
Chapter 2
Preliminaries

Abundant dulcibus vitiis.

I immediately mention that always1 p ≥ 2 in these notes and often p > n = the
dimension of the space.2 (At a first reading, one had better keep p large.) We aim at
p = ∞.

We begin with a special case of Ascoli’s theorem.

Theorem 2.1 (Ascoli) Let the sequence of functions fk : � −→ R be

equibounded:

sup
�

| fk(x)| ≤ M < ∞ when k = 1, 2, . . . ,

equicontinuous:

| fk(x) − fk(y)| ≤ C |x − y|α when k = 1, 2, . . .

Then there exists a continuous function f and a subsequence such that fk j −→ f
locally uniformly in �.

If the domain � is bounded, all functions can be extended continuously to the
boundary, and the convergence is uniform in the closure �.

Proof We reproduce a well-known proof. First, we construct a subsequence which
converges at the rational points. Let q1, q2, q3, . . . be a numbering of the ratio-
nal points in �. Since the sequence f1(q1), f2(q1), f3(q1), . . . is bounded by our
assumption it has a convergent subsequence (Weierstrass’ Theorem), say f1 j (q1),

j = 1, 2, 3, . . . Consider the next point q2. Now the sequence f11(q2), f12(q2),

1The p-harmonic operator is not pointwise defined for p < 2.
2All functions in the Sobolev space W 1,p are continuous when p > n.
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8 2 Preliminaries

f13(q2), . . . is bounded and so we can extract a convergent subsequence, say
f21(q2), f22(q2), f23(q2), . . . Continuing like this, extracting subsequences of sub-
sequences, we have the scheme

f11, f12, f13, f14 . . . converges at q1

f21, f22, f23, f24 . . . converges at q1, q2

f31, f32, f33, f34 . . . converges at q1, q2, q3

f41, f42, f43, f44 . . . converges at q1, q2, q3, q4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

We see that the diagonal sequence f11, f22, f33, f44, . . . converges at every rational
point. To simplify the notation, write fk j = f j j .

We claim that the constructed diagonal sequence converges at each point in �,

be it rational or not. To this end let x ∈ � be an arbitrary point and let q be a rational
point very near it. Then

| fk j (x) − fki (x)| ≤ | fk j (x) − fk j (q)| + | fk j (q) − fki (q)| + | fki (q) − fki (x)|
≤ 2C |x − q|α + | fk j (q) − fki (q)|.

Given ε > 0, we fix q so close to x that 2C |x − q|α < ε
2 , which is possible since

the rational points are dense. By the convergence at the rational points, we infer that

| fk j (x) − fki (x)| <
ε

2
+ ε

2
= ε,

when the indices i and j are large enough.ByCauchy’s general convergence criterion,
the sequence converges at the point x . We have established the existence of the
pointwise limit function

f (x) = lim
j→∞ fk j (x).

Next, we show that the convergence is (locally) uniform. Suppose that � is com-
pact. Cover it by balls B(x, r) with diameter 2r = ε

1
α . A finite number of these balls

covers �:

� ⊂
N⋃

m=1

B(xm, r).

Choose a rational point from each ball, say q ′
m ∈ B(xm, r). Since only a finite number

of these points are involved, we can fix an index Nε such that

max
m

| fk j (q
′
m) − fki (q

′
m)| < ε when i, j > Nε.
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Let x ∈ � be arbitrary. It must belong to some ball, say B(xm, r). Again we can
write

| fk j (x) − fki (x)| ≤ 2C |x − q ′
m |α + | fk j (q

′
m) − fki (q

′
m)|

≤ 2C(2r)α + | fk j (q
′
m) − fki (q

′
m)|

≤ 2Cε + ε when i, j > Nε.

The index Nε is independent of how the point x was chosen. This shows that the con-
vergence is uniform in �. —If the domain � is unbounded, we notice that the above
proof is valid for every fixed bounded subdomain, in which case the convergence is
locally uniform. �

Next, we consider Lipschitz continuous functions. A function f : � −→ R is
Lipschitz continuous if for some constant L ,

| f (x) − f (y)| ≤ L|x − y| when x, y ∈ �.

Theorem 2.2 (Rademacher) A Lipschitz continuous function f is totally differen-
tiable a. e. in its domain: the expansion

f (y) = f (x) + 〈∇ f (x), y − x〉 + o(|y − x |) as y → x

holds at almost every point x ∈ �.

It is useful to know that convex functions are locally Lipschitz continuous. As we
shall see in Chap.7, a convex function has, indeed, even second derivatives a. e. in
the way they should appear in Taylor’s expansion.

Remark According to the above definition of Lipschitz continuity, for example the
function

u(x, y) = arctan
( y

x

)

is not Lipschitz continuous in the slit domain

� =
{
(x, y)| 1 <

√
x2 + y2 < 2

}
\ {(x, 0)| − 2 < x < −1}.

(Here u varies between −π and π, so that it is positive in the upper half-plane.) The
reason is that the function has a jump of 2π across the slit:

u
(− 3

2 ,+ε
) − u

(− 3
2 ,−ε

) = 2π + o(ε).

We use the “straight” distance |(− 3
2 ,+ε) − (− 3

2 ,−ε)| = 2ε and not the intrinsic

metric 2
√

ε2 + 9
4 , which is the infimum of the lengths of all the curves in � joining

the two points. Yet, in this example

http://dx.doi.org/10.1007/978-3-319-31532-4_7
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‖∇u‖∞,� = 1

2
< ∞.

In convex domains this kind of behaviour is out of the question.

Solvable Spaces We denote by W 1,p(�) the Sobolev space consisting of functions
u that together with their first distributional derivatives

∇u =
( ∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xn

)

belong to the space L p(�). Equipped with the norm

‖u‖W 1,p(�) = ‖u‖L p(�) + ‖∇u‖L p(�)

it is a Banach space. In particular, the space W 1,∞(�) consists of all Lipschitz
continuous functions defined in�.The closure ofC∞

0 (�)with respect to the Sobolev
norm is denoted by W 1,p

0 (�). About Sobolev spaces we refer the reader to Chap.7
of the book [GT].

Before proceeding, let us take advantage of the fact that only very large values
of the exponent p are needed here. If p > n = the number of coordinates in R

n,

the Sobolev space contains only continuous functions and the boundary values are
taken in the classical sense.All domains3 � are regular for the Dirichlet problem,
when p > n.

Lemma 2.3 Let p > n and suppose that � is an arbitrary bounded domain in R
n.

If v ∈ W 1,p
0 (�), then

|v(x) − v(y)| ≤ 2pn

p − n
|x − y|1− n

p ‖∇v‖L p(�) (2.1)

for a. e. x, y ∈ �. One can redefine v in a set of measure zero and also extend it to
the boundary so that v ∈ C1− n

p (�) and v|∂� = 0.

This is a variant of Morrey’s inequality. It is important that the constant remains
bounded for large p. If we do not require zero boundary values, the inequality still
holds for many domains. For example, if � is a cube Q, the inequality holds for
v ∈ W 1,p(Q).

On the Constant Since the behaviour of the constant is decisive, as p → ∞, I
indicate how to obtain it for a smooth function v ∈ C1(Q) ∩ W 1,p(Q). Integrating

v(x) − v(y) =
∫ 1

0

d

dx
v
(
x + t (y − x)

)
dt

=
∫ 1

0

〈
y − x,∇v

(
x + t (y − x)

)〉
dt

3As always, a domain is an open connected set.

http://dx.doi.org/10.1007/978-3-319-31532-4_7
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with respect to y over Q, we see that4

|v(x) − vQ | =
∣∣∣∣
∫

Q

∫ 1

0

〈
y − x,∇v

(
x + t (y − x)

)〉
dt dy

∣∣∣∣

≤ diam(Q)

∫

Q

∫ 1

0
|∇v

(
x + t (y − x)

)| dt dy

≤ diam(Q)

∫ 1

0

(∫

Q
|∇v

(
x + t (y − x)

)|p dy

) 1
p

dt.

The change of coordinates

ξ = x + t (y − x), dξ = tndy

in the inner integral yields

∫

Q
|∇v

(
x + t (y − x)

)|p dy = 1

tn

∫

Qt

|∇v(ξ)|p dξ ≤ 1

tn

∫

Q
|∇v(ξ)|p dξ,

since the intermediate domain of integration Qt ⊂ Q. Therefore

|v(x) − vQ | ≤ diam(Q)

|Q| 1
p

∫ 1

0
t− n

p ‖∇v‖L p(Q) dt = 1

1 − n
p

diam(Q)

|Q| 1
p

‖∇v‖L p(Q).

(It was needed that p > n.) The triangle inequality yields

|v(x) − v(y)| ≤ |v(x) − vQ | + |v(y) − vQ | ≤ 2p

p − n

diam(Q)

|Q| 1
p

‖∇v‖L p(Q).

To conclude, we can always choose an auxiliary cube Q′ ⊂ Q so that |x − y| ≤
diam(Q′). —In the general case, when v no longer has continuous first derivatives,
one can use approximations with convolutions and conclude the proof with the aid
of Ascoli’s theorem.

I repeat that always5 p ≥ 2 in these notes and often p > n = the dimension of
the space.6

4The notation

fQ =
∫

Q
f dx =

∫
Q f dx
∫

Qdx

is used for the average of a function.
5The p-harmonic operator is not pointwise defined for p < 2.
6All functions in the Sobolev space W 1,p are continuous when p > n.
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The p-Laplace Equation for finite p We need some standard facts about the
p-Laplace equation and its solutions. Let us consider the existence of a solution
to the Dirichlet boundary value problem. Minimizing the variational integral

I (v) =
∫

�

|∇v|p dx (2.2)

among all functions with the same given boundary values, we are led to the condition
that the first variation must vanish:

∫

�

〈|∇u|p−2∇u,∇η〉 dx = 0 when η ∈ C∞
0 (�), (2.3)

where u is minimizing. Under suitable assumptions this is equivalent to

∫

�

η ∇·(|∇u|p−2∇u
)

dx = 0,

Since this must hold for all test functions η we have

�pu ≡ ∇·(|∇u|p−2∇u
) = 0.

In other words, the p-Laplace Equation is the Euler–Lagrange Equation for the
above variational integral. A more precise statement is:

Theorem 2.4 Take p > n and consider an arbitrary bounded domain � in R
n.

Suppose that g ∈ C(�) ∩ W 1,p(�) is given. Then there exists a unique function
u ∈ C(�) ∩ W 1,p(�) with boundary values g which minimizes the variational
integral

I (v) =
∫

�

|∇v|p dx

among all similar functions.
The minimizer is a weak solution to the p-Laplace Equation, i.e.

∫

�

〈|∇u|p−2∇u, ∇η〉 dx = 0 when η ∈ C∞
0 (�).

On the other hand, a weak solution in C(�)∩W 1,p(�) is always a minimizer (among
functions with its own boundary values).

Proof The uniqueness of the minimizer follows easily from

∣∣∣∣
∇u1 + ∇u2

2

∣∣∣∣
p

<
|∇u1|p + |∇u2|p

2
when ∇u1 �= ∇u2,
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upon integration. To wit, if there were two minimizers u1 and u2, then
u1+u2

2 would
be admissible and

I (u1) ≤ I
(u1 + u2

2

)
<

I (u1) + I (u2)

2
= I (u1),

unless ∇u1 = ∇u2 almost everywhere. To avoid the contradiction, we must have
u1 = u2.

The Euler–Lagrange Equation can be derived from the minimizing property

I (u) ≤ I (u + εη).

(The function v(x) = u(x) + εη(x) is admissible.) We must have

d

dε
I (u + εη) = 0 when ε = 0

by the infinitesimal calculus. This shows that the first variation vanishes, i.e., Eq. (2.3)
holds.

To show that the minimizer exists, we use the Direct Method in the calculus of
variations, due to Lebesgue, see the book [G]. Let

I0 = inf
v

∫

�

|∇v|p dx

where the infimum is taken over the class of admissible functions. Now 0 ≤ I0 ≤
I (g) < ∞. Consider a so-called minimizing sequence of admissible functions v j :

lim
j→∞ I (v j ) = I0.

We may assume that I (v j ) < I0 + 1 for j = 1, 2, . . . We may also assume that

min g ≤ v j (x) ≤ max g in �,

since we may cut the functions at the constant heights min g and max g. (The pro-
cedure decreases the integral!) We see that the Sobolev norms ‖v j‖W 1,p (�) are uni-
formly bounded.7 By weak compactness, there exists a function u ∈ W 1,p(�) and a
subsequence such that

∇v jk ⇀ ∇u weakly in L p(�).

7The conventional way is not to cut the functions, but to use the Sobolev inequality

‖v j − g‖L p(�) ≤ C‖∇(v j − g)‖L p(�)

to uniformly bound the norms
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Since p > n we know from Lemma2.3 that u ∈ C(�) and we conclude that u = g
on ∂�. We got the continuity for free! By the weak lower semicontinuity of convex
integrals

I (u) ≤ lim inf
k→∞ I (v jk ) = I0.

Since u is admissible also I (u) ≥ I0. Therefore u is a minimizer and the existence
is established.

It remains to show that the weak solutions of the Euler–Lagrange Equation are
minimizers.8 By integrating the inequality9

|∇(u + η)|p ≥ |∇u|p + p〈|∇u|p−2∇u,∇η〉,

we obtain ∫

�

|∇(u + η)|p dx ≥
∫

�

|∇u|p dx + 0 =
∫

�

|∇u|p dx .

Therefore u is a minimizer. �

Remark If the given boundary values g are merely continuous (g ∈ C(∂�) but
perhaps g /∈ W 1,p(�)), then there exists a unique p-harmonic function u ∈ C(�)

with boundary values g. However it may so happen that
∫
�
|∇u|p dx = ∞. —

Hadamard gave a counter example for the ordinary Dirichlet integral (p = 2).

(Footnote 7 continued)

‖v j ‖L p(�) ≤ ‖v j − g‖L p(�) + ‖g‖L p(�) ≤ C‖∇(v j − g)‖L p(�) + ‖g‖L p(�)

≤ C
[‖∇v j ‖L p(�) + ‖∇g‖L p(�)

] + ‖g‖L p(�)

≤ C
[
(I0 + 1)p + ‖∇g‖L p(�)

] + ‖g‖L p(�) ≡ M < ∞,

when j = 1, 2, 3, . . .
8There are variational integrals for which this is not the case.
9Since |w|p is convex, the inequality

|b|p ≥ |a|p + p〈|a|p−2a, b − a〉
holds for vectors.
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