Chapter 2

Kinematic Analysis of Mechanisms.
Relative Velocity and Acceleration.
Instant Centers of Rotation

Abstract Kinematic analysis of a mechanism consists of calculating position,
velocity and acceleration of any of its points or links. To carry out such an analysis,
we have to know linkage dimensions as well as position, velocity and acceleration
of as many points or links as degrees of freedom the linkage has. We will point out
two different methods to calculate velocity of a point or link in a mechanism: the
relative velocity method and the instant center of rotation method.

2.1 Velocity in Mechanisms

We will point out two different methods to calculate velocity of a point or link in a
mechanism: the relative velocity method and the instant center of rotation method.
However, before getting into the explanation of these methods, we will introduce
the basic concepts for their development.

2.1.1 Position, Displacement and Velocity of a Point

To analyze motion in a system, we have to define its position and displacement
previously. The movement of a point is a series of displacements in time, along
successive positions.

2.1.1.1 Position of a Point

The position of a point is defined according to a reference frame. The coordinate
system in a plane can be Cartesian or polar (Fig. 2.1).

© Springer International Publishing Switzerland 2016 21
A. Sim6n Mata et al., Fundamentals of Machine Theory and Mechanisms,
Mechanisms and Machine Science 40, DOI 10.1007/978-3-319-31970-4_2



22 2 Kinematic Analysis of Mechanisms. Relative Velocity ...
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In any coordinate system, we have to define the following:

e Origin of coordinates: starting point from where measurements start.
e Axis of coordinates: established directions to measure distances and angles.
e Unit system: units to quantify distances.

If a polar coordinate system is used, the position of a point is defined by a vector
called rpp connecting the origin of coordinates O with the mentioned point. If O is a
point on the frame this vector gives us the absolute position of point P and we will
call it rp.

In most practical situations, an absolute reference system, considered stationary,
is used. The stationary system coordinates do not depend on time. The absolute
position of a point is defined as its position seen from this absolute reference
system. If the reference system moves with respect to a stationary system, the
position of the point is considered a relative position.

Anyway, this choice is not fundamental in kinematics as the movements to be
studied will be relative. Take, for example, the suspension of a car where move-
ments might refer to the car body, without considering whether the car is moving or
not. Movements in the suspension system can be regarded as absolute motion with
respect to the car body.

2.1.1.2 Displacement of a Point

When a point changes its position, a displacement takes place. If at instant 7 the
point is at position P and at instant 7 + At, the point is at P, displacement during A¢
is defined as the vector that measures the change in position (Eq. 2.1):

Ar = rp —Ip (21)

Displacement is a vector that connects point P at instant ¢ with point P’ at instant
t + At and does not depend on the path followed by the point but on the initial and
final positions (Fig. 2.2).



2.1 Velocity in Mechanisms 23

Fig. 2.2 Displacement of
point P in a plane during
instant At

Fig. 2.3 Displacement of
point P in a plane during
instant dt close to zero

2.1.1.3 Velocity of a Point

The ratio between point displacement and time spent carrying it out is referred to as
average velocity of that point. Therefore, average velocity is a vector of magnitude
Ar/At and has the same direction as displacement vector Ar. If the time during
which displacement takes place is close to zero, the velocity of the point is called
instant velocity, or simply velocity (Eq. 2.2):

Ar dr

= lim >~ =% 22
V= ANA T ar (2.2)

The instant velocity vector magnitude is dr/dr. In an infinitesimal position
change, the direction of the displacement vector coincides with the trajectory. When
O is the instantaneous center of the trajectory of point P, we can express the instant
velocity magnitude as Eq. (2.3):

dr ds do

:E_E:E-rpzw-rp (23)

vp

The direction of this velocity is the same as dr which, at the same time, is
tangent to the motion trajectory of point P (Fig. 2.3).

2.1.2 Position, Displacement and Angular Velocity
of a Rigid Body

Any movement of a rigid body can be considered a combination of two motions: the
displacement of a point in the rigid body and its rotation with respect to the point.
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Fig. 2.4 Angular position of
a rigid body 0O4p

Fig. 2.5 Angular
displacement of a rigid body
AbOap

In the last section, we defined the displacement of a point, so the next subject to
be studied is the rotation of a rigid body.
2.1.2.1 Angular Position of a Rigid Body
To define the angular position of a rigid body, we just need to know the angle
formed by the axis of the coordinate system and reference line AB (Fig. 2.4).
2.1.2.2 Angular Displacement of a Rigid Body

When a rigid body changes its angular position from O4p to O4p, angular dis-
placement Af,p takes place (Fig. 2.5).

Owp = Oap + Alsp (2.4)

The angular displacement of a rigid body, A84p, does not depend on the tra-
jectory followed but on the initial and final angular position (Eq. 2.4).

2.1.2.3 Angular Velocity of a Rigid Body

We define the angular velocity of a rigid body as the ratio between angular dis-
placement and its duration. If this time is, df close to zero, this velocity is called
instant angular velocity or simply angular velocity (Eq. 2.5).
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dOsp
dt

WAB = (25)

2.1.3 Relative Velocity Method

In this section we will develop the relative velocity method that will allow calcu-
lating linear and angular velocities of points and links in a mechanism.

2.1.3.1 Relative Velocity Between Two Points

Let A be a point that travels from position A to position A" during time interval Ar
and let B be a point that moves from position B to position B’ in the same time
interval (Fig. 2.6).

Absolute displacements of points A and B are given by vectors Ar, and Arg.
Relative displacement of point B with respect to A is given by vector Arg,, so it
verifies (Eq. 2.6):

Arg = Ary + Argy (26)

In other words, we can consider that point B moves to position B’ with dis-
placement equal to the one for point A to reach point B” followed by another
displacement, from point B” to point B’. The latter coincides with vector Arg, for
relative displacement. We can assert the same for the displacement of point
A (Eq. 2.7), hence:

AI'A = Al‘B —+ AI’AB (27)

Evidently Args and Aryp are two vectors with the same magnitude but opposite
directions.

Fig. 2.6 Absolute displacements of points A and B, Ar, and Arg, and relative displacement of
point B with respect to A, Arg,
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If we regard these as infinitesimal displacements and relate them to time dt, the
time it took them to take place, we obtain the value of the relative velocities by
Eq. (2.8):

%:%+CZ;—§A:>VB:VA+VBA (28)
Therefore, the velocity of a point can be determined by the velocity of another
point and their relative velocity.
As we have mentioned before, relative displacements Args and Arsp have
opposite directions. Therefore relative velocities vg4 and v4p will be two vectors
with the same magnitude that also have opposite directions (Eq. 2.9).

VA = —VaB (29)

2.1.3.2 Relative Velocity Between Two Points of the Same Link

Let AB be a reference line on a body that changes its position to A’B’ during time
interval Ar.

As studied in the previous section, the vector equation for the displacement of
point B is Eq. (2.6) (Fig. 2.7a). In the case of A and B belonging to the same body,
distance AB does not change, so the only possible relative movement between A and
B is a rotation of radius AB. This way, relative displacement will always be a
rotation of point B about point A (Fig. 2.7b).

If we divide these displacements by the time interval in which they happened,
we obtain Eq. (2.11):

AI‘B _ AI'A Al‘BA

= Vp=V,+Vpa (210)

At A A

A “ Ar

o BA
B

Fig. 2.7 a Relative displacement of point B with respect to point A (both being part of the same
link). b Rotation of point B about point A
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Fig. 2.8 Relative velocity of
point B with respect to point
A (both being part of the same
link)

The value of Vg, (average relative velocity of point B with respect to point A)
can be determined by using Eq. (2.11):

Vs — AI‘BA o ZSIH(AO/Z)
BAT A T At

(2.11)

where A0 is the angular displacement of body AB (Fig. 2.7b). If all displacements
take place during an infinitesimal period of time, dt, then average velocities become
instant velocities (Eq. 2.12):

VB = VA -+ Vg (2.12)

This way, the velocity of point B can be obtained by adding relative instant
velocity vg, to the velocity of point A.

To obtain the magnitude of relative instant velocity vg4 in Eq. (2.13), we have to
consider that the time during which displacement takes place is close to zero in
Eq. (2.11)

Args  2sin(d6/2)— df—— —
= AB ~ —AB = wAB 2.13
a0 Al di dr @ (2.13)

Therefore, any point on a rigid body, such as B, moves relatively to any other
point on the same body, such as A, with velocity vg4, which can be expressed as a
vector of magnitude equal to the product of the angular velocity of the body
multiplied by the distance between both points (Eq. 2.14). Its direction is given by
the angular velocity of the body, perpendicular to the straight line connecting both
points (Fig. 2.8).

Vs = O AT (2.14)

2.1.3.3 Application of the Relative Velocity Method to One Link

Equation (2.13) is the basis for the relative velocity method. It is a vector equation
that allows us to calculate two algebraic unknowns such as one magnitude and one
direction, two magnitudes or two directions.
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(b)

Fig. 2.9 a Calculation of the point B velocity magnitude knowing its direction and vector vy4.
b Velocity diagram

.

Figure 2.9a shows points A and B of a link moving at unknown angular velocity
Suppose that we know the velocity of point A, v4, and the velocity direction of

point B. To calculate the velocity magnitude of point B, we use Eq. (2.13).
Studying every parameter in the equation:

v, is a vector defined as v4 = vAxi + vAvj with known magnitude and direction.
v is a vector with known direction and unknown magnitude. Assuming it is
moving upward to the left (Fig. 2.9a), the direction of this vector will be given
by angle # and it will be defined as Eq. (2.15):

Vg = v cos i+ vg sin Hj (2.15)

Vg4 is a vector of unknown magnitude due to the fact that we do not know the
angular velocity value, w, of the rigid body. Its direction is perpendicular to
segment line AB (Fig. 2.9b). Therefore, it can be obtained in Eq. (2.16):

i j kK i j k

Vea = ®A1rgy = 1| 0 w| = 0 0 w
_ . (2.16)

I'BA, }"BA)‘ 0 BA cos OBA BA sin ()BA 0

= —rBAva)i + ra, coj = BAw(— sin HBAi + cos HBAj)
where rps, = ABcos 045 and rpy, = ABsin Osp.

If we plug the velocity vectors into Eq. (2.13), we obtain Eq. (2.17):

Vg COS 0i + Vg sin Hj = vAXi + vA}j — rBAlwi + rBAywj (2.17)

= va i+ vaj — BAw sin Opai + BAw cos Opaj

If we break the velocity vectors in the equation into their components, two

algebraic equations are obtained (Eq. 2.18):
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vpcos O = vy, —E_Aw sin Ogy } (2.18)
vpsin 0 = v4, + BAwcos Ops ’

We get two equations where the vg magnitude and angular velocity w are the
unknowns, so the problem is completely defined. Once the magnitudes have been
calculated by solving the system of Eq. (2.18), we obtain the rotation direction of @
and the direction of vz depending on the + or — magnitude sign. In the example in
Fig. 2.9a, the values obtained from Eq. (2.18) are positive for angular velocity w as
well as for the velocity magnitude of point B, vg. This means that both have same
directions from the ones that were assumed to write the equations. Therefore, point
B moves upward right and the body rotates counterclockwise.

Equation (2.13) can also be solved graphically using a velocity diagram
(Fig. 2.9b). Starting from point o (velocity pole), a straight line equal to the value of
known velocity v4 is drawn using a scale factor. The velocity polygon is closed
drawing the known direction of vg from the pole and velocity direction vgs (per-
pendicular to AB) from the end point of v4. The intersection of these two directions
defines the end points of vectors vg4 and vg. Measuring their length and using the
scale factor, we obtain their magnitudes.

2.1.3.4 Calculation of Velocities in a Four-Bar Mechanism

Figure 2.10 represents a four-bar linkage in which we know the dimensions of all
the links: 0,A, AB, O4B and 0,0;. This mechanism has one degree of freedom,
which means that the position and velocity of any point on any link can be
determined from the position and velocity of one link. Assume that we know 6, and
w, and that we want to find the values of 03, 04, w3 and wy4. To calculate 05 and 0,
we can simply draw a scale diagram of the linkage at position 6, (Fig. 2.10) or
solve the necessary trigonometric equations (Appendix A).

Once the link positions are obtained, we can start determining the velocities.
First, velocity v, will be calculated:

Fig. 2.10 Four-bar linkage
where all the link dimensions
are know as well as the
position and velocity of link 2
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e The horizontal and vertical components of v, are given by the expression
(Eq. 2.19):
i j k
VAo = 2 ATp0, = 0 0 y (2.19)
AOycosl, AO,sin0, O

As the direction of w, is counterclockwise (Fig. 2.10), its value in the previous
equation will be negative. Point A describes a rotational motion about O, with a
radius of r, = 0,A and an angular velocity of w,, so the direction of v4 will be
perpendicular to O»A to the left according to the rotation of link 2 (Fig. 2.11).
e Once v,4 is known, we can obtain vg with the following expression (Eq. 2.20):
i j k
Vg = @4 ATpo, = 0 0 oy (2.20)
BO4cosf; BOssinfy; 0

Since point B rotates about steady point O, with a radius of BO, and an angular
velocity of w4, we cannot calculate the magnitude of vg due to the fact that wy is
unknown. The direction of the linear velocity of point B has to be perpendicular
to turning radius BO, (Eq. 2.21). We can use the relative velocity method to find
the magnitude of velocity vg:

Vg = V4 + Vpa (221)

Vector v4 as well as the direction of vector vz are known in vector equa-
tion (2.21). We will now study vector vg,.
e The horizontal and vertical components of the point B relative velocity con-
sidering its rotation about point A are (Eq. 2.22):
i j k
Vpa = W3 ATy = 0 0 s (2.22)
BAcos03; BAsinf; 0

Fig. 2.11 Velocity diagram
for the given position and 10,4
velocity of link 2
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Since the angular velocity of link 3 is unknown, we cannot calculate the mag-
nitude of vps. The direction of vg4 is known since the relative velocity of a point
that rotates about another is always perpendicular to the radius joining them. In this
case, the direction will be perpendicular to BA.

This way we confirm that Eq. (2.21) has two unknowns. In (Fig. 2.11) this
equation is solved graphically to calculate the vg4 and v magnitudes the same way
as in Fig. 2.9.

If we want to solve Eq. (2.21) mathematically, the unknowns are the w3 and w4
magnitudes. To obtain these values, we have to solve the vector equation
(Eq. 2.23):

i j k i J k
0 0 Wy | = 0 0 @2
BO,cos0; BO4sin0, 0 AO, cos 0, AO, fin 0> P (2.23)
i i k
+ 0 0 3

BAcosf3; BAsinf; 0

By developing and separating components, we obtain two algebraic equations
(Eq. 2.24) where we can clear w; and wy.

BO4w4 cos 04 = AO2; cos 0, + BAws cos 03 (2.24)

BO,w, sin 04 = AO,; sin 0, + BAws sin 05 }

Once the angular velocities are obtained, we can represent velocities v4, vz and
vpa according to their components (Fig. 2.11).

Assume that we add point C to link 3 in the previous mechanism as shown in
Fig. 2.12a and that we want to calculate its velocity. In this case, the value of angle
0, is already known since angle f is a given value of the problem. Hence,

/ o
05 =360° — (B — 03).

To obtain the velocity of point C once w3 has been determined, we make use of

vector equation V¢ = V4 + Vea, Vea Where is perpendicular to CA and its value is:

_ GVl
Leaj b

Fig. 2.12 a Four-bar linkage with new point C on link 3. b Velocity diagram
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i i k
Veaa =@3Area=| 0 0 w3 (2.25)
CAcost; CAsint; 0

Vector v¢y is obtained directly from Eq. (2.25) since angular velocity w; is
already known. v¢ can be calculated adding the two known vectors, v4 and v¢a.
The velocity of point C can also be calculated based on the velocity of point B by
using Eq. (2.26)

Vc = Vp+Vcp (226)

Figure 2.12b shows the calculation of v graphically.

2.1.3.5 Velocity Calculation in a Crankshaft Linkage

To calculate link velocities in a crankshaft linkage such as the one in Fig. 2.13, we
start by calculating the positions of links 3 and 4. We consider that dimensions O,A
and AB are already known as well as the direction of the piston trajectory line and
its distance rp to O. If we draw a scale diagram of the linkage, the positions of
links 3 and 4 are determined for a given position of link 2. We can also obtain their
position by solving the following trigonometric equations (Eq. 2.27) (Appendix A):

0,Assin 0, + By

1 = arcsin =5
rp, = O2A cos 0, + ABcos it (2.27)
03 =360° — u

From this point, the calculation of the velocity of point A is the same as the one
previously done for the four-bar linkage (Eq. 2.28).
i j k
Va =0 \Ip = 0 0 > (228)
rpcoslh rysinf, O

Fig. 2.13 Crankshaft
linkage: positions of links 3
and 4 are determined for a
given position of link 2
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Since point A is rotating with respect to steady point O,, the direction of velocity
v, is perpendicular to O,A and it points in the same direction as the angular velocity
of link 2, that is, w,.

We will now study velocity vg:

e The magnitude of velocity vg is unknown. As the trajectory of point B moves
along a straight line, its turning radius is infinite and its angular velocity is zero.
Therefore, we cannot determine its velocity magnitude in terms of its angular
velocity and turning radius.

e The direction of vp is the same as the trajectory of the piston, XX'.
Consequently, velocity v can be written as Eq. (2.29):

vp = vgi (2.29)

To calculate vz we need to make use of the relative velocity method (Eq. 2.30):
Vg = V4 +Vpa (230)

The magnitude and direction of vector vg4 are given by Eq. (2.31):
i j k
Vpa = 3 NIy = 0 0 3 (2.31)
BAcosf; BAsinf; 0

Plugging the results into velocity equation (2.30), we obtain Eq. (2.32):
A i j k i j k
vpi = 0 _O wy |+ L 0 L 0 w3 (232)
AOycosl, AO,sin0, O BAcosl0; BAsinf; 0

Breaking it into its components, we define the following equation system
(Eq. 2.33):

v = —AOQO)Q sin 92 — mw’j sin 93 }

_ 2.33
0 = AO,, cos 0, + BAws cos 05 ( )

From which the magnitude of velocity vg and angular velocity w3 are obtained.
Once these velocities are known, we can represent them as shown in Fig. 2.14.
2.1.3.6 Velocity Analysis in a Slider Linkage

To analyze the slider linkage in Fig. 2.15a, we will start by calculating the position
of links 3 and 4. As in previous examples, we know the length and position of link
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Fig. 2.14 Calculation of
0 Vs b

velocities in a crankshaft 5
. [| XX
linkage
V/I VBA
1 AB,/ 10,4
Fig. 2.15 Slider linkage: (b)

a positions of links 3 and 4
are determined for a given
position of link 2,

b calculation of velocities in a
slider linkage

2 as well as the distance between both steady supports O,0y4. The position of link 4
is graphically determined by the line that joins O4 and A. If we use trigonometry for
our analysis, the equations needed are (Eq. 2.34) (Appendix A):

0,A = \/02042 + 0.4 —2 0,05 054 cos(270° — 0,)

0,A cos 6
O4A

(2.34)
04 = arccos

In the diagram, let A be a point that belongs to links 2 and 3 as in previous
examples for the four-bar and crank-shaft linkages. It is not necessary to distinguish
A, and Aj; as they are actually the same point. However, there is another point, A4 in
link 4, which coincides with A, at the instant represented in Fig. 2.15a.
Nonetheless, point A4 rotates about steady point O4 while A, rotates about O,. Due
to this, they follow different trajectories at different velocities.

The velocity of point A, is perpendicular to O,A and its magnitude and direction
are represented by Eq. (2.35):

i i k
Va, = 2 ATy = 0 0 Wy (235)
rpcoslh rsinl, O

The velocity of A4 is perpendicular to O4A and its magnitude is unknown
because it depends on the angular velocity of link 4. Since point A4 belongs to link
4 and it is rotating about steady point Oy, its velocity is represented by Eq. (2.36):
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i j k
Va, = 04 AN ra,0, = 0 0 W4 (236)
A404 CoS 94 A404 sin 94 0

To calculate v,4,, we will make use of the relative velocity method (Eq. 2.37):
VA2 = VA4 + VA2A4 (237)
To calculate the velocities and solve this vector equation, we have to study

vector Va,a, first:

e The magnitude of v,,4, is unknown and represents the velocity at which link 3
slides over link 4.

e The direction of v4,4, coincides with direction O0,A. Therefore, this velocity is
represented by Eq. (2.38):

Va,A, = VA,A, COS 04i + Va,a, sin 94j (238)

Using Eq. (2.37), we obtain Eq. (2.39) with two algebraic unknowns (angular
velocity w4 and the magnitude of velocity V4,4, ):

i j k i i k
0 0 wy | = 0 0 Wy
AO;cos0, AO,sinf, 0 O.sAcos0; O4Asin0; 0

+ Va,a, €08 041 + V4,4, sin 04

(2.39)

This can be solved by breaking the equation into its components (Eq. 2.40):

—AOy; sin 0y = —O4A®4 8in 04 + va,4, c0S 04 } (2.40)

A0, cos 0y = OsAw4 o8 Og + va,a, Sin Oy

Once the velocities have been obtained, we can represent them in the polygon
shown on Fig. 2.15b.

2.1.3.7 Velocity Images

In the velocity polygon shown in Fig. 2.16b, the sides of triangle Aabc are per-
pendicular to those of triangle AABC of the linkage in Fig. 2.16a. The reason for
this is that relative velocities are always perpendicular to their radius and, conse-
quently, triangles Aabc and AABC are similar, with a scale ratio that depends on
ws3. The velocity image of link 3 is a triangle similar to the link, rotated 90° in the
direction of ws.
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(@ (b)

\
YV, 1CB .

"‘ VCB b RN

L CA]

Fig. 2.16 a Four bar linkage with coupler point C. b Triangle Aabc in the velocity diagram in
grey represents the velocity image of link 3

Every side or link has its image in the velocity polygon. This way ab, bc and ac
are the images of AB, BC and AC respectively. Vector oad = v, starting at pole o is

the image of O,A and vector ob = v is the image of O4B. Moreover, the image of
the frame link is pole o with null velocity. We can verify that velocities departing
from o are always absolute velocities while velocities departing from any other
point are relative ones.

If we add point M to link 3 of the linkage in Fig. 2.16a, we can obtain its
velocity in the velocity polygon by looking for its image. We can verify that
distance am in the velocity diagram is given by Eq. (2.41):

In conclusion, once the image of the velocity of a link has been obtained, it is
very simple to calculate the velocity of any point in it. Finding the image of the
point in the velocity polygon is enough. The vector that joins pole o with the image
of a point represents its absolute velocity.

2.1.3.8 Application to Superior Pairs

This method can be applied to cams or geared teeth. In Fig. 2.17a, let link 2 be the
driving element and link 3 the follower. Angular velocity , of the driving link is
known.

In the considered instant, link 2 transmits movement to link 3 in point A. However,
we have to distinguish between point A of link 2 (A;) and point A of link 3 (A3).
These two points have different velocities and, consequently, there will be a relative
velocity va,4, between them. We know that the vector sum in Eq. (2.42) has to
be met:
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Fig. 2.17 a Superior pair linkage. b Calculation of velocities in a superior pair

VA, = Va, +Vasa, (2.42)

The velocity of point A, is perpendicular to its turning radius O,A while the

velocity of point Az is perpendicular to O3A. To calculate these two velocities, we
can use Eq. (2.43) in which w3 is unknown:

Va, = 2 A a0, (2 43)
Va, = 03 A a0,

Relative velocity v4,4, of point Az relative to A, has an unknown magnitude. To
find it, we need to determine the direction of vector vu,4,. Since the links are rigid,
there is no relative motion in direction NN’ due to physical constraints. Hence,
relative motion happens at point A along the tangential line to the surface. This way,
the direction of v4,4, Will coincide with tangential line 77" (Eq. 2.44):

VAzA, = VAzA, COS Gﬂ/i + VA3A, sin Qﬂ/j (244)

Angular velocity w3 and linear velocity V4,4, can be determined by rewriting
Eq. (2.42) using the two velocity components of each vector (Eq. 2.45):

—03Ams sin 03 = —0,Aw, sin 0, + VAsA, €08 Orpr } (2.45)

O3Aw; cos 03 = 0Am; cos 0y + va,a, sin O

Example 1 Determine velocities vg and v¢ of the four-bar mechanism in
Fig. 2.18a. Its dimensions are: 0,04 = 15cm, 0OA = 6cm, AB = 11cm,
04B =9cm, AC = 8cm and BAC = 30°. The input angle is 6, = 60° and the
angular velocity of the driving link is w, = —20 rad/s (clockwise direction).
Angles 03, 04 and 0} can be obtained by applying the trigonometric method

(Egs. 2.46-2.51) developed in Appendix A where angles S, ¢ and ¢ are represented
in Fig. 2.18b.
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Fig. 2.18 a Four bar linkage. b Position calculation of links 3 and 4 in a four-bar linkage using
the trigonometric method

0,A=1/152+62—2-15-6-cos60° = 13.08cm (2.46)
f = arcsin 6 sin60° | =23.41° (2.47)
B 13.08 - '
112 +13.08% — 92 .
q.')arccos( 7 11.13.08 ) =42.81 (2.48)
. (11,
0 = arcsin (;sm 42.81°> = 56.17° (2.49)
03=¢ —f=19.4°
2= ¢ Oﬁ ) (2.50)
04 = 180° — (B + 0) = 100.42
0, = 360° — (BAAC - 93) = 349.4° (2.51)

To calculate the velocity of point B, we will apply the relative velocity method.
We start by analyzing velocities v4, vp and vgs (Eqgs. 2.52-2.54).

V4 = 2 ATyp, = 0 0 —20| = 103.9i — 60j (252)
6cos60° 65sin 60° 0

Operating with these components, we calculate its magnitude and direction:

v4 = 120cm/s £330°

Vpa = W3 ATy = 0 0 w3 | = —3.56m3i+ 10.38wsj
11cos19.4° 11sin19.4° O

(2.53)
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i J k .
VB = M4 N Tpo, = 0 0 wy | = —8.85w4i+ — 1.62m4j
9c0s100.4° 9sin100.4° O
(2.54)
To calculate w3 and w4 we use the relative velocity (Eq. 2.55):
Vg = V4 + Vpa (255)
Clearing the components, we obtain Eq. (2.56):
—8.85w4 = 103.9 — 3.65w3
—1.62w4 = —60 + 10.38w; } (2.56)

From which the following values for angular velocity w3 = 7.16 rad/s clock-
wise and w4 = —8.78 rad/s counterclockwise can be worked out. Operating with
these values in Egs. (2.53) and (2.54), we obtain velocities vg and vp4:

vp = 77.751+ 14.28] = 79.1cm/s £10.4°
Vea = —26.13i+74.32j = 78.78 cm/s £109.4°

To calculate the velocity of point C, we apply the relative velocity equation,
Ve = Va + Vea, Where v, is already known and vy is given by Eq. (2.57):
i j k -
Vea = @3 ATcp = 0 0 7.16 | = 10.53i+56.3] (2.57)
8co0s349.4° 8sin349.4° 0

Vea = 57.28 cm/s £79.4°

Using these values in the relative velocity equation, we obtain:

ve = 114.4i — 3.7j = 114.46 cm/s £358.1°

Example 2 Calculate velocity vp in the crank-shaft linkage shown in Fig. 2.19.
Consider the dimensions to be as follows: 0,A = 3cm, AB = 7cmand y = 1.5cm.
The trajectory followed by the piston is horizontal. The input angle is 8, = 60° and
link 2 moves with angular velocity w, = —10 rad/s (clockwise).

We start by solving the position problem (Eqgs. 2.58-2.60) using the trigono-
metric method (Fig. 2.19):



40 2 Kinematic Analysis of Mechanisms. Relative Velocity ...

Fig. 2.19 Calculation of the
position of the links for a
given input angle in a
crank-shaft linkage

3sin60° + 1.5

u= arcsinf =35.8° (2.58)
xg =3c0s60°+7c0s35.8° =7.1cm (2.59)
03 = 360° — 35.8 = 324.2° (2.60)

The velocity of point B is obtained from relative velocity (Eq. 2.61):
VB = V4 + Vpa (261)

where v4, vp and vpy are given by Egs. (2.62)—(2.64):
i j k -
Vo = ATy0, = 0 0 —10| = 25.98i — 15j (2.62)
3c0s60° 3sin60° 0

v4 = 30cm/s £330°

i J k R .
Vpa = M3 ATgy = 0 0 w3 | = 4.09w3i + 5.68m3j
Tcos324.2° 7Tsin324.2° 0
(2.63)
vp = vpi (2.64)

Using these values in the relative velocity (Eq. 2.61) we obtain Eq. (2.65):

— 25.98 + 4.09
' * w3} (2.65)

0=—-154+5.68ws

Ultimately, resulting in the following values for angular and linear velocities
w3 = 2.64rad/s counterclockwise and vg = 36.78 cm/s. Thus, the velocities
will be:
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Fig. 2.20 Position and
velocity calculation of the
links in a slider linkage. The
unknowns are 0, O4A, w4
and va,a,

v = 36.78i = 36.78 cm/s L0°

Vsa = 10.79i + 15§ = 18.48 cm/s £54.24°

Example 3 Calculate velocity ve of the slider linkage in Fig. 2.20 when the
dimensions of the links are 0,A = 3cm, 0,04 = 5cm, 0;,C = 9cm and the input
angle is 0, = 160°. The input link moves counterclockwise with angular velocity
®y = 10 rad/s.

The position problem can easily be solved using the trigonometric method
(Egs. 2.66 and 2.67):

O4A = /52 +32—2-5-3c0s(270° — 160°) = 6.65cm (2.66)

3 cos 160° o
0, = arccosW =115.08 (2.67)

In order to calculate the velocity of point C, we first have to calculate the
velocity of point A4 which temporarily coincides with A, at the time instant con-
sidered while being part of link 4. We can relate v4, and v4, with relative velocity
(Eq. 2.68):

Va, = VA, +VA2A4 (268)

where v4,, v4, and v4 4, are given by Eqgs. (2.69)—(2.71).

i j k A A
V4, = @2 ATa0, = 0 0 10| = —10.26i — 28.19j  (2.69)
3cos160° 3sin160° O

V4, = 30cm/s £250°
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i k
Va, = @4 ATao, = 0 o
6.65c0s 115.08° 6.65sin115.08° 0

= —6.02w4i — 2.824j

O e

(2.70)

Vasd, = Vay, €08 115.08%1 + vy 4, sin 115.08%) = —0.42v4,4,i4+0.91vp,4,j (2.71)

Using these values in Eq. (2.68) and clearing the components, we obtain
Eq. (2.72):

—10.26 = —6.02w4 — 0.42v4,4, (2.72)

—28.19 = —2.82w4 + 0.9v4,4, '
We calculate the values of angular velocity ws, = —3.19 rad/s clockwise and the
magnitude of va,s, = —21.32 cm/s. The negative sign indicates that the angle 0f v, 4,

is not 04 but 0, + 180°. Consequently, the velocity values are Eqs. (2.73) and (2.74):
v, = —19.2i — 9j = 21.2cm/s £205.1° (2.73)
Va4, = 8.951 — 19.19j = 21.32 cm/s £295° (2.74)

To calculate the velocity of point C, we make use of Eq. (2.75):

i i k . .
Ve = 04 A Ico, = 0 0 3.19| = —26i — 1217_]
9cos 115.08° 9sin115.08° 0

(2.75)

ve =28.7cm/s £205.1°

Example 4 In the mixing machine in Fig. 2.21a, calculate the velocity of extreme
point C of the spatula knowing that the motor of the mixer moves counterclockwise
with an angular velocity of 95.5 rpm and 0, = 0°. The dimensions in the drawing
are in centimeters.

The kinematic skeleton of the mixing machine is shown in Fig. 2.21b. To
determine the position of the linkage, we have to calculate the value of angle 63 and
distance O4A. To do so, we apply Eq. (2.76):

7 o
n= arctanr—2 = arctan — = 32.47
ry 11

O4A = \/ri+7r3 =/1124+72 = 13.04cm (2.76)

03 =90 4 u = 12247
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Fig. 2.21 a Mixing machine.
b Kinematic skeleton

Before starting the calculation of velocities, we have to convert the given input
velocity from rpm into rad/s (Eq. 2.77):

2nrad

—955
“2 P60

= 10rad/s (2.77)

To calculate the velocity of point C, we first have to solve the velocity of point
O3, which coincides with the position of point O, at the instant considered while
still being part of link 3. Since points O3 and A belong to link 3, we can use the
relative velocity method to relate their velocities (Eq. 2.78):

Vo; = Va1 V0,4 (2.78)

where v, and vg,4 are given by Egs. (2.79) and (2.80):
i j Kk A
Va = @2 ATyp0, = 0 0 10| = 70j (2.79)
7cos0° 7sin0° 0

v4 = 70cm/s £90°

i J k . .
VoA = @3 ATy, = 0 0 w3 | = —1lwszi — Twsj
AO;zcos 122.47° AO;3sin122.47° 0
(2.80)
Using these values in Eq. (2.78), we obtain Eq. (2.81):
vo, = (70§) + (= 11wsi — Twsj) (2.81)

However, in Eq. (2.81) the direction as well as the magnitude of velocity v,
remain unknown. To obtain information on this velocity, we will relate the velocity
of point Oz with the velocity of point O4 by using Eq. (2.82):
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V03 = v04 + v0304 (282)

In this equation, the velocity of point Oy is zero, vp, = 0, since it is a fixed point.
Therefore, the velocity of point Oz has the same magnitude and direction as the
relative velocity between points O3 and O4. The direction of this velocity is given
by link 3. Hence, the velocity of point O3 is defined as Eq. (2.83):

Vo, = Vo, cos 122.47i + vo, sin 122.47j (2.83)
Evening out Egs. (2.81) and (2.83), we obtain Eq. (2.84):
Vo, €0s 122.47i 4 vo, sin 122.47j = 70j + (— 11 wsi — Twsj) (2.84)
By separating the components, we obtain Eq. (2.85):

Vo, cos 122.47 = —11w; }

Vo, sin 122.47 = 70 + Tws (2.85)

Solving Eq. (2.85), we obtain the values for angular velocity w; = 2.88 rad/s
clockwise and the velocity magnitude of point O3, vo, = 58.71 cm/s. This way, the
vector velocity of point Os is defined by Eq. (2.86):

Vo, = —31.52i+49.53j = 58.71 cm/s £122.47° (2.86)

Eventually, in order to calculate the velocity of point C, we apply velocity
(Eq. 2.87):

Vc =Va+Vca (287)

where relative velocity between points C and A is Eq. (2.88):

i j k . .
Vea = O3 ATcs = 0 0 2.88| = 51.03i+ 32.45j
21c0s302.47° 21sin302.47° 0

(2.88)

Operating with the known values in Eq. (2.87), we obtain the vector velocity of
point C:

ve = 51.03i4 102.45) = 114.4cm/s £63.52°

Once all the velocities are defined, we can represent them in the velocity polygon
(Fig. 2.21c).
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2.1.4 Instant Center of Rotation Method

Any planar displacement of a rigid body can be considered a rotation about a point.
This point is called instantaneous center or instant center of rotation (I.C.R.).

2.1.4.1 Instant Center of Rotation of a Rigid Body

Let a rigid body move from position AB to position A’B’ (Fig. 2.22). Position
change could be due to a pure rotation of triangle AOAB about O, intersection point
of the bisectors of segments AA’ and BB'. We can obtain the displacement of points
A and B by using their distance to center O and the angular displacement of the
body, A8 (Eq. 2.89).

Ary = AA —20Asm2} (2.89)

Arg = BB = 20Bsin4!

Considering the time to be infinitesimal, we can consider the body to be rotating
about O, the instant rotation center. Displacements will be Eq. (2.90):

A PEind) — A
dry = 20Asin4 OAd()} (2.90)

drp = 20Bsin% = OBd0

Dividing both displacements by the time spent, dt, we find the instant velocities
of points A and B. Their directions are perpendicular to radius OA and OB
respectively and their magnitudes are Eq. (2.91):

vy = OAY = OAw
vg = OBY = OBw

(2.91)

Fig. 2.22 A planar
movement of the rigid body
AB can be considered a
rotation about point O
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;
Y
/

of 0,.%5

Fig. 2.23 Graphical calculation of direction (a) and magnitude (b) of the velocities of points B
and C knowing v4 and the direction of vg

This way, it is verified that, at a certain instant of time, point O is the rotation
center of points A and B. The magnitude of the velocity of any point in the body
will be Eq. (2.92):

v=Rw (2.92)

where:

e R is the instant rotation radius of the point (distance from the point to O).
e o is the angular velocity of the body measured in radians per second.

Velocity of every point in a link will have direction perpendicular to its instant
rotation radius. Thus, if we know the direction of the velocities of two points of a
link, we can find the ICR of the link on the intersection of two perpendicular lines
to both velocities.

Consider that in the link in Fig. 2.23a, we know the magnitude and direction of
point A velocity and the direction of point B velocity. The ICR of the link has to be
on the intersection of the perpendicular lines to v4 and vg; even though the latter
magnitude is unknown, we do know its direction. Once the ICR of the link is
determined, we can calculate its angular velocity (Eq. 2.91) and so @ = vu / OA.
Ultimately, once the ICR and angular velocity of the link are known, we can
calculate the velocity of any point C in the link. The magnitude of the velocity of
point C is ve¢ = OCw and its direction is perpendicular to OC.

In many cases, it is simpler to calculate velocity magnitudes with graphical
methods. Figure 2.23b shows how velocities vz and v¢ can be calculated by means
of a graphic method once the ICR of a rigid body and the velocity of one of its
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Fig. 2.24 The ICR of a body C e
moving on a plane with pure 4 Bt
translation is placed at the AR v, Vs
infinite | 4
vY oy
O(x)

points (in this case v4) are known. If we fold up points B and C over line OA, it
must be verified that the triangles with their sides formed by each velocity and the
rotation radius of each point are similar (Eq. 2.93), since:

VA VB Vc

OA OB 0C

In the case of a body moving on a plane with no angular velocity (pure translation),
its ICR is placed at the infinite since all points of the body have the same velocity and
the perpendicular lines to such velocities intersect at the infinite (Fig. 2.24).

2.1.4.2 Instant Center of Rotation of a Pair of Links

So far, we have looked at the ICR of a link relative to a stationary reference system.
However, we can define the ICR of a pair of links, not taking into account if one of
them is fixed or not. This ICR between the two links is the point one link rotates
about with respect to the other.

In Fig. 2.25, point I3 is the ICR of link 2 relative to link 3. In other words, link 2
rotates about this point relative to link 3. There is one point of each link that
coincides in position with this ICR. If we consider that link 3 is moving, these two
points move at the same absolute velocity, that is, null relative velocity. This is the
only couple of points - one of each link - that has zero relative velocity at the instant
studied.

To help us understand the ICR concept of a pair of links, we are going to
calculate the ones corresponding to a four-bar linkage. Notice that in the linkage in
Fig. 2.26, there is one ICR for every two links. To know the number of ICRs in a
linkage, we have to establish all possible combinations of the number of links

Fig. 2.25 The ICR between
links 2 and 3 is the point link
2 rotates about with respect to
link 3 or vice versa
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1,8
7N
7N

Fig. 2.26 ICR I3 is on the intersection point of two lines perpendicular to the velocity vectors of
points A and B of link 3 with respect to link 1

taking two at a time since I;; is the same IRC as I;;. Therefore, the number of IRC:s is
given by Eq. (2.94):

NN —1)

NICRs = =6 (2.94)

where:

e NICRs is the number of ICRs
e N is the number of links.

The obvious ones are I}, I3, I34 and I14 since every couple of links is joined by
a hinge, which is the rotating point of one link relative to another. Remember that
the velocity of any point in the link has to be perpendicular to its instant rotation
radius. In consequence, considering that points A and B are part of link 3, /3 is on
the intersection of two lines perpendicular to the velocity vectors of points A and
B (Fig. 2.26).

ICR @4 is obtained the same way but considering the inversion shown in
Fig. 2.27. As in kinematic inversions, relative motion between links is maintained.

Fig. 2.27 ICR I, is on the intersection of two lines perpendicular to the velocity vectors of points
A and O, of link 2 with respect to link 4
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Fig. 2.28 The velocity
vector of ICR I3 has to be
perpendicular to ICR 7}, and
to ICR I;3. Therefore, it has to
be located on the straight line
defined by ICR I}, and ICR I3

2.1.4.3 Kennedy’s Theorem

Also known as the Three Centers Theorem, it is used to find the ICR of a linkage
without having to look into its kinematic inversions as we did in the last example.
Kennedy’s Theorem states that all three ICRs of three links with planar motion have
to be aligned on a straight line.

In order to demonstrate this theorem, first note Fig. 2.28 representing a set of
three links (1, 2, 3) that have relative motion. Links 2 and 3 are joined to link 1
making two rotating pairs. Therefore, ICRs I, and I3 are easy to locate.

Links 2 and 3 are not physically joined. However, as previously studied in this
chapter, there is a point link 2 rotates about, relative to link 3, at a given instant.
This point is ICR I,3. Initially, we do not know where to locate it, so we are going
to assume it coincides with point A.

In this case, point A would act as a hinge that joins links 2 and 3. In other words,
we could consider it as a point that is part of links 2 and 3 at the same time. If we
consider it to be a point of link 2, its velocity with respect to link 1 has to be
perpendicular to the rotating radius I;,A (Fig. 2.28). However, if we consider it to
be part of link 3, it has to rotate about I;3 with a radius of Ij3A.

This gives us different directions for the velocity vectors of points A, and Aj,
which means that there is a relative velocity between them. Therefore, point
A cannot be ICR I»3. If the velocity of ICR I3 has to have the same direction when
calculated as a point of link 2 and a point of link 3, ICR I3 has to be located on the
straight line defined by I}, and I;3.

This rule is known as Kennedy’s Theorem, which says that the three relative
ICRs of any three links have to be located on a straight line. This law is valid for
any set of three links that has relative planar motion, even if none of them is the
ground link (frame).

2.1.4.4 Locating the ICRs of a Linkage

To locate the ICRs of the links in a linkage, we will apply the following rules:

1. Identify the ones corresponding to rotating kinematic pairs. The ICR is the point
that identifies the axis of the pair (hinge).
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Fig. 2.29 Instant Centers of A

Rotation of links 1, 2, 3 and 4 ‘ t)l .
! Ay

in a slider-crank linkage

2. In sliding pairs, the ICR is on the curvature center of the path followed by the
slide.

3. The rest of ICRs can be obtained by means of the application of Kennedy’s
Theorem to sets of three links in the linkage.

Example 5 Find the Instant Centers of Rotation of all the links in the slider-crank
linkage in Fig. 2.29.

First, we identify ICRs Iy, I»3, I34, and I 4 that correspond to the four kinematic
pairs in the linkage. Notice that ICR 1,4 is located at the infinite as the slider path is
a straight line.

Next, we apply Kennedy’s Theorem to links 1, 2 and 3. According to this
theorem ICRs /;3, I3 and 114 have to be aligned. The same way, if we take links 1, 3
and 4, ICRs I3, I34 and I}4 also have to be aligned. By drawing the two straight
lines, we find the position of ICR I;3.

To find ICR 1,4, we proceed the same way applying Kennedy’s Theorem to links
1, 2, 4 on one side and 2, 3, 4 on the other.

Example 6 Find the Instant Centers of Rotation of the links of the four-bar linkage
in Fig. 2.30a.

To help us to locate all ICRs we are going to make use of a polygon formed by
as many sides as there are links in the linkage to analyze. In this case, we use a
four-sided polygon. Next, we number the vertex from 1 to 4 (Fig. 2.30b). Every
side or diagonal of the polygon represents an ICR. In this case, the sides represent
L1, b3, I34 and I,4. Both diagonals represent ICRs ;3 and 4. We will trace those
sides or diagonals representing known ICRs with a solid line and the unknown ones
with a dotted line.

In the example in Fig. 2.30a, ICRs I},, I3, Iz4 and I;4 are known while ICRs Ip4
and I;3 are unknown. In order to find ICR I4 we apply Kennedy’s Theorem making
use of the polygon. To find the two ICRs that are aligned with ICR I,4, we define a
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Fig. 2.30 a Instant Centers
of Rotation of links 1, 2, 3
and 4 in a four-bar linkage.
b Polygon to analyze all ICRs

(b)
| 2
4 3

NS
i
,/Q\Il}

triangle in the polygon, where two sides represent already known ICRs (for instance,
I3 and I34) and a third side representing the unknown ICR (in this case I54). We will
repeat the operation with ICRs 15, I}4 and I4. We find ICR 54 on the intersection of
lines 123124 and 112]14. To find ICR 113, we define triangles 112, 123, 113 and 114, 134, 113.
ICR I;3 is on the intersection of lines /{513 and I14134.

Example 7 Find the Instant Centers of Rotation of the links in the slider linkage in
Fig. 2.31.

In the example in Fig. 2.31a, ICRs I}, I3, Iz4 and I;4 are known while ICRs Ip4
and Ij3 are unknown. In order to find these ICRs we apply Kennedy’s
Theorem making use of the polygon (Fig. 2.31b) the same way we did in the last
example.

Example 8 Find the all the Instant Centers of Rotation in the mechanism in
Fig. 2.32a. Link 2 is an eccentric wheel that rotates about O, transmitting a rolling
motion without slipping to link 3, which is a roller joined at point A to link 4 in
straight motion inside a vertical guide.

Fig. 2.31 a Instant Centers (a)
of Rotation of links 1, 2, 3

and 4 in a slider linkage.

b Polygon to analyze all ICRs
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Fig. 2.32 a Instant Centers of Rotation of links 1, 2, 3 and 4 in a mechanism with two wheels and
a slider. b ICRs. ¢ Polygon to analyze all ICRs

The known ICRs are Iy», I»3, Iz4 and I14. ICR I3 is on the intersection of 11,13
and 114134 and ICR 1,4 is on the intersection of lines Ir3/l54 and I121;4.

Example 9 Find the ICRs of the links in the five-bar linkage shown in Fig. 2.33a.
Link 2 rolls and slips over link 3.

The known ICRs are 115, I3, Ii5, Iz4, I35 and I45. ICR I»3 is on the intersection of
112113 and a line perpendicular to the contours of links 2 and 3 at the contact point
(Fig. 2.33b). The rest of the ICRs can easily be found by applying Kennedy’s
Theorem making use of the polygon the same way we did in the previous examples
(Fig. 2.33c).

Fig. 2.33 a Mechanism with 5 links, b ICRs of all links in the linkage, ¢ polygon helping to apply
Kennedy’s Theorem
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2.1.4.5 Calculating Velocities with ICRs

We have already studied the relative velocity method for the calculation of point
velocity in a linkage. Although it is a simple method to apply, it has one incon-
venience. In order to calculate the velocity of one link, we need to calculate the
velocities of all the links that connect it to the input link.

Calculating velocity by using instantaneous centers of rotation allows us to
directly calculate the velocity of any point in a linkage without having to first
calculate the velocities of other points.

Figure 2.34 shows a six-bar linkage in which the velocity of point A is already
known. To calculate the velocity of point D by means of the relative velocity
method, we first have to calculate the velocities of points B and C.

With the ICR method, it is not necessary to calculate the velocity of a point that
physically joins the links. By calculating the relative ICR of two links, we can
consider that we know the velocity of a point that is equally part of both links.

It is important to stress that the ICR behaves as if it were part of both links
simultaneously and, consequently, its velocity is the same, no matter which link we
look at to find it.

The process to calculate velocity is as follows:

4. We identify the following links:

— The link the point with known velocity belongs to (in this example point A).
— The link to which the point with unknown velocity belongs (point D).
— The frame link.

In the example of Fig. 2.34, the link with known velocity is link 2, the one with
unknown velocity is link 6 and link 1 is the frame.

5. We identify all three relative ICRs of the mentioned links (/}, I and I»s in the
example) which are aligned according to Kennedy’s Theorem.

6. We calculate the velocity of the ICR between the two non-fixed links vy,
considering that the ICR is a point that belongs to the link with known velocity.
In this case, I will be considered part of link 2 and it will revolve about ;5.

7. We consider ICR I a point in the link with unknown velocity (link 6 in this
example). Knowing the velocity of a point in this link, vy6, and its center of
rotation, Ij¢, the velocity of any other point in the same link can easily be
calculated.

This problem is solved in Example 13 of this chapter.
Fig. 2.34 Six-bar linkage

with known velocity
of point A
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2.1.4.6 Application of ICRs to a Four-Bar Linkage

Figure 2.35 shows a four-bar linkage in which the velocity vector of point A, v,, is
known and the velocity of point B, vg, is the one to be calculated. The steps to be
followed are:

8. We identify the link the point of known velocity belongs to (in this example

link 2). We also have to identify the link the point with unknown velocity
belongs to (link 4), and the frame (link 1).

. We locate the three ICRs between these three links: 1), 114 and 4. The straight
line they form will be used as a folding line for points A and B.

. We obtain velocity magnitude vy4 as if I4 was part of link 2. Figure 2.35 shows
the graphic calculation of this velocity making use of v4. See the analytical
calculation in Egs. (2.95)-(2.97).

Vi, = li2l4 > (2.95)
va = halzm; (2.96)
Dividing and clearing vy, :
I»!
Vh, = 22, (2.97)
Lol

. ICR I,4 is now considered a point on link 4. The velocity of point B is
graphically obtained by drawing two similar triangles: the first one defined by
sides 1514 and and the second one by sides Ij4B (Fig. 2.35). It can also be
obtained analytically in Egs. (2.98)—(2.100):

Vi, = 1141240)4 (298)

Vg = 114134604 (299)

Fig. 2.35 Calculation of the velocity of point B in a four-bar linkage with the ICR method
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Fig. 2.36 Velocity A v, A
calculation of point B in a 1, () \4*1_"7_6‘)147
crank-shaft linkage using the i "’4 L,

ICR method

Dividing and clearing

L4l
yp =y, (2.100)
L4l

If the angular velocity of link 4 is required, it can easily be calculated using the
wy value in Egs. (2.101)—(2.103):

on
Wy = —— (2.101)
Iolhs
on
Wy = —— (2.102)
Lalps
1h1
wy =222, (2.103)
Li4lpy

2.1.4.7 Application of the ICR Method to a Crank-shaft Linkage

We assume velocity vector v4 of point A to be known and we want to calculate vg
for point B (Fig. 2.36).

10. The link with known velocity is link 2. We want to find the velocity of link 4,
while link 1 is fixed.

11. We locate the three ICRs related to these links: I,,, 4 and 4.

12. We calculate velocity of ICR 1,4, regarded as a point of link 2.

13. We consider ICR 14 as part of link 4. Note that all the points in link 4 have the
same velocity. Consequently, if we know velocity v;,,, we already know the
velocity of point B: vg = vy,.

2.2 Accelerations in Mechanisms

In this section we will start by defining the components of the linear acceleration of
a point. Then we will develop the relative acceleration method that will allow us to
calculate the linear and angular accelerations of all points and links in a mechanism.
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These accelerations will be needed in order to continue with the dynamic analysis in
future chapters.

2.2.1 Acceleration of a Point

The acceleration of a point is the relationship between the change of its velocity
vector and time.

Point A moves from position A to A’ along a curve during time Ar and changes
its velocity vector from v, to vy (Fig. 2.37a). Vector Av measures this velocity
change (Fig. 2.37b).

The Av/At ratio, that is to say, the variation of velocity divided by the time it
takes for that change to happen, is the average acceleration. When the time con-
sidered is infinitesimal, then, Av/Af becomes dv/dt and this is called instantaneous
acceleration or just acceleration.

From Fig. 2.37b we deduce that Av = Av; + Av,, where, since the magnitude of
vector v, is equal om = on, we can assert that:

e Av; represents the change in direction of velocity vs, thus v4 4+ Av) =
va — Av; is a vector with the same direction as vy and the magnitude of v,.

e Av, represents the change in magnitude (magnitude change) of the velocity of
point A when it switches from one position to another. Its magnitude is the
difference between the magnitudes of vectors v4 and vg.

Relating these changes in velocity and the time it took for them to happen, we
obtain average acceleration vector A of point A (Eq. 2.104) when it moves from
point A to A’

Av B ﬂ Av,

M= "n T A

(2.104)

This average acceleration has two components. One is only responsible for the
change in direction (Av; /Ar), and the other is responsible for the change in velocity

Fig. 2.37 a Change of point A velocity while changing its position from A to A’ following a curve
in Az time. b Velocity change vector
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magnitude (Av,/Ar). In Fig. 2.37b we can calculate the magnitudes of Av; and Av,
(Egs. 2.108 and 2.109):

Avy =2, sin§ (2.105)

AV2 =V —V (2106)

The directions of Av; and Av; in the limit as Ar approaches zero are respectively
perpendicular and parallel to velocity vector v,, that is, normal and tangential to the
trajectory at point A. These vectors are called normal and tangential accelerations,
a)} and a’,. The acceleration vector can be obtained by adding these two components
(Eq. 2.107):

a, = a; +a) (2.107)

The magnitudes of these components can be calculated as follows in
Egs. (2.108) and (2.109):

. sin AO/2 do , Wi
= fim (™) =g = v = ko (2108
. ovar—va  dvy dw dR dR
U AT Ar dt a TG ( )
where:
e v is the velocity of point A.
e R is the trajectory radius at point A.
e o is the angular velocity of the radius.
e o is the angular acceleration of the radius.
e dR/dt is the radius variation with respect to time.

To sum up, acceleration of a point A can be broken into two components:

e The first one is called normal acceleration, ajj. Its direction is normal to the
trajectory followed by point A and it points towards the trajectory center
(Fig. 2.38). This component is responsible for the change in velocity direction
and its magnitude is Eq. (2.110):

2
d! = Ro* =4 (2.110)

e The second component, known as tangential acceleration, a)j, has a direction
tangential to the trajectory, that is, the same as the velocity vector of point A.
It can point towards the same side as the velocity or towards the opposite one;
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Fig. 2.38 The acceleration of a point has a normal component that points towards the center of
the trajectory and a tangential component whose direction is tangential to the trajectory

it depends on whether the velocity magnitude increases or decreases. Tangential
acceleration is responsible for the change in magnitude of the velocity vector
and its value is Eq. (2.111):

dR
aj;:Roc—i—wE (2.111)

If the trajectory radius is constant, dR/dt is zero and the value of the tangential
acceleration is a!y = Ra.

The magnitude of the acceleration can be determined by the magnitudes of its
normal and tangential components. Equation (2.112) will be applied:

ar =/ (@2)* + (d,)* (2.112)

Finally, the angle formed by the acceleration vector and the normal direction to
the trajectory is defined by Eq. (2.113):

t
o= arctanZ—;‘ = arctan% (2.113)
A

Equation (2.113) is only valid when the radius is constant.

2.2.2 Relative Acceleration of Two Points

The relative acceleration of point A with respect to point B is the ratio between the
change in their relative velocity vector and time.

Let us assume that point A moves from position A to A’ in the same period of
time it takes B to reach position B'. The velocities of points A and B are v4 and vp
and their change is given by vectors Av, and Avg (Fig. 2.39). This way, the new
velocities will be Egs. (2.114) and (2.115):
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v, +Av,

v, +Av,

Fig. 2.39 Velocity change vectors Av, and Avg of points A and B when moving to new positions
A’ and B’ respectively

Vo = Va4 + AVA (2114)
Vg = Vg + Avp (2115)

On the other side, Eq. (2.116) that gives us the value of relative velocity vgs
between A and B is (Fig. 2.40a):

Vpa = Vp — V4 (2116)
And between A’ and B’ it is Eq. (2.117) (Fig. 2.40b):
Vea + Avgy = (Vg + Avp) — (Vo + Avy) (2.117)

If we plug the value of relative velocity vg4 from Eq. (2.116) in Eq. (2.117), we
obtain Eq. (2.118):

(VB — VA) + Avpgy = (VB + AVB) — (VA + AVA) (2118)

By simplifying the previous equation, we get Eq. (2.119):

AVBA = AVB — AVA (2119)
Fig. 2.40 Relative velocity (a)
between a points A and B,
b points A’ and B (b)
Vi
v, +Av,
Vs Ve, AV,
Vg Vt+ AVB
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After rearranging Eq. (2.120):
AVB = AVA + AVBA (2120)

This way, if we divide Eq. (2.120) by the period of time, At, we obtain
Eq. (2.121):

AVB o AVA AVBA
At At At

(2.121)

Each one of the terms in equation (Eq. 2.121) is an average acceleration
(Eq. 2.122):

Ap = Ax+Ags (2.122)

When At approaches zero (df), the average accelerations become instantaneous
accelerations (Eq. 2.123):

ap =ajt+ap (2.123)

Therefore, the acceleration vector of point B equals the sum of the acceleration
vector of point A plus the relative acceleration vector of point B with respect to
point A. The latter has a normal as well as a tangential component (Eq. 2.124):

ag = a, +ajy, +ay, (2.124)

2.2.3 Relative Acceleration of Two Points in the Same
Rigid Body

As the distance between two points of a rigid body cannot change, relative motion
between them is a rotation of one point about the other. In the example shown in
Fig. 2.41, point B rotates about point A, both being part of a link that moves with
angular velocity w and angular acceleration a. The relative acceleration vector of
point B with respect to point A can be broken into two components:

Fig. 2.41 Relative
acceleration of point B with
respect to point A both being
in the same link
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e The normal component, aj,, is always perpendicular to the relative velocity
vector and it points towards the center of curvature of the trajectory. In this case,
it points towards point A.

e The tangential component, a},, has the same direction as the relative velocity
vector. In the example shown in Fig. 2.41, as the direction of angular acceler-
ation o opposes the direction of angular velocity w, the tangential component
points in the opposite direction to relative velocity vg4, which means that the
magnitude of this velocity is decreasing.

These normal and tangential components of the relative acceleration of point
B with respect to point A can be obtained with Eqgs. (2.125) and (2.126):

Ay, =OAVp =@ ANOATpy (2.125)
ap, =0 AT (2.126)

The angle formed by the relative acceleration vector and the normal direction to
the trajectory is Eq. (2.127):

al o
= arctan 24 = arctan — 2.127
¢
al, w?

In other words, angle ¢ is independent from distance AB. It only depends on the
acceleration a and the angular velocity .

With these components, we can calculate the acceleration of point B based on the
one of point A (Eq. 2.128):

ag = aAXi + aA,vj +OAVpy +A ATy (2.128)

In the case of a rigid body that revolves about steady point O (Fig. 2.42) the
absolute acceleration vector of point P (a generic point of the body) is the relative
acceleration with respect to point O (Eq. 2.129):

ap = ap +ajp, +ap, = ah, +ap, (2.129)

Fig. 2.42 Normal and
tangential components of the
acceleration of point P on a
link that revolves about steady
point O




62 2 Kinematic Analysis of Mechanisms. Relative Velocity ...
Where the normal and tangential components are Eqgs. (2.130) and (2.131):
ap, =®AVpp =OA®ATp (2.130)

3;30 =a ATrpo (2131)

2.2.4 Computing Acceleration in a Four-Bar Linkage

To apply the relative acceleration method, we will calculate the acceleration of
points B and C in the linkage in Example 1 of this chapter (Fig. 2.43). We know
angular velocity @; = —20rad/s clockwise and angular acceleration o, =
150 rad/s? counterclockwise of the motor link as well as the geometrical data of the
linkage. We will also make use of the following results obtained from the position
and velocity analysis in Example 1:

v4 = 103.9i — 60j

0, = 19.4° v = 77.751 + 14.28)
; . w3 =7.16 rad/s s 5
0, = 349.4 Ve = —26.13i +74.32
., 4= —878rad/s . .
04 = 100.42 ve = 114.4i — 3.7j

vea = 10.531 4 56.3j

To solve the problem we will apply the vector equation that relates the accel-
erations of points B and A (Eq. 2.132):

ag = ay +apy = (aj +ay) = (a) +a)) + (a}, +aj,) (2.132)

In general, normal components will be known, since they depend on velocity,
while tangential components will be unknown as they depend on angular acceler-
ation, o. We will start calculating the acceleration of point A. Then we will analyze
the acceleration of point B with respect to point A. Next, we will study the accel-
eration of point B and, finally, we will obtain the acceleration of point C.

Fig. 2.43 Four-bar linkage
with known angular velocity
and acceleration of the input
link
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Acceleration Vector of Point A:
Point A rotates about steady point O, so the normal acceleration component is
given by Eq. (2.133):
i j k
A= Ava=| 0 0 —20|=—1200i — 2078j (2.133)
1039 —-60 O

a’l = 2400 cm/s* £240°

We can verify that this vector has a perpendicular direction to v4 and it points
towards the trajectory curvature center of point A, that is to say, towards O,.
The tangential component of the acceleration vector of point A is given by
Eq. (2.134):
i i k
a, = Ari,=| 0 0 150 | = —779.42i+ 450§ (2.134)
6cos60° 6sin60° 0

a), = 900 cm/s* £150°

Acceleration vector a), is parallel to velocity vector v4 but in the opposite
direction, as the direction of angular acceleration o, is opposite to the direction of
angular velocity ;.

We can start drawing the acceleration polygon (Fig. 2.44) by tracing vectors aj
and a,. We define point a in the polygon at the end of vector acceleration a4. The
acceleration image of link 0,A is oa.

Relative Acceleration of Point B with Respect to Point A:

Since relative motion is a revolution of point B about point A, the normal
component of the relative acceleration of B with respect to A is Eq. (2.135):

i i k
al, =3 AVga=| 0 0 7.16|=-532.13i— 187.1j  (2.135)
—26.13 7432 0

al, = 564.06cm/s? £199.4°

The direction of this vector is perpendicular to velocity vg4 and it heads towards
the trajectory center of point B, In other words, the direction is from B to A.

The tangential component of the relative acceleration vector of B with respect to
A is expressed as Eq. (2.136):
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J_ 0,4

Fig. 2.44 Acceleration polygon of the four-bar linkage in Fig. 2.43

i j k ) )
Apy = o3 ATpy = 0 0 o3 | = —3.65031 + 10.3803]
11cos19.4° 11sin194° O
(2.136)

To calculate the value of aj;,, we need to know o3, which will be obtained in the

next step.
Acceleration of Point B:
This point rotates about O4, so the normal component of its acceleration
(Eq. 2.137) will be:
i i k
0 0 —878|=12537i—682.64]  (2.137)

ag =4 \Nvg =
7775 14.28 0
a} = 694.06cm/s* /280.4°
This vector is perpendicular to vz and heads towards the trajectory curvature

center of point B. In other words, from B to Oj.
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The tangential acceleration is defined by Eq. (2.138):

i i k . .
ag =04 ATpo, = 0 0 oy | = —8.8504i — 1.6204j
9cos 100.4° 9sin100.4° O

(2.138)

This component depends on ¢4, which is another unknown that we need to find.
In order to determine it, we need to plug the obtained values in the acceleration
vector (Eqgs. 2.139 and 2.140):

ap = a, +apy = () +a))+ (a}, +ah,) (2.139)

(125.37i — 682.64j) + (—8.85a4i — 1.6204])
= (—1200i — 2078j) + (—779.42i + 450j) (2.140)
+ (—532.13i — 187.1j) 4 (—3.6503i + 10.3803))

Breaking Eq. (2.140) into its components, we obtain Eq. (2.141):

125.37 — 8.8504 = —1200 — 779.42 — 532.13 — 3.6503 } (2.141)

—682.64 — 1.6204 = —2078 +450 — 187.1 4+ 10.38013

By solving the system, the angular accelerations are obtained: a3 = 58.81 rad/s?
and oy = 322.21 rad/s?. They can be used in Eqgs. (2.136)—(2.138) to calculate the
values of the tangential components.

al, = —214.65i + 610.48j = 647.08 cm/s* £109.37°
al, = —2851.55i — 522j = 2898.9 cm /s’ £190.37°

Acceleration of Point C:
Finally, we can find the acceleration of point C (Eq. 2.142) by using the fol-
lowing vector equation:

ac =ay+acy =ay+al, +ag, (2.142)

We already know acceleration a4 and we can calculate the components of the
relative acceleration of point C with respect to point A (Egs. 2.143 and 2.144):
i j K . .
aly=03Avea=| 0 0 7.6|=—403.11i+7539)  (2.143)
1053 563 0
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al, = 410.1cm/s* £169.4°

i j Kk ) A
ag, =03 ATca = 0 0 58.81 | = 86.54i -+ 462.45]
8c0s349.4° 8sin349.4° 0

(2.144)
al, = 470.48 cm/s* £79.4°
Hence, the acceleration of point C is Eq. (2.145):

ac = (—1200i — 2078) + (—779.42i + 450j)
+ (—403.11i + 75.39j) + (86.54i + 462.45j) (2.145)
= —2295.99i—1090.16j

ac = 2541.66cm/s* £205.4°

Once all the accelerations have been obtained, they can be represented in an
acceleration polygon like the one shown in Fig. 2.44.

In the acceleration polygon in Fig. 2.44, triangle Aabc is defined by the end
points of the absolute acceleration vectors of points A, B and C. The same as in
velocity analysis, triangle Aabc in the polygon is similar to triangle AABC in the
mechanism (Eq. 2.146).

ab @ bc
@ A 2< (2.146)
AB AC BC

2.2.4.1 Accelerations in a Slider-crank Linkage

Figure 2.45 shows the slider-crank mechanism whose velocity was calculated in
Example 2 of Sect. 2.1.3.8. The crank rotates with constant angular velocity of
—10 rad/s clockwise. We want to find the acceleration of point B.

We will use the results obtained in Example 2:

V4 = 25.98i — 15j
03 = 32426 3 =2.641ad/s vy = 10.79i+ 15]
vp = 36.78i

To calculate the acceleration of point B (Eq. 2.147), we apply the following
vector equation:
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Fig. 2.45 Slider-crank
linkage with constant angular
velocity in link 2

ap = ay +apy = () +a,)+ (a}, +ah,) (2.147)

Acceleration Vector of Point A:
The normal component of acceleration a)j is given by Eq. (2.148):
ik . .
az =Wy AVy = 0 0 —10| = —150i — 2598j (2148)
2598 —15 O

a’ = 300cm/s* £240°

This vector is perpendicular to velocity v4 and it heads towards the trajectory
curvature center of point A, that is to say, from A to O;.

The tangential component of the vector is zero since the angular velocity of link
2 is constant, that is, op = 0.

Relative Acceleration of Point B with Respect to Point A:

The normal component of the relative acceleration vector of point B with respect
to point A is given by Eq. (2.149):

i J k ) A
ajy =3 Avpa=| 0 0 2.64|=—39.61+2849j (2.149)
1079 15 0

aj, = 48.78cm/s” £144.27°

This vector is perpendicular to velocity vg4 and heads from B towards A.
The tangential component of the relative acceleration vector of point B with

respect to point A is given by Eq. (2.150):
i j k ) )
ap, =03 ATpy = 0 0 o | = 4.0903i + 5.6803]
7c0s324.26° 7sin324.26° 0

(2.150)

Prior to calculating its value, we have to find 3.
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Fig. 2.46 Acceleration
polygon of the slider-crank
linkage in Fig. (2.45)

IXX' 3,71 0,4

Acceleration of Point B:

We have to take into account that link 4 has a pure translational motion fol-
lowing the trajectory defined by line XX’ (Fig. 2.45). The direction of the accel-
eration of point B coincides with the trajectory direction (Eq. 2.151):

ap = alB = ClBi (2151)
By substituting Eqs. (2.148)—(2.150) in Eq. (2.147) we obtain Eq. (2.152):
agi = (—150i — 259.8) + (—39.6i + 28.49j) + (4.09x3i + 5.6803§)  (2.152)

The following algebraic components are obtained if we break this acceleration
vector into its components (Eq. 2.153):

ag = —150 — 39.6 + 4.0925 } (2.153)

0 = —259.8 +28.49 +5.6803
Based on these equations, we find angular acceleration, o3 = 40.72 rad/ sZ, and
the magnitude of the linear acceleration at point B, ag = —23.04 cm/s. This way,
the remaining acceleration value is Eq. (2.154):
al, = 166.54i +231.29j = 285 cm/s? /54.24° (2.154)
ap = —23.04i = 23.04cm/s? £180°

Once all the accelerations have been determined, we can represent them in an
acceleration polygon as the one shown in Fig. 2.46.
2.2.5 The Coriolis Component of Acceleration

When a body moves along a trajectory defined over a rotating body, the acceler-
ation of any point on the first body relative to a coinciding point on the second body
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will have, in addition to the normal and tangential components, a new one named
the Coriolis acceleration. To demonstrate its value, we will use a simple example.
Although a demonstration in a particular situation is not valid to demonstrate a
generic situation, we will use this example because of its simplicity.

In Fig. 2.47, link 3 represents a slide that moves over straight line. Point P; of
link 3 is above point P, of link 2. Therefore, the position of both points coincides at
the instant represented in the figure.

The acceleration of point P3 can be computed as Eq. (2.155):

ap, = ap, +ap3P2 (2155)

Relative acceleration ap,p, has, in addition to normal and tangential components
studied so far, a new component called the Coriolis acceleration (Eq. 2.156):

ap,p, = app +app +ahp (2.156)

To demonstrate the existence of this new component, see Fig. 2.48. It represents
slider 3 moving with constant relative velocity vp,p, = v over link 2, which, at the
same time, rotates with constant angular velocity w;. P is a point of slider 3 that
moves along trajectory O,F on body 2. P, is a point of link 2 that coincides with P3
at the instant represented.

In a dt time interval, line O, F rotates about O, angle df, and moves to position
O,F'. In the same period of time point P, moves to P, and P3 moves to Pj. This last
displacement can be regarded as the sum of displacements AP, P}, AP,B and ABP’,.

Displacement AP,P), takes place at constant velocity since O P, and w, are
constant. Movement AP, B also takes place at constant velocity as vp,p, is constant.

Fig. 2.47 Link 3 moves
along a trajectory defined over
link 2 which rotates with
angular velocity w;

Fig. 2.48 Link 3 moves with
constant relative velocity
along a straight trajectory
defined over link 2 which, at
the same time, rotates with
constant angular velocity w,
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However, displacement ABP} is triggered by an acceleration. To obtain this

acceleration, we start by calculating the length of arc BP} (Eq. 2.157):

BP; = PyBd0 (2.157)
But P’2—3 = vp,p,dt and dO = w,dt, which yields (Eq. 2.158):

BP,, = w)vp,p,dr* (2.158)

The velocity of point P3 is perpendicular to line O,F and its magnitude is
@,0,P5. Since o, is constant and O, P5 increases its value with a constant ratio, the
magnitude of the velocity of point Pz, perpendicular to line O,F, changes uni-
formly, that is, with constant acceleration.

In general, a displacement (ds) with constant acceleration (a) is defined by
Eq. (2.159):

1
ds = 5adﬂ (2.159)

Then BP is expressed as Eq. (2.160):

- 1
BP, = 3 adt® (2.160)
Evening out the two equations for arc BPj, we obtain Eq. (2.161):

1
Wyvp,p,dt* = 5aarr2 (2.161)

Finally, we clear the acceleration value Eq. (2.162):
a = 2w2VP3P2 (2162)

where a is known as the Coriolis component of the acceleration of point P3 in honor
of the great French mathematician of the XIX century. The Coriolis acceleration
component is a vector perpendicular to the relative velocity vector. Its direction can
be determined by rotating vector vp,p, 90° in the direction of w,.

The Coriolis acceleration component vector can be obtained mathematically
with Eq. (2.163):

af,}Pz =2m; A Vpip, (2163)
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Fig. 2.49 Link 3 moves
along a curved trajectory over
link 2 while the latter is
rotating with angular velocity
(2]

A general case of relative motion on a plane between two rigid bodies is shown
in Fig. 2.49. P, is a point on body 2 and P; is a point on link 3, which moves along
a curved trajectory over body 2 with its center in point C.

The absolute acceleration of point P; is Eq. (2.164):

ap, = ap, + ap,p, (2164)
Or, expressed in terms of their intrinsic components (Eq. 2.165):
ap +ap =ajp +ap +ap, +ap, +aj, (2.165)

where the Coriolis component is part of the relative acceleration of point P; with
respect to P, and its value is given by Eq. (2.163).

The radius of the trajectory followed by P3 over link 2 at the instant shown in
Fig. 2.49 is CP. Consequently, the normal and tangential acceleration vectors of P3
with respect P, (Eqs. 2.166 and 2.167) are normal and tangential to the trajectory at
the instant considered and their values are:

aﬁ}Pz = O, A\ Vp,p, (2.166)

ajngz =0, \Ipc (2167)

2.2.5.1 Accelerations in a Quick-return Mechanism

In the mechanism in Fig. 2.50, link 2 is the motor link. We want to calculate the
velocity and acceleration of link 4. The information on the length of the links as
well as angular velocity w, are the same as in Example 3. Angular acceleration of
the motor link is zero, that is, ap = 0.
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Fig. 2.50 Quick-return
linkage with constant angular
velocity

Based on the results obtained in Example 3:
va, = —10.26i — 28.19j
v, = —19.2i — 9j
Vau, = 8.951 — 19.19j
ve = —26i — 12.17j

0y = 115.08° @y = 3.19 rad/s’

To calculate the accelerations, we use Eq. (2.168):
ay +a) =aj +a, +ay, +a,, +aj, (2.168)

We study the value of each component, starting with the acceleration of point A,
(Egs. 2.169 and 2.170):

i j k ) R
a:z =W AVy, = 0 0 10| = 281.9i — 1026j (2169)
—10.26 —-28.19 0

a = 300cm/s” £340°
322 =op A\ Tao, = 0 (2170)

We continue with the acceleration of point A4 (Egs. 2.171 and 2.172):

i J k . .
al =4 Ava, = 0 0 3.19|=28.71i — 61.23j (2.171)
—-19.2 -9 0

a}, = 67.63cm/s” £295.08°

i j k
3544 =0y AT, = 0 0 4 (2.172)
O4Acos115.08° 04Asin115.08° 0 '

= —6.02041 — 2.8204]
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We will now study the value of the acceleration of point A, relative to point Ay.
Because the relative motion of point A, with respect to point A4 follows a straight
trajectory, the normal component is zero, agz 4, = 0. The tangential component has
the direction of link 4 (Eq. 2.173), consequently:

a), 4, = d) 4, cos 115.08°i +d , sin115.08° (2.173)

Finally, we calculate the Coriolis component of the acceleration (Eq. 2.174):

i i k A A
a4, =204 AVaa, =2 0 0  3.19|=12243i+57.1j (2.174)
895 —-19.19 0
In Eq. (2.175) we plug the calculated values in the vector equation (Eq. 2.168):

(281.9i — 102.6j) = (28.71i — 61.23) + (—6.02041 — 2.82014))
+ (dl, cos 115.08°i +d,,, sin 115.08°)) (2.175)
+ (122.43i+ 57.1j)

By separating the components, Eq. (2.176) is obtained:

281.9 = 28.71 — 6.0204 +d, ,, cos 115.08° + 122.43 } (2.176)

—102.6 = —61.23 — 2.8204 +d}, ,, sin 115.08° +57.1

This way, we find the value of angular acceleration oy = —11.56 rad/ s? and the
magnitude of tangential relative acceleration aj , = —145.63cm/ s>. The accel-
erations then remain as follows:

a, = 69.59i + 32.6j = 76.85 cm/s* £25°

4 =
al ,, = 61.731 — 131.9j = 145.63 cm/s? £295.08°

We proceed to calculating the acceleration of point C (Eqs. 2.177 and 2.178):

i J k . .
ac=m;Ave=| 0 0 3.19 | = 38.82i — 82.94j (2.177)
-26 —12.17 O

al. = 91.57 cm/s* £295.08°
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Fig. 2.51 Acceleration o
polygon of the quick-return
linkage in Fig. 2.50

i j
atC:<14/\I'c04 = 0 0 —11.56
04Ccos115.08° 04Csin115.08° 0
= 94.23i+44.1j (2.178)

al. = 104.04cm/s? £25.08°

Once all the accelerations have been determined, they can be represented in an
acceleration polygon as in previous examples (Fig. 2.51).

2.3 Exercises with Their Solutions

In this section we will carry out the kinematic analysis of different mechanisms by
applying the methods developed in this chapter up to now.

Example 10 In the mixing machine in Example 4 (Fig. 2.52a), calculate the
velocity of point C (Fig. 2.52b) by means of the ICR method once the velocity of
point A is known. Use the relative acceleration method to calculate the acceleration
of point C knowing that the motor (link 2) moves at constant angular velocity
wy = 10 rad/s counterclockwise, in other words, o, = 0.

We start by calculating the velocity of point C by using the ICR method. Since
the point of known velocity, A, is part of link 3 and point C also belongs to link 3,
we only need to find the ICR of links 1 and 3. That is to say, I;3. This center is
shown in Fig. 2.53.

For velocity calculation purposes, we first have to find the velocity of point
A (Eq. 2.179) considered part of link 2. We know that w, = 10 rad/s and distance
1,A = 7em:
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Fig. 2.52 a Mixing machine.
b Kinematic skeleton

Fig. 2.53 Calculation of the
point C velocity using the
ICR method

va = woljpA =70cm/s (2.179)

This same velocity associated to link 3 (Eq. 2.180) is:

va = w3lizhy = w3 = (2.180)

11313

To determine the angular velocity of link 3, we need to calculate distance ;3/53
(Eq. 2.181). We will make use of values u = 32.47° and O4A = 13.04 cm obtained
in Example 4:

O
Tishs = —— =24.289cm (2.181)
sin i
Wy = —A_ = 2.88 rad/s (2.182)
VLR

Finally, we can calculate the velocity of point C (Eq. 2.183) knowing that
03 = 122.47° and AC = 21 cm:
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Ve = 603113C = W3 \/1131232 —|—A_C2 -2 113123 Cos Hg (2183)
ve = 114.4cm/s

To calculate accelerations, we use the position and velocity results obtained in
Example 4:

Vpo = 70j
Vo, = Vo,0, = —31.52i — 20.16j
0; =122.47° w3 =288rad/s v = 51.03i+ 102.45]
Vo.a = —31.68i — 20.16j
Vea = 51.03i + 32.45j

We start by calculating the acceleration of point O3 on link 3 (Egs. 2.184 and
2.185), which coincides with Oy at the instant being studied.

ap, = aj +aj +ap , +ap, (2.184)
ap, = ap, + a’o4 +ap,0, + a’0304 +aj,0, (2.185)

In these equations, a/, = 0 due to the fact that the angular acceleration of link 2 is
zero. Acceleration ap, = 0 because point Oy is on the frame. Finally, acceleration
ap, o, = 0 since the relative motion of point O3 with respect to link 4 follows a
straight path.

The rest of the acceleration components (Eqs. 2.186-2.190) have the following
values:

i k .
az =W AVy = 0 10| = -700i (2186)
0

70

O O e

a’ = 700cm/s* Z180°

i i k A A
ap, =3 AVoa=| 0 0  2.88|=158.06i —91.24j (2.187)
—31.68 —20.16 0

aj, , = 108.15cm/s* £302.47°
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i j k .
0 0 oy | = —1lozi — Tosj
AO5sin122.47° 0
(2.188)

a’03A =03 ATg,a =
AOs5 cos 122.47°

The relative acceleration component of will have the following values:
i (2.189)

aly o, = a0, €08 122.47°1 +dl,, , sin 122.47°

i j k A )
ag,0, = 203 AVo,0, =2| 0 0  2.88| = —285.29i — 181.56]
~31.52 4953 0
(2.190)

aj, o, = 338.16cm/s> £212.47°

Evening out the two vector equations that define the value of the acceleration of

point Oz and introducing the calculated values, we obtain Eq. (2.191):

(—700i) 4 (58.06i — 91.24j) + (—11azi — To3j) 2.191)
= dfy,, (—0.54i +0.843j) + (—285.29i — 181.56j) '
By breaking up the components, we obtain Eq. (2.192):
— .06 — 11z = 0.544,, , — 285.2
700 + 58.06 o3 t05 ap.o, 85.29 (2.192)
—91.24 — To3 = 0.843ay,,, — 181.56
This way, the angular acceleration of link 3 can be found, o3 = —19.3 rad/ s2 as
well as the magnitude of the relative tangential acceleration, a, ,, = 267.37 cm/ s2.

Ultimately, we apply Eq. (2.193) to calculate the acceleration of point C:
ac = aj} +a, +aj, +a, (2.193)

Relative accelerations (Egs. 2.194 and 2.195) can be worked out as follows:

i i k A )
ag =03 Ava=| 0 0 2.88|=-93.46i+146.97]  (2.194)
51.03 3245 0
i i k ) A
ag =3 Arca=| 0 0  —19.3|=—341.94i —217.59] (2.195)
~17.71 0

11.27



78 2 Kinematic Analysis of Mechanisms. Relative Velocity ...

C = a

Fig. 2.54 Acceleration polygon of the mixing machine shown in Fig. (2.52)
Therefore, the acceleration of point C is Eq. (2.196):
ac = (—700i) + (—93.46i + 146.97j) + (—341.94i — 217.59j) (2.196)
ac = —1135.4i — 70.62j = 1137.6cm/s> £183.56°

Once the acceleration problem has been solved, we can represent the vectors
obtained and draw the acceleration polygon in Fig. 2.54:

Example 11 Figure 2.55a represents a mechanism that is part of a calculating
machine that carries out multiplications and divisions. At the instant shown,
knowing that 0,A = 1cm, 0,B = 0.5¢cm, input x = 0.25 cm and link 2 moves with
constant angular velocity of w, = 1 rad/s counterclockwise, calculate:

1. Which constant value, k, the input has to be multiplied by to obtain output, y.
That is to say, the value of constant £ in equation y = kx.

2. The velocity vector of points A, B, C and D using the relative velocity method.

3. The acceleration vector of point C.

4. The velocity vector of point C using the ICR method. Use the velocity of point
A calculated in question 2.

(b)
ds
\4
A\ 4
v
b,, B b,
A
Vp|= Vs,
\4
Ve=Vy, B,
ag™ [

Fig. 2.55 Calculating machine (a) and its velocity polygon (b) for x = 0.25 cm and w, = 1rad/s
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1. We start by calculating x and y (Eq. 2.197) in terms of 0;.

x = 0,Asin 0,
) (2.197)
y = O,Bsin 0,
Constant k£ will be given by Eq. (2.198):
0,A
k=2=22_> (2.198)
X 02B

2. Angle 6, needs to be determined to calculate the velocity of point A:

0.5
y=kx=2-025cm =0.5cm = 0, = arcsinT =30°

We now define the relationship between the velocity of point As and the velocity
of point Ag (Eq. 2.199), which coincides with it at that certain instant but belongs to
link 6:

Vas = Vag + Vasaq (2199)

This yields the following velocity values (Eqs. 2.200 and 2.201):

i i Kk . .
Vas = Va, = ) ATyp, = 0 0 1| = —0.5i+0.866j (2200)
1cos30° 1sin30° O

Va, = lem/s £120°

Ag 1s a point on link 6 with straight horizontal motion. Relative motion of points
As and Ag is also a straight movement but with vertical direction.

Vi, = Va
Ao e (2.201)

VAsAs = VAsAg)
We introduce these values in Eq. (2.199) and we obtain Eq. (2.202):

0.5i 4 0.866] = va i+ vacu,i (2.202)
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The unknowns can easily be determined by separating the components.

v, = —0.51 = 0.5cm/s £180°
Vi, = 0.866j = 0.866 cm/s £90°

Link 6 moves with straight translational motion. Therefore, all its points have the
same velocity. Since point C belongs to this link, its velocity is:

Ve = v4, = —0.5i = 0.5cm/s £180°

To calculate the velocity of point D, we proceed in a similar way. We have to
calculate the velocity of point By:

Vg, = Vg, + Vg3, (2.203)

In Eq. (2.203), the velocities are given by Eqgs. (2.204) and (2.205):

i j k ) A
Vg, = @ ATpo, = 0 0 1| =043i+0.25] (2.204)
0.5c0s300° 0.5sin300° 0

vg, = 0.5cm/s £30°

VB, = V5,j
By BsJ . (2205)
VB;B, = VB;B,1
Plugging these values into Eq. (2.203), we obtain Eq. (2.206):
0.43i 4 0.25] = vg,j + vaip,i (2.206)

From which we can calculate the following values:

vp, = 0.25j = 0.25cm/s /90°
Va5, = 0.43i = 0.43 cm/s £0°
Since point D belongs to link 4, which moves along a straight line, its velocity
will be the same as the point By velocity:
vp = v, = 0.25j = 0.25cm/s £90°
Once all the velocities have been determined, they can be represented in a
velocity polygon (Fig. 2.55b).

3. To calculate the acceleration of point C, we start by defining Eq. (2.207), which
relates the accelerations of point A5 on link 5 with Ag on link 6.
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n t _ an t n t c
ay +ay =ay tay +tay, +ay, +ay, (2.207)

The values of the acceleration components Eq. (2.208) in Eq. (2.207) are:

i i Kk ) A
ay =a, =oyAvy=| 0 0 1|=-0866i—05j  (2.208)
~0.5 0.866 0

r__ gt __
a, =a, =0

a, =0

a, = ag(‘i
ay, =0
azt‘\sA() = azt‘\sA(j
ay, =0

Introducing these values in Eq. (2.207), we obtain Eq. (2.209):

—0.866i — 0.5) = d!, i+, 4 (2.209)
Clearing the components, we obtain the values of the accelerations:

al, = —0.866i = 0.866 cm/s* Z180°
al ,, = —0.5i = 0.5cm/s* £270°

Once more, as point C belongs to link 6, which moves with straight translational
motion, the acceleration of point C is the same as the acceleration of point Ag:

ac = a,, = —0.866i = 0.866 cm /s> £180°

Once the accelerations have been determined, they can be represented in an
acceleration polygon (Fig. 2.56).

Fig. 2.56 Acceleration
polygon of points A, As, Ag
and C in the mechanism
shown in Fig. (2.55a)
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P4
%134 ()
v

Fig. 2.57 a Calculation of the velocity of point C with the ICR method using velocity vy, .
b Polygon to analyze ICRs positions

4. To calculate the velocity of point C by means of the ICR method, we start by
calculating the relative instantaneous centers of rotation of link 1 (frame), link 2
(the link point A belongs to) and link 6 (the link point C belongs to).

Once ICRs I}, 116 and I¢ have been obtained (Fig. 2.57a), we can calculate the
velocity of Is. At the considered instant, I is part of links 2 and 6 simultaneously.
As a point on link 2, it rotates about O, and its velocity is Eq. (2.210):

va = walpA

V4 —— 1
v, = ——1I12h¢ = =0.5=0.5cm/s 2.210
B = =2l = 1 / ( )

Moreover, Is also belongs to link 6, which moves with linear translational
motion and all its points have the same velocity. Hence, v¢ = v;,, (Fig. 2.57a).

Example 12 Figure 2.58 represents a Scotch Yoke mechanism used in the assembly
line of a production chain. The lengths of the links are O,A = 1 mand O,B = 1.2m.
At the instant considered, angle 0, = 60° and angular velocity w, = —1 rad/s
(clockwise). Knowing that link 2 moves with constant velocity, calculate:

1. The acceleration of point C.
2. The velocity of point C by using the ICR method when the velocity of point B is
known.

1. First of all, we make use of the vector (Eq. 2.211) to calculate the velocities:

Va, = Va, + Vaua, (2.211)
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Fig. 2.58 a Scotch Yoke mechanism. b Velocity polygon

Next, we obtain the expressions of these components Egs. (2.212)—(2.214). We
start by calculating v,, (Eq.2.212) knowing that O,A forms an angle of
60° +90° = 150° with the X-axis (Fig. 2.58a) and that w, = —1 rad/s clockwise.

i j k A A
V4, = V4, = 2 ATy, = 0 0 —1| = 0.5i4+0.866j
1cos150° 1sin150° O

(2.212)
V4, = Va4, = 1 m/s £60°

The trajectory of link 4 forms an angle of 180° — 10° = 170° with the X-axis
(Fig. 2.58a), thus:

Va, = va, €08 170%1 + vy, sin 170°§ = —0.985v,4,i+ 0.174v,,j (2.213)

The motion of A3 with respect to A4 follows a straight line that forms an angle of
80° with the X-axis, consequently:

Vasa, = Vasa, €08 80°i + v, sin80% = 0.174v4,4,i+0.985v4,4,]  (2.214)

We plug these values into relative velocity (Eq. 2.211) and we obtain
Eq. (2.215):

(0.51+0.866j) = (—0.985v,,i+0.174v4,j) + (0.174v4,4,i+ 0.985v4,4.)
(2.215)

By separating the vector components, we find the system of algebraic equations
(Eq. 2.216):
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0.5 = —0.9851/144 +O~174VA3A4 }

0.866 = 0.174vy, +0.985v4,4, (2.216)

In this system we can find the magnitude of the point A4 velocity,
va, = —0.34m/s, and the magnitude of the relative velocity, va,4, = 0.94m/s.
With these values, we can calculate the velocity vectors:

va, = 0.3351 — 0.059j = 0.34 m/s £350°
Vi, = 0.163i40.925j = 0.94m/s Z80°

Since all points on link 4 follow a straight path, the velocity of point C is the
same as the one of point A4:

ve = va, = 0.335i — 0.059j = 0.34 m/s £350°

Figure 2.58b shows the velocity polygon corresponding to these results.
To calculate the acceleration, we apply Eq. (2.217):

Ay, = ay, +au,p, (2.217)

where the components of the accelerations (Eqs. 2.218-2.220) can be expressed as:

i J k . s
al =al =mAva=|0 0 —1|=0866i—0.5j (2.218)
0.5 0866 O
a, =0
a, =0
ay, = a) = ay, cos 170% + ay, sin 170°% (2.219)
ay,a, = Ay 4, = Gpya, COS 80°1 + ay, 4, 5in 80°j (2.220)

We obtain Eq. (2.221) plugging these values into relative acceleration
(Eq. 2.217):

(0.866i — 0.5) = (—0.985a4,i+0.174a,,j) + (0.174a4,4,i+ 0.985a4,4,)

(2.221)
Separating the vector components (Eq. 2.222):
0.866 = —0.985a4, +0.174a4,4,
—-0.5 = 0.174(1,44 + 0.985(1,43,44 (2222)
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Finally, solving the algebraic equation system, we obtain:
a4, = 0.926i — 0.163j = 0.94m/s?> £350°
a4, = —0.059i — 0.335) = 0.34m/s> £260°

Since link 4 moves with translational motion without rotation, the acceleration of
point C is the same as the one of point Ay:

ac = a4, = 0.926i — 0.163j = 0.94m/s> £350°

We can see these results represented in the acceleration polygon in Fig. 2.59.

1. We now calculate the velocity of point C using the ICR method. Since the
known velocity belongs to a point in link 2 (point B) and the one we want to find
corresponds to a point of link 4 (point C), the relative ICRs of links 1, 2 and 4
need to be determined. In other words, we need to determine ICRs I;,, 114 and
I4. Once the centers have been obtained (Fig. 2.60), we calculate the velocity of
I4. Point B rotates about point O, with the following velocity:

Vg = COlezB = 12m/s

VB 1.2 .
=—1Ipphs = —0,Asin20° = 0.34
Vi 2B 12h4 =502 sin m/s

Since all points in link 4 follow a straight path, instantaneous center I4 yields
the velocity of any point of link 4. The velocity of point C is:

ve = v, =034m/s

Its direction is as shown in Fig. 2.60.

Example 13 Figure 2.61 represents a quick return mechanism that has the fol-
lowing dimensions: 0,04 = 25 mm, O,A = 30 mm, AB =50mm, O4B = 0,C =
45mm and CD = 50 mm. The angle between sides O4B and O4C of the triangle

Fig. 2.59 Acceleration
polygon of points A3, A4 and
C of the Scotch Yoke
mechanism in Fig. (2.58a)
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Fig. 2.60 Calculation of the velocity of point C with the ICR method using velocity vg

Fig. 2.61 Quick-return
mechanism

ABO4C is 90°. Calculate the velocity of point D of the slider when the position and
velocity of the input link are 6, = 225° and w,; = 80 rpm clockwise. Use the ICR
method.

Consider that point D, of unknown velocity, is part of link 6 (it could also be
considered part of link 5) and that point A, of known velocity, is part of link 2 (it is
also part of link 3). We have to find the relative ICRs of links 1, 2 and 6, that is,
centers 1o, I1¢ and Iy.

Figure 2.62 shows the ICRs and the auxiliary lines used to find them. Before
starting the calculation, we have to convert the velocity of the input link from rpm
into rad/s (80 rpm = 8.38 rad/s).

In order to obtain the velocity of point D graphically, we need to know the
velocity of point A (Eq. 2.223):

vA = wal A (2.223)

Figure 2.62 shows how is vy, calculated graphically using v4. However, this
velocity (Eq. 2.224) can also be obtained mathematically:

Vo6 — CU21|2126 (2224)



2.3 Exercises with Their Solutions 87

Fig. 2.62 Calculation of the velocity of point D with the ICR method knowing v,4

Since link 6 is moving with non-angular velocity, all the points in this link have
the same velocity:

Vp =V, = Wal12hhe = 211.8 mm/s (2.225)

Its direction is shown in Fig. 2.62.

Example 14 The mechanism shown in Fig. 2.63 represents the second inversion of
a slider-crank mechanism where the slider follows a circular arc trajectory with
radius R = 24.4 cm. The mechanism has the following dimensions: O,P = 10cm
and 0,0, = 14.85cm. Consider that link 2 rotates clockwise with a constant
velocity of w, = 12 rad/s clockwise and that 6, = 180° at the instant considered.
Find the velocity and acceleration of link 4. Point Q of link 4 and point P of link 2
are superposed.

We start by solving the position problem using trigonometry (Egs. 2.226—
2.229). We apply the law of cosines to triangle AO4O,P:

04P = \/02042 +0.P° —2 0,05 03Pcos 90° = 17.9¢cm (2.226)

Fig. 2.63 Inverted
slider-crank mechanism with
the slider following a curved
path. Point P on link 2 is
coincident with point Q on
link 4 at the studied instant
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We also know that:

O4Pcos(04 — 180°) = O,P

0, = 180° 10 _ 236.06° (2.227)
4 = + arccosm = .
Applying the law of cosines to triangle AO4PC:

0P = R +R* — 2R? cos @

R wz (2.228)
o= ————— =143.04°
arccos R

180° — @

20+ @ =180 = f = —s = 68.48° (2.229)

In Fig. 2.63 we can observe that the normal direction to link 4 on point Q is NN'.
Its angle is defined by Oyy = 04 — 180° + § = 124.54°. The tangential direction to
link 4 on point Q is defined by TT' and its angle is Oy = 0, — 180°
+f —90° = 34.54°.

Applying the relative velocity method to points P and Q (Eq. 2.230):

Vp = Vg + Vpo (2230)

The absolute velocity of point P (Eq. 2.231), the extreme point of link 2, is:

i j k A
Vp = ) AIpo, = 0 0 —12 | = 120j (2.231)
10cos 180° 10 cos 180° 0

vp = 120cm/s £90°

The direction of velocity vpg is tangential to the trajectory followed by link 3
when it slides inside the guide rail of link 4 (Eq. 2.232). Nevertheless, its magnitude
will be one of the unknowns of the problem.

Vppo = Vpg COS Gﬁ/i + VrQ sin Gnlj (2232)
This relative velocity (Eq. 2.233) can also be expressed as the vector product of
the angular velocity of radius R associated to slider movement and the vector that

goes from the center of curvature C to point P:

Vpo = Wr A Tpc (2233)
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The velocity of point Q (Eq. 2.234) is:

i j k
Vo = 04 ATgo, = 0 0 on
17.9¢c0s236.06° 17.9sin236.06° 0

= 14.85w4i — 1004j

(2.234)

Substituting each vector in the relative velocity expression and separating its
components, we obtain the following system of two equations and two unknowns
(Eq. 2.235), w4 and vpg:

0 = 14.85w4 4 0.823vpg
120 = —10w4 + 0.567VPQ (2235)

wy = —5.94 rad/s
vpg = 106.96cm/s

Hence, velocities vy and vpg are:
vo = —88.21i+59.4j = 106.33 cm/s £146.06°
Vpo = 88.1i+60.64j = 106.96 cm/s /34.54°

Once the velocities have been obtained, the velocity polygon can be drawn
(Fig. 2.64).

Once vector vpg is defined, we have to calculate wg in Eq. (2.236). This value
will be needed to solve the acceleration problem.

i j k
Vpo = MR ANTrpc = 0 0 WR (2236)
Rcos(Oyy +180°)  Rsin(Oyy +180°) 0

88.1i + 60.64j = —Rwp sin 304.54°1 + Rawg cos 304.54°]
Fig. 2.64 Velocity polygon

of the mechanism shown in
Fig. (2.63)
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Clearing, we obtain:

—88.1

-y
OF = Rsin304.5a0 38 madfs

Finally, we can study the acceleration problem. The angular velocity of link 2 is
constant. Therefore, its angular acceleration (op) is null. Defining the vector
expression of the relative acceleration (Eq. 2.237) between P and Q:

ap =ag+apg (2.237)
ap +ap = aj, +ay, +ap, +ap, +ap, (2.238)

And analyzing each vector in Eq. (2.238), we obtain Eqgs. (2.239)-(2.245):

i .
al = Avp=10 0 —12|=1440i (2.239)
0 120
a}, = A I'po, = 0 (2240)

ap = 1440i = 1440 cm/s* Z0°

The normal acceleration of point Q (Eq. 2.241) is:

i i Kk A A
ay =y Avg=| 0 0  5.94|=352.62i+523.97] (2.241)
—8821 594 0

aj) = 631.6cm/s> £56.06°

The tangential acceleration of point Q (Eq. 2.242) is:

i J R .
a’Q =04 ATgo, = 0 0 4| = 14.850141 — 1004
17.9 c0s236.06° 17.95in236.06° 0

le)

(2.242)

The normal component of the acceleration of point P relative to point Q is
Eq. (2.243):

A T . .
a;Q =g AVpg=| 0 0 4.38 | = —265.62i+ 385.9j (2243)
88.1 60.64 O
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ah, = 468.1cm/s” £124.54°

This vector is perpendicular to velocity vpp and it points towards the trajectory
curvature center followed by link 3 when it slides along the link 4, that is to say,
from P to C. The tangential component of the acceleration of P relative to
0 (Eq. 2.244) is:

i j k
apy = O A Tpc = 0 0 oR
24.4c0s304.54°  24.4c05304.54° 0

= 20.logi + 13.830zj (2.244)

And the Coriolis component of the acceleration of P relative to Q (Eq. 2.245) is:
i k . .
apy = 204 AVpg =2| 0 0 —5.94 | = 720451 — 1046.7j  (2.245)
88.1 60.64 0
aj,, = 1270.7 cm/s* £304.54°

Plugging these values into Eq. (2.238) and separating its components, we obtain
the system of two equations and two unknowns, o and oy, Eq. (2.246).

(1440i) = (352.62i+ 523.97j) + (14.8504i — 1004))
+ (—265.62i + 385.9j) + (20. Logi + 13.830])
+ (720.451 — 1046.7j)

1440 = 352.62 + 14.8505 — 265.62 +20. 10 + 720.45
* K } (2.246)

0 =523.97 — 1004 + 385.9 + 13.830x — 1046.7
where:

oy = 14.77 rad /s>
ag = 20.56 rad/s’

With these values we can calculate the tangential components of the acceleration
of point Q relative to O4 and to P.

aj, = 219.33i — 147.7j = 264.38 cm/s” £326.06°
ah, = 413.261 +284.34j = 501.7 cm/s” £34.54°

With these values, the acceleration polygon can be drawn (Fig. 2.65).
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Fig. 2.65 Acceleration e N
polygon of the mechanism NN Irr
shown in Fig. (2.63)

Example 15 Make a complete kinematic analysis of the shaft press mechanism in
Fig. 2.66, provided that: 6, = 241° and w, = —10rad/s clockwise constant.
Piston 8 follows a trajectory along a vertical line that passes through Og. The
dimensions of the mechanism are: 0,A = 1.4cm, AB = 3.5cm, O4B = l.4cm,
ro, = (0,0) cm, ro, = (—3.1,—1.6) cm, BC =3.7cm, CD = 5cm,
O¢D = 1.2cm, 1o, = (0,—2.8)cm, OE = 1.5cm, y = 67.5° and EF = 2.3cm.
Use the relative velocity and acceleration methods.

Before we start to calculate velocities, it is necessary to solve the position
problem. We will use the trigonometric method (Eqgs. 2.247-2.266) developed in
Appendix A for this purpose.

We start by studying the position of links 3 and 4 (Fig. 2.67).

Fig. 2.66 Shaft press
mechanism
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Fig. 2.67 Calculation of the
position of links 3 and 4 with
the trigonometric method

0,04 = \/xp, +yp, = V3.12+1.62 = 3.49cm (2.247)

0, = 180° + arctan>% = 207.3° (2.248)

)CO4

The application of the law of cosines to triangle AO,O4A yields:

OA = \/02042 +0.A° — 20,05 OsAcos(0, — 0) =2.54cm  (2.249)

We also apply the law of sines to the same triangle:

0,Asin(0, — 0;) = O4Asina (2.250)
1.4sin33.7°
= n— 7 = 18.470
o = arcsin 245
Hence:
p =0, —180° — o =27.3° — 18.47° = 8.83° (2.251)

Next, we apply the law of cosines to triangle AO4AB:

08 = \/oTA2 +AB — 2 0;A ABcos ¢ (2.252)
24524352 — 1.6
¢ = arccos > .—;.45 35 = 23.81°

Thus:

03 = 180° + f+ ¢ = 180° + 8.83° +23.81° = 212.64° (2.253)
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Finally, we apply the law of sines to triangle AO4AB:

O4Bsin(180° — §) = ABsin ¢ (2.254)
5 = 180° — arcsin 22502381 15 og0
1.6
This yields:
04 =360°+ f — 6 = 360° +8.83° — 117.98 = 250.85° (2.255)

Next, we study links 5 and 6 (Fig. 2.68).

0406 = \/(x04 —x0.)" 4 Vo, —vo)* = V/3.12+1.22=332cm  (2.256)

— —-12
0, = arctan 2% _ aretan 31 = 338.84° (2.257)
)Co4 — )CO6 .

We apply the law of cosines to triangle AO4O0¢C:

06C = \/O4C2 + 04062 -2 0406 04C 005(04 + 180° — 01/) =3.99cm

(2.258)
We also apply the law of sines to the same triangle:
04Csin(04+ 180° — 0y/) = O6C'sin o (2.259)
2.1sin92.01°
= S n—m——m —— - 1.7 °
o = arcsin 309 31.735
p=o+360° — 0 =31.735° +360° — 338.84° = 52.895° (2.260)

Fig. 2.68 Variables defined
to calculate the position of
links 5 and 6 with the
trigonometric method
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Next, we apply the law of cosines to triangle AOsCD:

OsD” = 0sC +CD" — 2 06C CDcos ¢ (2.261)
3.992 +5% — 1.2
= —_———— — . 20
¢ = arccos 773995 8.3
Thus:
05 = 360° — f — ¢ = 360° — 52.895° — 8.32° = 298.8° (2.262)

The application of the law of sines on triangle AO¢CD yields:

06D sin(180° — §) = CDsin ¢ (2.263)
in8.32°
5= 180° — arcsin% — 142.92°

Thus:
0 = 180° — f+ 6 = 180° — 52.895° 4 142.92° = 270°

Finally, we will solve the position problem for links 7 and 8 (Fig. 2.69).

OgE sinyy = EF sin u (2.264)
1.5sin67.5°
= in—— = 37.05°
W = arcsin 73
Hence:
0; = 270° — n = 232.95° (2.265)

Projecting OgE and EF on the vertical axis, we obtain:

O6E cos 4 EF cos jt = FO,, (2.266)

Fig. 2.69 Variables defined
to calculate the position of
links 7 and 8 using the
trigonometric method
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FOg, = 1.5¢0s67.5° +2.3¢0s37.05° = 2.41 cm
The position of point F with respect to O, will be given by Eq. (2.267):
FO,, = FOgy+ 0505, = —2.41 —2.8 = =5.21cm (2.267)

Once the position of each link has been obtained, we can solve the velocity
problem. We start by analyzing the velocities of points A and B. The velocity of
point A (Eq. 2.268), which is the end of the crank (link 2), is:

i j k A A
Vo = 02 ATp0, = 0 0 wy | = 12.24i — 6.79j (2.268)
0,Acosl, O,Asinf, 0

v4 = ldem/s £331°

Taking into account that point A is also part of link 3, we can calculate the
velocity of any other point (point B) on the same link by means of the relative
velocity (Eq. 2.269):

Vg =Va+ Vs (2.269)

The velocity of point B of link 4 (Eq. 2.270) is:

i J k R .
Vg = 04 ATpo, = 0 0 wy | = 1.511wai — 0.525w4)
O4Bcos0; O4Bsin0; 0
(2.270)
And the velocity of point B relative to point A (Eq. 2.271) is:
i ik . .
Vpa = M3 NIy = 0 0 w3 | = 18880)31 - 2947603j (2271)

ABcos0z ABsin0; 0

Substituting these values in the relative velocity (Eq. 2.269) and separating this
equation into its components, we obtain Eq. (2.272):

(1.511w4i — 0.525m4)) = (12.24i — 6.79§) + (1.888wsi — 2.947wsj)

1.511mg = 12.24 + 1.888w;3 } 227)

—0.525w4 = —6.79 — 2.947 w5
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The solution of Eq. (2.272) is:

w3 = —1.11 rad/s
w4 = 6.71 rad/s

Using the angular velocities of links 3 and 4 we can now calculate vectors vg,
vpa and ve (Eq. 2.273):

vp = 10.17i — 3.55j = 10.77 cm/s £340.85°
Vea = —2.1i+3.27j = 3.885cm/s £122.6°

i j k
Ve =04 NYco, = 0 0 on
04C cos(04+180°)  O4Csin(04+180°) 0

—13.31i+ 4.62j

(2.273)

ve = 14.1cm/s £160.85°

We will continue the velocity analysis with points D and E. Assuming now that
point C belongs to link 5, we can calculate the velocity of point D of the same link
by means of the relative velocity (Eq. 2.274):

Vp = Vc+ Vpc (2274)

Hence, the velocity of point D of link 6 (Eq. 2.275) is:
i ik A
VD = @6 ATpg; = 0 0 wg | = —1.2wsi (2.275)
O¢Dcoslg OgDsinfs 0

The relative velocity of point D relative to point C (Eq. 2.276) can be expressed
as:

i j k R X
Vpc = ©O5 AN I'pc = 0 0 ws | = —4382w5i — 2409(1)5j
CDcos0s CDsinfs 0

(2.276)

Plugging these values into the relative velocity (Eq. 2.274) and separating the
components, we obtain Eq. (2.277):
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(—1.2w¢1) = (—13.31i +4.62j) + (—4.382wsi — 2.409ws})

—1.2w¢ = —13.31 — 4.382ws
0=4.62 — 2.409ws } (2.277)
where the values of the angular velocities can be obtained:
ws = —1.92 rad/s
we = —18.09 rad/s
Therefore, the velocities of points D and E (Eq. 2.278) are:
vp = —21.7i = 21.71 cm/s £180°
Vpe = —8.41i — 4.625j = 9.6cm/s £208.8°
i j k
VE = W6 ATgo, = 0 0 ()
ETTORTE T . ¢ (2.278)
OgE COS(06 + l//) O¢E sm(06 + lﬁ) 0
= —10.38i — 25.07j
vg =27.13cm/s £247.5°
Finally, to calculate the velocity of point F' we use Eq. (2.279):
VF = VE+ Vrg (2.279)

The velocity of point F of link 8 is a vector that has the direction of the Y-axis
since the displacement of the piston follows a vertical trajectory (Eq. 2.280).
Therefore, the velocity of point F can be expressed as:

Vi = vrj (2.280)

The velocity of F relative to E is given by Eq. (2.281):
i i k ) )
ViE = O7 ATpg = 0 0 w7 | = 1835607i — 1385(,07j (2281)
EFcos0; EFsin0; 0

Plugging these values into Eq. (2.279) and separating its components, we obtain
Eq. (2.282):
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(vej) = (—10.381 — 25.07j) + (1.835w7i — 1.38507j)

0=—10.38 + 1.83507 } (2282)

vp = —25.07 — 1.385wy
where the unknowns can easily be calculated.

w7 = 5.65rad/s
vp = —3291cm/s

With these values vectors vy and vpg can be completely defined:

vp = —32.91j = 32.91 cm/s £270°
vee = 10.37i — 7.83j = 12.995cm /s £322.9°

Figure 2.70 shows the velocity polygon, which was constructed by drawing the
velocity vectors to scale. All the absolute velocities were drawn starting from the
same point, o, called the pole of velocities.

After solving the position and velocity problems, we can calculate the acceler-
ations of the links of the mechanism. We will start by analyzing the acceleration of
points A and B.

The acceleration of point A (Eq. 2.283) is:

i i Kk
al =y Ava=| 0 0 10| =67.9i+1224j (2.283)
1224 —-6.79 0

Fig. 2.70 Velocity polygon v ¢
of the mechanism shown in be, Ve
Fig. 2.66 2
g d - Vv,
b b
\ Vo
Vep v
\P F
e
VFE
\j
A
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a, =0

ay = a} = 67.9i+ 122.4j = 140cm/s* Z61°

The relationship between the accelerations of points A and B (Eq. 2.284) is:
ay +ay = a) +aj +aj, +ap, (2.284)
We continue by analyzing the rest of the vectors in Eq. (2.284). The normal

component of the acceleration of point B (Eq. 2.285) is:

i i Kk . .
al=osAvg=| 0 0 s |=23.63i+68.05) (2.285)
1017 -3.55 0

aj = 72.04cm/s* £70.85°

The tangential component of the acceleration of point B (Eq. 2.286) is:
S k A R
oy | = 1.51 104 — 0.524904

i i
0 0
B0y sin 0,

BO, cos 0, 0
(2.286)

t
ap =0y Ao, =

The normal component of the acceleration of point B relative to point

A (Eq. 2.287) is:
i i Kk A A
ag, = Avpa=| 0 0 ;| =3.63i+2.326j (2.287)
—2.1 327 0

al, =4.31cm/s* £32.64°

Finally, the tangential component of the acceleration of B relative to

A (Eq. 2.288) is:
i j k ) R
atBA = o3 N I'py = 0 0 o3 | = 18880(';i — 29470(3j (2288)
ABsinfl; 0

AB cos 03

Plugging each vector into Eq. (2.284) and projecting its components onto the
X-axis and Y-axis, we obtain a system with two unknowns, o3 and oy, Eq. (2.289).
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(23.63i 4 68.05j) + (1.511ogi — 0.524914)
= (67.91 + 122.4j) + (3.63i 4 2.326j)
+ (1.888u3i — 2.94703)

23.63 4 1.51104 = 67.943.63 4 1.88803 (2.289)
68.05 — 0.524904 = 122.4 +2.326 — 2.947 3 '

Solving this system, we obtain Eq. (2.290):

a3 = 31.9 rad/s?
a4 = 71.48 rad/s? (2:290)

With these values we can calculate the absolute acceleration vectors of points
B and C and the acceleration vector of point B with respect to point A (Eq. 2.291):

ap = 131.67i+30.53j = 135.16cm/s* £13.1°
ags = 63.851 — 91.69j = 111.73 cm/s> £304.85°

i j k
al=wsAve=| 0 0 671 =-31i—89.31j

~1331 462 0
i j k
al. = oy Arco, = 0 0 71.48 | = —15.53i+ 53.61j

2.3¢c0s70.85° 2.35in70.85° 0

ac = al. +al. = —186.3i — 35.7j = 189.68 cm/s® /183.33° (2.291)

We will continue by studying the accelerations of points D and E. The rela-
tionship between the accelerations of points D and C is given by Eq. (2.292):

ap = aj, +aj, = al. +a, +ap. +ap. (2.292)

The remaining vectors (Egs. 2.293-2.295) in Eq. (2.292) are:

i j Kk A
aj, =g AVp = 0 0 —18.09|=392.7j
217 0 0
i ik A
0 0 o | = 12061

a’D =06 AIpo, =
1.2c0s270° 1.2sin270° 0
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ap = 12041 +392.7j (2.293)
i i k A A
apc = ds ATpc = 0 0 as | = 4.380si +2.41as]
5c0s298.8° 5sin298.8° 0
(2.294)
i j k A A
apc =@s AVpc=| 0 0  —1.92|=-888i+16.15] (2.295)
—841 —4625 0

Substituting these values in Eq. (2.292) and separating the resulting vectors into
their components, we obtain Eq. (2.296):

(1.2061 4 392.7j) = (—172.82i — 40.08j)
+ (438051 + 2.4105]) + (—8.881 + 16.15j)

1206 = —172.82 +4.38a5 — 8.88 } (2.296)

3927 = —40.08 +2.4105 + 16.15

Solving the system, we obtain Eq. (2.297):

s = 172.9 rad/s?
a6 = 479.6 rad/s’ (2:297)

The acceleration vectors of points D and E with respect to the frame and the
acceleration vector of point D relative to point C (Eq. 2.298) are:

ap = 575.52i+392.7j = 696.73 cm/s* /34.3°

apc = 748.421 +432.84) = 864.57 cm/s? £30.04°

i j k
ap=wsAvpg=| 0 0  —18.09| = —453.52i+ 187.77j
-1038 -2507 0
i j k
= 0 0 479.6 | = 275.29i + 664.73)

a;; =0 ANTgo, =
1.5c0s337.5° 1.5sin337.5° 0
ap = al +al, = —178.2i 4 852.5] (2.298)
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ap = 870.93cm/s* £101.8° (2.299)

Finally, we need to find the acceleration in the crank-shaft mechanism formed by
links 6, 7 and 8. We define acceleration vectors for point E (Eq. 2.300) and F of
link 7:

ap = a ol = a) +al +al +al, (2:300)
where:

ap = al, = arj (2.301)

ik . .
ay,, =07 AVig =10 0 = 44.24i + 58.6j (2.302)

0

i j kK R R

al, =y Arpp =0 0 oy|=1.836071— 1.38607j (2.303)
0

Substituting the values of Egs. (2.301)—(2.303) in the relative acceleration
(Eqg. 2.300) and breaking the resulting vector into its components, we obtain the
equation system of two equations with two unknowns, a7 and ap, Eq. (2.304):

(arj) = (—178.2i + 852.5]) + (44.24i + 58.6)) + (1.836071 — 1.386017])

(2.304)

0=—-178.2+4+44.24 + 1.8360;
ar = 852.5+58.6 — 1.38607

Solving the system we obtain:

a7 = 72.96 rad/s?
ar = 810cm/s?

The relative acceleration vector of point F' with respect to point E is:

app = 178.19i — 42.52j = 183.19cm/s* /346.58°

Figure 2.71 represents the acceleration polygon built by drawing the absolute
acceleration vectors, all of them starting at the pole of accelerations. Relative
acceleration vectors are obtained by joining the extreme points of absolute accel-
eration vectors. Student are recommended to do this exercise in order to better
understand vector directions in this problem.
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Fig. 2.71 Acceleration polygon of the mechanism shown in Fig. 2.66

Example 16 The mechanism in Fig. 2.72 is part of a calculating machine that
carries out the “inverse” (1/y) arithmetic operation. Find the solution to the position,
velocity and acceleration problems at the instant shown, knowing that the input is
equal to y = 1.87cm and that link 4 moves with a constant linear velocity of

0.5cm/s in an ascending direction.

We start by solving the position problem using the trigonometric method

(Eq. 2.305). The expressions are:

0)Asin0, =y
0)Acos 0, = /3

Therefore:

1.87
tan 0, = 2 = 0, = arctan—— = 47.19°

V3 V3

oy 187
" sin6, sin47.19°

0,A =2.55cm

(2.305)
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LLL 5 Lol
e oy
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Fig. 2.72 Calculating machine that carries out the “inverse” (x = 1/y) arithmetic operation

We analyze the position of point B (Eq. 2.306):

O0:Bsin = (2.306)
0,Bcos 0, = x '

From where we obtain:

V313

0B _
0 sinfl, sin47.19°

=0.79cm

So:
x = 0,3Bcos 0y =0.79cos47.19° = 0.535cm

It can be verified that the value of y is always the inverse value of x.

Once the position of the links in the mechanism have been defined, we can solve
the velocity problem.

Link 4 makes a translational motion and follows a vertical trajectory at a con-
stant velocity of 0.5 cm/s. Therefore, the velocity of point A of link 4 is:

va = 0.5
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Since point 4 is common to links 3 and 4, it can be denominated A;. The
expression of the relative velocity of the two coincident points of links 2 and 3
(Eq. 2.307) is:

VA, = Va, +Vasa, (2.307)

The velocity of point A of link 2 (Eq. 2.308) is:

Va, = 03 ATa0, = 0 0 Wy
2.55cos(0,+180°) 2.55sin(0, +180°) 0O

= 1.87wsi — 1.73m5j

(2.308)

The direction of the velocity of point A3 with respect to point A, (Eq. 2.309) is
defined by the direction in which link 3 slides over link 2:

Vasd, = Vass, COS47.19%1 + 4,4, 5in47.19% (2.309)

Plugging these values into the relative velocity (Eq. 2.307) and separating the
resulting vector into its components yields the system of two algebraic equations
with two unknowns, @, and v4,4,, Eq. (2.310):

0 = 1.87mw; +0.679v4,4, }

0.5 = —1.73w, +0.734v4,4, (2:310)

Solving the system we obtain:

wy; = —0.13 rad/s
Vasa, = 0.367 cm/s

With these values we can calculate vectors v4, and V4,4,:

va, = —0.2431i40.2249j = 0.331cm/s £137.19°
Vaoa, = 0.249i +0.269j = 0.36 cm /s £47.19°

To find the velocity of links 5 and 6, we have to relate the velocities of the two
coincident points at B (Eq. 2.311) (one of link 2 and another of link 5):

Vs = Vg, + Vpp, (2.311)

Since point Bs also belongs to link 6 and all the points in this link share the same
velocity with horizontal direction, we can assert that:

A

VB; = Vpsl1
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Therefore, the velocity of link 2 (Eq. 2.312) is:

i j k A )
Ve, = ATtzo,=| 0 0 —0.13 | = 0.0751 — 0.069]
0,Bcos 0, O,Bsin 0, 0

(2.312)
vp, = 0.102cm/s £317.19°

The direction of vector vp,p, is defined by the direction in which link 5 slides
over link 2 (Eq. 2.313):

VB.B, = VBsB, COS Ori + VB,B, Sin 0, = 0.679\/35325 + 0.733\/35sz (2.313)

Substituting the values obtained in Eq. (2.311) and separating the vectors into
their components, we obtain Eq. (2.314):

vg; = 0.075 +0.679vp,p, } (2.314)

0 = —0.069 +0.733vp,3,
From where we can calculate the magnitudes of vp, and vp.p,:

vg, = 0.139cm/s
vpsp, = 0.094cm/s

With these values, we can define the velocity vectors:
vg, = 0.139i = 0.139 cm/s £0°
Va5, = 0.0639i +0.0688] = 0.094 cm/s £/47.19°
Finally, we solve the acceleration problem. We have to take into account that the
acceleration of link 4 is null. The relative acceleration (Egs. 2.315 and 2.316) of the
two coincident points, A, and As, is:
Ay, = Ay, +ap,a, (2.315)
ay +a, =a) +ay +ay, +a,, +ay, (2.316)
Since point A; also belongs to link 4:

ax, =0
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The rest of the vectors in Eq. (2.316) are (Eqs. 2.317-2.321):
i j k ) )
ay, = Ay, = 0 0 —0.13 | = 0.029i +0.031j (2.317)
—0.2431 0.2249 0
ay, = 0.043 cm/s* £47.19°

i j k

0 0 o

2.55sin(6, +180°) 0

(2.318)

322 =0 ATa0, =
2.55cos(0, + 180°)

= 1.8700i — 1.73m
The relative motion between points A, and Az follows a straight-line trajectory

along link 2. Therefore, the normal component of relative acceleration aj ,, is zero
and the direction of the tangential component is defined by link 2:
(2.319)

afmz =0
(2.320)

t < . A
ay 4, = daa, COS 021+ ap,a, sin 01

i i k A A
a4, =2 AVa, =2| 0 0  —0.13] =007 —0.0647] (2.321)
0.249 0.269

Substituting the values obtained in Eq. (2.316) and separating the resulting

The Coriolis component of the acceleration is given by:

0

vectors into their components yields (Eq. 2.322):
0 =0.029+ 1.87ap + 0.07 + 0.6796a4, 4, (2.322)
0 =0.031 — 1.730 — 0.0647 4+ 0.733604,4, ’
a0y = —0.0375 rad/s?
asa, = —0.0425 cm/s?

In order to calculate the absolute acceleration of point B of link 5 (Bs), we use

(2.323)

Egs. (2.323) and (2.324):
ap; = ap, +ap;p,
(2.324)

n t _an t n t c
ap t+ap =ag +ap +app tapp tapp
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We analyze the acceleration components in Eq. (2.324) starting with point B of
link 5 (Eq. 2.325). Since point Bs also belongs to link 6 and all the points in this
link follow a horizontal trajectory:

aj =0 (2.325)
aly = agi (2.326)

The acceleration components of point B of link 2 will be:

i i k . .
al = Avg,=| 0 0  —0.13|=—0.08% —0.0097j (2.327)
0075 —0.069 0

a, =0.013cm/s* £227.19°

i j k
ap = oy ATpo, = 0 0 —0.0375
0.79 cos47.19° 0.79sin47.19° 0
= 0.0217i — 0.02j (2.328)

al, =0.0296cm/s* £/317.19°

The relative motion of point Bs with respect to link 2 follows a straight trajectory
defined by link 2. Therefore, the normal component of the acceleration of point Bs
relative to point B; is zero and the direction of the tangential component is defined
by link 2.

agp, =0 (2.329)
A, = dp,p, COS 021+ dp, p, SN 02 (2.330)

The Coriolis component of the acceleration of point Bs with respect to point B,
can be calculated with the following expression:

i j k A )
app =20 AV, =2| 0 0  —0.13| = 0.0178i — 0.0166j
0.0639 0.0688 0

(2.331)

a5 =0.0243cm/s” £317.19°



110 2 Kinematic Analysis of Mechanisms. Relative Velocity ...
Plugging the expression of these acceleration components Eqgs. (2.325)—(2.331)

into Eq. (2.324) and separating each vector into its x and y components, we obtain
Eq. (2.332):

ap, = —0.0089 +0.0217 +0.0178 + 0.6796 . } (2332)

0 = —0.0097 — 0.02 — 0.0166 + 0.7336ay, 5,

Solving the system, we find the unknowns:

ag, = 0.0734 cm/s?
dly g, = 0.0631cm/s?

Hence, the acceleration of link 6 is given by:

ag = ag, = 0.0734i = 0.0734 cm/s> £0°
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