimal or close to the

minimal values of the ρi and therefore yields the maximal or close to maximal
estimate of H(X|Y) in (2.4.5). Recall that for an regular cipher H(X|Y) = logK +
H(X) − H(Y). Therefore the optimal choice of the cipher is it to minimize H(Y).
PY is a “smoothed” version of PX . For the construction above almost equiprobable
messages are put together in the sets Xi and the resulting PY is the corresponding
“step approximation” of PX . Hence, it is clear that the above choice of the partitions
tries to minimize the action of the smoothing and therefore should be the best or
close to the best one.

But before analyzing H(X|Y) for this cipher let us take a look at the other secrecy
criterion introduced in Section “Measurements for Secrecy” of Sect. 2.2. We proved
in Theorem1 that the cryptanalyst’s error probability λ satisfies

K − 1

K
(1 − PX(1)) ≤ λ ≤ (1 − PX(1)). (2.4.14)

It was shown in [1] that if M is a multiple of K and PX(m) ≤ 1
K for all m ∈ M,

then for the described cipher

H(X|Y) ≥ logK − 1. (2.4.15)

Using Lemma 4 and (2.4.14) we can prove that this holds also if M is not a multiple
of K .

Theorem 51 For the cipher (C, Q) described above

H(X|Y) ≥ logK − log
(
(K − 1)PX(1) + 1

)
. (2.4.16)

Proof From Lemma 4 it follows that H(X|Y) ≥ − logλc = − log(1 − λ) and with
(2.4.14) we obtain

H(X|Y) ≥ − log
(
1 − K − 1

K
(1 − PX(1))

)
= logK − log

(
(K − 1)PX(1) + 1

)
.

�

Corollary 5 If PX(1) ≤ 1
K then for the cipher (C, Q)

H(X|Y) ≥ logK − 1.

http://dx.doi.org/10.1007/978-3-319-31515-7_1
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Proof If PX(1) ≤ 1
K , then we get from (2.4.16)

H(X|Y) ≥ logK − log
(
2 − 1

K

)
≥ logK − 1. �

Shtarkov [25] derives the following lower bound for this cipher.

Theorem 52 If M is a multiple of K then for the cipher (C, Q) described above

H(X|Y) ≥ logK − K

2
(log e)

(
PX(1) − PX(M)

)
. (2.4.17)

Proof Let m ∈ Xi and y ∈ Yi for some i ∈ {1, . . . , S}. By construction of the cipher
it follows that

PX|Y (m|y) = PX,Y (m, y)

PY (y)
=

1
K PX(m)

∑
m∈Xi

PX(m) 1
K

= PX(m)

Pi
,

with Pi �
∑

m∈Xi
PX(m). Note that for m ∈ Xi PX|Y (m|y) is independent of y ∈ Yi.

Hence, we know from Lemma 16 that for given y ∈ Yi that H(X|Y = y) is minimal if
PX is concentrated on two values in Xi. In order to get a lower bound on H(X|Y) we
may therefore assume that for all i ∈ {1, . . . , S} there exist numbers ni ∈ {1, . . . , K −
1} with the property

αi � PX(K(i − 1) + 1) = · · · = PX(K(i − 1) + ni)

and
βi � PX(K(i − 1) + ni + 1) = · · · = PX(K i).

Then (2.4.13) implies that

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αS ≥ βS

and Pi = ni αi + (K − ni)βi. With these preliminaries we calculate now H(X|Y).

H(X|Y) =
S∑

i=1

∑

y∈Yi

PY (y)H(X|Y = y)

= −
S∑

i=1

Pi
∑

m∈Xi

PX (m)

Pi
log

PX (m)

Pi
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= −
S∑

i=1

ni αi log
αi

Pi
+ (K − ni)βi log

βi

Pi

=
S∑

i=1

−Pi log
αi + βi

Pi
− ni αi log

αi

αi + βi
− (K − ni)βi log

βi

αi + βi

=
S∑

i=1

−Pi log
αi + βi

2Pi
− ni αi log

2αi

αi + βi
− (K − ni)βi log

2 βi

αi + βi

= logK +
S∑

i=1

−Pi log
K(αi + βi)

2Pi
− ni αi log

2αi

αi + βi
− (K − ni)βi log

2 βi

αi + βi
.

Now we use the inequality − ln x ≥ 1 − x and obtain

H(X|Y) ≥ logK − (log e)
K

2

S∑

i=1

(αi − βi)
2

αi + βi
.

Recall that αi ≥ βi ≥ αi+1 ≥ 0 and therefore

H(X|Y) ≥ logK − (log e)
K

2

(
S−1∑

i=1

(αi − αi+1)
αi − βi

αi + βi
+ (αS − βS)

αS − βS

αS + βS

)

≥ logK − (log e)
K

2

(
S−1∑

i=1

(αi − αi+1) + αS − βS

)

= logK − (log e)
K

2
(α1 − βS) = logK − (log e)

K

2

(
PX(1) − PX(M)

)
. �

Remark 21 1. If PX(m) ≤ 1
K for all m ∈ M, then (2.4.15) is improved to

H(X|Y) ≥ logK − 1

2
(log e)K

1

K
= logK − 1

2
log e ≈ logK − 0.72 .

2. If PX is the uniform distribution, then it follows H(X|Y) ≥ logK and therefore
H(X|Y) = logK .

3. The bound in (2.4.5) is ≥ 0 exactly if PX(1) − PX(M) ≤ 2 lnK
K . Therefore it may

happen that this bound is weaker than the bound of Theorem 50.
4. In order to construct the described cipher it is not necessary that sender and

receiver know the message distribution PX exactly. They (only) have to know
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the information about the ordering of messages according to probability which is
needed to form the partitions X and Y .

2.4.4 Data Compression

We would like to analyze the effects of data compression in a cryptographic system.
In all our previous considerations a message was an element of some set of other
messages which occur with some probabilities. We have not been interested in the
description of the messages. In a lot of applications the messages are given as a
sequence of letters over a finite alphabet and we will assume that these sequences
are produced by a source. This allows to install a source coder before using a cipher.
The idea behind this is to remove the redundancy that helps a cryptanalyst.

Before we proceed we need some definitions to formalize the described scenario.

Preliminaries

In the sequel let A � {0, . . . , a − 1} for some a ∈ N with a ≥ 2.

Definition 37 We call the set A an alphabet. An element of A is referred to as a
letter and an element of An is called a word (of length n over A). We denote the set
of all words (over A) by

A� �
∞⋃

n=0

An.

For a word u ∈ A� we denote by l(u) its length.

Remark 22 Note that also the word with length 0 belongs to A�. This is called the
empty word.

We define the concatenation of two words and the prefix property.

Definition 38 Let u = (u1, . . . , un), v = (v1, . . . , vm) ∈ A� be two words. We
denote by

uv � (u1, . . . , un, v1, . . . , vm)

their concatenation.
We say that u is a prefix of v if their exists a w ∈ A� such that uw = v and we

write in this case u � v. We say that a set of wordsW ⊂ A� has the prefix property
(or shortly is a prefix set) if no element ofW is prefix of another element, i.e., u � v

for two elements u, v ∈ W necessarily implies u = v.
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Remark 23 A well known fact is that a prefix set W satisfies the Kraft inequality,
which is ∑

u∈W
a−l(u) ≤ 1.

(See, for instance, [5], pp. 41.)

We would like to describe the output of a source which is a sequence of letters as a
sequence of elements of a prefix set. Therefore the next definition is important.

Definition 39 We call a setW ⊂ A� complete if for all v ∈ A� there exists a u ∈ W
with u � v or v � u.

This implies that given a complete set W we can find for any word v ∈ A� words
u1, . . . , un ∈ W such that

v � u1 . . . un and u1 . . . un−1 � v. (2.4.18)

IfW is in addition a prefix set than this decomposition of v is unique except, maybe,
for the last word un.

Remark 24 A complete prefix set has i(a − 1) + 1 elements (for some i ∈ N0) and
a prefix set is complete exactly if we have equality in the Kraft inequality ([5], pp.
41).

Definition 40 For some finite set V we call a mapping φ : V → A� a code. The
words φ(v), v ∈ V , are called codewords.

A code φ is said to be uniquely decodable if every word in A� has at most one
representation as a sequence of code words, i.e., if the mapping

� :
∞⋃

n=1

Vn → A� defined by �(v1, . . . , vn) � φ(v1)φ(v2) . . . φ(vn)

is injective.
A code is called a prefix code if the set of codewords is a prefix set.

Remark 25 Every prefix code is uniquely decodable. The opposite is not true but if
a uniquely decodable code is given, then it is always possible to find a prefix code
with the same codeword lengths (see for instance [5], pp. 51).

Definition 41 A (discrete) source over the alphabet A is a sequence (Un)
∞
n=1 of

random variables with values in A.
A source is called stationary if PU1...Un(u1, . . . , un) = PUm...Un+m−1(u1, . . . , un) for

all n, m ∈ N, i.e., if the joint distribution of (Um, . . . , Un+m−1) does not depend on
m (for all n ∈ N).
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Remark 26 A special case of a stationary source is the so called discrete memoryless
source where the random variables are independent and identically distributed.

Definition 42 If for a given source lim
n→∞

1
n H(U1 . . . Un) exists then this limit is called

the entropy rate of the source.

Remark 27 For a stationary source 1
n H(U1 . . . Un) is nonincreasing inn and therefore

the entropy rate always exist (see, for instance, [8], pp. 65).

The Extension of the Model with a Source Coder

Let A � {0, . . . , a − 1} and B � {0, . . . , b − 1}, where a, b ∈ N with a, b ≥ 2, be
two alphabets. Suppose now that the messages to be securely transmitted consist
of sequences over the alphabet A, which are generated by a source (Un)

∞
n=0. The

transmission of this source output to the receiver is implemented in three steps.

1. Source Coding
The output of the source is encoded in the following way. Let V ⊂ A� be a
complete prefix set. According to [25] the elements of the set V are referred to
as ‘segments’. With these segments the output of the source is decomposed, i.e.,
any word u ∈ A� is split into a sequence of segments from V .

u1, u2, . . . , ul(v1),︸ ︷︷ ︸
v1∈V

ul(v1)+1, . . . , ul(v1)+l(v2),︸ ︷︷ ︸
v2∈V

. . .

Then using a uniquely decodable code φ : V → B� every segment v ∈ V is
replaced by its codeword φ(v) over B.
Thus the source coding allows to transform the sequence of letters fromA into a
sequence of letters from B ruled by a modified probability law.

2. Encryption
The sequence of letters from B is encrypted in the following way. We take a set
M ⊂ B� such that we can decompose every possible sequence of letters over B
generated by the encoding procedure and the source into elements from M (of
course it always suffices to choose a complete set M, usually, the set of words
over B with a fixed length n is taken forM, i.e.,M = Bn). Then the elements of
M are encrypted with a cipher (C, Q) in the usual way. This means the encoded
sequence of letters of B is decomposed into a sequence of elements fromM and
each of this elements is encryptedwith a secret key cz ∈ C known to the sender and
the receiver. Again wewill refer to the elements ofM as messages although it has
to be remembered that these are only encoded versions of the original messages.

3. Decryption
The receiver can reconstruct the original source output as cz : M → M is bijec-
tive and φ is uniquely decodable.

Remark 28 WemakeKerckhoffs’ assumption (see Section“TheOpponent’s Knowl-
edge” in Sect. 2.2) that the only thing the opponent does not know about the described
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secrecy system is which of the keys is used by sender and receiver. In particular this
means that the opponent knows the method how the source is encoded by means of
the set of segments V and the code φ.

The described secrecy system is shown schematically in Fig. 2.4. We would like
to define a random variable X with values in M whose distribution is induced by
the source and the coding procedure and for the cryptograms a random variable Y
with values in M whose distribution is induced as usual by C and the distributions
of X and Z . (Note that in some cases the distribution of X may not be well defined
because the probability that message m ∈ M occurs may be dependent upon the
point of occurrence of m in the sequence of letters from B produced by the source
and the coding method. Later we will be in a context where this problem does not
occur.) Then in [25] the security of such a secrecy system is measured by

H(X|Y).

In the sequel we restrict ourselves to stationary sources.We say that the source coding
is absent ifA = B and V = M = An for some n ∈ N. If the source coding is absent
and the number of keys K satisfies

logK ≥ c H(X) = c H(U1 . . . Un), (2.4.19)

for some constant c > 1 then from Remark 27 it follows that

logK − H(X|Y) ≥ logK − H(X) ≥ (c − 1)H(X) ≥ (c − 1) n H∞, (2.4.20)

v1, v2, . . .
Coding

φ(v1), φ(v2), . . .

m1, m2, . . .
Encryption

cz(m1), cz(m2), . . .

Opponent

Decryption
u1, u2, . . .

Key Source

Source
u1, u2, . . .

cz(mi)

Fig. 2.4 A secrecy system with a source coder
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where H∞ � lim
n→∞

1
n H(U1 . . . Un) is the entropy rate of the stationary source.

It follows from (2.4.20) that if n tends to infinity the difference between logK
and H(X|Y) tends to infinity. It has to be remembered that “n tends to infinity”
means according to (2.4.19) that the number of keys K and the number of messages
M � |M| (= an) grow in such a way that

K ≥ exp(cnH∞) = M
cH∞
log a .

We will see in the next section that the source coding allows to bound the difference
logK − H(X|Y) above by a constant, which is independent of n. Therefore the source
coding seems to be reasonable at least for numbers of keys K satisfying (2.4.19) and
also the other cases require a special analysis.

If we use a cipher, which is locally regular with respect to (X ,Y), then, in order to
get a large value of H(X|Y), we should use a source coding procedure such that the
resulting distribution PX is as uniform as possible within each of the setsXi, but quite
different for different Xi. This criterion has not been treated so far and Shtarkov [25]
says that in general the redundancy cannot characterize the efficiency of the source
coding for the information protection.

In thewaywe introduced the source coding the segments v ∈ V mayhave different
lengths and also the codewords φ(v) may have different lengths. Then we speak of
a variable-to-variable length coding. Beside the above mentioned problem that the
distribution of X may not be well defined also the analysis of the value H(X|Y)

encounter some difficulties in this case because a given message m ∈ M may begin
with a suffix of different codewords of φ or endwith the prefix of different codewords
of φ.

These problems do not arise if we consider the variable-to-fixed length coding
procedure of the next section.

Variable-to-Fixed Length Coding

We now use codes φ such that all the codewords φ(v) have the same length. If we
take n ∈ N for the length, then φ has the property that

φ(V) ⊂ Bn.

We take
M � φ(V).

ThenM = |V| and the distribution of X is given byPX(m) = PU1...Ul(v)
(v) form ∈ M

and v ∈ V with φ(v) = m.
A minimization of the average description length of the source output in the

context of variable-to-fixed length coding means, as the length of the codewords is
given, that one has to maximize the average length of the segments (in contrast to
the minimization of the average codeword length in fixed-to-variable length coding).
The solution to this problem under the constraints that the number of segments |V| is
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given and that the set of segments has to be complete is known as Tunstall’s method
of codingwhich is a recursively defined procedure (of course the number of segments
must be of the in Remark 24 described form because otherwise one cannot find a
complete prefix set with this cardinality).

Tunstall’s Method of Coding Define complete prefix sets Vi ⊂ A� in the following
way. Let

V1 � A, (2.4.21)

i.e., we take for V1 the set of all one letter words. If Vi (i ∈ N) is already defined then
let

Vi+1 � Vi\{v�
i } ∪ {v�

i u : u ∈ A}, (2.4.22)

where v�
i ∈ Vi is chosen such that PU1...Ul(v�

i )
(v�

i ) = max
v∈V

PU1...Ul(v)
(v) (if the choice of

v�
i is not unique we take any such element). Thus Vi+1 is constructed by appending
to the most probable element in Vi one letter in all possible ways.

Clearly, by construction Vi is a complete prefix set with |Vi| = i(a − 1) + 1. The
associated variable-to-fixed length code is amappingφi : Vi → Bn, which is injective
and n �

⌈
logb(i(a − 1) + 1)

⌉
is the minimal possible codeword length.

The proof for the optimality of Tunstall’s method of coding can be found in ([30],
see also [11], pp. 418). For our purposes we need only the following property of
the sets Vi. Let Vi be a random variable with values in Vi and distribution PVi(v) �
PU1...Ul(v)

(v) for any v ∈ Vi.

Lemma 17 Let (Un)
∞
n=0 be a discrete memoryless source and let Vi be constructed

according to (2.4.21) and (2.4.22) for some i ∈ N. Then

max
v∈Vi

PVi(v)

min
v∈Vi

PVi(v)
≤ 1

min
u∈A

PU1(u)
, (2.4.23)

where the minima are taken only over terms greater than zero.

Proof Clearly the statement holds for i = 1 because

max
u∈A

PU1(u)

min
u∈A

PU1(u)
≤ 1

min
u∈A

PU1(u)
.

Suppose now that the lemma is proved for i ∈ N. From (2.4.22) follows that

max
v∈Vi+1

PVi+1(v) ≤ max
v∈Vi

PVi(v).

This implies that if minv∈Vi+1 PVi+1(v) = minv∈Vi PVi(v) the statement holds also for
i + 1. Therefore we may assume that there exists an u ∈ A such that PVi+1(v

�
i u) =

minv∈Vi+1 PVi+1(v). But then it follows
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max
v∈Vi+1

PVi+1(v)

min
v∈Vi+1

PVi+1(v)
≤ PVi(v

�
i )

PVi+1(v
�
i u)

= 1

PU1(u)
≤ 1

min
u∈A

PU1(u)
. �

Remark 29 It is easy to generalize Lemma 17 (and therefore also the next theorem)
to Markovian sources. In these cases the minimum on the right-hand side of (2.4.23)
has to be taken over the transition probabilities ([11], pp. 423).

Theorem 53 Let (Un)
∞
n=0 be a discrete memoryless source. Let Vi and φi be given

by Tunstall’s method of coding. Then for any regular cipher (C, Q)

logK − H(X|Y) ≤ (log e) δ
( 1

min
u∈A

PU1(u)

)
,

where δ is the function defined in (2.4.6).

Proof The statement follows by combining Corollary 4 and Lemma 17. Lemma 17
implies that in (2.4.11) we get

ρ ≤ 1

min
u∈A

PU1(u)

and therefore, as the function δ is monotonically increasing, the estimate in (2.4.12)
implies that

H(X|Y) ≥ logK − (log e) δ
( 1

min
u∈A

PU1(u)

)
. �

Note that we have bounded the difference logK − H(X|Y) by a constant, which
does not depend on M and K for any regular cipher.

Next we consider a simple example, which is taken from [25]. Suppose we are
given a binary memoryless source, i.e., A � {0, 1} and the random variables Ui are
independent and identically distributed. Let PUi(0) � 59

64 and PUi(1) � 5
64 for all

i ∈ N. We take 64 segments and messages, respectively, i.e., |V| � M � 64 and as
we take also a binary coding alphabet B � {0, 1} the lengths of the codewords is 6
and M = A6. We consider two possible choices of the set of segments V .
(a) Absence of Source Coding

Let V � A6.
(b) Optimal Variable-to-Fixed Length Coding for the given Source

Let V � V63, i.e., V is constructed by Tunstall’s method for the given source.
Then V contains the following segments:

0i10j1 and 0i106−i, for i = 0, 1, 2 j = 0, 1, . . . , 5 − i,

0i10j1 and 0i107−i, for i = 3, 4, 5, 6 j = 0, 1, . . . , 6 − i,
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0i1, for i = 7, 8, . . . , 37

and 038,

where we denote by ui � (u, . . . , u)︸ ︷︷ ︸
i−times

the word of length i with letters all equal to

u (u ∈ A).

For these two choices of the segments we take the cipher of Sect. 2.4.3 with
K= 2, 4, 8, . . . , 64 keys. The calculated values ofH(X|Y) are presented in Table2.1.
The values in row (c) will be treated in Sect. 2.4.5. Now we can take a look at the
performance of the bounds we derived in Theorems 50 and 52. Let us first look at the
case (a) when the source coding is absent. The values that the bound in (2.4.5) returns
and the deviation from the actual value of H(X|Y) are shown in the Table2.2. The
estimates are good for K < 8 because then ρ1 = 11.8 and many of the values ρi are
equal to 1 since in the blocks of length K often occur words with the same number
of zeros. The bound in (2.4.17) degenerates in case (a), as PX(06) − PX(16) = 0.614
is very large.

For the case (b) we consider the simpler bound in (2.4.12) and the bound in
(2.4.17). The values of these bounds and the deviation to H(X|Y) are shown in
Table2.3. Already the simpler bound in (2.4.12) returns values that are approximately
not more than 1 bit away from H(X|Y). The bound in (2.4.17) becomes worse with
increasing K but as the difference of the probabilities of the most probable segments
0i106−i (i = 0, 1, 2) and the most unlikely segment 0i106−i1 (i = 3, 4, 5, 6) is
only 0.044 it beats the bound (2.4.12) for all K up to 32.

Table 2.1 Calculated values of H(X|Y)/H(V |Y)

logK 1 2 3 4 5 6

(a) 0.563 1.217 1.901 2.137 2.334 2.373

(b) 0.999 1.997 2.987 3.961 4.802 5.407

(c) 0.156 0.254 0.340 0.389 0.393 0.396

Table 2.2 Performance of the bound in (2.4.5) for (a)

logK 1 2 3 4 5 6

Bound in
(2.4.5)

0.563 1.105 0.563 0.913 0.225 1.842

Difference
to H(X|Y)

≈0 0.112 1.338 1.224 2.109 0.532
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Table 2.3 Performance of the bounds in (2.4.12) and (2.4.17) for (b)

logK 1 2 3 4 5 6

Bound in
(2.4.12)

0.375 1.375 1.921 2.921 3.921 4.921

Difference
to H(X|Y)

0.624 0.322 1.066 1.04 0.881 0.486

Bound in
(2.4.17)

0.936 1.872 2.745 3.49 3.98 3.959

Difference
to H(X|Y)

0.063 0.125 0.242 0.471 0.822 1.448

2.4.5 Randomization

An old cryptographic method is the usage of randomized ciphers known as multiple-
substitution ciphers or homophonic ciphers. The idea is the substitution of highly
probable words by randomly chosen representatives. For instance in a typical English
text the letter e appears with the highest frequency. If the letters e are randomly sub-
stituted by different symbols all representing the e, then the new text over this larger
alphabet may have a more balanced frequency distribution of letters and therefore
an enciphering of this modified text can increase the secrecy.

We will extend our model of Sect. 2.4.4 in the following way. Let V be a random
variable for the occurrence of the segments, i.e., V has values inV and the distribution
is given by PV (v) � PU1...Ul(v)

(v) for all v ∈ V . We assume that with each occurrence
of a segment v ∈ V the sender gets to know the value of an additional randomvariable
R with values in some finite setR. In general R and V are not independent. We make
the encoding dependent upon the value of R, i.e., we replace the code φ : V → B�

by a code φ : V × R → B� such that the decoding of a sequence over B is unique
with respect to v. The rest of the model is as treated before. The receiver knowing
the secret key can reconstruct the output of the source.

The introduction of the randomization results of course in an enlargement of the
codeword lengths (if we take them all equal as before) compared to an absence of
the randomization. Therefore we are dealing with to different approaches to increase
the secrecy. The first is the elimination of redundancy by means of an effective
source coding and the second is the randomization, which can be regarded as a
special form of source coding increasing the description length and the redundancy.
These approaches seem to be contradictory in principle. However, sometimes this
contradiction can be eliminated.

We restrict ourselves again to a variable-to-fixed length encoding. This means we
assume

φ(V × R) ⊂ Bn for some n ∈ N

and we define
M � φ(V × R).
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Furthermore let

M(v) � {m ∈ M : m = φ(v, r), r ∈ R} ⊂ M for any v ∈ V

be the set of all possible messages if the segment v occurs. The decoding is unique
with respect to v if the setsM(v), v ∈ V , are disjoint. Then it follows for the number
of messages that

M = |M| =
∑

v∈V
|M(v)| ≥ |V|.

Shtarkov [25] notes that in this context the above mentioned contradiction can be
eliminated rather simply. The secrecy of such a cryptosystem is related to the value
H(V |Y) rather than to the value of H(X|Y) because a message m ∈ M is only an
auxiliary description for some segment v ∈ V and therefore for a part of the original
output sequence of the source.Without randomization, i.e., if we consider the secrecy
system with the variable-to-fixed length coding scheme of the last section we have

H(X|Y) = H(V |Y),

but with the introduction of the randomization these values become different and
we are interested in the behaviour of H(V |Y). We would like to investigate, if the
randomization allows to increase H(V |Y). The inequality H(V |Y) ≤ H(V ) gives an
obvious upper bound and we know from Example 7 that this bound can be achieved
without randomization if we are allowed to use K = |V| keys. With randomization
the analogous bounds to (2.4.1) hold which is shown by

H(V |Y) ≤ H(V Z|Y) = H(Z|V Y) + H(V |ZY)︸ ︷︷ ︸
=0

= H(Z|V Y) ≤ H(Z) ≤ logK .

This shows that also with randomization a necessary condition for H(V ) = H(V |Y)

is that H(Z) ≥ H(V ).
Under what conditions the randomization allows that the value ofH(V |Y) reaches

the upper bound logK is treated in the next theorem.

Theorem 54 If
K max

v∈V
|M(v)| ≤ M, (2.4.24)

then there exists a regular cipher (C, Q) with K keys such that

H(V |Y) = H(X|Y).
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If condition (2.4.24) does not hold then for any cipher (C, Q) with K keys

H(V |Y) < H(X|Y) ≤ logK .

Proof From the grouping axiom of the entropy function it follows that

H(X|Y = y) = H(V |Y = y) +
∑

v∈V
PV |Y (v|y)H(Pv),

where Pv is the distribution onM(v) given by Pv(m) � PX|Y (m|y)∑
m′∈M(v) PX|Y (m′|y) . Therefore

in general we haveH(V |Y = y) ≤ H(X|Y = y)with equality exactly if for every v ∈
V and y ∈ Mwith PV |Y (v|y) > 0, there exist only one m ∈ M(v)with PX|Y (m|y) >

0.
Now let us enumerate the segments, the messages and the cryptograms

v1, . . . , v|V| ∈ V m0, . . . , mM−1 ∈ M y0, . . . , yM−1 ∈ M.

The enumeration of segments and cryptograms is arbitrary. The messages should be
enumerated such that the first messages are those of the set M(v1), the next are in
M(v2) and so on. More precisely the following condition has to be satisfied.

M(vi) = {mj ∈ M : η(i − 1) ≤ j < η(i)} for all i = 1, . . . , |V|,

where

η(i) �
i∑

l=1

|M(vl)|

for all i = 0, . . . , |V| (with the convention that
∑0

l=1 · · · = 0).
Let (C, Q) be any regular cipher with K keys such that a message mj is mapped

to the K different cryptograms yn with

n ∈ {(K(j − 1) + 0)modM, (K(j − 1) + 1)modM, . . . , (Kj − 1)modM}.

Thus for every v ∈ V the messages m ∈ M(v) are mapped onto |M(v)| consecutive
(modulo M) cryptograms. Therefore (2.4.24) implies that for every y ∈ M the set
{c−1

z (y) ∈ M : z = 1, . . . , K} contains at most one message of every set M(v).
Therefore H(V |Y) = H(X|Y) and the first statement is proved.

On the other hand if (2.4.24) does not hold then for the segment v ∈ V with
maximal |M(v)| there exists for any cipher with K keys a cryptogram y ∈ M such
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that the set {c−1
z (y) ∈ M z = 1, . . . , K} contains at least two different messages

belonging both to M(v). Therefore we have for this cryptogram

H(V |Y = y) < H(X|Y = y)

and this proves the second statement. �

IfPV (v) < 1
M , then it follows form ∈ M(v) thatPX(m) ≤ PV (v) < 1

M . Therefore
only if the minimal nonnegative probability PV (v) of a segment is not less than 1

M
it may be possible to get a uniformly distributed random variable X on M. In this
case, when M is large enough such that minv∈V PV (v) ≥ 1

M , it suffices to choose the
sizes of M(v) such that |M(v)| = M PV (v) for all v ∈ V and the random variable
R such that for any v ∈ V there are |M(v)| values inR such that PR|V (r|v) is equal
to 1

|M(v)| and for the remaining values inR PR|V (r|v) is equal to 0 (if MPV (v) is not
an integer, then it is only possible to get an approximate uniform distribution PX ). In
this way we obtain PX(m) = PV (v)

|M(v)| = 1
M for all m ∈ M(v).

Then any regular cipher guarantees H(X|Y) = logK but Theorem 54 tells us
that H(V |Y) < logK if the condition (2.4.24) is not fulfilled. If (2.4.24) holds then
H(V |Y) = logK for the cipher introduced in the proof of Theorem 54. From condi-
tion (2.4.24) follows in the described case

K ≤ 1

maxv∈V PV (v)
≤ M

ρ(V)
,

where ρ(V) � maxv∈V PV (v)

minv∈V PV (v)
.

Shtarkov [25] concludes that the equality H(V |Y) = logK can be attained at the
expense of an increase in M and hence, of implementation complexity. Therefore
he compares the results achievable with and without randomization under the same
complexity, i.e., for the same values of K and M.

Consider the following example where the letters in the output of a discrete mem-
oryless source are splitted.

Suppose that the probabilities for the occurrence of all letters u ∈ A can bewritten
as

PU1(u) = γu b−ω for some ω, γu ∈ N with 0 < γu < bω.

(Recall that b is the size of the alphabetB.) Then we can partition the setBω of words
of length ω over B into a = |A| disjoint sets Bω

u , u ∈ A, with |Bω
u | = γu (recall that∑

u∈A γub−ω = 1). Given the letter u ∈ A as source output then wemay replace it by
any element of Bω

u with probability 1
γu
. We can do this independently n times (n ∈ N)

and define in this way the code

φ : An × R → Bn ω,

where we chose V � An and M � Bn ω.
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By construction X has a uniform distribution on the set M. Furthermore the
resulting source over the alphabet B has independent and identically distributed
random variables.

The source treated in the example at the end of the Section “Variable-to-Fixed
Length Coding” of Sect. 2.4.4 allows such a form of randomization. In that case we
haveω = 6, γ0 = 59 and γ1 = 5. To get the same complexity as for the cases without
randomization we should take the same values for M and K . As M = 64 we can only
take V = A, i.e., n = 1. The values of H(V |Y) for the cipher introduced in the proof
of Theorem 54 are presented in Table2.1 in the row (c). We see in any column
of the table, i.e., for fixed K , that (under the same complexity) the randomization
reduces the secrecy compared to an absence of the source coding and even more to
the variable-to-fixed length coding.

Shtarkov [25] concludes that on the whole, one can reasonably believe, that the
efficiency of the randomization has been overestimated but that there are no reasons
to reject this approach completely.

2.5 Public-Key Cryptology

2.5.1 Introduction

In secret-key cryptology the cryptanalyst’s task was to find out which of the possible
keys c1, . . . , cK was used to encrypt the message. It was assumed that sender and
receiver could agree on this key by communicating over a “secure” channel to which
the cryptanalyst had no access. This assumption is often not realistic. In computer
networks, for example, all users share the same net and there usually is no possibility
to transmit messages over some private wire to which only the two communicating
parties have access. Even if such a secure channel would exist, there is a further
disadvantage of secret-key cryptology. Recall from the previous chapter that in order
to really protect a message from being decrypted the amount of key space has to be
as big as the amount of message space. So if we want to protect a message of length
n bits, say, we have to transmit another n bits as the key. This, of course, will slow
down the transmission of the message by a factor 2.

In their paper “Newdirections in cryptography”Diffie andHellman [9] introduced
the first public-key protocol, based on the discrete logarithm. In public-key cryptol-
ogy communication over a secure channel is no longer necessary. There is only one
key c : M → M. We now drop the assumption that the cryptanalyst has unlimited
computational power. It was already pointed out by Shannon in his pioneering paper
that the complexity of encoding and decoding might be considered and Diffie and
Hellman finally introduced the concept of a one-way function, i.e., a function, which
is easy to evaluate but hard to invert. We shall later precise this notion. So if we use
a one-way function as key c, then the encoding, i.e., the evaluation of c(m) can be
done rather fast, but in order to decrypt the transmitted message the cryptanalyst has
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to apply the inverse function c−1 to recover the original message m = c−1
(
c(m)

)

which is a task of much higher complexity and cannot be done in reasonable time.
We shall present the protocol of Diffie and Hellman in order to get more insight.

The Diffie–Hellman Algorithm

(1) Person i chooses some ai ∈ {1, 2, . . . , p − 1} and stores the value bi = wai in a
public directory, accessible to everybody. p here is a large prime number and w

some primitive element, i.e., the order of p in GF(p) is p − 1.
(2) If Persons i and j want to communicate, they calculate their common key

kij = b
aj

i = wai·aj = waj ·ai = bai
j = kji

and encrypt and decrypt their message using this common key.
(3) In order to break the key, a third person has to know one of the numbers

ai = logw bi, aj = logw bj

(where logw is the discrete logarithm to the base w in Zp).

The algorithm is already presented in such a form that it is clear how it will work
in a multiuser system, e.g., in a computer network. Observe that there is only one
key for communication between Persons i and j. For instance, they could split their
message into blocks of length �log2 p� and add kij to each of these blocks. If p is large
enough, a third person will not be able to decipher the text. Additionally, every other
user in the system has all the necessary information to calculate kij. He knows p and
w and he also can deduce ai and aj from bi and bj, since ai �→ wai is one-to-one.

However, in order to obtain ai or aj, a third person has to apply the discrete
logarithm logw bi or logw bj, which is a computationally hard task. The best known
algorithm takes O(

√
p) steps. In contrast, Persons i and j have to exponentiate in

order to obtain kij. This can be done in O(log p) steps using repeated squaring. The
function f (x) = wx (in GF(p)) had been conjectured by Diffie and Hellman [9] to
be a one-way function. Later Hellman and Pohlig [21] found that additionally p − 1
must have a large prime factor.

Diffie and Hellman also introduced the concept of a trapdoor one-way function.
This is a collection of functions {fk}k with the properties that

(i) in knowledge of k there exist fast algorithms for the evaluation of fk and f −1
k .

(ii) when k is not known, then for almost all y it is hard to find the x with fk(x) = y,
even if the encoding procedure is known.

Diffie and Hellman did not give an example for a trapdoor one-way function. This
was later done by Rivest, Shamir and Adleman. We shall now present the Rivest–
Shamir–Adleman [22] (RSA) cryptosystem. The RSA-system is widely used today.
The (conjectured) trapdoor one-way function here is obtained making use of the
hardness of integer factorization.
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The RSA—Public Key Cryptosystem

(1) Each person k selects two “large” prime numbers p and q and forms the product
n � p · q.

(2) Further, each person selects (at random) a “large” number d with the property that
the greatest common divisor gcd

(
d, (p − 1) · (q − 1)

) = 1 and then computes
its multiplicative inverse e, hence e · d ≡ 1 mod (p − 1) · (q − 1).

(3) The numbers e and n are published in a public directory.
(4) If another person wants to submit a message x to Person k, he encrypts it using

the encoding functions

Ek(x) = xe mod n(=: y).

Person k can easily decrypt y by application of the decoding function

Dk(y) = yd mod n
(= (xe)d = xe·d = x mod n

)
.

Again, it is obvious that the RSA-system is already constructed for multi-user
networks. Since e and n are stored in a public directory, every other person can
encrypt messages directed to Person k using the key Ek . Decoding is done very fast
using the number d, which is only known to Person k. Anybody else has to find the
prime factor p and q of n in order to obtain d. Now, there exist quite fast algorithms
to find even large prime numbers, whereas factorization is a very hard computational
task. This has not been proved, but under the assumption that there is a significant gap
between the complexity of prime number generation and factorization a collection
of functions (Ek)k as used in the RSA-system is a trapdoor one-way function.

Most of the cryptosystems we shall introduce in this chapter are based on the
hardness of factorization. We shall discuss this in Sect. 2.5.3, where some prime
number tests and the basic ideas of the best known factorization algorithms are
presented. First, we need some background in elementary number theory, which is
given in Sect. 2.5.2.

We introduced a one-way function as a function which is “easy” to evaluate but
“hard” to invert. This is rather a heuristic approach and we did not say yet what we
mean by easy and hard. We do not want to discuss this here, since it requires some
background in Complexity Theory. However, we shall at least give the idea for those
who are familiar with the notions. “f is easy to evaluate” means that there exists a
probabilistic polynomial-time algorithm (Turing machine) that on input x outputs
f (x)). “Hard to invert” analogously means that for all probabilistic polynomial-time
algorithms A the probability that A finds the inverse for a given y is negligibly small.

The function presented in the Diffie–Hellman and RSA-cryptosystems have been
conjectured to be one-way functions. However, this has not been proved. It is not even
known if one-way functions exist at all. Computer Scientists say that the existence
of a one-way function seems to be a stronger assumption than the famous P �= NP,
although it is widely believed that one-way functions exists.
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Although the discrete logarithm and encoding functions based on integer factor-
ization are often used in practice, from a theoretical point of view they are not quite
satisfactory examples. It has not been shown that the inversion is really as hard as
suggested. The only thing we know is that up to now the fastest known algorithms
for the computation of the discrete logarithm and for integer factorization are much
slower than repeated squaring (for exponentiation) and the best prime number tests,
respectively. We shall discuss this briefly in Sect. 2.5.3 (factorization) and Sect. 2.5.4
(discrete logarithm).

On the other hand, there exist problems which are provably hard if we assume that
P �= NP, the NP-complete problems. Using an NP-complete problem as basic tool
for the construction of an encoding (one-way) function might yield a cryptosystem
which is secure—at least if we assume that P �= NP. However most of the attempts
to construct a cryptosystem based on some NP-complete problem, so far, have not
been very satisfactory. We shall illustrate the difficulties which may arise, when the
knapsack problem is used to encrypt messages, in Sect. 2.5.5.

In the two cryptosystems introduced by Diffie and Hellman, as in Shannon’s
model of secret-key cryptology, a message is encrypted in order to protect it against
the cryptanalysts attempts to obtain the information contained in this message. In
electronic communication further forms of protection may be required. We already
saw in the chapter on authentication that the cryptanalyst could also have the pos-
sibility to replace a message. In order to prove the authenticity of a message, this
message is often equipped with a signature—some extra bits of information, which
prove to the receiver that themessage really originated from the senderwho encrypted
it. There exist several public-key cryptosystems for digital signatures. Further, for
many purposes it is required that a participant of a system has to prove his identity
in order to get access. Think, e.g., of a password you have to enter in order to login
into the computer or of a secret code for the credit card. If the person who has to
verify the identity does not obtain any further information, the identity proof is said
to be a zero-knowledge proof.

Digital signatures, identity proofs and further situations, for which public-key
cryptosystems have been developed, will be discussed in Sect. 2.5.6.

2.5.2 Number Theory

In this section we shall present those results and facts from Number Theory which
are important to understand the algorithms in the subsequent sections. We assume
that the reader is familiar with basic notions such as prime number, greatest common
divisor, congruences, group, ring, field, etc.

Euclidean Algorithm

The Euclidean algorithm yields the greatest common divisor of two natural numbers
a > b, which we shall denote by gcd(a, b). It proceeds as follows:
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In the first step we divide the numbers a and b with remainder, i.e., we find non-
negative integers t0 and r1 with a = t0 · b + r1, where 0 ≤ r1 < b. This procedure is
repeated with b and r1 to obtain numbers t1 and r2 with b = t1 · r1 + r2 and 0 ≤ r2 <

r1. We continue with r1 and r2 until we finally find an rm such that rm−1 = tm · rm + 0
(since 0 < rm < · · · < r2 < r1 < b < a, this algorithm really needs a finite number
of m iterations).

Proposition 5 The number rm is the greatest common divisor gcd(a, b).

Proof We have to show that rm divides a and b and that rm is the largest number with
this property. Since rm−1 = tm · rm, rm divides rm−1.Of course, then rm divides rm−2 =
tm−1 · rm−1 + rm = (tm · tm−1 + 1) · rm. Inductively, rm divides ri−2 = ti−1 · ri−1 + ri,
since rm is divisor of ri−1 and ri, and hence rm divides b and a. In order to show that rm

is really the greatest common divisor of a and b, we shall see that any d which divides
a aswell as b also has to divide rm. To see this observe that d must divide r1 = t0b − a,
hence r2 = t1 · r1 − b and finally (by induction) rm = tm−1 · rm−1 − rm−2.

Proposition 6 The greatest common divisor gcd(a, b) can be written as gcd(a, b) =
u · a + v · b for some integers u, v ∈ Z.

Proof With u1 = 1 and v1 = −t0 we have r1 = a − t0b = u1a + v1b. Now assume
that for some uk, vk ∈ Z it is rk = uka + vkb (k ≤ m − 1). Then

rk+1 = rk−1 − tkrk = uk−1a + vk−1b − tk(uka + vkb)

= (uk−1 − tk · rk)a + (vk−1 − tk · rk)b, (2.5.1)

and hence
uk+1 = uk−1 − tkrk, vk+1 = vk−1 − tk · rk ∈ Z.

With u � um and v � vm the Proposition is proved. For a speed analysis of the
Euclidean algorithm, recall that the Fibonacci numbers {Fn}∞n=0 are defined by the
recurrence Fn = Fn−1 + Fn−2 with initial values F0 = 0, F1 = 1. It can be shown

that Fn = 1√
5

((
1+√

5
2

)n +
(
1−√

5
2

)n)
, especially, it turns out that Fn ≥

(
1+√

5
2

)n−2
.

The proof is left as an exercise to the reader.

Proposition 7 (Lamé) For positive integers a > b the number of iterations to com-
pute the greatest common divisor gcd(a, b) via the Euclidean algorithm is at most
�logs a� − 2, where s = 1+√

5
2 .

Proof For all i = 1, . . . , m it is ri−2 = ti−1 · ri−1 + ri ≥ ri−1 + ri (since ti−1 ≥ 1 and
with the convention r−1 � a, r0 � b). Since {ri}i is a decreasing integer sequence
with rm = gcd(a, b) ≥ 1, we see that ri−2 ≥ ri−1 + ri must be larger than the (i −
m)th Fibonacci number from which Proposition 3 follows. With Proposition 7 the
Euclidean algorithm is a fast way to determine the greatest common divisor gcd(a, b)

of two non-negative integers a and b. It takes about O(log a) steps. The performance
of the Euclidean algorithm can still be improved. Stein introduced a variant in which
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we get rid off the division with remainder, which is replaced by divisions by 2. This
can be done much faster by processors.

In the design of cryptographic protocols the Euclidean algorithm is used to find
the inverse of a given number d ∈ Zn. To see this, observe that d is invertible
in Zn if gcd(d, n) = 1. With Proposition 6 this means that 1 = u · d + v · n ≡ u ·
d(mod n) and hence u = d−1 in Zn.

Repeated Squaring

The reason for the speed in the encoding and decoding function of theDiffie–Hellman
and of the RSA cryptosystems is that the determination of the inverse inZn and expo-
nentiation can be done very fast. The inverse element is found using the Euclidean
algorithm in O(log n) computation steps. We shall now present the repeated squaring
algorithm, which computes the nth power of a given number in O(log n) steps.

Let

n =
t∑

i=0

ai2
i, ai ∈ {0, 1}, t = �log2 n�

be the binary representation of n. Then

xn = xa0+a12+···+at2t = xa0 · (x2)a1 · (x4)a2 · · · · · (x2
t
)at

with this product representation, it is clear what to do. Starting with x, we obtain
x, x2, x4, . . . , x2

t
by repeated squaring. This takes in total t = �log n�multiplications.

Further, after each squaring, we look if the coefficient ai is 0 or 1.
If ai = 0 then x2

i
does not contribute to the product, if ai = 1 then x2

i
occurs as

a factor to the product xn =
t∏

i=1
ai=1

x2
i
.

So, to obtain xn as product of the squares (x2
i
)t

i=1 we need at most another t =
�log n� multiplications, such that the total number of multiplications is smaller than
2�log n�.
Euler’s Totient Function

We denote by
Z

∗
n = {x ∈ Zn : ∃y ∈ Zn such that x · y = 1}

where multiplication is performed modulo n.
It can easily be verified that Z∗

n is a group. The order (number of elements) of Z∗
n

is denoted by ϕ(n). ϕ is called Euler’s totient function. The proof of the following
properties is left as an exercise to the reader.

Proposition 8 Euler’s ϕ-function has the following properties.

(a) For all x ∈ Z
∗
n it is xϕ(n) ≡ 1 mod n

(b)
∑

d|n ϕ(d) = n
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(c) For a prime power pe, e ∈ N, it is ϕ(pe) = pe−1(p − 1)
(d) ϕ is multiplicative, i.e., ϕ(n1 · n2) = ϕ(n1) · ϕ(n2) if gcd(n1, n2) = 1

(e) ϕ(n) = n · ∏
p|n

p prime

(
1 − 1

p

)

If p is a prime number, then by (c) ϕ(p) = p − 1 and if u = p · q is the product of the
different primes, thenϕ(n) = (p − 1) · (q − 1)by (e). Since by (a) xϕ(n) ≡ 1 mod n,
the condition e · d ≡ 1 mod (p − 1) · (q − 1) in Step 2 of the RSA-cryptosystem
now becomes clear.

When p is a prime number it can be shown that the multiplicative group Z
∗
p is

cyclic, i.e., Z∗
p = {1, x, x2, x3, . . . , xp−1} is generated by some element x. We denote

such an element as primitive root.

Proposition 9 Let p be a prime number. In Z
∗
p there are exactly ϕ(p − 1) primitive

roots.

Little Fermat

Fermat’s “Little” Theorem is the central tool in the prime number tests we shall
present in the next section.

Theorem 55 (Little Fermat) Let p be a prime number. Then for any integer x ∈ Z

not divisible by p
xp−1 ≡ 1 mod p.

Proof For any y ∈ Z

(x + y)p =
p∑

k=0

(
p

k

)
xkyp−k ≡ xp + yp mod p,

since
(p

k

) ≡ 0 mod p for k = 1, . . . , p − 1. So, especially (x + 1)p ≡ xp + 1
mod p.

By induction it is now clear that for all x ∈ Z

xp ≡ x mod p

since with xp ≡ x mod p, also (x + 1)p ≡ xp + 1 ≡ x + 1 mod p. This is equiva-
lent to

x(xp−1 − 1) ≡ 0 mod p

and since by the assumption x �= 0 mod p, Fermat’s Little Theorem is proved.

Quadratic Residues

A number x ∈ Z
∗
p, p prime, is a quadratic residue, if there exists some y ∈ Z

∗
p such

that y2 ≡ x mod p. For p = 7 the quadratic residues in Zp are 1, 2 and 4, whereas
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3, 5 and 6 are non-residues. As this example suggests half of the elements in Z
∗
p =

{1, . . . , p − 1} are quadratic residues, more exactly

Proposition 10 The squares in Z
∗
p are a subgroup of Z∗

p with p−1
2 elements.

Proof With x2 · y2 = (x · y)2 and (x−1)2 · x2 = 1 it is easy to verify that the squares
form a subgroup. Since Z∗

p is cyclic it can be written as Z∗
p = {1, w,w2, . . . , wp−1}

for the generator w. Squares can only have an even exponent and indeed
|{1, w2, w4, . . . , (w

p−1
2 )2}| = p−1

2 .

In order to characterize, if a given x ∈ Z
∗
p, p > 2, is a quadratic residue the Legendre

symbol
(

x
p

)
is introduced, defined by

(
x

p

)
=
{

+1, if x is quadratic residue

−1, else.

The Legendre symbol defines a homomorphism fromZ
∗
p into {1,−1}, since

(
x
p

)
·

(
y
p

)
=
(

x·y
p

)
.

The Legendre symbol can be evaluated very fast using the following result.

Proposition 11 (Euler’s lemma) Let p > 2 be an odd prime number and x ∈ Z
∗
p.

Then (
x

p

)
≡ x

p−1
2 mod p.

Proof By Fermat’s Theorem the elements of Z∗
p are just the roots of the polynomial

zp−1 − 1 = (z
p−1
2 − 1)(z

p−1
2 + 1).

If x is a quadratic residue, then x = y2 for some y and x
p−1
2 = yp−1 = 1 by Fermat’s

Theorem.
If x is not a quadratic residue, then x must be a root of (z

p−1
2 + 1) (since there are

exactly p−1
2 quadratic residues), hence x

p−1
2 = −1.

With Euler’s Lemma it is now easy to determine, whether a given x ∈ Z
∗
p is a

quadratic residue or not, just use repeated squaring to compute x
p−1
2 .

We make use of this fact in order to present a fast probabilistic algorithm which
finds a quadratic non-residue: Choose at random an x ∈ Z

∗
p and compute x

p−1
2 . If

x
p−1
2 = −1 we are done. Since exactly half of the elements in Z

∗
p are quadratic non-

residues, the probability that x
p−1
2 = −1 is exactly 1

2 . So, on the average, after two
attempts we are done. Note, that there is no deterministic algorithm known, which
finds a quadratic non-residue this fast.

Once we know that x is a quadratic residue, we want to take the square root, i.e.,
to find a y with y2 = x in Z∗

p (of course with y also p − y is square of x).
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Proposition 12 If x is quadratic residue modulo p and p−1
2 is odd, then

y = x
p+1
4

and p − y are the two square roots of x.

The proof is left as an exercise to the reader. Observe, that again we can apply
repeated squaring in order to obtain a square root, if p−1

2 is odd. If this is not the case,
there also exist fast algorithms, which solve this task. We do not want to discuss this
here.

In cryptographic applications we are also interested in taking square roots in the
ring Zn, when n is not a prime especially when n = p · q is the product of exactly
two prime factors.

Proposition 13 If n = p · q, where p and q are distinct odd prime numbers, then
there are exactly (p−1)·(q−1)

4 quadratic residues in Z
∗
n, each of which has four distinct

square roots.

As an example consider n = 15. Here Z∗
n = {1, 2, 4, 7, 8, 11, 13, 14} and x2 = 1

for x = 1, 4, 11, 14, whereas x2 = 4 for x = 2, 7, 8, 13.
Let n = p · q as before and let y be a quadratic residue in Z

∗
n. Then x1 and x2

are said to be essentially different square roots of y if x1 �= x2 and x1 �= n − x2. So,
for n = 15 in the above example 1 and 4 are essentially different square roots of 1,
whereas 1 and 14 are not essentially different.

From the following proposition we can conclude that taking square roots in Zn,
n = p1 · p2 and factoring n are computationally equivalent tasks, in the sense that
once one task is solved the other can be done with little extra effort.

Proposition 14 If n = p · q, where p and q are distinct odd primes and if x1 and x2
are essentially different square roots of some quadratic residue in Z

∗
n, then either

gcd(x1 + x2, n) = p or gcd(x1 + x2, n) = q.

Proof Since x1 and x2 are square roots of the sameelement inZ∗
n, x

2
1 − x22 ≡ 0 mod n

and hence (x1 − x2)(x1 + x2) = t · n = t · p · q for some integer t. Since x1 and x2
are essentially different, n = p · q cannot divide x1 − x2 or x1 + x2. So p divides one
factor, either (x1 − x2) or (x1 + x2) and q divides the other one but not both, and
hence either p or q (but not both) must divide x1 + x2.

With Proposition 14 it is clear that once we found two essentially different square
roots, we can easily factor n = p · q using the EuclideanAlgorithm.With the Chinese
Remainder Theorem it can, on the other hand, be shown that if the prime factors p
and q are known, then all four square roots of a quadratic residue can be found
very fast. So taking square roots in Zn and factoring n = p · q are of about the same
computational complexity.
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2.5.3 Prime Number Tests and Factorization Algorithms

Little Fermat, Pseudoprimes and Carmichael Numbers

The simplest way to factorize a given integer n ∈ N is to divide n by all numbers
smaller than n. Indeed, we only have to check all numbers m <

√
n, since if n =

n1 · n2 is a product of two integers n1, n2 > 1, then one of the factors n1 and n2 must
be smaller than

√
n. If none of these integers is a divisor of n, then n must be a

prime. Hence with O(
√

n) computation steps we can determine if n is prime or not.
Moreover, if n is not a prime, the above trial division algorithm will yield a prime
factor.

We shall see in this section that the performance of factorization algorithms has
not essentially been improved, whereas there are fast algorithms (at least probabilis-
tic algorithms) known that determine if a number n is prime within running time
O(log n).4 This gap is exploited in the RSA cryptosystem.

The prime number tests are based on the Little Fermat, which states that if p is
prime for all b ∈ Z

∗
p = {1, . . . , p − 1}

bp−1 ≡ 1 mod p.

So the Little Fermat yields a criterion for primality of an integer n which does not
give any information about the prime factors of n. Just take a base b ∈ {1, . . . , n − 1}
and check ifbn−1 ≡ 1 mod n. If this is not the case, thenn cannot be prime.However,
this “Fermat test” does not always work, since if n is not a prime there might exist
bases b which pass the Fermat test. For instance 2340 ≡ 1 mod 341 but 3340 ≡ 54
mod 341.

We say in this case that n is pseudoprime to the base b. Even worse is, that there
exist Carmichael numbers, which are pseudoprimes to every base b relatively prime
to n (i.e., gcd(b, n) = 1). For instance 561 = 3 · 11 · 17 is a Carmichael number. The
Fermat test can be executed in O(log n) steps using repeated squaring. So, if we must
only apply this to a small fraction of bases b ∈ {1, . . . , n − 1} in order to determine
if n is prime, then we would have found a fast prime number test. Unfortunately it is
not known if there are only finitely many Carmichael numbers, such that the Fermat
test has to be executed for all bases.

4Remark by the editors: This statement is not up to date, because in the paper “M. Agrawal, N.
Kayal, and N. Saxena, “PRIMES is in P”, Annals of Mathematics, Vol. 160, No. 2, 781–793, 2004,
the authors proved the asymptotic time complexity of the algorithm to be Õ(log12(n)). In other
words, the algorithm takes less time than the twelfth power of the number of digits in n times a
polylogarithmic (in the number of digits) factor. However, the upper bound proved in the paper was
rather loose; indeed, a widely held conjecture about the distribution of the Sophie Germain primes
would, if true, immediately cut the worst case down to Õ(log6(n)).
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Probabilistic Prime Number Tests

Miller improved the Fermat test as follows. He proved that if n is prime and n − 1 =
r · 2k , where r is odd and hence 2k the highest power of 2 dividing n, then for every
b ∈ {1, . . . , n − 1}

br ≡ 1 mod n or br·2i ≡ −1 mod n for some i ∈ {1, . . . , k − 1}.

Again, if some base b does not pass the Miller test, then n must be a composite
number. For the Miller test there is no analogon to the Carmichael numbers. More
exactly, if n is an odd composite number, then the fraction of integers b ∈ {1, . . . , n}
which do not pass the Miller test is greater than 3

4 . This means that the probability
that a randomly chosen b ∈ {1, . . . , n − 1} passes the test is smaller than 1

4 . If we
choose t bases independently at random than the probability that all t numbers pass
the Miller test for a composite number is smaller than 1

4t . If for a given n we find t
randomly chosen numbers that pass the test, we say that p is a probable prime. We
just described the probabilistic prime number test due to Rabin, which for a given
degree of accuracy has running time O(log n). Note that the Miller test would yield
a deterministic O(log3 n) prime number test, if the generalized Riemann hypothesis
would hold. In this case, for a composite numbern, onewouldfind a basebwhich does
not pass theMiller test in the interval {2, 3, . . . , c · log2 n}, where c is some universal
constant not dependent on n. Hence the test would only have to be executed for the
elements in this range.

Deterministic Prime Number Tests

The best known deterministic prime number tests5 are based on factoring numbers
related to the number n which has to be tested for primality. This is surprising, since
we know that factoring is a hard task. However, the choice of the numbers which
have to be factored is decisive.

Theorem 56 (Pocklington) For an integer n > 1 let s be a divisor of n − 1. Suppose
there is an integer b satisfying

bn−1 ≡ 1 mod n

gcd(b
n−1

q − 1, n) = 1 for each prime q dividing s.

Then for every prime factor p of n it is p ≡ 1 mod s, and if s >
√

n − 1, then n
is prime.

Pocklington’s theorem yields a probabilistic prime number test analogous to the
Rabin test, by random selection of several bases b for which the condition in the
theorem is checked. There are similar tests using factors of n + 1, n2 + 1, n2 + n + 1
or n2 − n + 1. Note that a test based on Pocklington’s theorem can only be fast if the

5See the Remark in the previous footnote.
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factorization of s is easy, i.e., s only has small prime factors. If, e.g., n − 1 = s1 · s2
where s1 and s2 are primes of about the same size, the test will be very slow. However
the fastest prime number tests are based on similar arguments.

In the Jacobi-sum-test, the number s which is used for the single checks is no
longer required to be a factor of n − 1, any product s >

√
n can be used. So we can

try to find an s >
√

n which is the product s = q1 . . . qr with the property that the
least common multiple t = �cm{q1 − 1, . . . , qr − 1} is small, i.e., the qi − 1 have
many factors in common. Odlyzko and Pomerance have shown that there is a positive
constant c such that for every n > ee there exists an integer t < (log n)c·log log log n such
that the corresponding s >

√
n. Because a similar lower bound on t can be derived,

it follows that the trial division step of this primality test requires slightly more than
polynomially many steps, namely (log n)O(log log log n).

Another approach to overcome the difficulties in finding an appropriate number
s is taken in the primality tests based on elliptic curves. Note that in the condition
of Pocklington’s theorem the number s is a divisor of n − 1 which is the order
of the group Z

∗
n if n is prime. Now to each prime p several groups over different

elliptic curves are constructed. The group orders by a theorem of Hasse are between
p + 1 − 2

√
p and p + 1 + 2

√
p. Moreover, they are almost uniformly distributed in

the interval {p + 1 − √
p, . . . , p + 1 + √

p}.
Now the groups are selected at random with the hope to find a group order T with

a divisor s having a nice form.

Factorization Algorithms

The best factorization algorithms are rather slow compared to the best primality test.
However, they show that in the construction of the RSA-cryptosystem and other
schemes based on the hardness of factorization, one has to be very careful with the
appropriate choice of the product n = p · q.

In cryptographic applications, n = p · q is usually chosen as the product of two
primes of about the same size p ≈ q. In this case, one should first try the quadratic
sieve method due to Pomerance. Lenstra developed a factorization algorithm based
on elliptic curves. All these tests are not rigorously analyzed theoretically. However
their performance in practice is good.

One should also take into account that a possible parallelization of a factorization
algorithm might close the gap to primality tests a little bit. The RSA-129 (where the
number n is a 129 digit number) was broken by factoring n using massive paralleliza-
tion. The task was distributed worldwide via the Internet. A message encrypted with
RSA-129 was presented in Scientific American 1977 as a “new kind of cipher that
would take millions of years to break”.

2.5.4 The Discrete Logarithm

Using repeated squaring b = wa, a ∈ {0, . . . , n} can be evaluated in O(log n) steps.
The fastest known algorithm to find the discrete logarithm a = logw b for a given b
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(in an arbitrary multiplicative group) is due to Shanks. It has running time O(
√

n ·
log

√
n). The disadvantage is the enormous amount of storage space. However there

are algorithms known, which are almost as fast and use less storage.
Shanks’ algorithm consists of three stages.

(1) Select some d ∼ √
n. By Euclid’s Algorithm there exist numbers Q and r such

that a = Qd + r. The choice of d guarantees that all numbers involved (Q, d, r)
have size not greater than O(

√
n).

(2) Make a table with entries (x, logw x) for logw x = 0, 1, . . . , d − 1 and sort this
table on x.

(3) It is b = wa = wQd+r and hence b(w−d)Q = b(wn−d)Q = wr . Now for Q =
0, 1, 2, . . . compute b(wn−d)Q and compare the result with the entries in the
table. Stop, when the result is equal to some x in the table. Then r = logw x and
a = Qd + r.

The most time-consuming task in this algorithm is the sorting of O
√

n elements
in the table in Step 2. This can be done using one of the best sorting procedures in
time O(

√
n log

√
n).

Note that taking logarithms can be done faster, when n is a composite number.
In the Diffie–Hellman scheme this is the case, since n = p − 1, where p is prime. In
order to keep the gap to the exponentiation algorithm large, n must then have a large
prime factor. If this is not the case, f (x) = wx in GF(p) is not a one-way function.

2.5.5 Knapsack Cryptosystems

We shall in this section discuss cryptosystems based on the knapsack problem. The
knapsack problem is NP-complete and hence from a theoretical point of view such
cryptosystems are quite attractive, since they are provably hard, as pointed out in the
Introduction. However, in practice most of these cryptosystems have been broken.

The knapsack problem states as follows. For a given set of positive integers
a1, . . . , an and s, determine if there is a subset of {a1, . . . , an} such that the sum
of the ai’s in this subset is exactly s. In other words, do there exist variables
x1, . . . , xn ∈ {0, 1} such that

n∑

i=1

xiai = s.

The number s may be interpreted as the capacity of a knapsack. If the ai’s are the
weights of certain goods, the question is, if it is possible to find a collection of these
goods which exactly fills the knapsack.

If such a collection exists, the subset of the ai’s can be guessed and it is easy to

verify that
n∑

i=1
xiai = s in linear time (using at most n additions). Hence there exists a

non-deterministic algorithm which solves the knapsack problem in polynomial time.
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A simple deterministic algorithm is to check all possible 2n subsets for the con-
dition. Of course, this takes an exponential number of steps. This naive way has not
essentially been improved. The best known algorithm takes about 2

n
2 operations. The

idea is to form all sums

S1 =
⎧
⎨

⎩

� n
2�∑

i=1

xiai, xi ∈ {0, 1}
⎫
⎬

⎭ , S2 =
⎧
⎨

⎩

n∑

i=� n
2�+1

xiai, xi ∈ {0, 1}
⎫
⎬

⎭ ,

sort each of the sets S1 and S2 and then try to find a common element. If such a
common element exists,

� n
2�∑

i=1

xiai = s −
n∑

i=� n
2�+1

xiai and hence
n∑

i=1

xiai = s.

Like in Shanks’ algorithm for the evaluation of the discrete logarithm, the speedup
has to be paid with an enormous amount of storage space.

In a knapsack cryptosystem, a message (x1, . . . , xn) ∈ {0, 1}n is encoded as

s =
n∑

i=1

aixi

where the weights {a1, . . . , an} are stored in a public directory. The cryptanalyst then
knows the a1, . . . , an from the public directory and the message s he intercepted. So
he has all the necessary information to decode the cryptogram. However, in order to
do so, he has to solve an NP-complete problem.

The problem is that also the receiver has to solve the knapsack problem. Without
any additional information his task is as hard as the cryptanalyst’s. To overcome
this difficulty, we first consider knapsacks of a certain structure which are easy to
attack. Namely, it is required that the coefficients a1, . . . , an form a superincreasing
sequence, i.e., for all i = 2, . . . , n

ai >

i−1∑

j=1

aj.

A knapsack problem based on a superincreasing sequence can be solved induc-

tively very fast. It is xn = 1 exactly if s >
n−1∑
i=1

ai. So after having determined xn we

are left with the smaller knapsack problem s − xnan =
n−1∑
i=1

xiai.

All public-key cryptosystems based on the knapsack problem use such a superin-
creasing sequence b1, . . . , bn, say, of coefficients. Of course, these coefficients can-
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not be published, since the cryptanalyst could easily decode the cryptogram in this
case. The idea is to transform the superincreasing sequence b1, . . . , bn to a sequence
a1, . . . , an from which the cryptanalyst does not benefit. The ai’s are published and
the message (x1, . . . , xn) is encoded as s = ∑

xi · ai using the public key. The crypt-
analyst, hence, still has to solve a hard problem. The receiver, who can reconstruct the
superincreasing sequence b1, . . . , bn, only has to solve an easy knapsack problem.

Merkle and Hellman [20] introduced the first knapsack cryptosystem. We shall
now present the transformation they used.

The system consists of

(1) a superincreasing sequence b1, . . . , bn with

b1 ≈ 2n, bi >
i−1∑
j=1

bj for i = 2, . . . , n, bn ≈ 22n,

(2) two positive integers, M and W such that

M >
n∑

i=1
bi, gcd(M, W ) = 1,

(3) a permutation π : {1, . . . , n} → {1, . . . , n}.
The superincreasing sequence b1, . . . , bn is transformed in two steps to a sequence
a1, . . . , an of coefficients by

(a) a′
i ≡ bi · W mod M

(b) ai = a′
π(i).

So first the bi’s are multiplied by W modulo M. Observe that a′
i = 0 cannot occur,

since gcd(M, W ) = 1 andM > bi for all i. Then the so obtained numbers are shuffled
using the permutation π. The sequence a1, . . . , an is the public key. A message

(x1, . . . , xn) ∈ {0, 1}n is hence encrypted as s =
n∑

i=1
xiai.

The receiver has some information, which is not available to the cryptanalyst.
Namely he knows the numbers M and W from which he can conclude to the super-
increasing sequence b1, . . . , bn as follows. He computes

C ≡ s · W −1 mod M

≡
n∑

i=1

xiaiW
−1 mod M ≡

n∑

i=1

xia
′
iW

−1 mod M

≡
n∑

i=1

xibπ(i) mod M

by the encoding rules. So multiplication modulo M of the cryptogram s with W −1

leaves a knapsack based on a superincreasing sequence and this is an easy computa-
tional task for the receiver.

There also exists a refined version of the Merkle–Hellman system, where instead
of the numbers (M, W ) a sequence (Mk, Wk) is used to transform the superincreasing
sequence iteratively. The Merkle–Hellman system has been broken by the following
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approach. By the encoding prescription it is ai ≡ bπ(i)W mod M and hence bπ(i) ≡
aiW −1 mod M. So for some integer ki it is aiW −1 − kiM = bπ(i) and hence

W −1

M
− ki

ai
= bπ(i)

aiM
.

This means that the quotients ki
ai
are close to W −1

M , since M is large compared to
the first bi’s, at least.

Shamir used this close approximation to obtain numbers W ′ and M ′ with (W ′)1
M ′

close to W −1

M fromwhich a superincreasing sequence similar to b1, . . . , bn is obtained.
Another attack using Diophantine approximation is due to Lenstra.

2.5.6 Further Cryptographic Protocols

As pointed out in the introduction, in multiuser computer-networks cryptographic
protocols are needed not only for protecting a message from being deciphered. We
already learned about Simmon’s theory of authentication, where a message is pro-
tected from being replaced. This is often done by a digital signature. Further appli-
cations of cryptography are proofs of identity. For instance, you have to enter a code
before using a credit card or a password is needed in order to login to a computer.
Identity proofs are often required to be zero-knowledge interactive proofs, i.e., the
verifier should obtain no more information from the prover except information that
the verifier could produce alone, even if the verifier cheats.

Proof of Identity

The following interactive protocol for a proof of identity is due to Omura. It is based
on the discrete logarithm. First, each user of amultiuser system chooses some x (from
a finite field) and puts y = wx in a public directory. It is assumed that each user has a
copy of this directory. The protocol then proceeds in three rounds of communication.

(1) The first message M1 = a sent by the person who wants to prove his identity is
the index a of his position in the public directory.

(2) The verifier selects some number r and transmits in the second round themessage
M2 = wr .

(3) The prover rises M2 to the power xa (he has a copy of the public directory) and
transmits M3 = Mxa

2 = wr·xa .
(4) Finally, the verifier computes yr

a = wxa·r and compares the result with the last
message M3.

Observe that this is not a zero-knowledge proof of identity since the verifier may
cheat by sending M2 = r (not the power wr) as second message. In this case he
learns M3 = rxA which he could not calculate himself (However, he still has to take
the discrete logarithm to conclude to xa, which is a difficult task. So this information
does not help him so much).
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We shall later on present a zero-knowledge proof of identity using quadratic
residues. First we shall illustrate the idea by a method for executing a fair random
experiment interactively (due to Rabin).

Coin-Flipping by Telephone

Two persons want to execute a fair random experiment. They are only connected
by telephone and do not trust each other. So they have to simulate a coin-flipping
by telephone. The simulation is based on the factorization of an integer n = p · q, a
product of two large primes formed by Person 1. Since factorization is a hard task,
Person 2 is not able to find the prime factors. In the course of the protocol Person 1
now will give some information about the number n, which will allow Person 2 to
factor n with probability 1

2 . So “head” just means that Person 2 can factor n, whereas
“tail” corresponds to the event that Person 2 cannot factor n. The protocol proceeds
as follows.

(1) As first message M1 = n, Person 1 sends the number n = p · q.
(2) Person 2 selects an element x ∈ Z

∗
n and transmits as second message M2 = x2.

(3) Person 1 computes a square root y of M2 and sends this as message M3 = y.
(4) If now y = x or −x in Z

∗
n Person 2 can factor n (cf. Sect. 2). Else, he cannot

factor n. Observe that if he can factor n, he can also prove this to anyone.

The idea of finding a square root that allows to factor a composite number n with
probability 1

2 is also used in the following zero-knowledge proof of identity due to
Fiat and Shamir (1986).

Fiat–Shamir Zero-Knowledge Proof of Identity

It is assumed that n = p · q is a product of two large prime factors which is publicly
known. Further each user selects an element x ∈ Z

∗
n and stores x2 next to the index

of his name in a public directory. Again the protocol consists of three rounds.

(1) First, Person 1 selects at random an element r ∈ Z
∗
n and transmits as firstmessage

M1 = (a, r2) the index of his name a and r2.
(2) Person 2 randomly chooses a binary digit b ∈ {0, 1} which he transmits as mes-

sage M2 = b.

(3) Person 1 sends the third message M3 =
{

r, if b = 0

r · xa, if b = 1.

(4) If b = 0, Person 2 checks that M2
3 = r2, which was sent in the first message.

If b = 1, Person 2 checks that M2
3 = r2 · x2a .

Why is this protocol a zero-knowledge proof. Observe that since (r · xa) · r−1 = xa,
Person 1 can know both possible values for the thirdmessageM3 only if he knows the
secret xa. Hence, the probability that a third person not knowing xa is deceivingPerson
2, is less than or equal to 1

2 . On the other hand, Person 2 does not obtain any further
information. The number r was chosen at random, so the only thing transmitted from
Person 1 to Person 2 in the course of the protocol is a random number (either r or
r · x1) and its square. This could be generated by Person 2 himself.
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Observe that, contrasting to the first proof-of-identity protocol presented, here
the only message from Person 2 to Person 1 is a random number, such that it is not
possible to cheat for him. By repetition of the Fiat–Shamir protocol k times, say,
(giving Person 1 k secrets), the probability that a third person, who does not know
these secrets, deceives, is smaller than 2−k and can hence be made arbitrarily small
by the appropriate choice of k.

Another well-known zero-knowledge protocol for a proof of identity is based on
the graph-isomorphism problem, i.e., on the decision if two graphs are isomorphic.
As the knapsack problem, the graph-isomorphismproblem isNP-complete and hence
the zero-knowledge protocol in this case is based on a provably hard problem. The
Fiat–Shamir protocol, as the RSA-system depends on the hardness of factorization.

Digital Signatures

A signature is attached to a message in order to identify the producer of this message.
Signaturesmay be implicit or explicit. An implicit signature is usedwhen themessage
is written in a way that no one else can imitate. An example for an implicit signature
is the encryption of a message with a secret key, since it is very improbable that a
randomly chosen string will be accepted as a valid plain-text. However, the opponent
could replace the cryptogram by an older valid cryptogram. In order to avoid such
an attack, messages are usually equipped with a time stamp.

We will rather be concerned with explicit signatures. In this case the message has
an inseparable mark attached that no one else can imitate.

Further, signatures may be private or public. In order to discover a private sig-
nature, one has to share a secret with the author of the message (for instance, the
secret-key example of an implicit signature is also private). A public signature can
be identified by anybody else.

Explicit signatures are often obtained using hashing functions. Reversible two-key
cryptosystems automatically yield implicit public signatures.

In electronic banking blind signatures are important, i.e., the signer does not know
what message he is signing but can later certify whether a message was signed by
him or not.

A detailed discussion on digital signatures will be carried out in Chap.4. An
overview is given in the book [29].
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