
Chapter 2
Kinematic Analysis of Mechanisms.
Relative Velocity and Acceleration.
Instant Centers of Rotation

Abstract Kinematic analysis of a mechanism consists of calculating position,
velocity and acceleration of any of its points or links. To carry out such an analysis,
we have to know linkage dimensions as well as position, velocity and acceleration
of as many points or links as degrees of freedom the linkage has. We will point out
two different methods to calculate velocity of a point or link in a mechanism: the
relative velocity method and the instant center of rotation method.

2.1 Velocity in Mechanisms

We will point out two different methods to calculate velocity of a point or link in a
mechanism: the relative velocity method and the instant center of rotation method.
However, before getting into the explanation of these methods, we will introduce
the basic concepts for their development.

2.1.1 Position, Displacement and Velocity of a Point

To analyze motion in a system, we have to define its position and displacement
previously. The movement of a point is a series of displacements in time, along
successive positions.

2.1.1.1 Position of a Point

The position of a point is defined according to a reference frame. The coordinate
system in a plane can be Cartesian or polar (Fig. 2.1).
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In any coordinate system, we have to define the following:

• Origin of coordinates: starting point from where measurements start.
• Axis of coordinates: established directions to measure distances and angles.
• Unit system: units to quantify distances.

If a polar coordinate system is used, the position of a point is defined by a vector
called rPO connecting the origin of coordinates O with the mentioned point. If O is a
point on the frame this vector gives us the absolute position of point P and we will
call it rP.

In most practical situations, an absolute reference system, considered stationary,
is used. The stationary system coordinates do not depend on time. The absolute
position of a point is defined as its position seen from this absolute reference
system. If the reference system moves with respect to a stationary system, the
position of the point is considered a relative position.

Anyway, this choice is not fundamental in kinematics as the movements to be
studied will be relative. Take, for example, the suspension of a car where move-
ments might refer to the car body, without considering whether the car is moving or
not. Movements in the suspension system can be regarded as absolute motion with
respect to the car body.

2.1.1.2 Displacement of a Point

When a point changes its position, a displacement takes place. If at instant t the
point is at position P and at instant tþDt, the point is at P0, displacement during Dt
is defined as the vector that measures the change in position (Eq. 2.1):

Dr ¼ rP0 � rP ð2:1Þ

Displacement is a vector that connects point P at instant t with point P0 at instant
tþDt and does not depend on the path followed by the point but on the initial and
final positions (Fig. 2.2).
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Fig. 2.1 a Cartesian and
polar coordinates of point P in
a plane. b Polar coordinates of
the same point
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2.1.1.3 Velocity of a Point

The ratio between point displacement and time spent carrying it out is referred to as
average velocity of that point. Therefore, average velocity is a vector of magnitude
Dr=Dt and has the same direction as displacement vector Dr. If the time during
which displacement takes place is close to zero, the velocity of the point is called
instant velocity, or simply velocity (Eq. 2.2):

v ¼ lim
Dt!0

Dr
Dt

¼ dr
dt

ð2:2Þ

The instant velocity vector magnitude is dr=dt. In an infinitesimal position
change, the direction of the displacement vector coincides with the trajectory. When
O is the instantaneous center of the trajectory of point P, we can express the instant
velocity magnitude as Eq. (2.3):

vP ¼ dr
dt

¼ ds
dt

¼ dh
dt

� rP ¼ x � rP ð2:3Þ

The direction of this velocity is the same as dr which, at the same time, is
tangent to the motion trajectory of point P (Fig. 2.3).

2.1.2 Position, Displacement and Angular Velocity
of a Rigid Body

Any movement of a rigid body can be considered a combination of two motions: the
displacement of a point in the rigid body and its rotation with respect to the point.

Fig. 2.2 Displacement of
point P in a plane during
instant Dt

Fig. 2.3 Displacement of
point P in a plane during
instant dt close to zero
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In the last section, we defined the displacement of a point, so the next subject to
be studied is the rotation of a rigid body.

2.1.2.1 Angular Position of a Rigid Body

To define the angular position of a rigid body, we just need to know the angle
formed by the axis of the coordinate system and reference line AB (Fig. 2.4).

2.1.2.2 Angular Displacement of a Rigid Body

When a rigid body changes its angular position from hAB to hA0B0 , angular dis-
placement DhAB takes place (Fig. 2.5).

hA0B0 ¼ hAB þDhAB ð2:4Þ

The angular displacement of a rigid body, DhAB, does not depend on the tra-
jectory followed but on the initial and final angular position (Eq. 2.4).

2.1.2.3 Angular Velocity of a Rigid Body

We define the angular velocity of a rigid body as the ratio between angular dis-
placement and its duration. If this time is, dt close to zero, this velocity is called
instant angular velocity or simply angular velocity (Eq. 2.5).

Fig. 2.4 Angular position of
a rigid body hAB

Fig. 2.5 Angular
displacement of a rigid body
DhAB
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xAB ¼ dhAB
dt

ð2:5Þ

2.1.3 Relative Velocity Method

In this section we will develop the relative velocity method that will allow calcu-
lating linear and angular velocities of points and links in a mechanism.

2.1.3.1 Relative Velocity Between Two Points

Let A be a point that travels from position A to position A0 during time interval Dt
and let B be a point that moves from position B to position B0 in the same time
interval (Fig. 2.6).

Absolute displacements of points A and B are given by vectors DrA and DrB.
Relative displacement of point B with respect to A is given by vector DrBA, so it
verifies (Eq. 2.6):

DrB ¼ DrA þDrBA ð2:6Þ

In other words, we can consider that point B moves to position B0 with dis-
placement equal to the one for point A to reach point B00 followed by another
displacement, from point B00 to point B0. The latter coincides with vector DrBA for
relative displacement. We can assert the same for the displacement of point
A (Eq. 2.7), hence:

DrA ¼ DrB þDrAB ð2:7Þ

Evidently DrBA and DrAB are two vectors with the same magnitude but opposite
directions.

Fig. 2.6 Absolute displacements of points A and B, DrA and DrB, and relative displacement of
point B with respect to A, DrBA
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If we regard these as infinitesimal displacements and relate them to time dt, the
time it took them to take place, we obtain the value of the relative velocities by
Eq. (2.8):

drB
dt

¼ drA
dt

þ drBA
dt

) vB ¼ vA þ vBA ð2:8Þ

Therefore, the velocity of a point can be determined by the velocity of another
point and their relative velocity.

As we have mentioned before, relative displacements DrBA and DrAB have
opposite directions. Therefore relative velocities vBA and vAB will be two vectors
with the same magnitude that also have opposite directions (Eq. 2.9).

vBA ¼ �vAB ð2:9Þ

2.1.3.2 Relative Velocity Between Two Points of the Same Link

Let AB be a reference line on a body that changes its position to A0B0 during time
interval Dt.

As studied in the previous section, the vector equation for the displacement of
point B is Eq. (2.6) (Fig. 2.7a). In the case of A and B belonging to the same body,
distance AB does not change, so the only possible relative movement between A and
B is a rotation of radius AB. This way, relative displacement will always be a
rotation of point B about point A (Fig. 2.7b).

If we divide these displacements by the time interval in which they happened,
we obtain Eq. (2.11):

DrB
Dt

¼ DrA
Dt

þ DrBA
Dt

) VB ¼ VA þVBA ð2:10Þ

(a) (b)

Fig. 2.7 a Relative displacement of point B with respect to point A (both being part of the same
link). b Rotation of point B about point A
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The value of VBA (average relative velocity of point B with respect to point A)
can be determined by using Eq. (2.11):

VBA ¼ DrBA
Dt

¼ 2 sinðDh=2Þ
Dt

ð2:11Þ

where Dh is the angular displacement of body AB (Fig. 2.7b). If all displacements
take place during an infinitesimal period of time, dt, then average velocities become
instant velocities (Eq. 2.12):

vB ¼ vA þ vBA ð2:12Þ

This way, the velocity of point B can be obtained by adding relative instant
velocity vBA to the velocity of point A.

To obtain the magnitude of relative instant velocity vBA in Eq. (2.13), we have to
consider that the time during which displacement takes place is close to zero in
Eq. (2.11)

vBA ¼ lim
Dt!0

DrBA
Dt

¼ 2 sinðdh=2Þ
dt

AB ’ dh
dt

AB ¼ xAB ð2:13Þ

Therefore, any point on a rigid body, such as B, moves relatively to any other
point on the same body, such as A, with velocity vBA, which can be expressed as a
vector of magnitude equal to the product of the angular velocity of the body
multiplied by the distance between both points (Eq. 2.14). Its direction is given by
the angular velocity of the body, perpendicular to the straight line connecting both
points (Fig. 2.8).

vBA ¼ x ^ rBA ð2:14Þ

2.1.3.3 Application of the Relative Velocity Method to One Link

Equation (2.13) is the basis for the relative velocity method. It is a vector equation
that allows us to calculate two algebraic unknowns such as one magnitude and one
direction, two magnitudes or two directions.

Fig. 2.8 Relative velocity of
point B with respect to point
A (both being part of the same
link)
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Figure 2.9a shows points A and B of a link moving at unknown angular velocity
x. Suppose that we know the velocity of point A, vA, and the velocity direction of
point B. To calculate the velocity magnitude of point B, we use Eq. (2.13).
Studying every parameter in the equation:

• vA is a vector defined as vA ¼ vAx îþ vAy ĵ with known magnitude and direction.
• vB is a vector with known direction and unknown magnitude. Assuming it is

moving upward to the left (Fig. 2.9a), the direction of this vector will be given
by angle θ and it will be defined as Eq. (2.15):

vB ¼ vB cos ĥiþ vB sin ĥj ð2:15Þ

• vBA is a vector of unknown magnitude due to the fact that we do not know the
angular velocity value, ω, of the rigid body. Its direction is perpendicular to
segment line AB (Fig. 2.9b). Therefore, it can be obtained in Eq. (2.16):

vBA ¼ x ^ rBA ¼
î ĵ k̂

0 0 x

rBAx rBAy 0

�������
������� ¼

î ĵ k̂

0 0 x

BA cos hBA BA sin hBA 0

�������
�������

¼ �rBAyx̂iþ rBAxxĵ ¼ BAxð� sin hBA îþ cos hBAĵÞ

ð2:16Þ

where rBAx ¼ AB cos hAB and rBAy ¼ AB sin hAB.

If we plug the velocity vectors into Eq. (2.13), we obtain Eq. (2.17):

vB cos ĥiþ vB sin ĥj ¼ vAx îþ vAy ĵ� rBAxx̂iþ rBAyxĵ

¼ vAx îþ vAy ĵ� BAx sin hBÂiþBAx cos hBA ĵ
ð2:17Þ

If we break the velocity vectors in the equation into their components, two
algebraic equations are obtained (Eq. 2.18):

(a) (b)

Fig. 2.9 a Calculation of the point B velocity magnitude knowing its direction and vector vA.
b Velocity diagram
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vB cos h ¼ vAx � BAx sin hBA
vB sin h ¼ vAy þBAx cos hBA

�
ð2:18Þ

We get two equations where the vB magnitude and angular velocity ω are the
unknowns, so the problem is completely defined. Once the magnitudes have been
calculated by solving the system of Eq. (2.18), we obtain the rotation direction of ω
and the direction of vB depending on the + or − magnitude sign. In the example in
Fig. 2.9a, the values obtained from Eq. (2.18) are positive for angular velocity ω as
well as for the velocity magnitude of point B, vB. This means that both have same
directions from the ones that were assumed to write the equations. Therefore, point
B moves upward right and the body rotates counterclockwise.

Equation (2.13) can also be solved graphically using a velocity diagram
(Fig. 2.9b). Starting from point o (velocity pole), a straight line equal to the value of
known velocity vA is drawn using a scale factor. The velocity polygon is closed
drawing the known direction of vB from the pole and velocity direction vBA (per-
pendicular to AB) from the end point of vA. The intersection of these two directions
defines the end points of vectors vBA and vB. Measuring their length and using the
scale factor, we obtain their magnitudes.

2.1.3.4 Calculation of Velocities in a Four-Bar Mechanism

Figure 2.10 represents a four-bar linkage in which we know the dimensions of all
the links: O2A, AB, O4B and O2O4. This mechanism has one degree of freedom,
which means that the position and velocity of any point on any link can be
determined from the position and velocity of one link. Assume that we know h2 and
x2 and that we want to find the values of h3, h4, x3 and x4. To calculate h3 and h4,
we can simply draw a scale diagram of the linkage at position h2 (Fig. 2.10) or
solve the necessary trigonometric equations (Appendix A).

Once the link positions are obtained, we can start determining the velocities.
First, velocity vA will be calculated:

Fig. 2.10 Four-bar linkage
where all the link dimensions
are know as well as the
position and velocity of link 2
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• The horizontal and vertical components of vA are given by the expression
(Eq. 2.19):

vA ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 x2

AO2 cos h2 AO2 sin h2 0

������
������ ð2:19Þ

As the direction of x2 is counterclockwise (Fig. 2.10), its value in the previous
equation will be negative. Point A describes a rotational motion about O2 with a
radius of r2 ¼ O2A and an angular velocity of x2, so the direction of vA will be
perpendicular to O2A to the left according to the rotation of link 2 (Fig. 2.11).

• Once vA is known, we can obtain vB with the following expression (Eq. 2.20):

vB ¼ x4 ^ rBO4 ¼
î ĵ k̂
0 0 x4

BO4 cos h4 BO4 sin h4 0

������
������ ð2:20Þ

Since point B rotates about steady point O4 with a radius of BO4 and an angular
velocity of x4, we cannot calculate the magnitude of vB due to the fact that x4 is
unknown. The direction of the linear velocity of point B has to be perpendicular
to turning radius BO4 (Eq. 2.21). We can use the relative velocity method to find
the magnitude of velocity vB:

vB ¼ vA þ vBA ð2:21Þ

Vector vA as well as the direction of vector vB are known in vector equa-
tion (2.21). We will now study vector vBA.

• The horizontal and vertical components of the point B relative velocity con-
sidering its rotation about point A are (Eq. 2.22):

vBA ¼ x3 ^ rBA ¼
î ĵ k̂
0 0 x3

BA cos h3 BA sin h3 0

������
������ ð2:22Þ

Fig. 2.11 Velocity diagram
for the given position and
velocity of link 2
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Since the angular velocity of link 3 is unknown, we cannot calculate the mag-
nitude of vBA. The direction of vBA is known since the relative velocity of a point
that rotates about another is always perpendicular to the radius joining them. In this
case, the direction will be perpendicular to BA.

This way we confirm that Eq. (2.21) has two unknowns. In (Fig. 2.11) this
equation is solved graphically to calculate the vBA and vB magnitudes the same way
as in Fig. 2.9.

If we want to solve Eq. (2.21) mathematically, the unknowns are the x3 and x4

magnitudes. To obtain these values, we have to solve the vector equation
(Eq. 2.23):

î ĵ k̂

0 0 x4

BO4 cos h4 BO4 sin h4 0

�������
������� ¼

î ĵ k̂

0 0 x2

AO2 cos h2 AO2 sin h2 0

�������
�������

þ
î ĵ k̂

0 0 x3

BA cos h3 BA sin h3 0

�������
�������

ð2:23Þ

By developing and separating components, we obtain two algebraic equations
(Eq. 2.24) where we can clear x3 and x4.

BO4x4 sin h4 ¼ AO2x2 sin h2 þBAx3 sin h3
BO4x4 cos h4 ¼ AO2x2 cos h2 þBAx3 cos h3

�
ð2:24Þ

Once the angular velocities are obtained, we can represent velocities vA, vB and
vBA according to their components (Fig. 2.11).

Assume that we add point C to link 3 in the previous mechanism as shown in
Fig. 2.12a and that we want to calculate its velocity. In this case, the value of angle
h03 is already known since angle β is a given value of the problem. Hence,
h03 ¼ 360� � ðb� h3Þ.

To obtain the velocity of point C once x3 has been determined, we make use of
vector equation vC ¼ vA þ vCA, vCA where is perpendicular to CA and its value is:

(a) (b)

Fig. 2.12 a Four-bar linkage with new point C on link 3. b Velocity diagram
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vCA ¼ x3 ^ rCA ¼
î ĵ k̂
0 0 x3

CA cos h03 CA sin h03 0

������
������ ð2:25Þ

Vector vCA is obtained directly from Eq. (2.25) since angular velocity x3 is
already known. vC can be calculated adding the two known vectors, vA and vCA.
The velocity of point C can also be calculated based on the velocity of point B by
using Eq. (2.26)

vC ¼ vB þ vCB ð2:26Þ

Figure 2.12b shows the calculation of vC graphically.

2.1.3.5 Velocity Calculation in a Crankshaft Linkage

To calculate link velocities in a crankshaft linkage such as the one in Fig. 2.13, we
start by calculating the positions of links 3 and 4. We consider that dimensions O2A
and AB are already known as well as the direction of the piston trajectory line and
its distance rBy to O2. If we draw a scale diagram of the linkage, the positions of
links 3 and 4 are determined for a given position of link 2. We can also obtain their
position by solving the following trigonometric equations (Eq. 2.27) (Appendix A):

l ¼ arcsin
O2A sin h2 þ rBy

AB
rBx ¼ O2A cos h2 þAB cos l
h3 ¼ 360� � l

9>=>; ð2:27Þ

From this point, the calculation of the velocity of point A is the same as the one
previously done for the four-bar linkage (Eq. 2.28).

vA ¼ x2 ^ r2 ¼
î ĵ k̂
0 0 x2

r2 cos h2 r2 sin h2 0

������
������ ð2:28Þ

Fig. 2.13 Crankshaft
linkage: positions of links 3
and 4 are determined for a
given position of link 2
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Since point A is rotating with respect to steady point O2, the direction of velocity
vA is perpendicular to O2A and it points in the same direction as the angular velocity
of link 2, that is, x2.

We will now study velocity vB:

• The magnitude of velocity vB is unknown. As the trajectory of point B moves
along a straight line, its turning radius is infinite and its angular velocity is zero.
Therefore, we cannot determine its velocity magnitude in terms of its angular
velocity and turning radius.

• The direction of vB is the same as the trajectory of the piston, XX 0.
Consequently, velocity vB can be written as Eq. (2.29):

vB ¼ vB̂i ð2:29Þ

To calculate vB we need to make use of the relative velocity method (Eq. 2.30):

vB ¼ vA þ vBA ð2:30Þ

The magnitude and direction of vector vBA are given by Eq. (2.31):

vBA ¼ x3 ^ rBA ¼
î ĵ k̂
0 0 x3

BA cos h3 BA sin h3 0

������
������ ð2:31Þ

Plugging the results into velocity equation (2.30), we obtain Eq. (2.32):

vB̂i ¼
î ĵ k̂
0 0 x2

AO2 cos h2 AO2 sin h2 0

������
������þ

î ĵ k̂
0 0 x3

BA cos h3 BA sin h3 0

������
������ ð2:32Þ

Breaking it into its components, we define the following equation system
(Eq. 2.33):

vB ¼ �AO2x2 sin h2 � BAx3 sin h3
0 ¼ AO2x2 cos h2 þBAx3 cos h3

�
ð2:33Þ

From which the magnitude of velocity vB and angular velocity x3 are obtained.
Once these velocities are known, we can represent them as shown in Fig. 2.14.

2.1.3.6 Velocity Analysis in a Slider Linkage

To analyze the slider linkage in Fig. 2.15a, we will start by calculating the position
of links 3 and 4. As in previous examples, we know the length and position of link
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2 as well as the distance between both steady supports O2O4. The position of link 4
is graphically determined by the line that joins O4 and A. If we use trigonometry for
our analysis, the equations needed are (Eq. 2.34) (Appendix A):

O4A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2O4

2 þO2A
2 � 2 O2O4 O2A cosð270� � h2Þ

q
h4 ¼ arccos O2A cos h2

O4A

9=; ð2:34Þ

In the diagram, let A be a point that belongs to links 2 and 3 as in previous
examples for the four-bar and crank-shaft linkages. It is not necessary to distinguish
A2 and A3 as they are actually the same point. However, there is another point, A4 in
link 4, which coincides with A2 at the instant represented in Fig. 2.15a.
Nonetheless, point A4 rotates about steady point O4 while A2 rotates about O2. Due
to this, they follow different trajectories at different velocities.

The velocity of point A2 is perpendicular to O2A and its magnitude and direction
are represented by Eq. (2.35):

vA2 ¼ x2 ^ r2 ¼
î ĵ k̂
0 0 x2

r2 cos h2 r2 sin h2 0

������
������ ð2:35Þ

The velocity of A4 is perpendicular to O4A and its magnitude is unknown
because it depends on the angular velocity of link 4. Since point A4 belongs to link
4 and it is rotating about steady point O4, its velocity is represented by Eq. (2.36):

Fig. 2.14 Calculation of
velocities in a crankshaft
linkage

(a) (b)Fig. 2.15 Slider linkage:
a positions of links 3 and 4
are determined for a given
position of link 2,
b calculation of velocities in a
slider linkage
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vA4 ¼ x4 ^ rA4O4 ¼
î ĵ k̂
0 0 x4

A4O4 cos h4 A4O4 sin h4 0

������
������ ð2:36Þ

To calculate vA4 , we will make use of the relative velocity method (Eq. 2.37):

vA2 ¼ vA4 þ vA2A4 ð2:37Þ

To calculate the velocities and solve this vector equation, we have to study
vector vA2A4 first:

• The magnitude of vA2A4 is unknown and represents the velocity at which link 3
slides over link 4.

• The direction of vA2A4 coincides with direction O4A. Therefore, this velocity is
represented by Eq. (2.38):

vA2A4 ¼ vA2A4 cos h4̂iþ vA2A4 sin h4 ĵ ð2:38Þ

Using Eq. (2.37), we obtain Eq. (2.39) with two algebraic unknowns (angular
velocity x4 and the magnitude of velocity vA2A4 ):

î ĵ k̂

0 0 x2

AO2 cos h2 AO2 sin h2 0

�������
������� ¼

î ĵ k̂

0 0 x4

O4A cos h4 O4A sin h4 0

�������
�������

þ vA2A4 cos h4̂iþ vA2A4 sin h4 ĵ

ð2:39Þ

This can be solved by breaking the equation into its components (Eq. 2.40):

�AO2x2 sin h2 ¼ �O4Ax4 sin h4 þ vA2A4 cos h4

AO2x2 cos h2 ¼ O4Ax4 cos h4 þ vA2A4 sin h4

)
ð2:40Þ

Once the velocities have been obtained, we can represent them in the polygon
shown on Fig. 2.15b.

2.1.3.7 Velocity Images

In the velocity polygon shown in Fig. 2.16b, the sides of triangle Mabc are per-
pendicular to those of triangle MABC of the linkage in Fig. 2.16a. The reason for
this is that relative velocities are always perpendicular to their radius and, conse-
quently, triangles Mabc and MABC are similar, with a scale ratio that depends on
x3. The velocity image of link 3 is a triangle similar to the link, rotated 90° in the
direction of x3.
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Every side or link has its image in the velocity polygon. This way ab, bc and ac
are the images of AB, BC and AC respectively. Vector oa�! ¼ vA starting at pole o is

the image of O2A and vector ob
�! ¼ vB is the image of O4B. Moreover, the image of

the frame link is pole o with null velocity. We can verify that velocities departing
from o are always absolute velocities while velocities departing from any other
point are relative ones.

If we add point M to link 3 of the linkage in Fig. 2.16a, we can obtain its
velocity in the velocity polygon by looking for its image. We can verify that
distance am in the velocity diagram is given by Eq. (2.41):

ab

AB
¼ am

AM
¼) am ¼ AM

ab

AB
ð2:41Þ

In conclusion, once the image of the velocity of a link has been obtained, it is
very simple to calculate the velocity of any point in it. Finding the image of the
point in the velocity polygon is enough. The vector that joins pole o with the image
of a point represents its absolute velocity.

2.1.3.8 Application to Superior Pairs

This method can be applied to cams or geared teeth. In Fig. 2.17a, let link 2 be the
driving element and link 3 the follower. Angular velocity x2 of the driving link is
known.

In the considered instant, link 2 transmits movement to link 3 in point A. However,
we have to distinguish between point A of link 2 (A2) and point A of link 3 (A3).
These two points have different velocities and, consequently, there will be a relative
velocity vA3A2 between them. We know that the vector sum in Eq. (2.42) has to
be met:

(a) (b)

Fig. 2.16 a Four bar linkage with coupler point C. b Triangle Mabc in the velocity diagram in
grey represents the velocity image of link 3
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vA3 ¼ vA2 þ vA3A2 ð2:42Þ

The velocity of point A2 is perpendicular to its turning radius O2A while the
velocity of point A3 is perpendicular to O3A. To calculate these two velocities, we
can use Eq. (2.43) in which x3 is unknown:

vA2 ¼ x2 ^ rAO2

vA3 ¼ x3 ^ rAO3

ð2:43Þ

Relative velocity vA3A2 of point A3 relative to A2 has an unknown magnitude. To
find it, we need to determine the direction of vector vA3A2 . Since the links are rigid,
there is no relative motion in direction NN 0 due to physical constraints. Hence,
relative motion happens at point A along the tangential line to the surface. This way,
the direction of vA3A2 will coincide with tangential line TT 0 (Eq. 2.44):

vA3A2 ¼ vA3A2 cos hTT 0 îþ vA3A2 sin hTT 0 ĵ ð2:44Þ

Angular velocity x3 and linear velocity vA3A2 can be determined by rewriting
Eq. (2.42) using the two velocity components of each vector (Eq. 2.45):

�O3Ax3 sin h3 ¼ �O2Ax2 sin h2 þ vA3A2 cos hTT 0

O3Ax3 cos h3 ¼ O2Ax2 cos h2 þ vA3A2 sin hTT 0

)
ð2:45Þ

Example 1 Determine velocities vB and vC of the four-bar mechanism in
Fig. 2.18a. Its dimensions are: O2O4 ¼ 15 cm, O2A ¼ 6 cm, AB ¼ 11 cm,

O4B ¼ 9 cm, AC ¼ 8 cm and dBAC ¼ 30�. The input angle is h2 ¼ 60� and the
angular velocity of the driving link is x2 ¼ �20 rad=s (clockwise direction).

Angles h3, h4 and h03 can be obtained by applying the trigonometric method
(Eqs. 2.46–2.51) developed in Appendix A where angles β, ϕ and δ are represented
in Fig. 2.18b.

(a) (b)

Fig. 2.17 a Superior pair linkage. b Calculation of velocities in a superior pair
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O4A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
152 þ 62 � 2 � 15 � 6 � cos 60�

p
¼ 13:08 cm ð2:46Þ

b ¼ arcsin
6

13:08
sin 60�

� �
¼ 23:41� ð2:47Þ

/ ¼ arccos
112 þ 13:082 � 92

2 � 11 � 13:08
� �

¼ 42:81� ð2:48Þ

d ¼ arcsin
11
9
sin 42:81�

� �
¼ 56:17� ð2:49Þ

h3 ¼ /� b ¼ 19:4�

h4 ¼ 180� � bþ dð Þ ¼ 100:42�
ð2:50Þ

h03 ¼ 360� � dBAC � h3
� 	

¼ 349:4� ð2:51Þ

To calculate the velocity of point B, we will apply the relative velocity method.
We start by analyzing velocities vA, vB and vBA (Eqs. 2.52–2.54).

vA ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 �20

6 cos 60� 6 sin 60� 0

������
������ ¼ 103:9̂i� 60̂j ð2:52Þ

Operating with these components, we calculate its magnitude and direction:

vA ¼ 120 cm=s\330�

vBA ¼ x3 ^ rBA ¼
î ĵ k̂
0 0 x3

11 cos 19:4� 11 sin 19:4� 0

������
������ ¼ �3:56x3iþ 10:38x3 ĵ

ð2:53Þ

(a) (b)

Fig. 2.18 a Four bar linkage. b Position calculation of links 3 and 4 in a four-bar linkage using
the trigonometric method
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vB ¼ x4 ^ rBO4 ¼
î ĵ k̂
0 0 x4

9 cos 100:4� 9 sin 100:4� 0

������
������ ¼ �8:85x4iþ � 1:62x4 ĵ

ð2:54Þ

To calculate x3 and x4 we use the relative velocity (Eq. 2.55):

vB ¼ vA þ vBA ð2:55Þ

Clearing the components, we obtain Eq. (2.56):

�8:85x4 ¼ 103:9� 3:65x3

�1:62x4 ¼ �60þ 10:38x3

�
ð2:56Þ

From which the following values for angular velocity x3 ¼ 7:16 rad=s clock-
wise and x4 ¼ �8:78 rad=s counterclockwise can be worked out. Operating with
these values in Eqs. (2.53) and (2.54), we obtain velocities vB and vBA:

vB ¼ 77:75̂iþ 14:28̂j ¼ 79:1 cm=s\10:4�

vBA ¼ �26:13̂iþ 74:32̂j ¼ 78:78 cm=s\109:4�

To calculate the velocity of point C, we apply the relative velocity equation,
vC ¼ vA þ vCA, where vA is already known and vCA is given by Eq. (2.57):

vCA ¼ x3 ^ rCA ¼
î ĵ k̂
0 0 7:16

8 cos 349:4� 8 sin 349:4� 0

������
������ ¼ 10:53̂iþ 56:3̂j ð2:57Þ

vCA ¼ 57:28 cm=s\79:4�

Using these values in the relative velocity equation, we obtain:

vC ¼ 114:4̂i� 3:7̂j ¼ 114:46 cm=s\358:1�

Example 2 Calculate velocity vB in the crank-shaft linkage shown in Fig. 2.19.
Consider the dimensions to be as follows: O2A ¼ 3 cm, AB ¼ 7 cm and y ¼ 1:5 cm.
The trajectory followed by the piston is horizontal. The input angle is h2 ¼ 60� and
link 2 moves with angular velocity x2 ¼ �10 rad=s (clockwise).

We start by solving the position problem (Eqs. 2.58–2.60) using the trigono-
metric method (Fig. 2.19):
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l ¼ arcsin
3 sin 60� þ 1:5

7
¼ 35:8� ð2:58Þ

xB ¼ 3 cos 60� þ 7 cos 35:8� ¼ 7:1 cm ð2:59Þ

h3 ¼ 360� � 35:8 ¼ 324:2� ð2:60Þ

The velocity of point B is obtained from relative velocity (Eq. 2.61):

vB ¼ vA þ vBA ð2:61Þ

where vA, vB and vBA are given by Eqs. (2.62)–(2.64):

vA ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 �10

3 cos 60� 3 sin 60� 0

������
������ ¼ 25:98̂i� 15̂j ð2:62Þ

vA ¼ 30 cm=s\330�

vBA ¼ x3 ^ rBA ¼
î ĵ k̂
0 0 x3

7 cos 324:2� 7 sin 324:2� 0

������
������ ¼ 4:09x3̂iþ 5:68x3 ĵ

ð2:63Þ

vB ¼ vB̂i ð2:64Þ

Using these values in the relative velocity (Eq. 2.61) we obtain Eq. (2.65):

vB ¼ 25:98þ 4:09x3

0 ¼ �15þ 5:68x3

)
ð2:65Þ

Ultimately, resulting in the following values for angular and linear velocities
x3 ¼ 2:64 rad=s counterclockwise and vB ¼ 36:78 cm=s. Thus, the velocities
will be:

Fig. 2.19 Calculation of the
position of the links for a
given input angle in a
crank-shaft linkage
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vB ¼ 36:78̂i ¼ 36:78 cm=s\0�

vBA ¼ 10:79̂iþ 15̂j ¼ 18:48 cm=s\54:24�

Example 3 Calculate velocity vC of the slider linkage in Fig. 2.20 when the
dimensions of the links are O2A ¼ 3 cm, O2O4 ¼ 5 cm, O4C ¼ 9 cm and the input
angle is h2 ¼ 160�. The input link moves counterclockwise with angular velocity
x2 ¼ 10 rad=s.

The position problem can easily be solved using the trigonometric method
(Eqs. 2.66 and 2.67):

O4A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 þ 32 � 2 � 5 � 3 cosð270� � 160�Þ

p
¼ 6:65 cm ð2:66Þ

h4 ¼ arccos
3 cos 160�

6:65
¼ 115:08� ð2:67Þ

In order to calculate the velocity of point C, we first have to calculate the
velocity of point A4 which temporarily coincides with A2 at the time instant con-
sidered while being part of link 4. We can relate vA2 and vA4 with relative velocity
(Eq. 2.68):

vA2 ¼ vA4 þ vA2A4 ð2:68Þ

where vA2 , vA4 and vA2A4 are given by Eqs. (2.69)–(2.71).

vA2 ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 10

3 cos 160� 3 sin 160� 0

������
������ ¼ �10:26̂i� 28:19̂j ð2:69Þ

vA2 ¼ 30 cm=s\250�

Fig. 2.20 Position and
velocity calculation of the
links in a slider linkage. The
unknowns are h4, O4A, x4

and vA2A4
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vA4 ¼ x4 ^ rAO4 ¼
î ĵ k̂

0 0 x4

6:65 cos 115:08
�

6:65 sin 115:08
�

0

�������
�������

¼ �6:02x4̂i� 2:82x4ĵ

ð2:70Þ

vA2A4 ¼ vA2A4 cos 115:08
�̂iþ vA2A4 sin 115:08

� ĵ ¼ �0:42vA2A4 îþ 0:91vA2A4 ĵ ð2:71Þ

Using these values in Eq. (2.68) and clearing the components, we obtain
Eq. (2.72):

�10:26 ¼ �6:02x4 � 0:42vA2A4

�28:19 ¼ �2:82x4 þ 0:9vA2A4

�
ð2:72Þ

We calculate the values of angular velocity x4 ¼ �3:19 rad=s clockwise and the
magnitude of vA2A4 ¼ �21:32 cm=s. The negative sign indicates that the angle of vA2A4

is not h4 but h4 þ 180�. Consequently, the velocity values are Eqs. (2.73) and (2.74):

vA4 ¼ �19:2̂i� 9̂j ¼ 21:2 cm=s\205:1� ð2:73Þ

vA2A4 ¼ 8:95̂i� 19:19̂j ¼ 21:32 cm=s\295� ð2:74Þ

To calculate the velocity of point C, we make use of Eq. (2.75):

vC ¼ x4 ^ rCO4 ¼
î ĵ k̂
0 0 3:19

9 cos 115:08� 9 sin 115:08� 0

������
������ ¼ �26̂i� 12:17̂j

ð2:75Þ

vC ¼ 28:7 cm=s\205:1�

Example 4 In the mixing machine in Fig. 2.21a, calculate the velocity of extreme
point C of the spatula knowing that the motor of the mixer moves counterclockwise
with an angular velocity of 95:5 rpm and h2 ¼ 0�. The dimensions in the drawing
are in centimeters.

The kinematic skeleton of the mixing machine is shown in Fig. 2.21b. To
determine the position of the linkage, we have to calculate the value of angle h3 and
distance O4A. To do so, we apply Eq. (2.76):

l ¼ arctan
r2
r1

¼ arctan
7
11

¼ 32:47
�

O4A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
112 þ 72

p
¼ 13:04 cm

h3 ¼ 90
� þ l ¼ 122:47

�

9>>>>=>>>>; ð2:76Þ
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Before starting the calculation of velocities, we have to convert the given input
velocity from rpm into rad/s (Eq. 2.77):

x2 ¼ 95:5 rpm
2p rad
60 s

¼ 10 rad=s ð2:77Þ

To calculate the velocity of point C, we first have to solve the velocity of point
O3, which coincides with the position of point O4 at the instant considered while
still being part of link 3. Since points O3 and A belong to link 3, we can use the
relative velocity method to relate their velocities (Eq. 2.78):

vO3 ¼ vA þ vO3A ð2:78Þ

where vA and vO3A are given by Eqs. (2.79) and (2.80):

vA ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 10

7 cos 0� 7 sin 0� 0

������
������ ¼ 70̂j ð2:79Þ

vA ¼ 70 cm=s\90�

vO3A ¼ x3 ^ rAO3 ¼
î ĵ k̂
0 0 x3

AO3 cos 122:47� AO3 sin 122:47� 0

������
������ ¼ �11x3̂i� 7x3 ĵ

ð2:80Þ

Using these values in Eq. (2.78), we obtain Eq. (2.81):

vO3 ¼ ð70̂jÞþ ð�11x3̂i� 7x3 ĵÞ ð2:81Þ

However, in Eq. (2.81) the direction as well as the magnitude of velocity vO3

remain unknown. To obtain information on this velocity, we will relate the velocity
of point O3 with the velocity of point O4 by using Eq. (2.82):

(a) (b)Fig. 2.21 a Mixing machine.
b Kinematic skeleton
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vO3 ¼ vO4 þ vO3O4 ð2:82Þ

In this equation, the velocity of point O4 is zero, vO4 ¼ 0, since it is a fixed point.
Therefore, the velocity of point O3 has the same magnitude and direction as the
relative velocity between points O3 and O4. The direction of this velocity is given
by link 3. Hence, the velocity of point O3 is defined as Eq. (2.83):

vO3 ¼ vO3 cos 122:47̂iþ vO3 sin 122:47̂j ð2:83Þ

Evening out Eqs. (2.81) and (2.83), we obtain Eq. (2.84):

vO3 cos 122:47̂iþ vO3 sin 122:47̂j ¼ 70̂jþð�11x3̂i� 7x3 ĵÞ ð2:84Þ

By separating the components, we obtain Eq. (2.85):

vO3 cos 122:47 ¼ �11x3

vO3 sin 122:47 ¼ 70þ 7x3

�
ð2:85Þ

Solving Eq. (2.85), we obtain the values for angular velocity x3 ¼ 2:88 rad=s
clockwise and the velocity magnitude of point O3, vO3 ¼ 58:71 cm=s. This way, the
vector velocity of point O3 is defined by Eq. (2.86):

vO3 ¼ �31:52̂iþ 49:53̂j ¼ 58:71 cm=s\122:47� ð2:86Þ

Eventually, in order to calculate the velocity of point C, we apply velocity
(Eq. 2.87):

vC ¼ vA þ vCA ð2:87Þ

where relative velocity between points C and A is Eq. (2.88):

vCA ¼ x3 ^ rCA ¼
î ĵ k̂
0 0 2:88

21 cos 302:47� 21 sin 302:47� 0

������
������ ¼ 51:03̂iþ 32:45̂j

ð2:88Þ

Operating with the known values in Eq. (2.87), we obtain the vector velocity of
point C:

vC ¼ 51:03̂iþ 102:45̂j ¼ 114:4 cm=s\63:52�

Once all the velocities are defined, we can represent them in the velocity polygon
(Fig. 2.21c).
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2.1.4 Instant Center of Rotation Method

Any planar displacement of a rigid body can be considered a rotation about a point.
This point is called instantaneous center or instant center of rotation (I.C.R.).

2.1.4.1 Instant Center of Rotation of a Rigid Body

Let a rigid body move from position AB to position A0B0 (Fig. 2.22). Position
change could be due to a pure rotation of triangle MOAB about O, intersection point
of the bisectors of segments AA0 and BB0. We can obtain the displacement of points
A and B by using their distance to center O and the angular displacement of the
body, Dh (Eq. 2.89).

DrA ¼ AA0 ¼ 2OA sin Dh
2

DrB ¼ BB0 ¼ 2OB sin Dh
2

�
ð2:89Þ

Considering the time to be infinitesimal, we can consider the body to be rotating
about O, the instant rotation center. Displacements will be Eq. (2.90):

drA ¼ 2OA sin dh
2 ¼ OAdh

drB ¼ 2OB sin dh
2 ¼ OBdh

�
ð2:90Þ

Dividing both displacements by the time spent, dt, we find the instant velocities
of points A and B. Their directions are perpendicular to radius OA and OB
respectively and their magnitudes are Eq. (2.91):

vA ¼ OA dh
dt ¼ OAx

vB ¼ OB dh
dt ¼ OBx

�
ð2:91Þ

Fig. 2.22 A planar
movement of the rigid body
AB can be considered a
rotation about point O
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This way, it is verified that, at a certain instant of time, point O is the rotation
center of points A and B. The magnitude of the velocity of any point in the body
will be Eq. (2.92):

v ¼ Rx ð2:92Þ

where:

• R is the instant rotation radius of the point (distance from the point to O).
• ω is the angular velocity of the body measured in radians per second.

Velocity of every point in a link will have direction perpendicular to its instant
rotation radius. Thus, if we know the direction of the velocities of two points of a
link, we can find the ICR of the link on the intersection of two perpendicular lines
to both velocities.

Consider that in the link in Fig. 2.23a, we know the magnitude and direction of
point A velocity and the direction of point B velocity. The ICR of the link has to be
on the intersection of the perpendicular lines to vA and vB; even though the latter
magnitude is unknown, we do know its direction. Once the ICR of the link is
determined, we can calculate its angular velocity (Eq. 2.91) and so x ¼ vA



OA.

Ultimately, once the ICR and angular velocity of the link are known, we can
calculate the velocity of any point C in the link. The magnitude of the velocity of
point C is vC ¼ OCx and its direction is perpendicular to OC.

In many cases, it is simpler to calculate velocity magnitudes with graphical
methods. Figure 2.23b shows how velocities vB and vC can be calculated by means
of a graphic method once the ICR of a rigid body and the velocity of one of its

(a) (b)

Fig. 2.23 Graphical calculation of direction (a) and magnitude (b) of the velocities of points B
and C knowing vA and the direction of vB
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points (in this case vA) are known. If we fold up points B and C over line OA, it
must be verified that the triangles with their sides formed by each velocity and the
rotation radius of each point are similar (Eq. 2.93), since:

vA
OA

¼ vB
OB0 ¼

vC
OC0 ¼ x ð2:93Þ

In the case of a bodymoving on a plane with no angular velocity (pure translation),
its ICR is placed at the infinite since all points of the body have the same velocity and
the perpendicular lines to such velocities intersect at the infinite (Fig. 2.24).

2.1.4.2 Instant Center of Rotation of a Pair of Links

So far, we have looked at the ICR of a link relative to a stationary reference system.
However, we can define the ICR of a pair of links, not taking into account if one of
them is fixed or not. This ICR between the two links is the point one link rotates
about with respect to the other.

In Fig. 2.25, point I23 is the ICR of link 2 relative to link 3. In other words, link 2
rotates about this point relative to link 3. There is one point of each link that
coincides in position with this ICR. If we consider that link 3 is moving, these two
points move at the same absolute velocity, that is, null relative velocity. This is the
only couple of points - one of each link - that has zero relative velocity at the instant
studied.

To help us understand the ICR concept of a pair of links, we are going to
calculate the ones corresponding to a four-bar linkage. Notice that in the linkage in
Fig. 2.26, there is one ICR for every two links. To know the number of ICRs in a
linkage, we have to establish all possible combinations of the number of links

Fig. 2.24 The ICR of a body
moving on a plane with pure
translation is placed at the
infinite

Fig. 2.25 The ICR between
links 2 and 3 is the point link
2 rotates about with respect to
link 3 or vice versa
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taking two at a time since Iij is the same IRC as Iji. Therefore, the number of IRCs is
given by Eq. (2.94):

NICRs ¼ NðN � 1Þ
2

¼ 6 ð2:94Þ

where:

• NICRs is the number of ICRs
• N is the number of links.

The obvious ones are I12, I23, I34 and I14 since every couple of links is joined by
a hinge, which is the rotating point of one link relative to another. Remember that
the velocity of any point in the link has to be perpendicular to its instant rotation
radius. In consequence, considering that points A and B are part of link 3, I13 is on
the intersection of two lines perpendicular to the velocity vectors of points A and
B (Fig. 2.26).

ICR I24 is obtained the same way but considering the inversion shown in
Fig. 2.27. As in kinematic inversions, relative motion between links is maintained.

Fig. 2.26 ICR I13 is on the intersection point of two lines perpendicular to the velocity vectors of
points A and B of link 3 with respect to link 1

Fig. 2.27 ICR I24 is on the intersection of two lines perpendicular to the velocity vectors of points
A and O2 of link 2 with respect to link 4
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2.1.4.3 Kennedy’s Theorem

Also known as the Three Centers Theorem, it is used to find the ICR of a linkage
without having to look into its kinematic inversions as we did in the last example.
Kennedy’s Theorem states that all three ICRs of three links with planar motion have
to be aligned on a straight line.

In order to demonstrate this theorem, first note Fig. 2.28 representing a set of
three links (1, 2, 3) that have relative motion. Links 2 and 3 are joined to link 1
making two rotating pairs. Therefore, ICRs I12 and I13 are easy to locate.

Links 2 and 3 are not physically joined. However, as previously studied in this
chapter, there is a point link 2 rotates about, relative to link 3, at a given instant.
This point is ICR I23. Initially, we do not know where to locate it, so we are going
to assume it coincides with point A.

In this case, point A would act as a hinge that joins links 2 and 3. In other words,
we could consider it as a point that is part of links 2 and 3 at the same time. If we
consider it to be a point of link 2, its velocity with respect to link 1 has to be
perpendicular to the rotating radius I12A (Fig. 2.28). However, if we consider it to
be part of link 3, it has to rotate about I13 with a radius of I13A.

This gives us different directions for the velocity vectors of points A2 and A3,
which means that there is a relative velocity between them. Therefore, point
A cannot be ICR I23. If the velocity of ICR I23 has to have the same direction when
calculated as a point of link 2 and a point of link 3, ICR I23 has to be located on the
straight line defined by I12 and I13.

This rule is known as Kennedy’s Theorem, which says that the three relative
ICRs of any three links have to be located on a straight line. This law is valid for
any set of three links that has relative planar motion, even if none of them is the
ground link (frame).

2.1.4.4 Locating the ICRs of a Linkage

To locate the ICRs of the links in a linkage, we will apply the following rules:

1. Identify the ones corresponding to rotating kinematic pairs. The ICR is the point
that identifies the axis of the pair (hinge).

Fig. 2.28 The velocity
vector of ICR I23 has to be
perpendicular to ICR I12 and
to ICR I13. Therefore, it has to
be located on the straight line
defined by ICR I12 and ICR I13
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2. In sliding pairs, the ICR is on the curvature center of the path followed by the
slide.

3. The rest of ICRs can be obtained by means of the application of Kennedy’s
Theorem to sets of three links in the linkage.

Example 5 Find the Instant Centers of Rotation of all the links in the slider-crank
linkage in Fig. 2.29.

First, we identify ICRs I12, I23, I34, and I14 that correspond to the four kinematic
pairs in the linkage. Notice that ICR I14 is located at the infinite as the slider path is
a straight line.

Next, we apply Kennedy’s Theorem to links 1, 2 and 3. According to this
theorem ICRs I13, I23 and I14 have to be aligned. The same way, if we take links 1, 3
and 4, ICRs I13, I34 and I14 also have to be aligned. By drawing the two straight
lines, we find the position of ICR I13.

To find ICR I24, we proceed the same way applying Kennedy’s Theorem to links
1, 2, 4 on one side and 2, 3, 4 on the other.

Example 6 Find the Instant Centers of Rotation of the links of the four-bar linkage
in Fig. 2.30a.

To help us to locate all ICRs we are going to make use of a polygon formed by
as many sides as there are links in the linkage to analyze. In this case, we use a
four-sided polygon. Next, we number the vertex from 1 to 4 (Fig. 2.30b). Every
side or diagonal of the polygon represents an ICR. In this case, the sides represent
I12, I23, I34 and I14. Both diagonals represent ICRs I13 and I24. We will trace those
sides or diagonals representing known ICRs with a solid line and the unknown ones
with a dotted line.

In the example in Fig. 2.30a, ICRs I12, I23, I34 and I14 are known while ICRs I24
and I13 are unknown. In order to find ICR I24 we apply Kennedy’s Theorem making
use of the polygon. To find the two ICRs that are aligned with ICR I24, we define a

Fig. 2.29 Instant Centers of
Rotation of links 1, 2, 3 and 4
in a slider-crank linkage
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triangle in the polygon, where two sides represent already known ICRs (for instance,
I23 and I34) and a third side representing the unknown ICR (in this case I24). We will
repeat the operation with ICRs I12, I14 and I24. We find ICR I24 on the intersection of
lines I23I24 and I12I14. To find ICR I13, we define triangles I12, I23, I13 and I14, I34, I13.
ICR I13 is on the intersection of lines I12I23 and I14I34.

Example 7 Find the Instant Centers of Rotation of the links in the slider linkage in
Fig. 2.31.

In the example in Fig. 2.31a, ICRs I12, I23, I34 and I14 are known while ICRs I24
and I13 are unknown. In order to find these ICRs we apply Kennedy’s
Theorem making use of the polygon (Fig. 2.31b) the same way we did in the last
example.

Example 8 Find the all the Instant Centers of Rotation in the mechanism in
Fig. 2.32a. Link 2 is an eccentric wheel that rotates about O2 transmitting a rolling
motion without slipping to link 3, which is a roller joined at point A to link 4 in
straight motion inside a vertical guide.

(a)

(b)

Fig. 2.30 a Instant Centers
of Rotation of links 1, 2, 3
and 4 in a four-bar linkage.
b Polygon to analyze all ICRs

(a)

(b)

Fig. 2.31 a Instant Centers
of Rotation of links 1, 2, 3
and 4 in a slider linkage.
b Polygon to analyze all ICRs
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The known ICRs are I12, I23, I34 and I14. ICR I13 is on the intersection of I12I23
and I14I34 and ICR I24 is on the intersection of lines I23I34 and I12I14.

Example 9 Find the ICRs of the links in the five-bar linkage shown in Fig. 2.33a.
Link 2 rolls and slips over link 3.

The known ICRs are I12, I13, I15, I34, I35 and I45. ICR I23 is on the intersection of
I12I13 and a line perpendicular to the contours of links 2 and 3 at the contact point
(Fig. 2.33b). The rest of the ICRs can easily be found by applying Kennedy’s
Theorem making use of the polygon the same way we did in the previous examples
(Fig. 2.33c).

(a) (b)

(c)

Fig. 2.32 a Instant Centers of Rotation of links 1, 2, 3 and 4 in a mechanism with two wheels and
a slider. b ICRs. c Polygon to analyze all ICRs

(a) (b)

(c)

Fig. 2.33 aMechanism with 5 links, b ICRs of all links in the linkage, c polygon helping to apply
Kennedy’s Theorem
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2.1.4.5 Calculating Velocities with ICRs

We have already studied the relative velocity method for the calculation of point
velocity in a linkage. Although it is a simple method to apply, it has one incon-
venience. In order to calculate the velocity of one link, we need to calculate the
velocities of all the links that connect it to the input link.

Calculating velocity by using instantaneous centers of rotation allows us to
directly calculate the velocity of any point in a linkage without having to first
calculate the velocities of other points.

Figure 2.34 shows a six-bar linkage in which the velocity of point A is already
known. To calculate the velocity of point D by means of the relative velocity
method, we first have to calculate the velocities of points B and C.

With the ICR method, it is not necessary to calculate the velocity of a point that
physically joins the links. By calculating the relative ICR of two links, we can
consider that we know the velocity of a point that is equally part of both links.

It is important to stress that the ICR behaves as if it were part of both links
simultaneously and, consequently, its velocity is the same, no matter which link we
look at to find it.

The process to calculate velocity is as follows:

4. We identify the following links:

– The link the point with known velocity belongs to (in this example point A).
– The link to which the point with unknown velocity belongs (point D).
– The frame link.

In the example of Fig. 2.34, the link with known velocity is link 2, the one with
unknown velocity is link 6 and link 1 is the frame.

5. We identify all three relative ICRs of the mentioned links (I12, I16 and I26 in the
example) which are aligned according to Kennedy’s Theorem.

6. We calculate the velocity of the ICR between the two non-fixed links v26,
considering that the ICR is a point that belongs to the link with known velocity.
In this case, I26 will be considered part of link 2 and it will revolve about I12.

7. We consider ICR I26 a point in the link with unknown velocity (link 6 in this
example). Knowing the velocity of a point in this link, v26, and its center of
rotation, I16, the velocity of any other point in the same link can easily be
calculated.

This problem is solved in Example 13 of this chapter.

Fig. 2.34 Six-bar linkage
with known velocity
of point A
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2.1.4.6 Application of ICRs to a Four-Bar Linkage

Figure 2.35 shows a four-bar linkage in which the velocity vector of point A, vA, is
known and the velocity of point B, vB, is the one to be calculated. The steps to be
followed are:

8. We identify the link the point of known velocity belongs to (in this example
link 2). We also have to identify the link the point with unknown velocity
belongs to (link 4), and the frame (link 1).

9. We locate the three ICRs between these three links: I12, I14 and I24. The straight
line they form will be used as a folding line for points A and B.

1. We obtain velocity magnitude v24 as if I24 was part of link 2. Figure 2.35 shows
the graphic calculation of this velocity making use of vA. See the analytical
calculation in Eqs. (2.95)–(2.97).

vI24 ¼ I12I24x2 ð2:95Þ

vA ¼ I12I23x2 ð2:96Þ

Dividing and clearing vI24 :

vI24 ¼
I12I24
I12I23

vA ð2:97Þ

2. ICR I24 is now considered a point on link 4. The velocity of point B is
graphically obtained by drawing two similar triangles: the first one defined by
sides I12I24 and and the second one by sides I14B (Fig. 2.35). It can also be
obtained analytically in Eqs. (2.98)–(2.100):

vI24 ¼ I14I24x4 ð2:98Þ

vB ¼ I14I34x4 ð2:99Þ

Fig. 2.35 Calculation of the velocity of point B in a four-bar linkage with the ICR method
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Dividing and clearing

vB ¼ I14I34
I14I24

vI24 ð2:100Þ

If the angular velocity of link 4 is required, it can easily be calculated using the
x2 value in Eqs. (2.101)–(2.103):

x2 ¼ vI24
I12I24

ð2:101Þ

x4 ¼ vI24
I14I24

ð2:102Þ

x4 ¼ I12I24
I14I24

x2 ð2:103Þ

2.1.4.7 Application of the ICR Method to a Crank-shaft Linkage

We assume velocity vector vA of point A to be known and we want to calculate vB
for point B (Fig. 2.36).

10. The link with known velocity is link 2. We want to find the velocity of link 4,
while link 1 is fixed.

11. We locate the three ICRs related to these links: I12 , I24 and I14.
12. We calculate velocity of ICR I24, regarded as a point of link 2.
13. We consider ICR I24 as part of link 4. Note that all the points in link 4 have the

same velocity. Consequently, if we know velocity vI24 , we already know the
velocity of point B: vB ¼ vI24 .

2.2 Accelerations in Mechanisms

In this section we will start by defining the components of the linear acceleration of
a point. Then we will develop the relative acceleration method that will allow us to
calculate the linear and angular accelerations of all points and links in a mechanism.

Fig. 2.36 Velocity
calculation of point B in a
crank-shaft linkage using the
ICR method
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These accelerations will be needed in order to continue with the dynamic analysis in
future chapters.

2.2.1 Acceleration of a Point

The acceleration of a point is the relationship between the change of its velocity
vector and time.

Point A moves from position A to A0 along a curve during time Dt and changes
its velocity vector from vA to vA0 (Fig. 2.37a). Vector Dv measures this velocity
change (Fig. 2.37b).

The Dv=Dt ratio, that is to say, the variation of velocity divided by the time it
takes for that change to happen, is the average acceleration. When the time con-
sidered is infinitesimal, then, Dv=Dt becomes dv=dt and this is called instantaneous
acceleration or just acceleration.

From Fig. 2.37b we deduce that Dv ¼ Dv1 þDv2, where, since the magnitude of
vector vA is equal om ¼ on, we can assert that:

• Dv1 represents the change in direction of velocity vA, thus vA þDv1 ¼
vA0 � Dv2 is a vector with the same direction as vA0 and the magnitude of vA.

• Dv2 represents the change in magnitude (magnitude change) of the velocity of
point A when it switches from one position to another. Its magnitude is the
difference between the magnitudes of vectors vA and vA0 .

Relating these changes in velocity and the time it took for them to happen, we
obtain average acceleration vector A of point A (Eq. 2.104) when it moves from
point A to A0.

AA ¼ Dv
Dt

¼ Dv1
Dt

þ Dv2
Dt

ð2:104Þ

This average acceleration has two components. One is only responsible for the
change in direction (Dv1=Dt), and the other is responsible for the change in velocity

(a) (b)

Fig. 2.37 a Change of point A velocity while changing its position from A to A0 following a curve
in Dt time. b Velocity change vector

56 2 Kinematic Analysis of Mechanisms. Relative Velocity …



magnitude (Dv2=Dt). In Fig. 2.37b we can calculate the magnitudes of Dv1 and Dv2
(Eqs. 2.108 and 2.109):

Dv1 ¼ 2vA sin
Dh
2

ð2:105Þ

Dv2 ¼ v2 � v1 ð2:106Þ

The directions of Dv1 and Dv2 in the limit as Dt approaches zero are respectively
perpendicular and parallel to velocity vector vA, that is, normal and tangential to the
trajectory at point A. These vectors are called normal and tangential accelerations,
anA and a

t
A. The acceleration vector can be obtained by adding these two components

(Eq. 2.107):

aA ¼ anA þ atA ð2:107Þ

The magnitudes of these components can be calculated as follows in
Eqs. (2.108) and (2.109):

anA ¼ lim
Dt!0

2vA
sinDh=2

Dt

� �
’ vA

dh
dt

¼ vAx ¼ Rx2 ¼ v2A
R

ð2:108Þ

atA ¼ lim
Dt!0

vA0 � vA
Dt

¼ dvA
dt

¼ R
dx
dt

þx
dR
dt

¼ Raþx
dR
dt

ð2:109Þ

where:

• v is the velocity of point A.
• R is the trajectory radius at point A.
• ω is the angular velocity of the radius.
• α is the angular acceleration of the radius.
• dR=dt is the radius variation with respect to time.

To sum up, acceleration of a point A can be broken into two components:

• The first one is called normal acceleration, anA. Its direction is normal to the
trajectory followed by point A and it points towards the trajectory center
(Fig. 2.38). This component is responsible for the change in velocity direction
and its magnitude is Eq. (2.110):

anA ¼ Rx2 ¼ v2A
R

ð2:110Þ

• The second component, known as tangential acceleration, atA, has a direction
tangential to the trajectory, that is, the same as the velocity vector of point A.
It can point towards the same side as the velocity or towards the opposite one;
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it depends on whether the velocity magnitude increases or decreases. Tangential
acceleration is responsible for the change in magnitude of the velocity vector
and its value is Eq. (2.111):

atA ¼ Raþx
dR
dt

ð2:111Þ

If the trajectory radius is constant, dR=dt is zero and the value of the tangential
acceleration is atA ¼ Ra.

The magnitude of the acceleration can be determined by the magnitudes of its
normal and tangential components. Equation (2.112) will be applied:

aA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðanAÞ2 þðatAÞ2

q
ð2:112Þ

Finally, the angle formed by the acceleration vector and the normal direction to
the trajectory is defined by Eq. (2.113):

/ ¼ arctan
atA
anA

¼ arctan
a
x2 ð2:113Þ

Equation (2.113) is only valid when the radius is constant.

2.2.2 Relative Acceleration of Two Points

The relative acceleration of point A with respect to point B is the ratio between the
change in their relative velocity vector and time.

Let us assume that point A moves from position A to A0 in the same period of
time it takes B to reach position B0. The velocities of points A and B are vA and vB
and their change is given by vectors DvA and DvB (Fig. 2.39). This way, the new
velocities will be Eqs. (2.114) and (2.115):

Fig. 2.38 The acceleration of a point has a normal component that points towards the center of
the trajectory and a tangential component whose direction is tangential to the trajectory
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vA0 ¼ vA þDvA ð2:114Þ

vB0 ¼ vB þDvB ð2:115Þ

On the other side, Eq. (2.116) that gives us the value of relative velocity vBA
between A and B is (Fig. 2.40a):

vBA ¼ vB � vA ð2:116Þ

And between A0 and B0 it is Eq. (2.117) (Fig. 2.40b):

vBA þDvBA ¼ ðvB þDvBÞ � ðvA þDvAÞ ð2:117Þ

If we plug the value of relative velocity vBA from Eq. (2.116) in Eq. (2.117), we
obtain Eq. (2.118):

ðvB � vAÞþDvBA ¼ ðvB þDvBÞ � ðvA þDvAÞ ð2:118Þ

By simplifying the previous equation, we get Eq. (2.119):

DvBA ¼ DvB � DvA ð2:119Þ

Fig. 2.39 Velocity change vectors DvA and DvB of points A and B when moving to new positions
A0 and B0 respectively

(a)

(b)

Fig. 2.40 Relative velocity
between a points A and B,
b points A0 and B0
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After rearranging Eq. (2.120):

DvB ¼ DvA þDvBA ð2:120Þ

This way, if we divide Eq. (2.120) by the period of time, Dt, we obtain
Eq. (2.121):

DvB
Dt

¼ DvA
Dt

þ DvBA
Dt

ð2:121Þ

Each one of the terms in equation (Eq. 2.121) is an average acceleration
(Eq. 2.122):

AB ¼ AA þABA ð2:122Þ

When Dt approaches zero (dt), the average accelerations become instantaneous
accelerations (Eq. 2.123):

aB ¼ aA þ aBA ð2:123Þ

Therefore, the acceleration vector of point B equals the sum of the acceleration
vector of point A plus the relative acceleration vector of point B with respect to
point A. The latter has a normal as well as a tangential component (Eq. 2.124):

aB ¼ aA þ anBA þ atBA ð2:124Þ

2.2.3 Relative Acceleration of Two Points in the Same
Rigid Body

As the distance between two points of a rigid body cannot change, relative motion
between them is a rotation of one point about the other. In the example shown in
Fig. 2.41, point B rotates about point A, both being part of a link that moves with
angular velocity ω and angular acceleration α. The relative acceleration vector of
point B with respect to point A can be broken into two components:

Fig. 2.41 Relative
acceleration of point B with
respect to point A both being
in the same link
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• The normal component, anBA, is always perpendicular to the relative velocity
vector and it points towards the center of curvature of the trajectory. In this case,
it points towards point A.

• The tangential component, atBA, has the same direction as the relative velocity
vector. In the example shown in Fig. 2.41, as the direction of angular acceler-
ation α opposes the direction of angular velocity ω, the tangential component
points in the opposite direction to relative velocity vBA, which means that the
magnitude of this velocity is decreasing.

These normal and tangential components of the relative acceleration of point
B with respect to point A can be obtained with Eqs. (2.125) and (2.126):

anBA ¼ x ^ vBA ¼ x ^ x ^ rBA ð2:125Þ

atBA ¼ a ^ rBA ð2:126Þ

The angle formed by the relative acceleration vector and the normal direction to
the trajectory is Eq. (2.127):

/ ¼ arctan
atBA
anBA

¼ arctan
a
x2 ð2:127Þ

In other words, angle ϕ is independent from distance AB. It only depends on the
acceleration α and the angular velocity ω.

With these components, we can calculate the acceleration of point B based on the
one of point A (Eq. 2.128):

aB ¼ aAx îþ aAy ĵþx ^ vBA þ a ^ rBA ð2:128Þ

In the case of a rigid body that revolves about steady point O (Fig. 2.42) the
absolute acceleration vector of point P (a generic point of the body) is the relative
acceleration with respect to point O (Eq. 2.129):

aP ¼ aO þ anPO þ atPO ¼ anPO þ atPO ð2:129Þ

Fig. 2.42 Normal and
tangential components of the
acceleration of point P on a
link that revolves about steady
point O
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Where the normal and tangential components are Eqs. (2.130) and (2.131):

anPO ¼ x ^ vPO ¼ x ^ x ^ rPO ð2:130Þ

atPO ¼ a ^ rPO ð2:131Þ

2.2.4 Computing Acceleration in a Four-Bar Linkage

To apply the relative acceleration method, we will calculate the acceleration of
points B and C in the linkage in Example 1 of this chapter (Fig. 2.43). We know
angular velocity x2 ¼ �20 rad=s clockwise and angular acceleration a2 ¼
150 rad=s2 counterclockwise of the motor link as well as the geometrical data of the
linkage. We will also make use of the following results obtained from the position
and velocity analysis in Example 1:

h3 ¼ 19:4�

h03 ¼ 349:4�

h4 ¼ 100:42�

x3 ¼ 7:16 rad=s

x4 ¼ �8:78 rad=s

vA ¼ 103:9̂i� 60̂j

vB ¼ 77:75̂iþ 14:28̂j

vBA ¼ �26:13̂iþ 74:32̂j

vC ¼ 114:4̂i� 3:7̂j

vCA ¼ 10:53̂iþ 56:3̂j

To solve the problem we will apply the vector equation that relates the accel-
erations of points B and A (Eq. 2.132):

aB ¼ aA þ aBA ¼ ðanB þ atBÞ ¼ ðanA þ atAÞþ ðanBA þ atBAÞ ð2:132Þ

In general, normal components will be known, since they depend on velocity,
while tangential components will be unknown as they depend on angular acceler-
ation, a. We will start calculating the acceleration of point A. Then we will analyze
the acceleration of point B with respect to point A. Next, we will study the accel-
eration of point B and, finally, we will obtain the acceleration of point C.

Fig. 2.43 Four-bar linkage
with known angular velocity
and acceleration of the input
link
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Acceleration Vector of Point A:
Point A rotates about steady point O2, so the normal acceleration component is

given by Eq. (2.133):

anA ¼ x2 ^ vA ¼
î ĵ k̂
0 0 �20

103:9 �60 0

������
������ ¼ �1200̂i� 2078̂j ð2:133Þ

anA ¼ 2400 cm=s2 \240�

We can verify that this vector has a perpendicular direction to vA and it points
towards the trajectory curvature center of point A, that is to say, towards O2.

The tangential component of the acceleration vector of point A is given by
Eq. (2.134):

atA ¼ a2 ^ rAO2 ¼
î ĵ k̂
0 0 150

6 cos 60� 6 sin 60� 0

������
������ ¼ �779:42̂iþ 450̂j ð2:134Þ

atA ¼ 900 cm=s2 \150�

Acceleration vector atA is parallel to velocity vector vA but in the opposite
direction, as the direction of angular acceleration a2 is opposite to the direction of
angular velocity x2.

We can start drawing the acceleration polygon (Fig. 2.44) by tracing vectors anA
and atA. We define point a in the polygon at the end of vector acceleration aA. The
acceleration image of link O2A is oa.

Relative Acceleration of Point B with Respect to Point A:
Since relative motion is a revolution of point B about point A, the normal

component of the relative acceleration of B with respect to A is Eq. (2.135):

anBA ¼ x3 ^ vBA ¼
î ĵ k̂
0 0 7:16

�26:13 74:32 0

������
������ ¼ �532:13̂i� 187:1̂j ð2:135Þ

anBA ¼ 564:06 cm=s2 \199:4�

The direction of this vector is perpendicular to velocity vBA and it heads towards
the trajectory center of point B, In other words, the direction is from B to A.

The tangential component of the relative acceleration vector of B with respect to
A is expressed as Eq. (2.136):
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atBA ¼ a3 ^ rBA ¼
î ĵ k̂
0 0 a3

11 cos 19:4� 11 sin 19:4� 0

������
������ ¼ �3:65a3̂iþ 10:38a3 ĵ

ð2:136Þ

To calculate the value of atBA, we need to know a3, which will be obtained in the
next step.

Acceleration of Point B:
This point rotates about O4, so the normal component of its acceleration

(Eq. 2.137) will be:

anB ¼ x4 ^ vB ¼
î ĵ k̂
0 0 �8:78

77:75 14:28 0

������
������ ¼ 125:37̂i� 682:64̂j ð2:137Þ

anB ¼ 694:06 cm=s2 \280:4�

This vector is perpendicular to vB and heads towards the trajectory curvature
center of point B. In other words, from B to O4.

Fig. 2.44 Acceleration polygon of the four-bar linkage in Fig. 2.43
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The tangential acceleration is defined by Eq. (2.138):

atB ¼ a4 ^ rBO4 ¼
î ĵ k̂
0 0 a4

9 cos 100:4� 9 sin 100:4� 0

������
������ ¼ �8:85a4̂i� 1:62a4 ĵ

ð2:138Þ

This component depends on a4, which is another unknown that we need to find.
In order to determine it, we need to plug the obtained values in the acceleration
vector (Eqs. 2.139 and 2.140):

aB ¼ aA þ aBA ¼ ðanA þ atAÞþ ðanBA þ atBAÞ ð2:139Þ

ð125:37̂i� 682:64̂jÞþ ð�8:85a4̂i� 1:62a4 ĵÞ
¼ ð�1200̂i� 2078̂jÞþ ð�779:42̂iþ 450̂jÞ
þ ð�532:13̂i� 187:1̂jÞþ ð�3:65a3̂iþ 10:38a3 ĵÞ

ð2:140Þ

Breaking Eq. (2.140) into its components, we obtain Eq. (2.141):

125:37� 8:85a4 ¼ �1200� 779:42� 532:13� 3:65a3
�682:64� 1:62a4 ¼ �2078þ 450� 187:1þ 10:38a3

�
ð2:141Þ

By solving the system, the angular accelerations are obtained: a3 ¼ 58:81 rad=s2

and a4 ¼ 322:21 rad=s2. They can be used in Eqs. (2.136)–(2.138) to calculate the
values of the tangential components.

atBA ¼ �214:65̂iþ 610:48̂j ¼ 647:08 cm=s2 \109:37�

atB ¼ �2851:55̂i� 522̂j ¼ 2898:9 cm=s2 \190:37�

Acceleration of Point C:
Finally, we can find the acceleration of point C (Eq. 2.142) by using the fol-

lowing vector equation:

aC ¼ aA þ aCA ¼ aA þ anCA þ atCA ð2:142Þ

We already know acceleration aA and we can calculate the components of the
relative acceleration of point C with respect to point A (Eqs. 2.143 and 2.144):

anCA ¼ x3 ^ vCA ¼
î ĵ k̂
0 0 7:16

10:53 56:3 0

������
������ ¼ �403:11̂iþ 75:39̂j ð2:143Þ
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anCA ¼ 410:1 cm=s2 \169:4�

atCA ¼ a3 ^ rCA ¼
î ĵ k̂
0 0 58:81

8 cos 349:4� 8 sin 349:4� 0

������
������ ¼ 86:54̂iþ 462:45̂j

ð2:144Þ

atCA ¼ 470:48 cm=s2 \79:4�

Hence, the acceleration of point C is Eq. (2.145):

aC ¼ ð�1200̂i� 2078̂jÞþ ð�779:42̂iþ 450̂jÞ
þ ð�403:11̂iþ 75:39̂jÞþ ð86:54̂iþ 462:45̂jÞ

¼ �2295:99̂i�1090:16̂j

ð2:145Þ

aC ¼ 2541:66 cm=s2 \205:4�

Once all the accelerations have been obtained, they can be represented in an
acceleration polygon like the one shown in Fig. 2.44.

In the acceleration polygon in Fig. 2.44, triangle Mabc is defined by the end
points of the absolute acceleration vectors of points A, B and C. The same as in
velocity analysis, triangle Mabc in the polygon is similar to triangle MABC in the
mechanism (Eq. 2.146).

ab

AB
¼ ac

AC
¼ bc

BC
ð2:146Þ

2.2.4.1 Accelerations in a Slider-crank Linkage

Figure 2.45 shows the slider-crank mechanism whose velocity was calculated in
Example 2 of Sect. 2.1.3.8. The crank rotates with constant angular velocity of
�10 rad=s clockwise. We want to find the acceleration of point B.

We will use the results obtained in Example 2:

h3 ¼ 324:26 x3 ¼ 2:64 rad=s

vA ¼ 25:98̂i� 15̂j

vBA ¼ 10:79̂iþ 15̂j

vB ¼ 36:78̂i

To calculate the acceleration of point B (Eq. 2.147), we apply the following
vector equation:

66 2 Kinematic Analysis of Mechanisms. Relative Velocity …



aB ¼ aA þ aBA ¼ ðanA þ atAÞþ ðanBA þ atBAÞ ð2:147Þ

Acceleration Vector of Point A:
The normal component of acceleration anA is given by Eq. (2.148):

anA ¼ x2 ^ vA ¼
î ĵ k̂
0 0 �10

25:98 �15 0

������
������ ¼ �150̂i� 259:8̂j ð2:148Þ

anA ¼ 300 cm=s2 \240�

This vector is perpendicular to velocity vA and it heads towards the trajectory
curvature center of point A, that is to say, from A to O2.

The tangential component of the vector is zero since the angular velocity of link
2 is constant, that is, a2 ¼ 0.

Relative Acceleration of Point B with Respect to Point A:
The normal component of the relative acceleration vector of point B with respect

to point A is given by Eq. (2.149):

anBA ¼ x3 ^ vBA ¼
î ĵ k̂
0 0 2:64

10:79 15 0

������
������ ¼ �39:6̂iþ 28:49̂j ð2:149Þ

anBA ¼ 48:78 cm=s2 \144:27�

This vector is perpendicular to velocity vBA and heads from B towards A.
The tangential component of the relative acceleration vector of point B with

respect to point A is given by Eq. (2.150):

atBA ¼ a3 ^ rBA ¼
î ĵ k̂
0 0 a3

7 cos 324:26� 7 sin 324:26� 0

������
������ ¼ 4:09a3̂iþ 5:68a3 ĵ

ð2:150Þ

Prior to calculating its value, we have to find a3.

Fig. 2.45 Slider-crank
linkage with constant angular
velocity in link 2
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Acceleration of Point B:
We have to take into account that link 4 has a pure translational motion fol-

lowing the trajectory defined by line XX 0 (Fig. 2.45). The direction of the accel-
eration of point B coincides with the trajectory direction (Eq. 2.151):

aB ¼ atB ¼ aB̂i ð2:151Þ

By substituting Eqs. (2.148)–(2.150) in Eq. (2.147) we obtain Eq. (2.152):

aB̂i ¼ ð�150̂i� 259:8̂jÞþ ð�39:6̂iþ 28:49̂jÞþ ð4:09a3̂iþ 5:68a3 ĵÞ ð2:152Þ

The following algebraic components are obtained if we break this acceleration
vector into its components (Eq. 2.153):

aB ¼ �150� 39:6þ 4:09a3
0 ¼ �259:8þ 28:49þ 5:68a3

�
ð2:153Þ

Based on these equations, we find angular acceleration, a3 ¼ 40:72 rad=s2, and
the magnitude of the linear acceleration at point B, aB ¼ �23:04 cm=s2. This way,
the remaining acceleration value is Eq. (2.154):

atBA ¼ 166:54̂iþ 231:29̂j ¼ 285 cm=s2 \54:24� ð2:154Þ

aB ¼ �23:04̂i ¼ 23:04 cm=s2 \180�

Once all the accelerations have been determined, we can represent them in an
acceleration polygon as the one shown in Fig. 2.46.

2.2.5 The Coriolis Component of Acceleration

When a body moves along a trajectory defined over a rotating body, the acceler-
ation of any point on the first body relative to a coinciding point on the second body

Fig. 2.46 Acceleration
polygon of the slider-crank
linkage in Fig. (2.45)
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will have, in addition to the normal and tangential components, a new one named
the Coriolis acceleration. To demonstrate its value, we will use a simple example.
Although a demonstration in a particular situation is not valid to demonstrate a
generic situation, we will use this example because of its simplicity.

In Fig. 2.47, link 3 represents a slide that moves over straight line. Point P3 of
link 3 is above point P2 of link 2. Therefore, the position of both points coincides at
the instant represented in the figure.

The acceleration of point P3 can be computed as Eq. (2.155):

aP3 ¼ aP2 þ aP3P2 ð2:155Þ

Relative acceleration aP3P2 has, in addition to normal and tangential components
studied so far, a new component called the Coriolis acceleration (Eq. 2.156):

aP3P2 ¼ anP3P2
þ atP3P2

þ acP3P2
ð2:156Þ

To demonstrate the existence of this new component, see Fig. 2.48. It represents
slider 3 moving with constant relative velocity vP3P2 ¼ v over link 2, which, at the
same time, rotates with constant angular velocity x2. P3 is a point of slider 3 that
moves along trajectory O2F on body 2. P2 is a point of link 2 that coincides with P3

at the instant represented.
In a dt time interval, line O2F rotates about O2, angle dh, and moves to position

O2F0. In the same period of time point P2 moves to P0
2 and P3 moves to P0

3. This last
displacement can be regarded as the sum of displacements DP2P0

2, DP
0
2B and DBP0

3.
Displacement DP2P0

2 takes place at constant velocity since O2P2 and x2 are
constant. Movement DP0

2B also takes place at constant velocity as vP3P2 is constant.

Fig. 2.47 Link 3 moves
along a trajectory defined over
link 2 which rotates with
angular velocity x2

Fig. 2.48 Link 3 moves with
constant relative velocity
along a straight trajectory
defined over link 2 which, at
the same time, rotates with
constant angular velocity x2
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However, displacement DBP0
3 is triggered by an acceleration. To obtain this

acceleration, we start by calculating the length of arc BP0
3

_

(Eq. 2.157):

BP0
3

_

¼ P0
2Bdh ð2:157Þ

But P0
2B ¼ vP3P2dt and dh ¼ x2dt, which yields (Eq. 2.158):

BP0
3

_

¼ x2vP3P2dt
2 ð2:158Þ

The velocity of point P3 is perpendicular to line O2F and its magnitude is
x2O2P3. Since x2 is constant and O2P3 increases its value with a constant ratio, the
magnitude of the velocity of point P3, perpendicular to line O2F, changes uni-
formly, that is, with constant acceleration.

In general, a displacement (ds) with constant acceleration (a) is defined by
Eq. (2.159):

ds ¼ 1
2
adt2 ð2:159Þ

Then BP0
3 is expressed as Eq. (2.160):

BP0
3

_

¼ 1
2
adt2 ð2:160Þ

Evening out the two equations for arc BP0
3

_

, we obtain Eq. (2.161):

x2vP3P2dt
2 ¼ 1

2
adt2 ð2:161Þ

Finally, we clear the acceleration value Eq. (2.162):

a ¼ 2x2vP3P2 ð2:162Þ

where a is known as the Coriolis component of the acceleration of point P3 in honor
of the great French mathematician of the XIX century. The Coriolis acceleration
component is a vector perpendicular to the relative velocity vector. Its direction can
be determined by rotating vector vP3P2 90

� in the direction of x2.
The Coriolis acceleration component vector can be obtained mathematically

with Eq. (2.163):

acP3P2
¼ 2x2 ^ vP3P2 ð2:163Þ
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A general case of relative motion on a plane between two rigid bodies is shown
in Fig. 2.49. P2 is a point on body 2 and P3 is a point on link 3, which moves along
a curved trajectory over body 2 with its center in point C.

The absolute acceleration of point P3 is Eq. (2.164):

aP3 ¼ aP2 þ aP3P2 ð2:164Þ

Or, expressed in terms of their intrinsic components (Eq. 2.165):

anP3
þ atP3

¼ anP2
þ atP2

þ anP3P2
þ atP3P2

þ acP3P2
ð2:165Þ

where the Coriolis component is part of the relative acceleration of point P3 with
respect to P2 and its value is given by Eq. (2.163).

The radius of the trajectory followed by P3 over link 2 at the instant shown in
Fig. 2.49 is CP. Consequently, the normal and tangential acceleration vectors of P3

with respect P2 (Eqs. 2.166 and 2.167) are normal and tangential to the trajectory at
the instant considered and their values are:

anP3P2
¼ xr ^ vP3P2 ð2:166Þ

atP3P2
¼ ar ^ rPC ð2:167Þ

2.2.5.1 Accelerations in a Quick-return Mechanism

In the mechanism in Fig. 2.50, link 2 is the motor link. We want to calculate the
velocity and acceleration of link 4. The information on the length of the links as
well as angular velocity x2 are the same as in Example 3. Angular acceleration of
the motor link is zero, that is, a2 ¼ 0.

Fig. 2.49 Link 3 moves
along a curved trajectory over
link 2 while the latter is
rotating with angular velocity
x2
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Based on the results obtained in Example 3:

h4 ¼ 115:08� x4 ¼ 3:19 rad=s2

vA2 ¼ �10:26̂i� 28:19̂j

vA4 ¼ �19:2̂i� 9̂j

vA2A4 ¼ 8:95̂i� 19:19̂j

vC ¼ �26̂i� 12:17̂j

To calculate the accelerations, we use Eq. (2.168):

anA2
þ atA2

¼ anA4
þ atA4

þ anA2A4
þ atA2A4

þ acA2A4
ð2:168Þ

We study the value of each component, starting with the acceleration of point A2

(Eqs. 2.169 and 2.170):

anA2
¼ x2 ^ vA2 ¼

î ĵ k̂
0 0 10

�10:26 �28:19 0

������
������ ¼ 281:9̂i� 102:6̂j ð2:169Þ

anA2
¼ 300 cm=s2 \340�

atA2
¼ a2 ^ rAO2 ¼ 0 ð2:170Þ

We continue with the acceleration of point A4 (Eqs. 2.171 and 2.172):

anA4
¼ x4 ^ vA4 ¼

î ĵ k̂
0 0 3:19

�19:2 �9 0

������
������ ¼ 28:71̂i� 61:23̂j ð2:171Þ

anA4
¼ 67:63 cm=s2 \295:08�

atA4
¼ a4 ^ rAO4 ¼

î ĵ k̂

0 0 a4
O4A cos 115:08

�
O4A sin 115:08

�
0

�������
�������

¼ �6:02a4̂i� 2:82a4ĵ

ð2:172Þ

Fig. 2.50 Quick-return
linkage with constant angular
velocity
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We will now study the value of the acceleration of point A2 relative to point A4.
Because the relative motion of point A2 with respect to point A4 follows a straight
trajectory, the normal component is zero, atA2A4

¼ 0. The tangential component has
the direction of link 4 (Eq. 2.173), consequently:

atA2A4
¼ atA2A4

cos 115:08�̂iþ atA2A4
sin 115:08� ĵ ð2:173Þ

Finally, we calculate the Coriolis component of the acceleration (Eq. 2.174):

acA2A4
¼ 2x4 ^ vA2A4 ¼ 2

î ĵ k̂
0 0 3:19

8:95 �19:19 0

������
������ ¼ 122:43̂iþ 57:1̂j ð2:174Þ

In Eq. (2.175) we plug the calculated values in the vector equation (Eq. 2.168):

ð281:9̂i� 102:6̂jÞ ¼ ð28:71̂i� 61:23̂jÞþ ð�6:02a4̂i� 2:82a4 ĵÞ
þ ðatA2A4

cos 115:08�̂iþ atA2A4
sin 115:08�ĵÞ

þ ð122:43̂iþ 57:1̂jÞ
ð2:175Þ

By separating the components, Eq. (2.176) is obtained:

281:9 ¼ 28:71� 6:02a4 þ atA2A4
cos 115:08� þ 122:43

�102:6 ¼ �61:23� 2:82a4 þ atA2A4
sin 115:08� þ 57:1

�
ð2:176Þ

This way, we find the value of angular acceleration a4 ¼ �11:56 rad=s2 and the
magnitude of tangential relative acceleration atA2A4

¼ �145:63 cm=s2. The accel-
erations then remain as follows:

atA4
¼ 69:59̂iþ 32:6̂j ¼ 76:85 cm=s2 \25�

atA2A4
¼ 61:73̂i� 131:9̂j ¼ 145:63 cm=s2 \295:08�

We proceed to calculating the acceleration of point C (Eqs. 2.177 and 2.178):

anC ¼ x4 ^ vC ¼
î ĵ k̂
0 0 3:19

�26 �12:17 0

������
������ ¼ 38:82̂i� 82:94̂j ð2:177Þ

anC ¼ 91:57 cm=s2 \295:08�
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atC ¼ a4 ^ rCO4 ¼
î ĵ k̂
0 0 �11:56

O4C cos 115:08� O4C sin 115:08� 0

������
������

¼ 94:23̂iþ 44:1̂j ð2:178Þ

atC ¼ 104:04 cm=s2 \25:08�

Once all the accelerations have been determined, they can be represented in an
acceleration polygon as in previous examples (Fig. 2.51).

2.3 Exercises with Their Solutions

In this section we will carry out the kinematic analysis of different mechanisms by
applying the methods developed in this chapter up to now.

Example 10 In the mixing machine in Example 4 (Fig. 2.52a), calculate the
velocity of point C (Fig. 2.52b) by means of the ICR method once the velocity of
point A is known. Use the relative acceleration method to calculate the acceleration
of point C knowing that the motor (link 2) moves at constant angular velocity
x2 ¼ 10 rad=s counterclockwise, in other words, a2 ¼ 0.

We start by calculating the velocity of point C by using the ICR method. Since
the point of known velocity, A, is part of link 3 and point C also belongs to link 3,
we only need to find the ICR of links 1 and 3. That is to say, I13. This center is
shown in Fig. 2.53.

For velocity calculation purposes, we first have to find the velocity of point
A (Eq. 2.179) considered part of link 2. We know that x2 ¼ 10 rad=s and distance
I12A ¼ 7 cm:

Fig. 2.51 Acceleration
polygon of the quick-return
linkage in Fig. 2.50
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vA ¼ x2I12A ¼ 70 cm=s ð2:179Þ

This same velocity associated to link 3 (Eq. 2.180) is:

vA ¼ x3I13I23 ) x3 ¼ vA
I13I23

ð2:180Þ

To determine the angular velocity of link 3, we need to calculate distance I13I23
(Eq. 2.181). We will make use of values l ¼ 32:47� and O4A ¼ 13:04 cm obtained
in Example 4:

I13I23 ¼ O4A
sin l

¼ 24:289 cm ð2:181Þ

x3 ¼ vA
I13I23

¼ 2:88 rad=s ð2:182Þ

Finally, we can calculate the velocity of point C (Eq. 2.183) knowing that
h3 ¼ 122:47� and AC ¼ 21 cm:

(a) (b)Fig. 2.52 a Mixing machine.
b Kinematic skeleton

Fig. 2.53 Calculation of the
point C velocity using the
ICR method
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vC ¼ x3I13C ¼ x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I13I23

2 þAC
2 � 2 � I13I23 cos h3

q
ð2:183Þ

vC ¼ 114:4 cm=s

To calculate accelerations, we use the position and velocity results obtained in
Example 4:

h3 ¼ 122:47� x3 ¼ 288 rad=s

vA ¼ 70̂j

vO3 ¼ vO3O4 ¼ �31:52̂i� 20:16̂j

vC ¼ 51:03̂iþ 102:45̂j

vO3A ¼ �31:68̂i� 20:16̂j

vCA ¼ 51:03̂iþ 32:45̂j

We start by calculating the acceleration of point O3 on link 3 (Eqs. 2.184 and
2.185), which coincides with O4 at the instant being studied.

aO3 ¼ anA þ atA þ anO3A þ atO3A ð2:184Þ

aO3 ¼ anO4
þ atO4

þ anO3O4
þ atO3O4

þ acO3O4
ð2:185Þ

In these equations, atA ¼ 0 due to the fact that the angular acceleration of link 2 is
zero. Acceleration aO4 ¼ 0 because point O4 is on the frame. Finally, acceleration
anO3O4

¼ 0 since the relative motion of point O3 with respect to link 4 follows a
straight path.

The rest of the acceleration components (Eqs. 2.186–2.190) have the following
values:

anA ¼ x2 ^ vA ¼
î ĵ k̂
0 0 10
0 70 0

������
������ ¼ �700̂i ð2:186Þ

anA ¼ 700 cm=s2 \180�

anO3A ¼ x3 ^ vO3A ¼
î ĵ k̂
0 0 2:88

�31:68 �20:16 0

������
������ ¼ 58:06̂i� 91:24̂j ð2:187Þ

anO3A ¼ 108:15 cm=s2 \302:47�
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atO3A ¼ a3 ^ rO3A ¼
î ĵ k̂
0 0 a4

AO3 cos 122:47� AO3 sin 122:47� 0

������
������ ¼ �11a3̂i� 7a3ĵ

ð2:188Þ

The relative acceleration component of will have the following values:

atO3O4
¼ atO3O4

cos 122:47�̂iþ atO3O4
sin 122:47� ĵ ð2:189Þ

acO3O4
¼ 2x3 ^ vO3O4 ¼ 2

î ĵ k̂
0 0 2:88

�31:52 49:53 0

������
������ ¼ �285:29̂i� 181:56̂j

ð2:190Þ

acO3O4
¼ 338:16 cm=s2 \212:47�

Evening out the two vector equations that define the value of the acceleration of
point O3 and introducing the calculated values, we obtain Eq. (2.191):

ð�700̂iÞþ ð58:06̂i� 91:24̂jÞþ ð�11a3̂i� 7a3 ĵÞ
¼ atO3O4

ð�0:54̂iþ 0:843̂jÞþ ð�285:29̂i� 181:56̂jÞ
ð2:191Þ

By breaking up the components, we obtain Eq. (2.192):

�700þ 58:06� 11a3 ¼ 0:54atO3O4
� 285:29

�91:24� 7a3 ¼ 0:843atO3O4
� 181:56

�
ð2:192Þ

This way, the angular acceleration of link 3 can be found, a3 ¼ �19:3 rad=s2, as
well as the magnitude of the relative tangential acceleration, atO3O4

¼ 267:37 cm=s2.
Ultimately, we apply Eq. (2.193) to calculate the acceleration of point C:

aC ¼ anA þ atA þ anCA þ atCA ð2:193Þ

Relative accelerations (Eqs. 2.194 and 2.195) can be worked out as follows:

anCA ¼ x3 ^ vCA ¼
î ĵ k̂
0 0 2:88

51:03 32:45 0

������
������ ¼ �93:46̂iþ 146:97̂j ð2:194Þ

atCA ¼ a3 ^ rCA ¼
î ĵ k̂
0 0 �19:3

11:27 �17:71 0

������
������ ¼ �341:94̂i� 217:59̂j ð2:195Þ
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Therefore, the acceleration of point C is Eq. (2.196):

aC ¼ ð�700̂iÞþ ð�93:46̂iþ 146:97̂jÞþ ð�341:94̂i� 217:59̂jÞ ð2:196Þ

aC ¼ �1135:4̂i� 70:62̂j ¼ 1137:6 cm=s2 \183:56�

Once the acceleration problem has been solved, we can represent the vectors
obtained and draw the acceleration polygon in Fig. 2.54:

Example 11 Figure 2.55a represents a mechanism that is part of a calculating
machine that carries out multiplications and divisions. At the instant shown,
knowing that O2A ¼ 1 cm, O2B ¼ 0:5 cm, input x ¼ 0:25 cm and link 2 moves with
constant angular velocity of x2 ¼ 1 rad=s counterclockwise, calculate:

1. Which constant value, k, the input has to be multiplied by to obtain output, y.
That is to say, the value of constant k in equation y ¼ kx.

2. The velocity vector of points A, B, C and D using the relative velocity method.
3. The acceleration vector of point C.
4. The velocity vector of point C using the ICR method. Use the velocity of point

A calculated in question 2.

Fig. 2.54 Acceleration polygon of the mixing machine shown in Fig. (2.52)

(a)

(b)

Fig. 2.55 Calculating machine (a) and its velocity polygon (b) for x = 0.25 cm and x2 ¼ 1 rad=s
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1. We start by calculating x and y (Eq. 2.197) in terms of h2.

x ¼ O2A sin h2

y ¼ O2B sin h2
ð2:197Þ

Constant k will be given by Eq. (2.198):

k ¼ y
x
¼ O2A

O2B
¼ 2 ð2:198Þ

2. Angle h2 needs to be determined to calculate the velocity of point A:

y ¼ kx ¼ 2 � 0:25 cm ¼ 0:5 cm ) h2 ¼ arcsin
0:5
1

¼ 30�

We now define the relationship between the velocity of point A5 and the velocity
of point A6 (Eq. 2.199), which coincides with it at that certain instant but belongs to
link 6:

vA5 ¼ vA6 þ vA5A6 ð2:199Þ

This yields the following velocity values (Eqs. 2.200 and 2.201):

vA5 ¼ vA2 ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 1

1 cos 30� 1 sin 30� 0

������
������ ¼ �0:5̂iþ 0:866̂j ð2:200Þ

vA5 ¼ 1 cm=s\120�

A6 is a point on link 6 with straight horizontal motion. Relative motion of points
A5 and A6 is also a straight movement but with vertical direction.

vA6 ¼ vA6 î

vA5A6 ¼ vA5A6 ĵ
ð2:201Þ

We introduce these values in Eq. (2.199) and we obtain Eq. (2.202):

0:5̂iþ 0:866̂j ¼ vA6 îþ vA5A6 ĵ ð2:202Þ
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The unknowns can easily be determined by separating the components.

vA6 ¼ �0:5̂i ¼ 0:5 cm=s\180�

vA5A6 ¼ 0:866̂j ¼ 0:866 cm=s\90�

Link 6 moves with straight translational motion. Therefore, all its points have the
same velocity. Since point C belongs to this link, its velocity is:

vC ¼ vA6 ¼ �0:5̂i ¼ 0:5 cm=s\180�

To calculate the velocity of point D, we proceed in a similar way. We have to
calculate the velocity of point B4:

vB3 ¼ vB4 þ vB3B4 ð2:203Þ

In Eq. (2.203), the velocities are given by Eqs. (2.204) and (2.205):

vB3 ¼ x2 ^ rBO2 ¼
î ĵ k̂
0 0 1

0:5 cos 300� 0:5 sin 300� 0

������
������ ¼ 0:43̂iþ 0:25̂j ð2:204Þ

vB3 ¼ 0:5 cm=s\30�

vB4 ¼ vB4 ĵ

vB3B4 ¼ vB3B4 î
ð2:205Þ

Plugging these values into Eq. (2.203), we obtain Eq. (2.206):

0:43̂iþ 0:25̂j ¼ vB4 ĵþ vB3B4 î ð2:206Þ

From which we can calculate the following values:

vB4 ¼ 0:25̂j ¼ 0:25 cm=s\90�

vB3B4 ¼ 0:43̂i ¼ 0:43 cm=s\0�

Since point D belongs to link 4, which moves along a straight line, its velocity
will be the same as the point B4 velocity:

vD ¼ vB4 ¼ 0:25̂j ¼ 0:25 cm=s\90�

Once all the velocities have been determined, they can be represented in a
velocity polygon (Fig. 2.55b).

3. To calculate the acceleration of point C, we start by defining Eq. (2.207), which
relates the accelerations of point A5 on link 5 with A6 on link 6.
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anA5
þ atA5

¼ anA6
þ atA6

þ anA5A6
þ atA5A6

þ acA5A6
ð2:207Þ

The values of the acceleration components Eq. (2.208) in Eq. (2.207) are:

anA5
¼ anA2

¼ x2 ^ vA5 ¼
î ĵ k̂
0 0 1

�0:5 0:866 0

������
������ ¼ �0:866̂i� 0:5̂j ð2:208Þ

atA5
¼ atA2

¼ 0

anA6
¼ 0

atA6
¼ atA6

î

anA5A6
¼ 0

atA5A6
¼ atA5A6

ĵ

acA5A6
¼ 0

Introducing these values in Eq. (2.207), we obtain Eq. (2.209):

�0:866̂i� 0:5̂j ¼ atA6
îþ atA5A6

ĵ ð2:209Þ

Clearing the components, we obtain the values of the accelerations:

atA6
¼ �0:866̂i ¼ 0:866 cm=s2 \180�

atA5A6
¼ �0:5̂i ¼ 0:5 cm=s2 \270�

Once more, as point C belongs to link 6, which moves with straight translational
motion, the acceleration of point C is the same as the acceleration of point A6:

aC ¼ aA6 ¼ �0:866̂i ¼ 0:866 cm=s2 \180�

Once the accelerations have been determined, they can be represented in an
acceleration polygon (Fig. 2.56).

Fig. 2.56 Acceleration
polygon of points A2, A5, A6

and C in the mechanism
shown in Fig. (2.55a)
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4. To calculate the velocity of point C by means of the ICR method, we start by
calculating the relative instantaneous centers of rotation of link 1 (frame), link 2
(the link point A belongs to) and link 6 (the link point C belongs to).

Once ICRs I12, I16 and I26 have been obtained (Fig. 2.57a), we can calculate the
velocity of I26. At the considered instant, I26 is part of links 2 and 6 simultaneously.
As a point on link 2, it rotates about O2 and its velocity is Eq. (2.210):

vA ¼ x2I12A

vI26 ¼
vA
I12A

I12I26 ¼ 1
1
0:5 ¼ 0:5 cm=s ð2:210Þ

Moreover, I26 also belongs to link 6, which moves with linear translational
motion and all its points have the same velocity. Hence, vC ¼ vI26 (Fig. 2.57a).

Example 12 Figure 2.58 represents a Scotch Yoke mechanism used in the assembly
line of a production chain. The lengths of the links are O2A ¼ 1m and O2B ¼ 1:2m.
At the instant considered, angle h2 ¼ 60� and angular velocity x2 ¼ �1 rad=s
(clockwise). Knowing that link 2 moves with constant velocity, calculate:

1. The acceleration of point C.
2. The velocity of point C by using the ICR method when the velocity of point B is

known.

1. First of all, we make use of the vector (Eq. 2.211) to calculate the velocities:

vA3 ¼ vA4 þ vA3A4 ð2:211Þ

(a)

(b)

Fig. 2.57 a Calculation of the velocity of point C with the ICR method using velocity vA2 .
b Polygon to analyze ICRs positions

82 2 Kinematic Analysis of Mechanisms. Relative Velocity …



Next, we obtain the expressions of these components Eqs. (2.212)–(2.214). We
start by calculating vA3 (Eq. 2.212) knowing that O2A forms an angle of
60� þ 90� ¼ 150� with the X-axis (Fig. 2.58a) and that x2 ¼ �1 rad=s clockwise.

vA3 ¼ vA2 ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 �1

1 cos 150� 1 sin 150� 0

������
������ ¼ 0:5̂iþ 0:866̂j

ð2:212Þ

vA3 ¼ vA2 ¼ 1m=s\60�

The trajectory of link 4 forms an angle of 180� � 10� ¼ 170� with the X-axis
(Fig. 2.58a), thus:

vA4 ¼ vA4 cos 170
�̂iþ vA4 sin 170

�ĵ ¼ �0:985vA4 îþ 0:174vA4 ĵ ð2:213Þ

The motion of A3 with respect to A4 follows a straight line that forms an angle of
80� with the X-axis, consequently:

vA3A4 ¼ vA3A4 cos 80
�̂iþ vA3A4 sin 80

� ĵ ¼ 0:174vA3A4 îþ 0:985vA3A4 ĵ ð2:214Þ

We plug these values into relative velocity (Eq. 2.211) and we obtain
Eq. (2.215):

ð0:5̂iþ 0:866̂jÞ ¼ ð�0:985vA4 îþ 0:174vA4 ĵÞþ ð0:174vA3A4 îþ 0:985vA3A4 ĵÞ
ð2:215Þ

By separating the vector components, we find the system of algebraic equations
(Eq. 2.216):

(a) (b)

Fig. 2.58 a Scotch Yoke mechanism. b Velocity polygon
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0:5 ¼ �0:985vA4 þ 0:174vA3A4

0:866 ¼ 0:174vA4 þ 0:985vA3A4

�
ð2:216Þ

In this system we can find the magnitude of the point A4 velocity,
vA4 ¼ �0:34m=s, and the magnitude of the relative velocity, vA3A4 ¼ 0:94m=s.
With these values, we can calculate the velocity vectors:

vA4 ¼ 0:335̂i� 0:059̂j ¼ 0:34m=s\350�

vA3A4 ¼ 0:163̂iþ 0:925̂j ¼ 0:94m=s\80�

Since all points on link 4 follow a straight path, the velocity of point C is the
same as the one of point A4:

vC ¼ vA4 ¼ 0:335̂i� 0:059̂j ¼ 0:34m=s\350�

Figure 2.58b shows the velocity polygon corresponding to these results.
To calculate the acceleration, we apply Eq. (2.217):

aA3 ¼ aA4 þ aA3A4 ð2:217Þ

where the components of the accelerations (Eqs. 2.218–2.220) can be expressed as:

anA3
¼ anA2

¼ x2 ^ vA3 ¼
î ĵ k̂
0 0 �1
0:5 0:866 0

������
������ ¼ 0:866̂i� 0:5̂j ð2:218Þ

atA3
¼ 0

anA4
¼ 0

aA4 ¼ atA4
¼ aA4 cos 170

�̂iþ aA4 sin 170
� ĵ ð2:219Þ

aA3A4 ¼ atA3A4
¼ aA3A4 cos 80

�̂iþ aA3A4 sin 80
� ĵ ð2:220Þ

We obtain Eq. (2.221) plugging these values into relative acceleration
(Eq. 2.217):

ð0:866̂i� 0:5̂jÞ ¼ ð�0:985aA4 îþ 0:174aA4 ĵÞþ ð0:174aA3A4 îþ 0:985aA3A4 ĵÞ
ð2:221Þ

Separating the vector components (Eq. 2.222):

0:866 ¼ �0:985aA4 þ 0:174aA3A4

�0:5 ¼ 0:174aA4 þ 0:985aA3A4

�
ð2:222Þ
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Finally, solving the algebraic equation system, we obtain:

aA4 ¼ 0:926̂i� 0:163̂j ¼ 0:94m=s2 \350�

aA3A4 ¼ �0:059̂i� 0:335̂j ¼ 0:34m=s2 \260�

Since link 4 moves with translational motion without rotation, the acceleration of
point C is the same as the one of point A4:

aC ¼ aA4 ¼ 0:926̂i� 0:163̂j ¼ 0:94m=s2 \350�

We can see these results represented in the acceleration polygon in Fig. 2.59.

1. We now calculate the velocity of point C using the ICR method. Since the
known velocity belongs to a point in link 2 (point B) and the one we want to find
corresponds to a point of link 4 (point C), the relative ICRs of links 1, 2 and 4
need to be determined. In other words, we need to determine ICRs I12, I14 and
I24. Once the centers have been obtained (Fig. 2.60), we calculate the velocity of
I24. Point B rotates about point O2 with the following velocity:

vB ¼ x2I12B ¼ 1:2m=s

vI24 ¼
vB
I12B

I12I24 ¼ 1:2
1:2

O2A sin 20� ¼ 0:34m=s

Since all points in link 4 follow a straight path, instantaneous center I24 yields
the velocity of any point of link 4. The velocity of point C is:

vC ¼ vI24 ¼ 0:34m=s

Its direction is as shown in Fig. 2.60.

Example 13 Figure 2.61 represents a quick return mechanism that has the fol-
lowing dimensions: O2O4 ¼ 25mm, O2A ¼ 30mm, AB ¼ 50mm, O4B ¼ O4C ¼
45mm and CD ¼ 50mm. The angle between sides O4B and O4C of the triangle

Fig. 2.59 Acceleration
polygon of points A3, A4 and
C of the Scotch Yoke
mechanism in Fig. (2.58a)
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MBO4C is 90�. Calculate the velocity of point D of the slider when the position and
velocity of the input link are h2 ¼ 225� and x2 ¼ 80 rpm clockwise. Use the ICR
method.

Consider that point D, of unknown velocity, is part of link 6 (it could also be
considered part of link 5) and that point A, of known velocity, is part of link 2 (it is
also part of link 3). We have to find the relative ICRs of links 1, 2 and 6, that is,
centers I12, I16 and I26.

Figure 2.62 shows the ICRs and the auxiliary lines used to find them. Before
starting the calculation, we have to convert the velocity of the input link from rpm
into rad/s (80 rpm ¼ 8:38 rad=s).

In order to obtain the velocity of point D graphically, we need to know the
velocity of point A (Eq. 2.223):

vA ¼ x2I12A ð2:223Þ

Figure 2.62 shows how is vI26 calculated graphically using vA. However, this
velocity (Eq. 2.224) can also be obtained mathematically:

v26 ¼ x2I12I26 ð2:224Þ

Fig. 2.61 Quick-return
mechanism

Fig. 2.60 Calculation of the velocity of point C with the ICR method using velocity vB
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Since link 6 is moving with non-angular velocity, all the points in this link have
the same velocity:

vD ¼ vI26 ¼ x2I12I26 ¼ 211:8mm=s ð2:225Þ

Its direction is shown in Fig. 2.62.

Example 14 The mechanism shown in Fig. 2.63 represents the second inversion of
a slider-crank mechanism where the slider follows a circular arc trajectory with
radius R ¼ 24:4 cm. The mechanism has the following dimensions: O2P ¼ 10 cm
and O2O4 ¼ 14:85 cm. Consider that link 2 rotates clockwise with a constant
velocity of x2 ¼ 12 rad=s clockwise and that h2 ¼ 180� at the instant considered.
Find the velocity and acceleration of link 4. Point Q of link 4 and point P of link 2
are superposed.

We start by solving the position problem using trigonometry (Eqs. 2.226–
2.229). We apply the law of cosines to triangle MO4O2P:

O4P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2O4

2 þO2P
2 � 2 O2O4 O2P cos 90�

q
¼ 17:9 cm ð2:226Þ

Fig. 2.63 Inverted
slider-crank mechanism with
the slider following a curved
path. Point P on link 2 is
coincident with point Q on
link 4 at the studied instant

Fig. 2.62 Calculation of the velocity of point D with the ICR method knowing vA
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We also know that:

O4P cosðh4 � 180�Þ ¼ O2P

h4 ¼ 180� þ arccos
10
17:9

¼ 236:06�
ð2:227Þ

Applying the law of cosines to triangle MO4PC:

O4P
2 ¼ R2 þR2 � 2R2 cosU

U ¼ arccos
2R2 � O4P

2

2R2 ¼ 43:04�
ð2:228Þ

2bþU ¼ 180� ) b ¼ 180� � U
2

¼ 68:48� ð2:229Þ

In Fig. 2.63 we can observe that the normal direction to link 4 on point Q is NN 0.
Its angle is defined by hNN 0 ¼ h4 � 180� þ b ¼ 124:54�. The tangential direction to
link 4 on point Q is defined by TT 0 and its angle is hTT 0 ¼ h4 � 180�

þ b� 90� ¼ 34:54�.
Applying the relative velocity method to points P and Q (Eq. 2.230):

vP ¼ vQ þ vPQ ð2:230Þ

The absolute velocity of point P (Eq. 2.231), the extreme point of link 2, is:

vP ¼ x2 ^ rPO2 ¼
î ĵ k̂
0 0 �12

10 cos 180� 10 cos 180� 0

������
������ ¼ 120̂j ð2:231Þ

vP ¼ 120 cm=s\90�

The direction of velocity vPQ is tangential to the trajectory followed by link 3
when it slides inside the guide rail of link 4 (Eq. 2.232). Nevertheless, its magnitude
will be one of the unknowns of the problem.

vPQ ¼ vPQ cos hTT 0 îþ vPQ sin hTT 0 ĵ ð2:232Þ

This relative velocity (Eq. 2.233) can also be expressed as the vector product of
the angular velocity of radius R associated to slider movement and the vector that
goes from the center of curvature C to point P:

vPQ ¼ xR ^ rPC ð2:233Þ
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The velocity of point Q (Eq. 2.234) is:

vQ ¼ x4 ^ rQO4 ¼
î ĵ k̂

0 0 x4

17:9 cos 236:06
�

17:9 sin 236:06
�

0

�������
�������

¼ 14:85x4̂i� 10x4 ĵ

ð2:234Þ

Substituting each vector in the relative velocity expression and separating its
components, we obtain the following system of two equations and two unknowns
(Eq. 2.235), x4 and vPQ:

0 ¼ 14:85x4 þ 0:823vPQ
120 ¼ �10x4 þ 0:567vPQ

�
ð2:235Þ

x4 ¼ �5:94 rad=s

vPQ ¼ 106:96 cm=s

Hence, velocities vQ and vPQ are:

vQ ¼ �88:21̂iþ 59:4̂j ¼ 106:33 cm=s\146:06�

vPQ ¼ 88:1̂iþ 60:64̂j ¼ 106:96 cm=s\34:54�

Once the velocities have been obtained, the velocity polygon can be drawn
(Fig. 2.64).

Once vector vPQ is defined, we have to calculate xR in Eq. (2.236). This value
will be needed to solve the acceleration problem.

vPQ ¼ xR ^ rPC ¼
î ĵ k̂
0 0 xR

R cosðhNN 0 þ 180�Þ R sinðhNN 0 þ 180�Þ 0

������
������ ð2:236Þ

88:1̂iþ 60:64̂j ¼ �RxR sin 304:54�̂iþRxR cos 304:54� ĵ

Fig. 2.64 Velocity polygon
of the mechanism shown in
Fig. (2.63)
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Clearing, we obtain:

xR ¼ �88:1
R sin 304:54�

¼ 4:38 rad=s

Finally, we can study the acceleration problem. The angular velocity of link 2 is
constant. Therefore, its angular acceleration (a2) is null. Defining the vector
expression of the relative acceleration (Eq. 2.237) between P and Q:

aP ¼ aQ þ aPQ ð2:237Þ

anP þ atP ¼ anQ þ atQ þ anPQ þ atPQ þ acPQ ð2:238Þ

And analyzing each vector in Eq. (2.238), we obtain Eqs. (2.239)–(2.245):

anP ¼ x2 ^ vP ¼
î ĵ k̂
0 0 �12
0 120 0

������
������ ¼ 1440̂i ð2:239Þ

atP ¼ a2 ^ rPO2 ¼ 0 ð2:240Þ

aP ¼ 1440̂i ¼ 1440 cm=s2 \0�

The normal acceleration of point Q (Eq. 2.241) is:

anQ ¼ x4 ^ vQ ¼
î ĵ k̂
0 0 5:94

�88:21 59:4 0

������
������ ¼ 352:62̂iþ 523:97̂j ð2:241Þ

anQ ¼ 631:6 cm=s2 \56:06�

The tangential acceleration of point Q (Eq. 2.242) is:

atQ ¼ a4 ^ rQO4 ¼
î ĵ k̂
0 0 a4

17:9 cos 236:06� 17:9 sin 236:06� 0

������
������ ¼ 14:85a4̂i� 10a4ĵ

ð2:242Þ

The normal component of the acceleration of point P relative to point Q is
Eq. (2.243):

anPQ ¼ xR ^ vPQ ¼
î ĵ k̂
0 0 4:38

88:1 60:64 0

������
������ ¼ �265:62̂iþ 385:9̂j ð2:243Þ
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anPQ ¼ 468:1 cm=s2 \124:54�

This vector is perpendicular to velocity vPQ and it points towards the trajectory
curvature center followed by link 3 when it slides along the link 4, that is to say,
from P to C. The tangential component of the acceleration of P relative to
Q (Eq. 2.244) is:

atPQ ¼ aR ^ rPC ¼
î ĵ k̂
0 0 aR

24:4 cos 304:54� 24:4 cos 304:54� 0

������
������

¼ 20:1aR̂iþ 13:83aR ĵ ð2:244Þ

And the Coriolis component of the acceleration of P relative to Q (Eq. 2.245) is:

acPQ ¼ 2x4 ^ vPQ ¼ 2
î ĵ k̂
0 0 �5:94

88:1 60:64 0

������
������ ¼ 720:45̂i� 1046:7̂j ð2:245Þ

acPQ ¼ 1270:7 cm=s2 \304:54�

Plugging these values into Eq. (2.238) and separating its components, we obtain
the system of two equations and two unknowns, aR and a4, Eq. (2.246).

ð1440̂iÞ ¼ ð352:62̂iþ 523:97̂jÞþ ð14:85a4̂i� 10a4 ĵÞ
þ ð�265:62̂iþ 385:9̂jÞþ ð20:1aR̂iþ 13:83aR ĵÞ
þ ð720:45̂i� 1046:7̂jÞ

1440 ¼ 352:62þ 14:85a4 � 265:62þ 20:1aR þ 720:45

0 ¼ 523:97� 10a4 þ 385:9þ 13:83aR � 1046:7

)
ð2:246Þ

where:

a4 ¼ 14:77 rad=s2

aR ¼ 20:56 rad=s2

With these values we can calculate the tangential components of the acceleration
of point Q relative to O4 and to P.

atQ ¼ 219:33̂i� 147:7̂j ¼ 264:38 cm=s2 \326:06�

atPQ ¼ 413:26̂iþ 284:34̂j ¼ 501:7 cm=s2 \34:54�

With these values, the acceleration polygon can be drawn (Fig. 2.65).
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Example 15 Make a complete kinematic analysis of the shaft press mechanism in
Fig. 2.66, provided that: h2 ¼ 241� and x2 ¼ �10 rad=s clockwise constant.
Piston 8 follows a trajectory along a vertical line that passes through O6. The
dimensions of the mechanism are: O2A ¼ 1:4 cm, AB ¼ 3:5 cm, O4B ¼ 1:4 cm,
rO2 ¼ ð0; 0Þ cm, rO4 ¼ ð�3:1;�1:6Þ cm, BC ¼ 3:7 cm, CD ¼ 5 cm,
O6D ¼ 1:2 cm, rO6 ¼ ð0;�2:8Þ cm, O6E ¼ 1:5 cm, w ¼ 67:5� and EF ¼ 2:3 cm.
Use the relative velocity and acceleration methods.

Before we start to calculate velocities, it is necessary to solve the position
problem. We will use the trigonometric method (Eqs. 2.247–2.266) developed in
Appendix A for this purpose.

We start by studying the position of links 3 and 4 (Fig. 2.67).

Fig. 2.65 Acceleration
polygon of the mechanism
shown in Fig. (2.63)

Fig. 2.66 Shaft press
mechanism
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O2O4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2O4

þ y2O4

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:12 þ 1:62

p
¼ 3:49 cm ð2:247Þ

h1 ¼ 180� þ arctan
yO4

xO4

¼ 207:3� ð2:248Þ

The application of the law of cosines to triangle MO2O4A yields:

O4A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2O4

2 þO2A
2 � 2 O2O4 O2A cosðh2 � h1Þ

q
¼ 2:54 cm ð2:249Þ

We also apply the law of sines to the same triangle:

O2A sinðh2 � h1Þ ¼ O4A sin a ð2:250Þ

a ¼ arcsin
1:4 sin 33:7�

2:45
¼ 18:47�

Hence:

b ¼ h1 � 180� � a ¼ 27:3� � 18:47� ¼ 8:83� ð2:251Þ

Next, we apply the law of cosines to triangle MO4AB:

O4B
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O4A

2 þAB
2 � 2 O4A AB cos/

q
ð2:252Þ

/ ¼ arccos
2:452 þ 3:52 � 1:62

2 � 2:45 � 3:5 ¼ 23:81�

Thus:

h3 ¼ 180� þ bþ/ ¼ 180� þ 8:83� þ 23:81� ¼ 212:64� ð2:253Þ

Fig. 2.67 Calculation of the
position of links 3 and 4 with
the trigonometric method
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Finally, we apply the law of sines to triangle MO4AB:

O4B sinð180� � dÞ ¼ AB sin/ ð2:254Þ

d ¼ 180� � arcsin
3:2 sin 23:81�

1:6
¼ 117:98�

This yields:

h4 ¼ 360� þ b� d ¼ 360� þ 8:83� � 117:98 ¼ 250:85� ð2:255Þ

Next, we study links 5 and 6 (Fig. 2.68).

O4O6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxO4 � xO6Þ2 þðyO4 � yO6Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:12 þ 1:22

p
¼ 3:32 cm ð2:256Þ

h01 ¼ arctan
yO4 � yO6

xO4 � xO6

¼ arctan
�1:2
3:1

¼ 338:84� ð2:257Þ

We apply the law of cosines to triangle MO4O6C:

O6C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O4C

2 þO4O6
2 � 2 O4O6 O4C cosðh4 þ 180� � h10 Þ

q
¼ 3:99 cm

ð2:258Þ

We also apply the law of sines to the same triangle:

O4C sinðh4 þ 180� � h10 Þ ¼ O6C sin a ð2:259Þ

a ¼ arcsin
2:1 sin 92:01�

3:99
¼ 31:735�

b ¼ aþ 360� � h10 ¼ 31:735� þ 360� � 338:84� ¼ 52:895� ð2:260Þ

Fig. 2.68 Variables defined
to calculate the position of
links 5 and 6 with the
trigonometric method
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Next, we apply the law of cosines to triangle MO6CD:

O6D
2 ¼ O6C

2 þCD
2 � 2 O6C CD cos/ ð2:261Þ

/ ¼ arccos
3:992 þ 52 � 1:22

2 � 3:99 � 5 ¼ 8:32�

Thus:

h5 ¼ 360� � b� / ¼ 360� � 52:895� � 8:32� ¼ 298:8� ð2:262Þ

The application of the law of sines on triangle MO6CD yields:

O6D sinð180� � dÞ ¼ CD sin/ ð2:263Þ

d ¼ 180� � arcsin
5 sin 8:32�

1:2
¼ 142:92�

Thus:

h6 ¼ 180� � bþ d ¼ 180� � 52:895� þ 142:92� ¼ 270�

Finally, we will solve the position problem for links 7 and 8 (Fig. 2.69).

O6E sinw ¼ EF sin l ð2:264Þ

l ¼ arcsin
1:5 sin 67:5�

2:3
¼ 37:05�

Hence:

h7 ¼ 270� � l ¼ 232:95� ð2:265Þ

Projecting O6E and EF on the vertical axis, we obtain:

O6E coswþEF cos l ¼ FO6y ð2:266Þ

Fig. 2.69 Variables defined
to calculate the position of
links 7 and 8 using the
trigonometric method
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FO6y ¼ 1:5 cos 67:5� þ 2:3 cos 37:05� ¼ 2:41 cm

The position of point F with respect to O2 will be given by Eq. (2.267):

FO2y ¼ FO6y þO6O2y ¼ �2:41� 2:8 ¼ �5:21 cm ð2:267Þ

Once the position of each link has been obtained, we can solve the velocity
problem. We start by analyzing the velocities of points A and B. The velocity of
point A (Eq. 2.268), which is the end of the crank (link 2), is:

vA ¼ x2 ^ rAO2 ¼
î ĵ k̂
0 0 x2

O2A cos h2 O2A sin h2 0

������
������ ¼ 12:24̂i� 6:79̂j ð2:268Þ

vA ¼ 14 cm=s\331�

Taking into account that point A is also part of link 3, we can calculate the
velocity of any other point (point B) on the same link by means of the relative
velocity (Eq. 2.269):

vB ¼ vA þ vBA ð2:269Þ

The velocity of point B of link 4 (Eq. 2.270) is:

vB ¼ x4 ^ rBO4 ¼
î ĵ k̂
0 0 x4

O4B cos h4 O4B sin h4 0

������
������ ¼ 1:511x4̂i� 0:525x4 ĵ

ð2:270Þ

And the velocity of point B relative to point A (Eq. 2.271) is:

vBA ¼ x3 ^ rBA ¼
î ĵ k̂
0 0 x3

AB cos h3 AB sin h3 0

������
������ ¼ 1:888x3̂i� 2:947x3 ĵ ð2:271Þ

Substituting these values in the relative velocity (Eq. 2.269) and separating this
equation into its components, we obtain Eq. (2.272):

ð1:511x4̂i� 0:525x4 ĵÞ ¼ ð12:24̂i� 6:79̂jÞþ ð1:888x3̂i� 2:947x3 ĵÞ

1:511x4 ¼ 12:24þ 1:888x3

�0:525x4 ¼ �6:79� 2:947x3

)
ð2:272Þ
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The solution of Eq. (2.272) is:

x3 ¼ �1:11 rad=s

x4 ¼ 6:71 rad=s

Using the angular velocities of links 3 and 4 we can now calculate vectors vB,
vBA and vC (Eq. 2.273):

vB ¼ 10:17̂i� 3:55̂j ¼ 10:77 cm=s\340:85�

vBA ¼ �2:1̂iþ 3:27̂j ¼ 3:885 cm=s\122:6�

vC ¼ x4 ^ rCO4 ¼
î ĵ k̂

0 0 x4

O4C cosðh4 þ 180
� Þ O4C sinðh4 þ 180

� Þ 0

�������
�������

¼ �13:31̂iþ 4:62̂j

ð2:273Þ

vC ¼ 14:1 cm=s\160:85�

We will continue the velocity analysis with points D and E. Assuming now that
point C belongs to link 5, we can calculate the velocity of point D of the same link
by means of the relative velocity (Eq. 2.274):

vD ¼ vC þ vDC ð2:274Þ

Hence, the velocity of point D of link 6 (Eq. 2.275) is:

vD ¼ x6 ^ rDO6 ¼
î ĵ k̂
0 0 x6

O6D cos h6 O6D sin h6 0

������
������ ¼ �1:2x6̂i ð2:275Þ

The relative velocity of point D relative to point C (Eq. 2.276) can be expressed
as:

vDC ¼ x5 ^ rDC ¼
î ĵ k̂
0 0 x5

CD cos h5 CD sin h5 0

������
������ ¼ �4:382x5̂i� 2:409x5 ĵ

ð2:276Þ

Plugging these values into the relative velocity (Eq. 2.274) and separating the
components, we obtain Eq. (2.277):
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ð�1:2x6̂iÞ ¼ ð�13:31̂iþ 4:62̂jÞþ ð�4:382x5̂i� 2:409x5 ĵÞ

�1:2x6 ¼ �13:31� 4:382x5

0 ¼ 4:62� 2:409x5

�
ð2:277Þ

where the values of the angular velocities can be obtained:

x5 ¼ �1:92 rad=s

x6 ¼ �18:09 rad=s

Therefore, the velocities of points D and E (Eq. 2.278) are:

vD ¼ �21:7̂i ¼ 21:71 cm=s\180�

vDC ¼ �8:41̂i� 4:625̂j ¼ 9:6 cm=s\208:8�

vE ¼ x6 ^ rEO6 ¼
î ĵ k̂

0 0 x6

O6E cosðh6 þwÞ O6E sinðh6 þwÞ 0

�������
�������

¼ �10:38̂i� 25:07̂j

ð2:278Þ

vE ¼ 27:13 cm=s\247:5�

Finally, to calculate the velocity of point F we use Eq. (2.279):

vF ¼ vE þ vFE ð2:279Þ

The velocity of point F of link 8 is a vector that has the direction of the Y -axis
since the displacement of the piston follows a vertical trajectory (Eq. 2.280).
Therefore, the velocity of point F can be expressed as:

vF ¼ vF ĵ ð2:280Þ

The velocity of F relative to E is given by Eq. (2.281):

vFE ¼ x7 ^ rFE ¼
î ĵ k̂
0 0 x7

EF cos h7 EF sin h7 0

������
������ ¼ 1:835x7̂i� 1:385x7 ĵ ð2:281Þ

Plugging these values into Eq. (2.279) and separating its components, we obtain
Eq. (2.282):
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ðvF ĵÞ ¼ ð�10:38̂i� 25:07̂jÞþ ð1:835x7̂i� 1:385x7 ĵÞ

0 ¼ �10:38þ 1:835x7

vF ¼ �25:07� 1:385x7

)
ð2:282Þ

where the unknowns can easily be calculated.

x7 ¼ 5:65 rad=s

vF ¼ �32:91 cm=s

With these values vectors vF and vFE can be completely defined:

vF ¼ �32:91̂j ¼ 32:91 cm=s\270�

vFE ¼ 10:37̂i� 7:83̂j ¼ 12:995 cm=s\322:9�

Figure 2.70 shows the velocity polygon, which was constructed by drawing the
velocity vectors to scale. All the absolute velocities were drawn starting from the
same point, o, called the pole of velocities.

After solving the position and velocity problems, we can calculate the acceler-
ations of the links of the mechanism. We will start by analyzing the acceleration of
points A and B.

The acceleration of point A (Eq. 2.283) is:

anA ¼ x2 ^ vA ¼
î ĵ k̂
0 0 10

12:24 �6:79 0

������
������ ¼ 67:9̂iþ 122:4̂j ð2:283Þ

Fig. 2.70 Velocity polygon
of the mechanism shown in
Fig. 2.66
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atA ¼ 0

aA ¼ anA ¼ 67:9̂iþ 122:4̂j ¼ 140 cm=s2 \61�

The relationship between the accelerations of points A and B (Eq. 2.284) is:

anB þ atB ¼ anA þ atA þ anBA þ atBA ð2:284Þ

We continue by analyzing the rest of the vectors in Eq. (2.284). The normal
component of the acceleration of point B (Eq. 2.285) is:

anB ¼ x4 ^ vB ¼
î ĵ k̂
0 0 x4

10:17 �3:55 0

������
������ ¼ 23:63̂iþ 68:05̂j ð2:285Þ

anB ¼ 72:04 cm=s2 \70:85�

The tangential component of the acceleration of point B (Eq. 2.286) is:

atB ¼ a4 ^ rBO4 ¼
î ĵ k̂
0 0 a4

BO4 cos h4 BO4 sin h4 0

������
������ ¼ 1:511a4̂i� 0:5249a4 ĵ

ð2:286Þ

The normal component of the acceleration of point B relative to point
A (Eq. 2.287) is:

anBA ¼ x3 ^ vBA ¼
î ĵ k̂
0 0 x3

�2:1 3:27 0

������
������ ¼ 3:63̂iþ 2:326̂j ð2:287Þ

anBA ¼ 4:31 cm=s2 \32:64�

Finally, the tangential component of the acceleration of B relative to
A (Eq. 2.288) is:

atBA ¼ a3 ^ rBA ¼
î ĵ k̂
0 0 a3

AB cos h3 AB sin h3 0

������
������ ¼ 1:888a3̂i� 2:947a3 ĵ ð2:288Þ

Plugging each vector into Eq. (2.284) and projecting its components onto the
X-axis and Y -axis, we obtain a system with two unknowns, a3 and a4, Eq. (2.289).
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ð23:63̂iþ 68:05̂jÞþ ð1:511a4̂i� 0:5249a4 ĵÞ
¼ ð67:9̂iþ 122:4̂jÞþ ð3:63̂iþ 2:326̂jÞ
þ ð1:888a3̂i� 2:947a3ĵÞ

23:63þ 1:511a4 ¼ 67:9þ 3:63þ 1:888a3
68:05� 0:5249a4 ¼ 122:4þ 2:326� 2:947a3

)
ð2:289Þ

Solving this system, we obtain Eq. (2.290):

a3 ¼ 31:9 rad=s2

a4 ¼ 71:48 rad=s2

�
ð2:290Þ

With these values we can calculate the absolute acceleration vectors of points
B and C and the acceleration vector of point B with respect to point A (Eq. 2.291):

aB ¼ 131:67̂iþ 30:53̂j ¼ 135:16 cm=s2 \13:1�

aBA ¼ 63:85̂i� 91:69̂j ¼ 111:73 cm=s2 \304:85�

anC ¼ x4 ^ vC ¼
î ĵ k̂

0 0 6:71

�13:31 4:62 0

�������
������� ¼ �31̂i� 89:31̂j

atC ¼ a4 ^ rCO4 ¼
î ĵ k̂

0 0 71:48

2:3 cos 70:85� 2:3 sin 70:85� 0

�������
������� ¼ �15:53̂iþ 53:61̂j

aC ¼ anC þ atC ¼ �186:3̂i� 35:7̂j ¼ 189:68 cm=s2 \183:33� ð2:291Þ

We will continue by studying the accelerations of points D and E. The rela-
tionship between the accelerations of points D and C is given by Eq. (2.292):

aD ¼ anD þ atD ¼ anC þ atC þ anDC þ atDC ð2:292Þ

The remaining vectors (Eqs. 2.293–2.295) in Eq. (2.292) are:

anD ¼ x6 ^ vD ¼
î ĵ k̂
0 0 �18:09

�21:7 0 0

������
������ ¼ 392:7̂j

atD ¼ a6 ^ rDO6 ¼
î ĵ k̂
0 0 a6

1:2 cos 270� 1:2 sin 270� 0

������
������ ¼ 1:2a6̂i
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aD ¼ 1:2a6̂iþ 392:7̂j ð2:293Þ

atDC ¼ a5 ^ rDC ¼
î ĵ k̂
0 0 a5

5 cos 298:8� 5 sin 298:8� 0

������
������ ¼ 4:38a5̂iþ 2:41a5 ĵ

ð2:294Þ

anDC ¼ x5 ^ vDC ¼
î ĵ k̂
0 0 �1:92

�8:41 �4:625 0

������
������ ¼ �8:88̂iþ 16:15̂j ð2:295Þ

Substituting these values in Eq. (2.292) and separating the resulting vectors into
their components, we obtain Eq. (2.296):

ð1:2a6̂iþ 392:7̂jÞ ¼ ð�172:82̂i� 40:08̂jÞ
þ ð4:38a5̂iþ 2:41a5 ĵÞþ ð�8:88̂iþ 16:15̂jÞ

1:2a6 ¼ �172:82þ 4:38a5 � 8:88
392:7 ¼ �40:08þ 2:41a5 þ 16:15

�
ð2:296Þ

Solving the system, we obtain Eq. (2.297):

a5 ¼ 172:9 rad=s2

a6 ¼ 479:6 rad=s2

�
ð2:297Þ

The acceleration vectors of points D and E with respect to the frame and the
acceleration vector of point D relative to point C (Eq. 2.298) are:

aD ¼ 575:52̂iþ 392:7̂j ¼ 696:73 cm=s2 \34:3�

aDC ¼ 748:42̂iþ 432:84̂j ¼ 864:57 cm=s2 \30:04�

anE ¼ x6 ^ vE ¼
î ĵ k̂

0 0 �18:09

�10:38 �25:07 0

�������
������� ¼ �453:52̂iþ 187:77̂j

atE ¼ a6 ^ rEO6 ¼
î ĵ k̂

0 0 479:6

1:5 cos 337:5� 1:5 sin 337:5� 0

�������
������� ¼ 275:29̂iþ 664:73̂j

aE ¼ anE þ atE ¼ �178:2̂iþ 852:5̂j ð2:298Þ
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aE ¼ 870:93 cm=s2 \101:8� ð2:299Þ

Finally, we need to find the acceleration in the crank-shaft mechanism formed by
links 6, 7 and 8. We define acceleration vectors for point E (Eq. 2.300) and F of
link 7:

aF ¼ anF þ atF ¼ anE þ atE þ anFE þ atFE ð2:300Þ

where:

aF ¼ atF ¼ aF ĵ ð2:301Þ

anFE ¼ x7 ^ vFE ¼
î ĵ k̂
0 0

0

������
������ ¼ 44:24̂iþ 58:6̂j ð2:302Þ

atFE ¼ a7 ^ rFE ¼
î ĵ k̂
0 0 a7

0

������
������ ¼ 1:836a7̂i� 1:386a7 ĵ ð2:303Þ

Substituting the values of Eqs. (2.301)–(2.303) in the relative acceleration
(Eq. 2.300) and breaking the resulting vector into its components, we obtain the
equation system of two equations with two unknowns, a7 and aF , Eq. (2.304):

ðaF ĵÞ ¼ ð�178:2̂iþ 852:5̂jÞþ ð44:24̂iþ 58:6̂jÞþ ð1:836a7̂i� 1:386a7 ĵÞ

0 ¼ �178:2þ 44:24þ 1:836a7
aF ¼ 852:5þ 58:6� 1:386a7

)
ð2:304Þ

Solving the system we obtain:

a7 ¼ 72:96 rad=s2

aF ¼ 810 cm=s2

�
The relative acceleration vector of point F with respect to point E is:

aFE ¼ 178:19̂i� 42:52̂j ¼ 183:19 cm=s2 \346:58�

Figure 2.71 represents the acceleration polygon built by drawing the absolute
acceleration vectors, all of them starting at the pole of accelerations. Relative
acceleration vectors are obtained by joining the extreme points of absolute accel-
eration vectors. Student are recommended to do this exercise in order to better
understand vector directions in this problem.
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Example 16 The mechanism in Fig. 2.72 is part of a calculating machine that
carries out the “inverse” (1/y) arithmetic operation. Find the solution to the position,
velocity and acceleration problems at the instant shown, knowing that the input is
equal to y ¼ 1:87 cm and that link 4 moves with a constant linear velocity of
0:5 cm=s in an ascending direction.

We start by solving the position problem using the trigonometric method
(Eq. 2.305). The expressions are:

O2A sin h2 ¼ y
O2A cos h2 ¼

ffiffiffi
3

p
�

ð2:305Þ

Therefore:

tan h2 ¼ yffiffiffi
3

p ) h2 ¼ arctan
1:87ffiffiffi

3
p ¼ 47:19�

O2A ¼ y
sin h2

¼ 1:87
sin 47:19�

¼ 2:55 cm

Fig. 2.71 Acceleration polygon of the mechanism shown in Fig. 2.66
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We analyze the position of point B (Eq. 2.306):

O2B sin h2 ¼ 1ffiffi
3

p

O2B cos h2 ¼ x

)
ð2:306Þ

From where we obtain:

O2B ¼ 1

 ffiffiffi

3
p

sin h2
¼ 1


 ffiffiffi
3

p

sin 47:19�
¼ 0:79 cm

So:

x ¼ O2B cos h2 ¼ 0:79 cos 47:19� ¼ 0:535 cm

It can be verified that the value of y is always the inverse value of x.
Once the position of the links in the mechanism have been defined, we can solve

the velocity problem.
Link 4 makes a translational motion and follows a vertical trajectory at a con-

stant velocity of 0:5 cm=s. Therefore, the velocity of point A of link 4 is:

vA ¼ 0:5̂j

Fig. 2.72 Calculating machine that carries out the “inverse” (x ¼ 1=y) arithmetic operation
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Since point 4 is common to links 3 and 4, it can be denominated A3. The
expression of the relative velocity of the two coincident points of links 2 and 3
(Eq. 2.307) is:

vA3 ¼ vA2 þ vA3A2 ð2:307Þ

The velocity of point A of link 2 (Eq. 2.308) is:

vA2 ¼ x2 ^ rAO2 ¼
î ĵ k̂

0 0 x2

2:55 cosðh2 þ 180�Þ 2:55 sinðh2 þ 180�Þ 0

�������
�������

¼ 1:87x2̂i� 1:73x2 ĵ

ð2:308Þ

The direction of the velocity of point A3 with respect to point A2 (Eq. 2.309) is
defined by the direction in which link 3 slides over link 2:

vA3A2 ¼ vA3A2 cos 47:19
�̂iþ vA3A2 sin 47:19

� ĵ ð2:309Þ

Plugging these values into the relative velocity (Eq. 2.307) and separating the
resulting vector into its components yields the system of two algebraic equations
with two unknowns, x2 and vA3A2 , Eq. (2.310):

0 ¼ 1:87x2 þ 0:679vA3A2

0:5 ¼ �1:73x2 þ 0:734vA3A2

�
ð2:310Þ

Solving the system we obtain:

x2 ¼ �0:13 rad=s
vA3A2 ¼ 0:367 cm=s

�
With these values we can calculate vectors vA2 and vA3A2 :

vA2 ¼ �0:2431̂iþ 0:2249̂j ¼ 0:331 cm=s\137:19�

vA3A2 ¼ 0:249̂iþ 0:269̂j ¼ 0:36 cm=s\47:19�

To find the velocity of links 5 and 6, we have to relate the velocities of the two
coincident points at B (Eq. 2.311) (one of link 2 and another of link 5):

vB5 ¼ vB2 þ vB5B2 ð2:311Þ

Since point B5 also belongs to link 6 and all the points in this link share the same
velocity with horizontal direction, we can assert that:

vB5 ¼ vB5 î
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Therefore, the velocity of link 2 (Eq. 2.312) is:

vB2 ¼ x2 ^ rBO2 ¼
î ĵ k̂
0 0 �0:13

O2B cos h2 O2B sin h2 0

������
������ ¼ 0:075̂i� 0:069̂j

ð2:312Þ

vB2 ¼ 0:102 cm=s\317:19�

The direction of vector vB5B2 is defined by the direction in which link 5 slides
over link 2 (Eq. 2.313):

vB5B2 ¼ vB5B2 cos h2̂iþ vB5B2 sin h2 ĵ ¼ 0:679vB5B2 îþ 0:733vB5B2 ĵ ð2:313Þ

Substituting the values obtained in Eq. (2.311) and separating the vectors into
their components, we obtain Eq. (2.314):

vB5 ¼ 0:075þ 0:679vB5B2

0 ¼ �0:069þ 0:733vB5B2

�
ð2:314Þ

From where we can calculate the magnitudes of vB5 and vB5B2 :

vB5 ¼ 0:139 cm=s
vB5B2 ¼ 0:094 cm=s

�
With these values, we can define the velocity vectors:

vB5 ¼ 0:139̂i ¼ 0:139 cm=s\0�

vB5B2 ¼ 0:0639̂iþ 0:0688̂j ¼ 0:094 cm=s\47:19�

Finally, we solve the acceleration problem. We have to take into account that the
acceleration of link 4 is null. The relative acceleration (Eqs. 2.315 and 2.316) of the
two coincident points, A2 and A3, is:

aA3 ¼ aA2 þ aA3A2 ð2:315Þ

anA3
þ atA3

¼ anA2
þ atA2

þ anA3A2
þ atA3A2

þ acA3A2
ð2:316Þ

Since point A3 also belongs to link 4:

aA3 ¼ 0
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The rest of the vectors in Eq. (2.316) are (Eqs. 2.317–2.321):

anA2
¼ x2 ^ vA2 ¼

î ĵ k̂
0 0 �0:13

�0:2431 0:2249 0

������
������ ¼ 0:029̂iþ 0:031̂j ð2:317Þ

aA2 ¼ 0:043 cm=s2 \47:19�

atA2
¼ a2 ^ rAO2 ¼

î ĵ k̂
0 0 a2

2:55 cosðh2 þ 180�Þ 2:55 sinðh2 þ 180�Þ 0

������
������

¼ 1:87a2̂i� 1:73a2 ĵ ð2:318Þ

The relative motion between points A2 and A3 follows a straight-line trajectory
along link 2. Therefore, the normal component of relative acceleration anA3A2

is zero
and the direction of the tangential component is defined by link 2:

anA3A2
¼ 0 ð2:319Þ

atA3A2
¼ aA3A2 cos h2̂iþ aA3A2 sin h2 ĵ ð2:320Þ

The Coriolis component of the acceleration is given by:

acA3A2
¼ 2x2 ^ vA3A2 ¼ 2

î ĵ k̂
0 0 �0:13

0:249 0:269 0

������
������ ¼ 0:07̂i� 0:0647̂j ð2:321Þ

Substituting the values obtained in Eq. (2.316) and separating the resulting
vectors into their components yields (Eq. 2.322):

0 ¼ 0:029þ 1:87a2 þ 0:07þ 0:6796aA3A2

0 ¼ 0:031� 1:73a2 � 0:0647þ 0:7336aA3A2

�
ð2:322Þ

a2 ¼ �0:0375 rad=s2

aA3A2 ¼ �0:0425 cm=s2

)

In order to calculate the absolute acceleration of point B of link 5 (B5), we use
Eqs. (2.323) and (2.324):

aB5 ¼ aB2 þ aB5B2 ð2:323Þ

anB5
þ atB5

¼ anB2
þ atB2

þ anB5B2
þ atB5B2

þ acB5B2
ð2:324Þ
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We analyze the acceleration components in Eq. (2.324) starting with point B of
link 5 (Eq. 2.325). Since point B5 also belongs to link 6 and all the points in this
link follow a horizontal trajectory:

anB5
¼ 0 ð2:325Þ

atB5
¼ aB̂i ð2:326Þ

The acceleration components of point B of link 2 will be:

anB2
¼ x2 ^ vB2 ¼

î ĵ k̂
0 0 �0:13

0:075 �0:069 0

������
������ ¼ �0:0089̂i� 0:0097̂j ð2:327Þ

anB2
¼ 0:013 cm=s2 \227:19�

atB2
¼ a2 ^ rBO2 ¼

î ĵ k̂
0 0 �0:0375

0:79 cos 47:19� 0:79 sin 47:19� 0

������
������

¼ 0:0217̂i� 0:02̂j ð2:328Þ

atB2
¼ 0:0296 cm=s2 \317:19�

The relative motion of point B5 with respect to link 2 follows a straight trajectory
defined by link 2. Therefore, the normal component of the acceleration of point B5

relative to point B2 is zero and the direction of the tangential component is defined
by link 2.

anB5B2
¼ 0 ð2:329Þ

atB5B2
¼ atB5B2

cos h2̂iþ atB5B2
sin h2 ĵ ð2:330Þ

The Coriolis component of the acceleration of point B5 with respect to point B2

can be calculated with the following expression:

acB5B2
¼ 2x2 ^ vB5B2 ¼ 2

î ĵ k̂
0 0 �0:13

0:0639 0:0688 0

������
������ ¼ 0:0178̂i� 0:0166̂j

ð2:331Þ

acB5B2
¼ 0:0243 cm=s2 \317:19�

2.3 Exercises with Their Solutions 109



Plugging the expression of these acceleration components Eqs. (2.325)–(2.331)
into Eq. (2.324) and separating each vector into its x and y components, we obtain
Eq. (2.332):

aB5 ¼ �0:0089þ 0:0217þ 0:0178þ 0:6796atB5B2

0 ¼ �0:0097� 0:02� 0:0166þ 0:7336atB5B2

�
ð2:332Þ

Solving the system, we find the unknowns:

aB5 ¼ 0:0734 cm=s2

atB5B2
¼ 0:0631 cm=s2

�
Hence, the acceleration of link 6 is given by:

a6 ¼ aB5 ¼ 0:0734̂i ¼ 0:0734 cm=s2 \0�
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