
Preface

Imagine this happens to you: Your manager tells you “Agile is the future! Let’s go
Scrum.” He forces you to replace the existing development process with Scrum.
What would you do? Would you send your developers to a Scrum training course
immediately?

It is true that more companies are embracing agile as part of their development
process in order to increase speed, accelerate learning, and deliver value rapidly.
And many of these companies are applying Scrum. But it is also true that evolution
does not follow the principle: “Progressive dinosaurs are the future! Let’s go bird.”1

Evolving the ways through which software-intensive products and services are
developed is a challenging endeavor that needs to be done carefully. Where do you
start? What do you have to consider?

This book will help you better understand the different aspects and challenges of
evolving development processes. It addresses difficult problems, such as how to
implement processes in highly regulated domains or where to find a suitable
notation for documenting processes. This book emphasizes the need to consider
Software Process Evolution as an important means for catching up with rapid
changes in technical and market environments. It provides insights that might help
you manage process evolution. It gives plenty of tips, e.g., how to cope with the
threat of disruption from a process perspective. In addition, it provides many
examples and cases on how to deal with software evolution in practice.

Why a Book on Managing Process Evolution?

Many organizations need to transform their business to the next level. In order to
benefit from leading-edge technologies, catch up with the digital transformation,
and continuously innovate and renew business models, companies have to quickly

1Quote taken from a tweet from David Evans.

ix



adapt and change the ways they develop products and services. As software is the
key to this transformation, the ways in which modern software is developed need to
change accordingly.

Another important driver for process evolution is the need to mitigate software
risks. Basically, a considerable share of software risk is process-based [3]. For
example, there have been several incidents which could have been avoided with
appropriate coding standards and tools. Although these standards and tools are
widely available, they are either not applied or not appropriately applied in many
situations. Because this is normally caused by the way work and people are
organized and work is carried out it is a software process issue. Companies need to
find ways to ensure that process models are properly defined and, furthermore, are
appropriately applied while not hindering the creativity of, e.g., designers or
developers. To do this effectively, defining and deploying adequate software pro-
cesses usually requires fostering the evolution of existing processes and their
underlying models towards ones that suit better.

Today, there exists a variety of software processes ranging from generic and
domain-specific standards, from agile methods to comprehensive process engi-
neering frameworks. Since software processes may contain up to hundreds or even
thousands of elements, the management of a software process is a demanding task
and, therefore, many companies install whole departments dealing with software
process improvement and management. In practice, especially in large organiza-
tions, we can observe some interesting gaps:

• Development teams tend to apply agile methods while the hosting organization
focuses on “classic” structured development processes [5, 6].

• Implemented development processes in projects differ from what has been
defined [4].

• Evolving software technologies and platforms require a parallel evolution of
software processes to accommodate the rapid changes. However, this
co-evolution does not appropriately take place.

One main reason for these gaps is different mindsets. For instance, program man-
agers and quality assurance people need planned and directed processes for certi-
fication, budgeting, and compliance business. Developers need flexibility and
processes which support creative work. Business managers need processes that
allow for fast results and flexible feature delivery. Moreover, due to technology
evolution, business evolves. This requires that emerging markets must be addres-
sed, new technologies should be adopted, and globally distributed development
becomes more and more important.

Apart from the big “global players,” process evolution is also highly important
for small and medium-sized companies. Such companies typically neither have
comprehensive process models nor process engineering groups, and often have to
trust in a common understanding of principles and applied practices. However,
these principles and practices need to be continuously validated against higher level
goals (such as business strategies) and potentially changed in order to secure and
maintain the company’s position in the market place [2]. One example for such a

x Preface



change is the increasing focus on value-delivery [1]. Regardless of the company
size, a major challenge that companies face is to provide all stakeholders with
flexible processes that:

• Are driven by the needs of the different stakeholders,
• Have clear links to higher level goals of an organization,
• Provide interfaces that are compatible with organizational structures,
• Are supported by tools for modeling, enactment, analyses, and evolution,
• Can be tailored to individual project goals and characteristics,
• Offer adaptability and elasticity to accommodate and support technological and

organizational innovations and evolutions.

This book focuses on the design, development, management, governance, and
application of evolving software processes that are aligned with changing business
objectives, such as expansion to new domains or moving to global production. In
the context of evolving business, it addresses the complete software process life-
cycle, from initial definition of a product to systematic improvement.

Who Should Read This Book?

This book is aimed at anyone interested in understanding and organizing software
development tasks in an organization. The experiences and ideas in this book are
useful for both those who are unfamiliar with software process improvement and
want to get an overview of the different aspects of the topic, and those experts with
many years of experience. In particular, the present book addresses researchers and
Ph.D. students in the area of Software & Systems Engineering and Information
Systems, who study advanced topics of organizing and managing (software
development) projects and process improvements projects. Furthermore, the book
addresses practitioners, consultants, and coaches involved in software-related
change management and software process improvement projects, and who want to
learn about challenges and state-of-the-art techniques and experiences regarding
their application to problems in different application domains.

How is the Book Organized?

This book is organized in three parts (Fig. 1). Part 1 focuses on software business
transformation, its challenges, and addresses the questions about which process(es)
to use and adapt, and how to organize process improvement programs. In Chap. 1,
Tony Wasserman discusses short lifecycle projects and how “low-ceremony pro-
cesses” help shorting project iterations. In this context, in Chap. 2, Diebold and
Zehler discuss the “right” degree of agility in rich software processes—how to find
and how to achieve this. The challenge of implementing agile software

Preface xi

http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1007/978-3-319-31545-4_2


development approaches is further discussed by Houston and Rosemergy in Chap.
3, who report an agile transformation of a globally distributed company. As many
companies jump to Agile processes hoping for the benefits promised, determining
value and value creation is crucial. In Chap. 4, Christof Ebert discusses the prin-
ciples of value-driven process management and reports experiences. Another per-
spective is taken by Andreas Rösel, who describes how concepts of design thinking
can be applied to disruptive improvements in Chap. 5. Oisín Cawley discusses the
trials and tribulations of Global Software Engineering processes in the course of
business evolution with a particular focus on regulated software and system
development in Chap. 6. The respective Software Process Improvement challenges,
approaches, and standards for very small entities and small- to medium-sized
companies are presented in Chap. 7 by Mary-Luz Sánchez-Gordón and her col-
leagues. In their systematic literature review, they give a comprehensive overview
of the different improvement approaches and models and show how they find their
way into international standards. Standards and their role are also key to the Space
business, as presented in Chap. 8, where Christian Prause and his colleagues
describe how software processes in the German Space Administration evolve and
how they are tailored to the projects.

Part 2 of the book is focused on process modeling. This part starts with Chap. 9
by Dumas and Pfahl, who discuss the appropriateness of the Business Process
Model and Notation (BPMN) for software processes modeling. In Chap. 10,
Fazal-Baqaie and Engels present an approach to modeling evolving software pro-
cesses by utilizing method engineering principles. The adaptation of case man-
agement techniques for the purpose of improving process model flexibility is
demonstrated by Marian Benner-Wickner as his colleagues in Chap. 11.

Fig. 1 Overview of the book and chapter outline

xii Preface

http://dx.doi.org/10.1007/978-3-319-31545-4_3
http://dx.doi.org/10.1007/978-3-319-31545-4_4
http://dx.doi.org/10.1007/978-3-319-31545-4_5
http://dx.doi.org/10.1007/978-3-319-31545-4_6
http://dx.doi.org/10.1007/978-3-319-31545-4_7
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_9
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_11


Finally, Part 3 of the book collects approaches, experiences, and recommenda-
tions that help to improve software processes with a particular focus on specific
lifecycle phases. The part starts with Chap. 12 in which Kai Petersen reports his
experiences in industrial Software Process Improvement projects from the per-
spective of a researcher. He reports from projects and provides a collection of
general lessons learned and recommendations to aid researchers and practitioners to
plan and carry out improvement projects in an industry–academia collaboration.
Chapter 13 in which Regina Hebig and her colleagues give insights into two
large-scale industry projects and demonstrate how co-evolution is manifested and
handled in such projects, thus addressing the co-evolution of software processes
and model-driven engineering approaches. In Chap. 14, S.M. Didar Al Alam and
his colleagues present an approach that helps companies to improve the release
readiness of their software products. They show how bottleneck factors that hinder
fast releases can be detected and they apply their concept to different Open-Source
Software projects. Finally, Jesse Yli-Huumo and colleagues take a broader per-
spective in Chap. 15, discussing how process evolution affects technical debt. They
illustrate their findings with three large-scale software projects.

We wish you an interesting and enjoyable reading experience. A collection such
as this book would not be possible without the help of many persons. We would
especially like to thank the authors for their insightful articles and their excellent
collaboration. In addition, we would like to thank Ralf Gerstner from Springer, who
supported us efficiently in completing organizational and contract issues.

Odense, Denmark Marco Kuhrmann
Reutlingen, Germany Jürgen Münch
Limerick, Ireland Ita Richardson
Clausthal-Zellerfeld, Germany Andreas Rausch
Nanjing, China He Zhang
January 2016

References

1. Bosch, J.: Speed, data, and ecosystems: The future of software engineering. IEEE Softw. 33(1),
82–88 (2016)

2. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: Proceedings of the International Workshop on Rapid Continuous Software
Engineering, RCoSE, pp. 26–35. ACM, New York (2014)

3. Neumann, P.G., et al.: Column: Risks to the Public. ACM SIGSOFT Softw. Eng. Note 40(6),
14–19 (2015)

4. Parnas, D.L., Clements, P.C.: A Rational Design Process: How and Why to fake it. IEEE Trans.
Software Eng. 12(2), 251–257 (1986)

Preface xiii

http://dx.doi.org/10.1007/978-3-319-31545-4_12
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_14
http://dx.doi.org/10.1007/978-3-319-31545-4_15


5. Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.: Is Water-Scrum-Fall reality? On the use
of agile and traditional development practices. In: Proceedings of the International Conference
on Product-Focused Software Process Improvement. Lecture Notes in Computer Science, vol.
9459, pp. 149–166. Springer, Heidelberg (2015)

6. Vijayasarathy, L., Butler, C.: Choice of software development methodologies - do project, team
and organizational characteristics matter? IEEE Software (99), 1ff. (2015)

xiv Preface



http://www.springer.com/978-3-319-31543-0




