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Abstract. Currently, crowdsourced query processing is done on reward-
driven platforms such as Amazon Mechanical Turk (AMT) and Crowd-
Flower. However, due to budget constraints for conducting a
crowdsourcing task in practice, the scalability is inherently poor. In this
paper, we exploit microblogs for supporting crowdsourced query process-
ing. We leverage the social computation power and decentralize the eval-
uation of the crowdsourcing platforms queries towards social networks.
We propose a new problem of minimizing the cost of processing crowd-
sourced queries on microblogs, given a specified accuracy threshold of
users’ votes. This problem is NP-hard and its computation is #P-hard.
To tackle this problem, we develop a greedy algorithm with a quality
guarantee. We demonstrate the performance on real datasets.

1 Introduction

Crowdsourcing techniques [10,15,27-36] have attracted considerable attention
due to their effectiveness in many applications such as entity resolution and
image detection. An essential property of crowdsourcing is that the technique
relies on a human workforce to at least partially complete an evaluation of the
queries. Typically, a crowdsourcing application publishes its queries assigning
with a fixed reward to the workers on Amazon Mechanical Turk' and Crowd-
Flower?. Each crowdsourced query is then assigned with a fixed reward to the
workers.

However, humans are prone to error and may provide poor quality crowd-
sourcing results. To address the problem, crowdsourcing applications often enroll
a number of workers to process the replicated queries. If the collected results are
conflicting, the majority vote is adopted to determine which is correct. However,
the replication strategy may not be able to fully handle the diversity of answers.
Suppose the tasks involved are hard, we have to enroll more workers to reduce
the diversity of answers. The cost of this Human Intelligence Task (HIT) could
then be very high. Thus, a limitation of the existing crowdsourcing approach is,
that we may not have a sufficient number of workers to process the query under
the budget constraint, which results in poor answer quality.

! Amazon Mechanical Turk (or simply AMT) platform at https://www.mturk.com.
2 CrowdFlower platform at https://www.crowdflower.com.
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To tackle this problem, we formulate a new problem of processing crowd-
sourced queries on microblog, which provides new incentives to encourage
microblog users to process crowdsourced queries. By developing a new crowd-
sourcing model, we aim to reduce both the diversity of the answers and the cost
of processing. We focus on addressing the following main issues:

— Answer Diversity. If the number of replicated queries are too few, we may
not have enough confidence to infer a reliable answer. On the other hand, if
we replicate too many queries, we may have to suffer high cost.

— Incentive Mechanisms. Crowdsourcing workers may be reluctant to process
any queries until they know they will receive a reward. Thus, we aim to design
an incentive mechanism that is able to reduce the workforce cost and at the
same time, meet a given specified accuracy threshold.

— Query Sharing. We utilize the word of mouth effect to model the worker
behavior of query sharing on microblogs. Intuitively, microblog users are more
willing to answer a crowdsourced query under a social influence and to send
messages to an interested group. Thus, crowdsourced queries can be diffused
more efficiently and effectively over microblogs.
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Fig. 1. A microblog-based crowdsourcing system

There are already some works studying the problem of answer diversity
[12,18,20]. However, they all rely on centralized platforms such as AMT or
CrowdFlower. In contrast, we study how to address the problem by exploiting
the social influence of microblogs.

The general process of crowdsourced query processing on microblogs is
given in Fig. 1. For instance take the crowdsourced query @ “Is Paris the City
of Lights?” and the specified accuracy threshold «. Owing to the conflicting
answers, we should have a sufficient number of replicated queries ) such that
the accuracy of the final answer obtained from using the majority voting rules
(i.e. the MVoting module) is greater than «. Let @, be the set of such replicated
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Fig. 2. The difference between common crowdsoucing platforms and the Probabilistic
Incentive Mechanism Model

queries. The estimation of the number of queries in @, is based on the historic
degree of the skill of the microblog users (Fig. 2).

In the first step, we take @, as the input to SeedMiner. The SeedMiner
estimates the minimum crowdseed size needed to diffuse this query in microblogs
such that we can have 7 feedback. The SeedMiner algorithm is based on the
“word of mouth” effect [13] of query diffusion on microblogs. In the second step,
the SeedMiner returns the crowdseed and we issue the query to the crowdseed in
the third step. We collect answers incrementally from microblogs in the fourth
step. Finally, we fuse the feedback and deliver the correct solution online using
MVoting. In the system, we develop a lottery based incentive mechanism to
encourage users to answer and “retweet” the crowdsourced query. We employ
the build-in lottery function in the third party [22] to our system.

Contributions. We tackle the problem of crowdsourced query processing on
microblogs. Specifically, we make the following contributions.

— We formulate the problem of crowdsourced query processing on microblogs
and exploit the query diffusion process that shifts towards decentralized
crowdsourcing platforms.

— We design a new lottery based incentive mechanism to encourage users to
answer and “retweet” the crowdsourced query on microblogs.

— We propose a sampling-based greedy algorithm that tackles the problem with
a quality guarantee.

— We demonstrate the performance of our new approach to crowdsource query
processing based on its real application on Epinion, NetHEPT and Twitter.

This paper is organized as follows. Section 2 introduces the crowdsourcing
models. Section 3 formulates the problem of crowdsourced query processing on
microblogs and analyze the complexity of the problem. Section4 then surveys
the related work while Sect.5 presents the details of our algorithm. Section 6
presents the experimental results and we conclude the paper in Sect. 7.

2 Crowdsourcing Model

In this section, we first introduce the popular voting model, which is widely used
in a crowdsourcing environment. Then we propose the incentive model and the
diffusion model in our approach.
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Voting Model. Given a query, the judgement among the crowd may be dif-

ferent. As a result, the human answers for the query posed on microblogs may

easily conflict. To resolve this problem, we develop a voting model that consists
of a majority voting rule given by

Lif > v >

F(v) = viEV (1)

0 otherwise

where the vote v; is the answer of user u; and V represents a collection of 7
votes (or equivalently, 7 feedback answers). Among the conflicting answers from
the votes, we choose one that is supported by more than half of the votes. For
ease of presentation, we consider the crowdsourced decision-making query in this
paper. The vote v; can be a binary random variable (i.e. either 0 or 1). It can
also easily be extended to queries with K possible answers. In such a scenario,
we can also assume the answer with more than half the votes is the correct one.

However, the output of the majority voting rule may not be reliable, if the
number of votes is too few. On the other hand, the cost is high if we enroll too
many votes. We thus propose a probabilistic model to estimate the number of
replicated queries that are sufficient to make the majority voting rule reliable.

Suppose the accuracy of users’ votes on microblogs that have processed the
query are {a(uy),...,a(ur)}, where a(u;) is the vote accuracy of user u; (i.e.
the probability of vote v; being correct). We utilize the historic records of the
degree of skill of the users to estimate the voting accuracy. In this paper, we do
not focus on the estimation of the degree of skill of the users, as a variety of
solutions have already been proposed in the literature [15,20,28, 36].

Given a collection of votes V of size 7, we consider the correctness proba-
bility of the majority voting rule as p(f(V)). We denote the random variable
sa cousisting of all the accurate votes in V' (i.e. s4 C V). The output result of
the majority voting is correct only when at least half of the votes are accurate

(i.e. |sa| > %) Thus, the correctness probability of the majority voting rule
is given by
T+1 ~
p(f(V)) = Pr(|sal 2 )= > Pr(lsal=k)
=
= > > I a(w) [T O -a(u)) (2)
k:TT“ SAEFK u;i€sa uj¢sa

where F}, comprises all possible combinations of users giving accurate votes for
sa with size k. We note that 1 — p(f(V)) is a cumulative Poisson binomial
distribution, since the accurate probability of each vote v; is different.

We consider the accuracy of the result by the majority voting rule as the
expectation of correctness probability (i.e. E[p(f(V))]). Then, the expected cor-
rectness of the majority voting rule is given by
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BV = 3 ()= w )

_ 41
k=5

where p denotes the average degree of skill of the users (i.e. the average accuracy
of the votes). By using the Chernoff Bound, the lower bound of the expected
correctness is given by

” T —27(n—1)2
> (k) T L (4)
e
72T(u7%)2
Then, welet 1—e™ & > a,where « is the specified accuracy and the number

of replicated queries is given by
—4pln (1 —a)
T2 1y
2(p—3)
Thus, the next goal is to seek 7 users to answer the crowdsourced query. In the
next section, we present incentive mechanisms to tackle this problem.

(5)

Incentive Mechanism Model. To encourage users to answer an imposed
crowdsourced query, the existing centralized crowdsoucing platforms commonly
pay each user a fixed amount of money as a reward for completing the task.

However, we find that such fixed reward incentive mechanisms do not work
well on microblogs. In our experiment, we firstly distribute several crowdsourced
queries with a reward of $0.05 to the crowd on microblogs. We found that few
users answer these queries. Our observations are as follows: unlike the workers
from AMT, users on social networks are reluctant to answer any unexpected
problem with too little reward (e.g. $0.05). On the other hand, microblog users
do not primarily aim to earn money but rather gain social interactions.

In this paper, we devise and evaluate a new incentive mechanism for crowd-
sourced query processing based on the platform Sojump [22]. Sojump is a well
established Q&A platform which is able to process a reward payment. Similar
to other common Q&A systems, we generate problem sheets with a URL under
the homepage of Sojump and specify the payment conditions. In our model, the
payment condition is that a user completes the problem sheet and shares the
URL of the sheet in the microblog.

Given a crowdsourced query budget B, we devise a probabilistic incentive
mechanism in order to encourage the crowd on the microblog to answer and
“retweet” the problem sheet. For example, we specify the budget of 6 crowd-
sourced queries to $6 in this experiment. First, we decompose the total budget
into three rewards such as $3, $2 and $ 1, as illustrated in Fig. 1. Suppose that
the number of replicated crowdsourced queries is 7, we set the probability of
getting each reward to %
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Crowdseed. The basic idea for processing crowdsourced queries under our
incentive mechanism model is to issue the queries to a large number of users on
microblogs. However, this approach incurs two problems. First, the manager of
the microblog may suspect our application to be a type of spammer and forbid its
usage. Second, the users on microblogs may become annoyed when they receive
unexpected problem sheets from unknown sources.

To tackle the above problems, we include the concept of crowdseed in the
process such that, after we issue the problem sheets to the users in the crowd-
seed, the problem sheets may be diffused through their microblog relations to
7 other users within the probabilistic incentive mechanism model. Our system
encourages users to subscribe to crowdseed where the users can set the expected
reward to accept the posting of crowdsourced queries. We consider the subscrip-
tion cost of user w; as ¢(u;). Then, the initialization cost of issuing the crowd-

sourced query to the microblog is given by ¢(S) = > c¢(u;), where S represents
u; €S

the crowdseed (i.e. a set of users who are willing to accept our crowdsourced

queries as the seed). The seed cost ¢(S) depends on the specified accuracy of the

crowdsourced query (i.e. a).

Diffusion Model. Under the word of mouth effect [14], users’ behaviors are
probabilistically influenced by their friends. For example, microblog users may
follow their friends’ actions by “retweeting” the messages being shared. Due to
this observation, we propose a probabilistic model based on the well-known word
of mouth effect to model the crowdsourced query diffusion.

We denote the event that user u; successfully diffuses the crowdsourced query
to his/her friend u; as I(u;, u;). In practice, we found that microblog users tend
to share “tweets” from their close friends. Based on this observation, we explore
the query diffusion probability model between two users based on their closeness
in microblogs. In this work, we utilize the Jaccard Distance of two users’ friends
to measure their closeness. The closeness of two users u; and u; is given by

[V (ui) (AN (uy)]|
[V (ui) U N (uy)]

where N (u;) denotes the set of users that u; follows and |N(u;) () N(u;)| is the
number of common following users of u; and u,;.

We propose to use the popular Sigmoid function to explore the relationship
between query diffusion and the closeness of users. We denote the probability
of query diffusion between two users as p(I(u;,u;)). Then, the formula of the
crowdsourced query diffusion model from user u; to user u; is given by

J(ui, uj) = (6)

1

P (ui, uy)) = T eadCarup)+h (a<0,b>0) (7)
where a and b are the parameters of the probabilistic query diffusion model.
To estimate the values of parameters a and b, we conduct user study

by posing 700 queries on Twitter. We collect the data in the format of
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(wi,uj,N(u;),N(uj),I) where I is the indication of the query diffusion. Next,
we aggregate the collected data in the format of (J,p) where J is the Jaccard
Distance value and p is the diffusion probability. We notice that Eq.7 implies
that In (% — 1) = aJ + b. Next, we employ the least square method to estimate

the parameters a and b, using a transformed set of pairs such as {In (% —-1),J}.

Using Eq. 7, we transform the microblog into a probabilistic graph given by
G = (V,E, P), where V consists of all users, F is composed of all relations and
P records the pairwise diffusion probability of two users (i.e. p(I(u;,u;))).

We consider the event in which the crowdsourced query diffuses from the
crowdseed S to any user wug as a graph reachability problem. However, the
query diffusion between two users is uncertain. For a probabilistic graph with
E edges, we have 2F possible cases of query diffusion which are denoted as
{G1 = (V,E1),...,Goey = (V,Eye)}. Then, the query diffusion from the
crowdseed S to any user uy is given by

ol Bl

I(ur)|S) = ZP i) R, (uk, S) (8)

where p(G;) is the probability of the ith query diffusion case. The value of p(G;)
can be computed by the product of the edge probabilities. We denote R, (ug, S)
as the indication of the reachability from the crowdseed S to the user uy in case
G; (i.e. either zero or one). In other words, the query diffusion probability is the
sum of the probability of cases that the query from crowdseed S can diffuse to
the user ui. We consider the expected diffusion size of the crowdseed S in the
probabilistic graph G as §(G|S). Then, the expected size 6(G|S) is given by

V]

5(G|S) = Zp u;)|S) )

where |V| denotes the number of users in G.

3 Problem Statement

We formulate the problem of crowdsourced query processing on a microblog as
Crowdseed Selection as follows. In a nutshell, we aim to seek a crowdseed set
S from the microblogs such that: (1) we could have at least a collection of 7
feedback answers, and (2) the cost of the crowdsourced query @ can be reduced
as much as possible.

Problem 1 (Crowdseed Selection). Given a probabilistic graph G(V, E, P) of the
microblog and a crowdsourced query @, we aim to find a crowdseed set such
that @ can be processed with an expected accuracy larger than a.

However, Theorems 1 and 2 show that the complexity of this problem is NP-
hard and even the computation complexity of the expected query diffusion of a
crowdseed set S is #P-hard. The detailed proof can be found in Appendix [1].
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Theorem 1. The problem of Crowdseed Selection is NP-hard.

Theorem 2. The computation complexity of expected query diffusion of a
crowdseed set S is #P-hard.

4 Related Work

In this section, we survey some proposed crowdsourcing systems and introduce
some work about processing various kinds of crowdsourcing queries.

Crowdsourcing Systems. Many crowdsourcing database systems like Qurk
[17], Deco [19] and Hog [4] have recently been proposed as the plug-in compo-
nents for traditional database systems. These systems integrate existing crowd-
sourcing platforms such as Amazon MTurk and CrowdFlower as an external
data source. The crowdsearcher [2], a novel search paradigm, embodies crowds
as first-class sources for the information seeking process. The Crowdturfing sys-
tem [25] aims to study and understand the Crowdturfing campaigns in today’s
Internet. The work ZenCrowd [8] systematizes and automatizes manual match-
ing techniques by dynamically creating micro matching tasks and by publishing
them on a popular crowdsourcing platform. The work Cogos [9] leverages Twitter
Lists to find topic experts in Twitter.

Queries with the Crowd. The unreliability of workers is a significant challenge
for query processing using the crowdsourcing strategy, thus, different approaches
have been proposed to tackle the problem of conflicting answers. The work in [6,
12,24] resolves the ordinal query problem of conflicting rankings. The work in
[3,16,18] studies the screen query problem of conflicting answers. The work
in [23] studies the crowdsourced enumeration query. The work in [21] studies
the query-driven schema expansion. The work in [26] studies the crowdsourced
join query to find all pairs of matching objects from two collections. The work
in [7] studies the top-k and group-by queries with the crowd. The work in [13]
studies how to choose the right question to answer the planning query with the
crowd.

Some recent works [3,15] have studied the crowd selection problem on
microblog and built a probabilistic voting model to estimate the reliability of the
enrolled crowd. The dynamic programming based and greedy based algorithms
are proposed to select the crowd. The selection of the crowd is only based on
the reliability of the workers.

However, none of the above-mentioned works utilize the power of social influ-
ence for processing crowdsourced queries on microblogs. Our work shows that
Twitter users send crowdsourced queries to their friends and that people also
answer the Twitter queries based on their friendships. By taking the social influ-
ence into consideration, we further study how to mine crowdseed for crowd-
sourced query processing on microblogs.
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5 Algorithms

In this section, we show how to tackle the complexity of the problem of Crowdseed
Selection. We first define an objective function based on the selected crowdseed
set S and then propose a greedy algorithm in order to maximize the function.
We aim to select a crowdseed set S such that 7 feedback answers are obtained
from the users. Thus, we set the constraint of the crowdseed set S at §(G|S) > 7
and formulate the objective function as: ming > e¢(u;) such that 6(G|S) > T,
u; €S
where 7 is the expected query diffusion size. The value of 7 can be computed
by Eq. 5.
We now present a greedy algorithm that iteratively selects the subscribed
users to the crowdseed set S in order to satisfy the constraint. We denote the
ratio of the expected query diffusion (i.e. §(G|S)) to the cost of S (i.e. ¢(5)) as

Ag (ie. Ag = 6(‘G‘S)) In each iteration, we aim to select a subscribed user u; to
c(S)

the crowdseed S that is able to maximize this ratio, given by

_ S(EISULm))  6(GIS), _
u; = argmax,, ( FEIT G ) = argmax,, (Asu(u,y —AQs) (10)

The greedy algorithm terminates until the expected query diffusion is larger
than 7 (i.e. 6(G|S) > 7).

However, given a crowdseed set S, the computation of its expected query
diffusion is #P-hard. Thus, we propose a sampling algorithm to estimate the
expected query diffusion efficiently and effectively. As G = (V, E, P) is a prob-
abilistic graph, the samples can be obtained by flipping the edges accord-
ing to the probabilities in P. For example, we can have k sample graphs,
Gy = (V,E1),...,Gr, = (V,E)). Thus, the expected query diffusion can be
obtained by taking the average of these sample graphs and is given by

5(GTS) - Zem AGHS) (11)

where the sample G; is a deterministic graph. The §g(G;|S) is the size of the

connected nodes from the set .S which can be computed using the BFS algorithm.

We also show that the sampling algorithm can achieve (,7) approxima-

tion of estimating the expected query diffusion (i.e. §(G|S)). Using Hoeffding’s
Inequality, we have

_— 2e2 k2
Pr((GIS) — 8(GIS)| > €) < 2exp(— ——
dim (V=12

where € is the error rate and 7 is the confidence of the estimation. Then it follows
that we achieve (¢,7) approximation if the number of samples

)<n (12)

2 2
(V] 1)In 2

1
I 13)
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where | S| is the size of the crowdseed S. Details are shown in Appendix [1]. The
details of the greedy and sampling algorithms are presented in Algorithms 1 and 2.
First, in Algorithm 1 we transform the obtained microblog into a probabilistic
graph G = (V, E, P) based on the similarity between two users on Line 1. The
diffusion process of the crowdsourced query is based on G. Next, we compute the
expected accuracy (i.e. ) based on the average value of the historical accuracy
record of the users on Line 2. Then, we estimate the lower bound of the number of
replicated queries by Eq. 5 on Line 3. When the crowdseed S is empty, the expected
query diffusion is assumed to be zero (i.e. 6(S|¢) = 0). At each iteration, we select
a subscribed user u; that is able to maximize the objective function on Line 6 and
add it to the crowdseed S on Line 7. Algorithm 1 terminates when the expected
query diffusion of the current crowdseed (i.e. §(G|S)) is larger than the number of
required replicated queries (i.e. §(G|S)) > 7) on Line 5.

Algorithm 1. Crowdseed(Qy)

Input: Q. : a crowdsourced query with specified accuracy o; a(ui,...,a(u;y))) : a
historic accuracy record

Output: S : a crowdseed

Build a probabilistic graph G = (V, E, P) by Equation 7

SV a(uy)
Expected accuracy p «— ==

Set # of replicated queries 7 by Equation 5
Set crowdseed S «+ ()
while 6(G|S) < 7 do
Ui = argmaxui (ASU{u,-} — As)
S — S @] {uz}
end while
return S

We illustrate the sampling process of computing the expected query diffusion
0(G1S)) in Algorithm 2. In order to achieve (e,n) approximation of the expected
query diffusion, we choose K samples for estimation by Eq.5 on Line 1. At each
time, we sample K certain graphs from the probabilistic graph G = (V, E, P)
and take the average of the query diffusion of the current crowdseed S on the

Algorithm 2. GetDif fusion(G,S)

Input: G : a probabilistic graph; S : a candidate crowdseed
Output: §(G|S) : an expected query diffusion
1: Set # of samples K by Equation 13
: Set expected query diffusion §(G|S) < 0
:fori=1— K do
Sample G; form G =V, E, P
5(Gi|S) «— BFS(G:, S)
0(G|S) — 6(G|S) +6(G:|S)/ K
end for
return §(G|S)

S I A ol
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samples from Lines 3 to 8. We employ the BF'S algorithm to compute the query
diffusion on certain graphs on Line 5. In the implementation, we find that the
time duration of generating K sample graphs is very lengthy. To tackle this
problem, we sample K certain graphs offline and store them in the memory.
Thus, Algorithm 2 is able to compute query diffusion on these stored graphs
without generating new samples.

6 Experimental Studies

The studies are performed in a Linux box with an 8-core Intel(R) Xeon(R) CPU
X5450 3.00 GHz and 16 GB memory.

We investigate the robustness of our algorithms by varying the size of the
crowdseed and the query cost.

Datasets. In order to generate the synthetic datasets, we simulate the crowd-
sourced query diffusion process using three real datasets. The Epinion is a
Who-trusts-whom network where the vertices represent the sites and the edges
represent the trust relations between two sites. The NetHEPT is a large acad-
emic collaboration network where the vertices represent authors and the edges
represent coauthorship relations. Twitter is microblog dataset where the vertices
represent the users and the edges represent the following relationships. Thus, we
build the probabilistic graph G = (V, E, P) based on these three datasets in order
to model the query diffusion. The statistics of these three real social graphs are
given in Table 1.

Table 1. Statistics of datasets

Dataset Epin | NetHEPT | Twitter
No. of nodes | 75888 | 15233 11555
No. of edges | 508837 | 58891 500000

Baseline Algorithms. We evaluate the effectiveness and robustness of the pro-
posed algorithms using the three real social graphs aforementioned. We also pro-
pose four baseline algorithms such as Degree-based algorithm, Centrality-based
algorithm, the CELF++ [11] Algorithm and the LDAG [5] The Degree-based
and Centrality-based algorithms rank all the vertices based on vertices degree
and centrality first. The CELF+4++ Algorithm and LDAG algorithm picks the
most influential seeds by their definition. Then, these four algorithms select the
vertices and add them to the crowdseed S according to their order.

Measurement. We demonstrate the effectiveness of the proposed algorithms by
generating crowdsourced queries for each dataset with different error rate e (i.e.
1 — «). We propose two quality measurements: (1) size of Crowdseed (# of
seeds) and (2) cost of crowdsourced query. In the first phase, we assume that
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the cost of each user joining the crowdseed S is the same. Thus, the algorithm
which outputs the smallest crowdseed works the best. In the second phase, we
generate the cost of each user to join crowdseed S from a uniform distribution
(i.e. Uni(1,100)). Then, we compare the cost of the crowdsourced query for
different algorithms, where the one with the least cost is the most effective.

1000 1000 1000

" Greedy —5— " Greedy —H— " Greedy —5—
Degree —— Degree ——— Degree —o—
Centrality —¥— Centrality —¥— Centrality —¥—
CELF —— CELF —&— CELF —&—

LDAG —&— LDAG —&—

Number of Seeds
Number of Seeds
Number of Seeds

(a) Epinions (b) HEP (c) Twitter

Fig. 3. Crowdseed size v.s. error rate

Crowdseed Size. Figure3(a), (b) and (c) illustrate the size of the crowdseed
of the proposed algorithms by generating six types of crowdsourced queries for
each dataset with different error rate e (i.e. 107%,1072,...,107%). For example,
the size two crowdseed means that we need to issue the crowdsourced query to
two users as the seeds for later diffusion.

To mitigate the unreliability of the majority voting rule, we need to enroll
many users to improve its accuracy. In the microblog, the expected query diffu-
sion is proportional to the size of the crowdseed. Thus, as the error rate decreases,
the size of the crowdseed increases. However, the size of crowdseed by the greedy
algorithm is smaller than other algorithms.

The baseline algorithms select the seeds based on their independent query
diffusion. However, selecting a vertex with a high diffusion value may not always
increase the query diffusion of the crowdseed by much. For example, selecting a
vertex with a lot of neighbors in the crowdseed may not increase the total query
diffusion by much. Thus, our proposed algorithm considers the joint expected
query diffusion of the selected seeds such that this problem can be avoided.

Query Cost. We study the cost of processing a crowdsourced query using
our algorithms. Figure4(a), (b) and (c¢) show the query cost of our proposed
algorithms on different error rates. To make a fair comparison with the base-
line algorithms, we penalize the users with high costs in both Degree-based and
Centrality-based algorithms. For example, the Degree-based algorithm first sorts
the users based on their degree (i.e. deg(u;)) and then selects the users according
to that order. In the new Degree-based algorithm, we set the score of each user
to be the degree divided by its cost (i.e. deg(u;)/c(u;)). Similarly, we build a
new Centralitybased algorithm for comparison.

Figure4(a), (b) and (c) show that the cost of the crowdsourced query
increases when reducing the error rate threshold. However, our algorithm also
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outperforms four other baseline algorithms in terms of the query cost. This nice
result is attributed to the fact that we model the joint query diffusion in the
proposed objective function while others treat the query diffusion of each vertex
independently. The results show that our algorithm not only mines the crowd-
seed effectively, but is also very efficient compared with the other three baseline
algorithms (Fig. 5).
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7 Conclusions

We explore a new approach to processing crowdsourced queries on microblogs.
Our goal is to minimize the cost of the crowdsourced query processing while the
aggregated answer satisfies a specified accuracy threshold. We develop a new
query diffusion model and formulate the problem of Crowdseed Selection. How-
ever, we prove that this problem is NP-hard and, given a crowdseed set S, the
computation of query diffusion is #P-hard. We then develop a greedy algorithm
to tackle the problem and a sampling algorithm to compute the query diffusion of
the selected crowdseed set. We also derive an error bound for the proposed sam-
pling algorithm. We validate the performance of our algorithm using three real
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datasets. The experimental results clearly demonstrate that our algorithms are
able to reduce the cost of the crowdsourced query effectively. We also show that
our new incentive mechanism helps the queries to be more efficiently evaluated.
As the number of smart phone users and microblog subscribers are increasing
every year, our proposed approach is promising to gain further superiority over
existing approaches relying mainly on a centralized platform.
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