
Chapter 2
Strong Laser Fields and Ultrashort
Laser Pulses

The creation of strong laser fields is closely related to the formation of short laser
pulses giving access to very high intensities while keeping the average power of
the laser system on a moderate and thus experimentally feasible level. Usually, in
addition to this strong temporal confinement of the energy, the laser beam is also
focussed spatially. This chapter gives anoverviewabout ultrashort laser pulses and the
strong fields they are associated with. It is organized as follows: First, in Sect. 2.1 the
mathematical framework as commonly used for the description of short laser pulses
is summarized. It also covers the properties and the description of electromagnetic
fields in laser resonators and in particular the concepts underlying mode-locking as a
key technique inmodern ultrashort pulse generation. Here, the focus lies onKerr-lens
mode-locked Ti:sapphire1 laser systems since these represent the standard table-top
system used in many laboratories as well as in the experimental setup used in this
work. Then, in Sect. 2.2, the specific laser system and subsequent pulse manipulation
techniques as used in thiswork are discussed involving also the treatment of important
nonlinear effects in matter.

2.1 Mathematical Description of Laser Pulses

This section gives a short summary about the mathematical description of short
laser pulses. It follows the descriptions which can be found in standard laser physics
textbooks, e.g. [4, 8, 11, 21, 40]. Particular information about ultrashort laser pulses
and the associated phenomena are reviewed e.g. in [5, 10, 18, 22].

If the polarization and transverse properties of a laser beam are neglected, mono-
chromatic light emitted from a laser system can be characterized at any (fixed) point
in space by its oscillating electric field E(t) = Re{E exp [iωt]} [9, Sect. 7.3] where
E is the field amplitude and ωL the angular laser frequency. The continuous wave

1Titanium-ion doped sapphire (Ti:Al2O3).
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6 2 Strong Laser Fields and Ultrashort Laser Pulses

oscillates with constant amplitude and the laser thus represents the extreme antonym
of a suitable system for the generation of ultrashort pulses. In fact, lasers with an
emission characteristic close to this hypothetical system, as e.g. the Helium-neon
laser (HeNe laser) are commonly referred to as continuous-wave (cw) laser systems.
To extend the description to non-monochromatic laser sources, an arbitrary spectral
amplitude Ẽ(ω) of finite width is introduced and the resulting field may be described
as, see e.g. [40, appendix G],

E(t) = Re

{
1√
2π

∫ ∞

−∞
dω Ẽ(ω) exp[iωt]

}
(2.1)

= Re

{
1√
2π

∫ ∞

−∞
dω Ã(ω) exp[i(ωt + ϕ(ω))]

}
, (2.2)

where the factor 1/
√
2π preceding the integral is arbitrarily chosen. The complex field

amplitude Ẽ(ω) = Ã(ω) exp[iϕ(ω)] is not accessible in the experiment, however,
the spectral intensity I (ω) = E∗(ω)E(ω) may be measured with a spectrometer. In
contrast, Ã(ω) is real, representing the modulus of a complex number. In particular
Eq. (2.2) allows a fairly intuitive interpretation: The total electric field E(t) is formed
by a continuous superposition of harmonically oscillating fields with individual con-
tributions to the total field characterized by an amplitude Ã(ω). In addition, each of
the contributing fields may have an individual phase shift ϕ(ω). Equation (2.1) can
be directly identified with the Fourier transform [6, Sect. 15.3.1.2], relating E(t) in
the time domain with Ẽ(ω) in the frequency domain:

E(t) = F
{

Ẽ(ω)
}
. (2.3)

The inverse transformation is then given by

Ẽ(ω) = F−1
{

E(t)
}

= 1√
2π

∫ ∞

−∞
dt E(t) exp[−iωt]. (2.4)

The special case of monochromatic radiation can easily be obtained from Eq. (2.4)
with Ẽ(ω) = δ(ω − ωL)/

√
2π. Further details about the mathematical treatment can be

found in literature, e.g. in [10, 40], and will not be discussed here in detail.
The Fourier transform, connecting the spectral and the temporal representation of

the laser field, causes an intrinsic and fundamental connection between the spectral
width2 �ω and the minimum pulse duration �τF achievable. If Gaussian profiles
are presumed, E(t) ∝ exp

[−4 ln(2)t2/�τ ′2
F

]
and Ẽ(ω) ∝ exp

[−4 ln(2)ω2
/�ω′2

]
, Eq. (2.1)

yields

�τ ′
F = 8 ln(2)

�ω′ . (2.5)

2The term “width” is used here and in the following as a synonym for “full width at half maximum”
(FWHM).
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However, due to the important role of the intensity I = E2 in the interaction with
atoms and molecules, see Sect. 3.1, often the temporal and spectral distributions I(t)
and I(ω) are of more interest than the electric fields. If the width of these distributions
is denoted with �τF and �ω, respectively, it follows directly from the properties of
the Gaussian distribution �τ ′

F = √
2�τF and �ω′ = √

2�ω and thus with Eq. (2.5):

�τF = 4 ln(2)

�ω
. (2.6)

Although discussed here for the special case of Gaussian profiles, similar relations
of the form �τF = const/�ω can be established for other distributions, see e.g. [40,
Sect. 8.6.1]. It can be concluded that the duration of the pulses is generally limited
by the spectral width of the laser system. It should be noted that Ẽ(ω) was chosen
as a real value, thus ϕ (ω) ≡ 0. As will be shown in the following section, any
other choice of the phase will either not influence or lengthen the pulse duration.
In the example above, however, the pulse duration is limited only by the bandwidth
of the laser and the mathematical property of the Fourier transform, therefore such
ideal laser pulses are commonly called Fourier-limited pulses. The discussion of
the monochromatic laser at the beginning of this section can now be put in simple
equations: From �ω = 0 follows with Eq. (2.6) �τF = ∞.

2.1.1 Laser Pulses as Superpositions of Resonator Modes

For the generation of short laser pulses, the additional constraints arise due to the
resonator introducing boundary conditions for the electric field. In a resonator of
optical length d with infinitely large planar end-mirrors the condition is simply given
by ω/2π = qc/2d whereq > 0 is an integer number and c the speedof light in vacuum[8,
Sect. 2.1]. The stationary field configurations in the resonator, commonly known as
resonator eigenmodes or simply resonator modes, are given by standing plane waves
fulfilling the condition for an arbitrary choice of q. In addition, the resonator modes
are fully characterized by this number. However, for resonators with finite mirror
diameters, the situation is substantially different. Caused by continuous diffraction
losses which depend on the distance to the resonator axis, planar waves are no longer
eigenmodes, see e.g. [8, Sect. 5.2.2].

For symmetric confocal resonators with spherical mirrors, where d is twice the
focal length of the mirrors, new solutions have been found analytically, first for
the special case of identical square resonator mirrors [2], later for more general
configurations including circular shaped mirrors [3]. These solutions are commonly
referred to as transverse electromagnetic modes (TEM modes), characterized by
three integer numbers q, m, n > 0 and denoted as TEMm,n,q , see e.g. [8, Sect. 5.2.3].
The transverse field amplitude in the modes is characterized by m and n and is of
Gaussian shape for all TEM0,0,q modes which are usually called fundamental modes.

http://dx.doi.org/10.1007/978-3-319-32046-5_3
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The frequency depends on all three numbers and is, in the case of identical circular
resonator mirrors in confocal configuration, given by [2, 3]

ω

2π
= c

2d
·
{

q + 1
2 (2m + n + 1) circular mirrors

q + 1
2 (m + n + 1) square mirrors.

(2.7)

Obviously, in both cases, different TEMm,n,q modes comprise the same frequency
and thus are energetically degenerated. Compared to the hypothetical case of infi-
nitely largemirrors mentioned before, new frequencies are accessible for appropriate
combinations of m and n with 2m + n + 1 and m + n + 1 being odd for circular
and square mirrors, respectively. These frequencies are centered right in the middle
between those of the fundamental modes. Thus, the frequency difference between
two adjacent modes of the resonator, the free spectral range (FSR) is given by [8,
Sect. 5.2.8]

δωFSR

2π
= c

4d
. (2.8)

Since non-fundamentalmodes exhibit intensity profiles less confined on the resonator
axis, an appropriate aperture or choice of the ratio between the mirror diameters and
d can be used to increase their relative diffraction losses and thus to force the laser
into the fundamental modes, see e.g. [21, Sect. 8.1.]. For convenience, the absence
of non-fundamental modes is assumed in the following, m = n ≡ 0. The frequency
difference between two adjacent fundamental modes oscillating in the resonator is
given by [8, Sect. 5.2.8]

δω

2π
= 2

δωFSR

2π
= c

2d
. (2.9)

Provided, the amplification by the active laser medium is sufficiently high, all res-
onatormodes in a certain spectral rangemay contribute to the formation of the overall
electric field emitted by the system. If the emission spectrum of the active medium
is assumed to be of Gaussian shape centered around ω0 with a width �ω fulfilling
δω � �ω � ω0 and the phase relation between adjacent modes is further assumed
to be constant, δϕ = const, the total field Eq. (2.2) can be written as [40, Sect. 8.6.1.]

E(t) = Re

{
1√
2π

∞∑
l=−∞

Ã(ω0 + lδω) exp [i((ω0 + lδω)t + lδϕ)]

}

= Re

{
1√
2π

( ∞∑
l=−∞

Ã(ω0 + lδω) exp [ilδϕ] exp [ilδωt]

)
exp [iω0t]

}

= Re

{
1√
2π

A(t) exp [iω0t]

}
. (2.10)

In the last step, the expression in brackets was identified as a discrete version of the
Fourier transform and the existence of an appropriate function A(t) was deduced.
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As derived e.g. in [40, Sect. 8.6.1.], the electric field is oscillating with a carrier
frequency ω0 and is modulated in amplitude by a time-dependent function A(t)
commonly referred to as pulse envelope. Further, for the separation of the pulses in
time τ and their duration �τ it can be derived [40, Sect. 8.6.1.]

τ = 2π/δω (2.11)

�τ = 4 ln(2)/�ω. (2.12)

From Eqs. (2.11) and (2.9) follows τ = 2d/c meaning that the repetition rate of
the laser system is simply determined by the round-trip time of the laser pulses in
the resonator [40, Sect. 8.6.2]. Equation (2.12) is identical to the previously found
general expression, Eq. (2.6). From this it can be concluded that the superposition of
resonator modes with constant phase differences of adjacent modes produces Fourier
limited pulses. This situation is commonly referred to as mode-locked operation of
the laser. In suitable materials, as e.g. Ti:sapphire crystals,�ω can be large enough to
cause simultaneously significant amplification for a certain wavelength λ1 and even
its second harmonic λ2 = 2λ1 [12] which is commonly called an octave-spanning
spectrum. In this situation, �τF can become very short, even of the same order of
the oscillation period of the electromagnetic wave itself. Such pulses are commonly
referred to as few-cycle pulses [5]. It is noteworthy that the peak intensity in such
laser pulses is proportional to the square of the number of modes contributing, see
e.g. [40, Sect. 8.6.1.].

The most general form for the phase ϕ(ω) guaranteeing the generation of Fourier
limited pulses is given by

ϕ(ω) = ϕ(ω0) + a · (ω − ω0) , (2.13)

wherea is a constant and the functionϕ (ω) is only evaluated for the discrete resonator
frequencies. This equation may be interpreted as a Taylor series [6, Sect. 6.1.4.5] of
an arbitrary function ϕ(ω) around ω0 up to the first order. It is self-evident and often
also convenient to extend this to

ϕ(ω) = ϕ(ω0) + ∂ϕ(ω)

∂ω

∣∣∣∣
ω=ω0

(ω − ω0) + 1

2

∂2ϕ(ω)

∂ω2

∣∣∣∣
ω=ω0

(ω − ω0)
2 + O(ω3) ,

(2.14)

see e.g. [35, Sect. 9.1]. The influence of the different terms on the shape of the
generated pulses are displayed in Fig. 2.1 calculated for a model resonator and active
medium. Although the number of modes contributing is much less than in a typical
laser setup for ultrashort laser pulses, general qualitative features can be studied. The
figure depicts eight spectral field distributions Ã(ω) of Gaussian shape evaluated at
the positions of the resonator modes (blue line and dots in left pictures). The spectral
phase ϕ(ω) is shown in green. E(t) is then calculated with Eq. (2.10), where the
summation can be restricted to a finite number of modes with significant amplitudes
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without noticeable change of the result. E(t) is shown on the right as a blue line,
while the red line shows the envelope function calculated by replacing Re{} by Abs{}
in Eq. (2.10).

In Fig. 2.1a, the width of the emission spectrum is fairly narrow such that only
three modes significantly contribute to the total electric field, resulting in a beat
frequency. The phase in this example is globally set to zero, ϕ(ω) ≡ 0. If the
spectrum is chosen broader and broader along (b) and (c), well separated pulses arise
which become shorter and shorter. The electric field shown in (c) represents a few-
cycle Fourier limited pulse. If a constant global phase is added as done in (d), where
ϕ(ω) = −π, the envelope and thus the pulse duration is not affected. However, the
phase offset between the carrier wave and the envelope, commonly referred to as
carrier-envelope phase (CEP), see e.g. [5, 29, 32], is altered. Since CEP effects are
not explicitly studied in this work and their presence only used as an indicator for
the pulse duration, see Sect. 2.2.2, the influence of the constant phase on the electric
field is ignored in the following.

(a)

(b)

(d)

(c)

(e)

(f)

(h)

(g)

Fig. 2.1 Examples for electric fields created by superpositions of resonator modes. Each figure
contains of two plots: In the left, the spectral amplitude Ã(ω) and the spectral phase ϕ(ω) are
shown in blue and green, respectively. The functions are evaluated at the discrete frequencies of
the resonator modes. In the right picture, the resulting electric field is shown in blue, the envelope
function in red, see text for details



2.1 Mathematical Description of Laser Pulses 11

As discussed earlier, even a linear trend in ϕ(ω) guarantees the generation of
Fourier limited pulses, see Eq. (2.13). This situation is depicted in Fig. 2.1e, where
the pulses from (c) are exactly reproduced despite being shifted on the absolute
timescale. Apart from this, the spacing between themodeswas decreased,modeling a
lengtheningof the resonator, seeEq. (2.9).Consequently the round-trip time increases
such that the preceding and the following pulses are not visible in the picture any
further. For a quadratic trend in ϕ(ω), however, the situation changes substantially.
Even though the spectral amplitudes are identical to the previous case, this phase
relation leads to much longer pulses as depicted in Fig. 2.1f, g. In addition, the
frequency of the carrier wave changes along the pulse which is commonly known as
chirp, see e.g. [35, Sect. 9.1]. Finally the case of a random phase relation is shown
in (h). The electric field produced seems to be chaotic, nevertheless it is still periodic
and each of the occurring peak-like structures has a duration comparable to the well
separated, Fourier limited pulses in (c), see e.g. [40, Sect. 8.6]. In order to make the
effects more visible, the frequency spacing of the modes is chosen larger again, as
in (a)–(d).

In conclusion, the generation of ultrashort laser pulses requires not only the con-
tribution of many modes with different frequencies but also a fixed phase relation
between the different modes as close as possible to Eq. (2.13), the ideal mode-locking
condition. In reality, the situation becomes more difficult since optical elements in
the beam path and even the air traversed on the way to the actual experiment will
certainly change the phase relations due to dispersion, see Sect. 2.1.2.

Kerr Lens Mode-Locking

Different techniques have been developed to obtain mode-locked laser operation
for the generation of ultrashort pulses. For an historical review see e.g. [18]. One
example mentioned there is the Kerr lens mode-locking (KLM), an approach based
on the nonlinear optical Kerr-effect in suitable transparent materials. It is widely
exploited in Ti:sapphire laser systems and will be discussed in the following.

Althoughmode-locking is defined and described in the frequency domain, namely
with the condition from Eq. (2.13) for adjacent resonator modes, it is feasible and
convenient to switch to the time-domain picture: As shown in the previous section,
perfect mode-locking occurs if, and only if, the associated laser pulses are Fourier
limited. Therefore, if a process inside the resonator is capable of shortening the pulses
such that their duration approaches the Fourier limit, the phase relation between the
modes will adapt and converge to the associated phase relation.

The basic idea for efficient mode-locking is therefore to artificially lower the qual-
ity of the resonator and thus increase the losses for any continuous components of the
wave, currently present in the resonator [40, Sect. 8.6.3.2 and Appendix F.2]. Any
spiked structure generated in the initially random spontaneous emission of the active
medium will gain energy quickly and—after some round-trips in the resonator—
may form a short stable pulse. The largely differing peak intensity in the pulsed field
configuration can be utilized in this respect in different passive mode-locking tech-
niques. For example, a suitable absorbing material, a fast saturable absorber, may be
inserted into the resonator, absorbing the laser radiation but being saturated and thus
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transparent for high intensities [40, Sect. 8.6.3.2 and Appendix F.2]. The saturable
absorbance may also be included in the resonator end-mirrors using semiconductor
saturable absorber mirrors (SESAM) [20].

KLM is likewise a passive mode-locking technique but relies on the non-linear
optical Kerr-effect, see e.g. [40, Sect. 8.6.3.2] and thus on refraction rather than
absorption. For low field intensities the definition of the refractive index n0 = c/vph(λ)

as a function of the phase velocity of the light vph(λ) and therefore the wavelength
λ is a very good approximation. In contrast, in very strong fields, the refractive
index shows an additional dependence on the laser intensity I(t) and is given by [40,
Sect. 8.6.3.2]

n(t) = n0 + n2 I(t). (2.15)

The second order index of refraction n2 in this expression is a (very small) posi-
tive constant. Typical values are around 10−13cm2/W to 10−17cm2/W, see e.g. [4,
table4.1.2], such that the second order term is negligible for low intensities.

With increasing intensity, however, the influence of the second terms grows and
for ultrashort strong field can become significant. If a TEM0,0,q pulse with a Gaussian
transverse intensity distribution travels through a non-linear medium inside the res-
onator, Eq. (2.15) causes a refractive index that changes over the transverse coordi-
nate. Effectively, for n2 > 0 a spherical lens is formed, focusing the beam towards
the resonator axis [40, Sect. 8.6.3.2]. This is commonly referred to as self-focusing.
An aperture or an appropriate geometry of the resonator itself can be used in order
to suppress any continuous field components.

If an aperture is present or the geometry of the resonator itself is appropriately
chosen, the focusing is required for a sufficient reduction of losses and therefore
pulsed field components are favored in the resonator. In each round trip of the pulse,
the leading and trailing edge are suppressed due to their lower intensity and the pulse
gets shortened [21, Sect. 10.2.2]. One advantage of KLM is the almost instantaneous
response of the medium [40, Sect. 8.6.3.2]. Moreover, in particular for Ti:sapphire
laser systems, it is beneficial that the laser crystal itself may serve as a non-linear
medium for the optical Kerr-effect [19].

2.1.2 Dispersion in Matter

In particular for short laser pulses, dispersion in matter is an important issue due
to their large bandwidth according to Eq. (2.12). While traveling along êz through a
transparentmaterial, a short laser pulse accumulates a spectral phase of [35, Sect. 7.2]

�(ω) = n(ω)ω

c
z, (2.16)

where n(ω) is the refractive index of the material and c the speed of light in vacuum.
Since the carrier frequency ω0 even of few-cycle pulses is large compared to their
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Table 2.1 Definition of phase velocity, group velocity and group velocity dispersion and the relation
of this values to (Eq.2.17) as found e.g. in [35, Sect. 9.1]

Quantity Relation

Phase velocity vph ω0/A

Group velocity vg 1/B

Group velocity dispersion GVD C

spectral width δω and the refractive index usually sufficiently smooth, this expression
can be approximated by a Taylor expansion, cf. [35, Sect. 9.1]

�(ω) = �(ω0)

︸ ︷︷ ︸
A

+ ∂�(ω)

∂ω

∣∣∣∣
ω=ω0︸ ︷︷ ︸

B

(ω − ω0) + 1

2

∂2�(ω)

∂ω2

∣∣∣∣
ω=ω0︸ ︷︷ ︸

C

(ω − ω0)
2 + O(ω3

)
.

(2.17)

The three factors A, B and C depend on the characteristics of n(ω) and are—for
fixed ω0—material constants. Usually, the related quantities listed in Table2.1 are
used for characterization.

The influence of such phase functions on the pulses and their duration was already
depicted in Sect. 2.1.1. In particular in the design of femtosecond laser systems
also higher orders as the third order dispersion (TOD) have to be considered and
compensated as accurately as possible, see e.g. [5]. Furthermore, if the phase function
is not sufficiently smooth on the scale given by �ω, a (low-order) Taylor expansion
might be a less good approximation. Instead, �(ω) can be derived from n(ω) which
is often well characterized. The pulse shape and duration can then numerically be
calculated according to Eq. (2.2). After all, dispersion in media may lead to temporal
broadening of short pulses and therefore has to be compensated (or precompensated)
in order to obtain short pulses in the experiment.

2.1.3 General Properties of Focussed Laser Beams

Laser beams can be focussed onto a well defined spot using lenses or curved mirrors.
Not only the maximum intensity achievable but also a detailed knowledge about the
intensity distribution near the focus, the “shape” of the focal volume, is desirable
for two reasons: First, the interaction processes between light and matter strongly
depends on the intensity, see e.g. Sect. 3.1. Thus, in the case of a gas jet of finite
diameter where the laser is focussed on (see Chap.4), not all atoms will experience
the same laser intensity. In fact, an intrinsic averaging over different intensities is
present which has to be considered in the interpretation of the data, see e.g. [30].
Second, the geometry of the laser focus is important for the experiment since it defines
the interaction region as the spatial overlap with the usually much more extended
gas jet, see Sects. 4.1.2 and 4.3.

http://dx.doi.org/10.1007/978-3-319-32046-5_3
http://dx.doi.org/10.1007/978-3-319-32046-5_4
http://dx.doi.org/10.1007/978-3-319-32046-5_4
http://dx.doi.org/10.1007/978-3-319-32046-5_4
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The intensity of a laser beam can, if exclusively fundamental modes are consid-
ered, be described by a Gaussian transverse profile as seen in Sect. 2.1.1. In case of a
focussed beam this still holds at any position z0 along the laser propagation direction
êz . However the beam diameter then depends on z0. A focussed beam can therefore
be described with [11, Sects. 12.2 and 12.3]

Iz0(r) = Imax
z0 · exp

[
− 2r2

w2(z0)

]
(2.18)

with

w(z) = w0

√
1 + z2/z2R, (2.19)

w0 = λ f/πRL, (2.20)

zR = w2
0π/λ. (2.21)

Here, r is the transverse spatial coordinate perpendicular to êz , λ the wavelength
in the beam, f the focal length of the lens or mirror, RL the radius of the laser
before focusing and zR the Rayleigh length, the distance along êz between the waist
of the focus and the point, where its diameter has increased by a factor of

√
2. At

this position the intensity has decreased to 1/2 of the peak intensity as present in
the center of the focus. In contrast to this, w0 = w(z = 0) describes the transverse
distance from the center of the focus to the radius, where the intensity has decreased
to 1/e2 ≈ 1/7.4. Although both parameters describe the dimensions of the laser focus
it is important to keep in mind that they can not simply be related to each other.

Imax
z0 denotes the intensity on the beam axis in the plane defined by z = z0. An

integration of Eq. (2.18) over ϕ and r in each of this planes has to yield the same
value since the total power of the radiation is preserved. Therefore it is Imax

z0 =
(w0/w(z0))

2 Imax where Imax = Imax
z0=0 is the global maximum of the laser intensity. The

intensity distribution in the laser focus is thus given by [31, Sect. 2.2]

I (z, r) = Imax

(
w0

w(z)

)2

exp

[
− 2r2

w2(z)

]
. (2.22)

This expression is plotted in Fig. 2.2 for typical parameters of the experiment,
namely λ = 790 nm, f = 7 cm, RL = 0.5 cm. Solid red lines represent w(z). The
intensity distribution is muchmore elongated in the propagation direction of the laser
than perpendicular to it. Note that the distance shown along z in Fig. 2.2 is 20 times
larger than the one shown along r . To emphasize this characteristic feature of laser
foci, curves of equal intensity can be calculated. Demanding I(z, r) = αImax with
α ∈ [0, 1] in Eq. (2.22) yields [31, Sect. 2.2]3

3The original equation contains a typing error which is corrected here.
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Fig. 2.2 Intensity distribution in a Gaussian laser focus according to Eq. (2.22) with lines of equal
intensity (black solid lines) calculated with Eq. (2.23) for (from origin) α = 0.8, 0.6, 0.4, 0.2,
respectively. The positions where the intensity has dropped to 1/e2 is shown as red dashed line. The
parameters used in the calculations are λ = 790nm, f = 7 cm, RL = 0.5 cm. The red solid lines
denote w(z) calculated with Eq. (2.19). A similar calculation and illustration of the contour lines
can be found in [31, Sect. 2.2]

rα(z) = ±Re

⎧⎨
⎩
√√√√1

2
w2(z) ln

[
1

α

(
w0

w(z)

)2
]⎫⎬
⎭ . (2.23)

The contour lines defined by this relation are shown in Fig. 2.2—starting from the
origin outwards—for α = 0.8, 0.6, 0.4, 0.2, respectively. The typical extent of the
focus with respect to z and r can be calculated with α0 = 1/e2, shown as dashed red
line. The condition rα0(z) = 0 and the calculation of rα0(0) thus yields

�r = 2w0 ≈ 7.0μm,

�z = 2zR

√(
e2 − 1

) ≈ 250μm. (2.24)

Note that �r also denotes the diameter of the laser focus in radial direction rather
than the radius. After all, the circumference of the focus along the direction of
propagation ismuch larger than its transverse diameter.As canbe seen fromEq. (2.20)
and Eq. (2.21), both quantities are proportional to λ. Therefore, light with shorter
wavelengths can be focussed “harder”, in the case of λ = 395 nm for example, onto
a spot of half the extension in each direction. The relations in this section are only
valid for laser beams with perfect Gaussian beam profile. However, real laser beams
often show deviations from this ideal situation which is usually described by a value
M2 ≥ 1 (= 1 for a Gaussian profile), see e.g. [11, Sect. 12.5]. As a consequence, the
focus dimensions are usually larger than described by Eq. (2.24). Since the aim of
this section is more the qualitative description than the derivation of exact numbers,
this more complex situation is not treated here.
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2.2 Laser Pulse Generation and Manipulation

For the different experiments presented in this thesis, laser pulses of different duration
and central wavelength are required. However, in each case, the first step is the
generation of strong ultrashort pulses with a commercial femtosecond laser system.
These pulses are then modified in different subsequent processes in order to achieve
e.g. shorter pulse durations or a different central wavelength.

2.2.1 The Femtosecond Laser System

In all experiments presented in this thesis a commercial FEMTOLASERS “FEM-
TOPOWER compact PRO HP/HR” Ti:sapphire4 laser system is used as a source
for strong and ultrashort laser pulses. General information about Ti:sapphire laser
systems can be found e.g. in [10, Sect. 6.7.2] and [40, Sect. 9.2.8]. The specific infor-
mation about the system used in the experiments are compiled from [14, 15]. The
system consists of a mirror-dispersion controlled Ti:sapphire oscillator [37] produc-
ing ultrashort (�10 fs), close to Fourier limited, but weak pulses at a high repetition
rate. These pulses are stretched in time and subsequently amplified in a second
Ti:sapphire crystal in a chirped pulse amplification (CPA) scheme [39]. With this
technique, damage of the Ti:sapphire crystal in the amplification stage is prevented as
it would occur otherwise due to the extreme intensities and thereby caused non-linear
effects.

In a multi-pass setup, the laser beam is guided through the amplifier crystal. After
the fourth pass, the repetition rate is reduced to around 3 kHz by a Pockels cell. Thus,
most of the pulses are suppressed and only one pulse is further amplified in every
shot of the pump laser. A description of a very similar amplifier system can be found
in [25]. The strong but temporally stretched pulses are compressed in a subsequent
prism compressor where a complex interplay of optical prisms and chirped mirrors
provide a negative refraction index and at the same time correct for higher order
dispersion [36]. The pulse duration is specified to less than 30 fs, the pulse energy
to larger than 800mJ. Gain narrowing, the reduction of the spectral width in the
amplification process, see e.g. [10, Sect. 7.2.2], mainly causes the increase of the
pulse duration compared with the output of the oscillator. In Fig. 2.4a and b, the two
spectra can be compared. The overall dispersion of the laser pulses is controlled
by third-order dispersion (TOD) precompensation after the oscillator and careful
adjustment of the compressor stage. Thus, close to Fourier limited pulses are emitted
by the laser system.

4Titanium-doped sapphire (Ti:Al2O3).
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2.2.2 Generation of Few-Cycle Pulses

In the pulses emitted by the laser system, the electric field fulfills more than ten
oscillationswith a periodicity of approximately 2.6 fs. Even shorter, few-cycle pulses,
where the pulse duration is in the same order of the field periodicity, see e.g. [5], can
be generated in a subsequent process [33]: Since the minimum pulse duration of the
pulses delivered by the laser system is limited mainly by the width of the spectral
profile, the first step towards shorter pulses is the generation of additional wavelength
components. For this, a nonlinear optical effect namely self-phase modulation (SPM),
see e.g. [4, Sect. 7.5], in a gaseous medium is utilized. Afterwards the pulses can be
compressed with specifically designed chirped mirrors.

Spectral Broadening by Self-Phase Modulation

In Sect. 2.1, the optical Kerr effect was discussed causing an intensity-dependent
refractive index, Eq. (2.15):

n(t) = n0 + n2 I(t) .

If the dispersion experienced by an initially Fourier limited TEM0,0,q pulse, while
traveling through a medium of length L with n2 > 0 ∈ �, is neglected, the accumu-
lation of a phase is the only remaining effect [4, Sect. 7.5]:

�(t) = −n2
ω0L

c0
I(t) (2.25)

This time-dependent phase shifts the frequencies in the pulse resulting in [4, Sect. 7.5]

ω(t) = ω0 + d�(t)

dt

= ω0

(
1 − n2

L

c0

dI(t)

dt

)
, (2.26)

where ω(t) is referred to as the instantaneous frequency in the pulse. In the leading
edge of the pulse, where dI(t)/dt > 0, the frequency is shifted towards lower values
while higher frequencies are generated in the trailing edge. Thus, the spectrum of the
pulse is broadened and the pulse itself is positively chirped although the temporal
pulse shape is not changed in the first instance [10, Sect. 8.1.1]. However, it is of
course affected by the usual dispersion in the material. In reality, the situation is
much more complex due to effects as self-steepening [4, Sect. 13.3] or finite non-
linear response times [4, table4.1.1] neglected here. A consequence is e.g. the non-
symmetric broadening of the spectrum visible in Fig. 2.4 not covered by Eq. (2.26)
for Fourier limited pulses with symmetric envelope. The enhanced spectral width of
the laser light forms the basis of the generation of even shorter pulses.

In the experimental setup schematically shown in Fig. 2.3, the pulses delivered by
the laser system are focussed onto a hollow-core glass fiber with an inner diameter
of 250μm. By using a lens with a large focal length of about 1.5 m, the laser
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Fig. 2.3 Schematic overview about the setup used for the generation of few-cycle laser pulses. The
pulses delivered by the femtosecond laser system are focussed onto a neon-filled hollow-core fiber
filled with neon. The beam is spatially stabilized using two controlled mirrors and two segmented
photodiodes, see text for details. After spectral broadening by SPM in the neon gas, the laser pulses
pass a λ/4-plate ensuring linear polarization. Chirped mirrors temporally compress the pulses and
also precompensate for the dispersion on the path to the REMI. Fine-adjustment of the overall
dispersion and pulse-duration is performed by movable glass-wedges

(cII)

(cI)

(cIII)

(cVI)

(cIV)

(cV)

(a)

(b)

Fig. 2.4 Typical laser spectra obtained at different steps of the ultrashort pulse generation and their
Fourier limits. a In the oscillator. b After the chirped mirrors and the Mach–Zehnder interferometer
with an empty fiber. Apart from (small) losses on the optical elements this spectrum resembles the
output spectrum of the femtosecond laser system. (cI−V I I I ) Same as (b) but with nonzero, different
absolute neon pressures in the fiber. SPM broadens the spectrum and thus reduces the Fourier limit
of the pulses. In the region of short wavelengths the spectrum is suppressed by the low reflectivity
of the chirped mirrors used
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focus created is very elongated (see Sect. 2.1.3) and—since additionally confined in
the hollow center of the fiber—extends to the full fiber length of about 1m. Over
this distance, the light can interact with neon atoms inside the hollow core, which
represent the nonlinear medium for the SPM process. Since the optimal and stable
incoupling into the fiber is crucial, small spatial drifts of the laser beam over time
have to be efficiently compensated. For this purpose, a focus stabilization system
was built [24]. It contains two four-fold segmented photodiodes where small parts
of the beam are focussed on and thus small drifts can be detected. A computer can
react by small adjustments with two motorized mirrors. A λ/4-plate after the fiber is
used to ensure linear polarization of the light.

Chirped Mirror Compression

Due to the extremely broad spectrum, the laser pulses are very sensitive to dispersion.
While traveling through optical elements and the air on the way to the spectrometer,
see Chap.4, the different frequencies in the pulses gather an individual phase, see
Sect. 2.1.2. In order to compensate for this, chirped mirrorswith an effective negative
dispersion are used [41]. These mirrors are specially designed and coated such that
the red components of the beam can penetrate deeper into the material and thus travel
a longer distance compared to the blue. Three matched pairs of chirped mirrors are
used in the experiment while each mirror is hit twice by the laser beam resulting in
twelve reflexions in total. Fine tuning of the overall dispersion is performed with an
additional small amount of glass, a pair of movable wedges.

Figure. 2.4b and cI−V I I I show spectra obtained after the chirpedmirrors for differ-
ent pressures of neon in the fiber. Apart from (small) losses on the optical elements,
(b) resembles the output spectrum of the femtosecond laser system described in
Sect. 2.2.1. However, short wavelengths around 500nm and below are suppressed
due to insufficient reflectivity of the chirped mirrors in this range. An approximation
for the Fourier limit of the pulses is given for each of the spectra in Fig. 2.4, as it
can be obtained by a calculation of the temporal shape of the electric field accord-
ing to Eq. (2.4)5 and a subsequent Gaussian fit to the temporal intensity distribution
associated.

The duration of the pulses delivered by the systemwas measured to be around 6 fs
before, see [16, 23], using autocorrelation and ZAP-SPIDER6 techniques [1]. How-
ever, in order to obtain information about the pulse duration during the alignment
of the setup for few-cycle pulses, in this work a single-shot Stereo-ATI 7 phaseme-
ter [42] was utilized. Detailed information about the setup can be found in [17].
Since the quality of the CEP-signal delivered by this device depends crucially on the
pulse duration [34], it can be used as a qualitative indicator for the pulse duration at
least for alignment purposes, where no accurate value has to be extracted.

5The integral in the expression is replaced by a sum over the binned spectrum.
6Zero-additional-phase spectral phase interferometry for direct electric field reconstruction.
7Above-threshold ionization.

http://dx.doi.org/10.1007/978-3-319-32046-5_4
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2.2.3 Setup for Pump-Probe Measurements

For the time-resolved pump-probe measurements presented in Chap.5, two pulses
are required with an adjustable time delay with respect to each other. In such exper-
iments, the first “pump” pulse is used to start dynamics in the target system while
the second pulse “probes” the state of the system after a defined and adjustable time
period, during which the system is allowed to evolve freely, see e.g. [28, 38]. For
the creation of the pulse-pair and the adjustment of the time-delay, a Mach–Zehnder
interferometer is used. Detailed information about the setup can be found in [13].
Starting from a single laser pulse, a thin beam splitter is used to create two identi-
cal pulses. Each pulse travels along one of the two arms of the interferometer, see
Fig. 2.5. One of the arms is equipped with a piezo-driven stage to move two mirrors
and to adjust the distance s the specific pulse has to travel before the two beams are
recombined by a second beam splitter. The time delay between the pulses can be
controlled with high precision and a spatial shift of the stage by �s leads to a shift
in time of

�t = 2
�s

c
, (2.27)

where c is the speed of light in air. The setup works for both ultrashort pulses from
the fiber and the pulses delivered directly from the femtosecond laser system.

Fig. 2.5 Schematic picture of the Mach–Zehnder interferometer. The incoming pulses are split
into two identical copies. The time delay of one pulse with respect to the other can be controlled by
adjusting the length of one arm of the spectrometer

http://dx.doi.org/10.1007/978-3-319-32046-5_5
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2.2.4 Frequency Doubling and Mixing

Nonlinear effects in suitable materials can be used to generate coherent and intense
pulses at wavelengths not accessible directly for the laser system. Exposed to the
strong fields of a (linearly polarized) intense laser, the electron clouds of the atoms
in a nonlinear medium—e.g. a crystal made from β-barium borate (BBO)—are col-
lectively driven back and forth. If the strength of the laser field is in the same order as
the intrinsic atomic electric fields, large amplitudes are achieved in the driven oscil-
lation. In contrast to very small amplitudes, where the oscillation has approximately
harmonic character, higher orders of the effective potentials become significant. For
a lossless and dispersionless medium, the polarization is given by [4, Sect. 1.1]

P(t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·
= P (1)(t) + P (2)(t) + P (3)(t) + · · · , (2.28)

where χ(1) is the linear and χ(2) and χ(3) the second- and third-order nonlinear
susceptibilities.8 This relation can be utilized in different experimental schemes to
generate new frequency components, initially not present in the laser spectrum. For
simplicity the following discussion is restricted to monochromatic fields but can in
principle be extended to the broader spectrum of short laser pulses: The phase match-
ing conditions mentioned are then only fulfilled perfectly for the carrier frequency
ω0. However, for frequencies sufficiently close to ω0, the processes may take place,
although with reduced efficiency [4, Sects. 2.2 and 2.7]. Thus, few-cycle pulses with
their very broad spectra are not suitable and in the experiments exclusively the direct
output of the femtosecond laser system is utilized.

Second Harmonic Generation (SHG)

In the simplest scheme possible, the laser pulses delivered by the laser are directly
focussed into the nonlinear crystal. If the electric field is described as E(t) =
E exp(−iω0t) + c.c.,9 Eq. (2.28) yields [4, Sect. 1.2]

P (2)(t) = 2χ(2)E E∗ + [
χ(2)E2e−2iω0t + c.c.

]
. (2.29)

The spectrum of the time-dependent polarization comprises components with a fre-
quency of 2ω0 and so does the light emitted. For this reason the process is known as
second harmonic generation (SHG).As depicted in Fig. 2.6, this can be understood as
a transformation of two photons of the incident beam into one photon of the doubled
frequency. In addition to the conservation of energy, a special form of momentum
conservation has to be considered: For an efficient generation of second harmonic

8Since E and P are treated as scalar quantities, the tensor-nature of the susceptibilities χ(i) is
omitted [4, Sect 1.1].
9This description of the total electric field as a sum of a complex field and its complex conjugated
expression, E(t) = ε(t) + c.c., is mathematically equivalent to the description E(t) = Re{ε(t)}
used in Sect. 2.1.
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Fig. 2.6 Scheme for SHG in a nonlinear crystal. Two photons of the incident laser beam are
converted into one photon of twice the frequency and energy ω1. In the energy diagram on the right
the solid line represents the ground state while virtual states, only existent in the presence of the
laser field, are displayed as dashed lines. In addition, the phase matching condition, Eq. (2.30), is
displayed. Scheme according to [4, Fig. 1.2.1]

radiation it is necessary that the wavevector mismatch vanishes [4, Sects. 2.2 and
2.6]:

�k = 2k0 + k1 = 2
n0ω0

c
+ n1ω1

c
= 0, (2.30)

where ω1 = 2ω0 and ni is the refractive index of the nonlinear material for the
respective frequency. This situation is commonly referred to as phase matching and
Eq. (2.30) is the associated phase matching condition.

In particular for nonlinear crystals, birefringent properties of the material may be
utilized for this purpose: By aligning the optical axis of the crystal with respect to
the propagation direction of the light, ni can be adjusted [4, Sect. 2.7].

In the experiment, a BBO crystal is used to generate second harmonic radiation
from the fundamental 790nm pulses delivered by the femtosecond laser system.
Thus, pulses with a carrier wavelength of 395nm close at the high-frequency edge
of the visible and the beginning of the ultraviolet spectrum are generated. On one
hand, the SHG process can only be efficient for a relatively narrow spectral region
around the central carrier frequency, which suggests a longer duration for the pulses
compared with those in the incoming beam. On the other hand, SHG is a nonlinear
process and hence depends strongly on the laser intensity. Therefore the leading and
trailing edges of the pulse can be expected to be suppressed and the pulse shortened.

Frequency Mixing: Generation of Sum and Difference (SFG and DFG)

In a modified scheme, laser pulses of two different frequencies, ω1 and ω2 (ω1 >

ω2) can be focussed simultaneously into the nonlinear crystal. For the moment,
the availability of pulses with two different carrier frequencies is simply postulated
and will be elucidated later in Sect. 2.2.5. In analogy to the treatment of SHG, the
incident beam can be described by E(t) = E1 exp(−iω1t) + E2 exp(−iω2t) + c.c.
and Eq. (2.28) yields [4, Sect. 1.2]

P(2)(t) = 2χ(2)
(
E1E∗

1 + E2E∗
2

)+ [
χ(2)

(
E2
1e

−2ω1t + E2
2e

−2ω2t
)+ c.c.

]
+ [

2χ(2)
(
E1E2e

−2(ω1+ω2)t + E1E∗
2e

−2(ω1−ω2)t
)+ c.c.

]
. (2.31)
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Fig. 2.7 Frequency mixing
with a SFG and b DFG in a
nonlinear crystal with
according phase matching
conditions, Eq. (2.32). DFG
contains a stimulated process
where the irradiated
radiation of lower frequency
ω2 is coherently amplified.
Schemes according to [4,
Fig. 1.2.2] for (a) and [4,
Fig. 1.2.3] for (b),
respectively

(b)

(a)

The first two terms reflect SHG processes simultaneously but independently taking
place for the two different frequencies, while the last term is arising from an interplay
between them. It introduces components in the oscillations of the time-dependent
polarization with both the sum ω3 = ω1 + ω2 and the difference ω3 = ω1 − ω2 of
the two frequencies initially present. Thus, radiation with theses frequencies may be
emitted, provided that the respective phase matching condition is met [4, Sects. 2.4
and 2.5]

k1 ± k2 = k3 for ω3 = ω1 ± ω2 (2.32)

The processes are referred to as sum frequency generation (SFG) and difference
frequency generation (DFG), respectively, and depicted in Fig. 2.7. The latter is
remarkable in one important aspect: DFG contains a stimulated process where the
radiation of the incident lower frequency ω2 is coherently amplified. This unique
feature of DFG offers an efficient way for the creation of arbitrary frequencies,
technically utilized as described in the following section.

2.2.5 Wavelength Tuning Using an OPA System

For creation of pulseswith arbitrary carrier frequencies directly from the pulses deliv-
ered by the femtosecond laser system, several nonlinear effects may be combined,
namely SPM followed by DFG and optional subsequent SHG, SFG or DFG. The
experimental scheme presented in the following is refereed to as optical parametric
amplifier (OPA). Here, only a brief description of the working principle is given,
composed from [7] and [4, Sect. 2.8].

As discussed in Sect. 2.2.2, SPM in non-linear materials can be used for the
generation of frequency components initially not present in the laser beam. Thus, a
continuum of white light can be produced by focusing a part of the laser beam into
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Fig. 2.8 Working principle of the OPA system: The pump beam is delivered by the femtosecond
laser system. A small part of the beam creates a continuum of white light due to SPM in a sapphire
plate. Any frequency generated can serve as seed for anDFGprocess in a nonlinear crystal. Here, the
energy of one pump photon is used for the amplification of the seed beam and additional generation
of an idler photon. The signal beam is further amplified in a second OPA stage, again producing
an additional strong idler beam. Subsequent frequency doubling (SHG) or mixing (SFG, DFG) of
residual pump, signal and idler beam is optionally possible. A filter finally removes the undesired
frequencies before the pulses are guided to the experiment

e.g. a sapphire plate. A desired wavelength of this continuum may be used together
with radiation of the initial wavelength of 790 nm for a DFG process in a nonlinear
crystal. Since energy conservation has to be fulfilled, the chosen wavelength has to
be larger than 790 nm. In this context it is convenient to refer to the different beams
coupled into the crystal as seed and pump beam, respectively, see Fig. 2.8. A part of
the energy of one photon from the pump beam is used for amplification of the seed
beam by stimulated emission. In addition, a second photon of a different wavelength
is formed using the remaining energy. The process may also be carried out in a two-
step amplification scheme involving two nonlinear crystals, representing a pre- and
a power amplifier. Hence, a signal and idler beam are generated where one is the
amplified seed. In the following—as commonly defined—the signal represents the
beam with the higher photon energy.

By rotation of the nonlinear crystal and thereby achieving phase matching for a
particular combination of signal and idler wavelengths, the carrier frequency of the
generated pulses can be controlled over a large range. After the OPA, pulses with
three different carrier frequencies are usually available: The remaining part of the
pump beam delivered by the laser as well as the signal and the idler beam. Subsequent
frequency doubling or mixing by SHG, SFG or DFG may be used and extends the
region of accessible wavelengths.

In the experiment a commercial Light Conversion “TOPAS-C” OPA system is
used containing two OPA amplification stages and subsequent optional frequency
doubling (SHG) or mixing (SFG, DFG) [26]. Downstream filters containing highly
reflective mirrors for the desired wavelength ensure sufficient suppression of other
radiation. The polarization of the emitted radiation depends on the generation mech-
anism and is either horizontal or vertical after the OPA. Two different periscopes
are used to guide the beam to the REMI such that the polarization is finally aligned
along the spectrometer axis in either case as shown in Fig. 4.1.

http://dx.doi.org/10.1007/978-3-319-32046-5_4
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Fig. 2.9 Wavelengths accessible with the OPA system for pump wavelength of ω0 = 790nm.
Different production schemes deliver wavelengths over the full visible to infrared spectrum (ranges
according to “WinTOPAS 3.0.12” control software delivered with the system). In addition, the
harmonic frequency 2ω0 is shown accessible by SHG of ω0

Figure2.9 gives an overview about the different production mechanisms made
available by the OPA and the accessible wavelengths. It is noteworthy that—in
principle—the full range from around 470 nm to around 13000 nm can be accessed.
However, due to strongly deviating efficiencies of the different processes, strong-
field experiments are restricted to a region below approximately 1600nm. Before
entering the OPA, the spectrum of the femtosecond laser system is slightly narrowed
to a width of about 30nm around the central wavelength in order to facilitate the
overall phase matching. The signal and idler pulses are expected to have a duration
of 0.7 − 1 times the duration of the pump pulses [27]. Thus, the pulse duration can
be roughly estimated to be at least about 20 fs or longer.
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