
Chapter 2
Reconfigurable Real-Time Memory
Controller Architecture

The purpose of this chapter is to set the stage on which the rest of this book plays out.
We describe the technology that we work with, in the form of the SDRAM chips that
external companies produce for us (and the rest of the world) in Sect. 2.1. Because,
the same SDRAM chips are used by everyone, it is not surprising that most memory
controllers, i.e., the interfaces that interact with these chips, have at least the same
high-level structure, as introduced earlier in Sect. 1.2. For the sake of efficiency,
the proverbial wheel tends to be invented only a few times before the interested
community settles for a design that works in most cases. Further improvements are
driven by the needs of specific application areas and the gradual evolution of the
surrounding actors and requirements. This book focuses on the area of mixed time-
criticality systems, and uses an existing SDRAM controller template for real-time
systems, the pattern-based controller [1], as its starting point. The properties of this
controller are introduced in Sect. 2.2.

The story continues with a detailed description of our novel reconfigurable mem-
ory controller architecture in Sect. 2.3. It partially concerns the introduction of con-
cepts and structures used in the controller, and touches upon some of the real-time
aspects that are influenced by its structure and implementation. This controller is the
framework on which the other contributions in this book are pinned. The memory
patterns we generate in Chap.3 are stored within this controller. The analysis from
Chap.4 and the trade-offs we describe in Chap. 5 apply to memory controllers that
follows the architecture template we describe here, and the conservative open-page
policy in Chap.6 is implemented on a slightly modified version of the same template.
The embedded reconfiguration hardware enables the controller to adapt to different
use-cases as we describe in Chap.7.

In Sect. 2.4, we derive a worst-case performancemodel for this memory controller
architecture, based on a Latency-rate (LR) server abstraction. This performance
model applies tomanywell known arbiters and can be used in frameworks that enable
system-level analysis. We then continue with a discussion on the implementation
of a hardware instance on Field Programmable Gate Array (FPGA) in Sect. 2.5,
which demonstrates that this memory controller is not only conceptually sound,
but really works when it is connected to a real SDRAM module and integrated

© Springer International Publishing Switzerland 2016
S. Goossens et al., Memory Controllers for Mixed-Time-Criticality Systems,
Embedded Systems, DOI 10.1007/978-3-319-32094-6_2

17

http://dx.doi.org/10.1007/978-3-319-32094-6_1
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_5
http://dx.doi.org/10.1007/978-3-319-32094-6_6
http://dx.doi.org/10.1007/978-3-319-32094-6_7


18 2 Reconfigurable Real-Time Memory Controller Architecture

in the Composable System-on-Chip (CompSOC) platform [2]. Its cost in terms of
resource usage are evaluated and contrasted with a comparable FPGA controller
implementation in Sect. 2.6.

2.1 SDRAM

SDRAM is an extremely popular type of memory. DRAMExchange (a market ana-
lyst) reports that in February 2015 alone, 2.4 billion 2 gibibit (230) equivalent units
were produced worldwide [3], for a total capacity of 5.16 exabits. This amounts to a
production rate of 267GB/s,1 a relatively modest “bandwidth” that about 100 com-
bined contemporary SDRAM devices (single chips) could easily deliver in the worst
case, as we later show in Chap.5.

SDRAM is volatile and used as temporary data storage, similarly to caches or
Static Random-Access Memory (SRAM) memories. It only stores data as long as
power is provided to it. In terms of area and power consumption, it is cheaper than
SRAM, since it requires only a single transistor-capacitor pair to store a bit. This
efficiency makes it feasible to store gigabytes of data in SDRAM, while SRAM and
caches are limited to capacities in the order of megabytes.

Many generations of SDRAM have been developed since it was invented by
Robert Dennard in 1967 [5], but most of their characteristics are similar. SDRAM
devices contain a hierarchically structured storage array [6]. A schematic view on a
generic SDRAM architecture is shown in Fig. 2.1. Each device consists of typically
8 or 16 banks that can work in parallel, but share a command, address, and data bus.
Therefore, only one command can be sent to one bank at a time, but commands can
take multiple cycles to complete, and the execution of commands on different banks
can happen in a parallel (pipelined) fashion. A bank consists of a memory array,
divided into rows, each row containing a certain number of columns. A column is
as wide as the number of pins on the memory device’s data bus, and hence only one
bank may drive the data pins at a time. Typically, there are 210 or 211 columns per
row, and about 214–216 rows per column, depending on the capacity of the device
and its data bus width. SDRAMs with 4, 8, 16, and 32-bit data buses exist. The data
bus is bidirectional, i.e. the same pins are used for both reading and writing. Some
SDRAMs are Single Data Rate (SDR), transporting valid data on the rising clock
edges only. However, all memory generations we consider in this book use a Double
Data Rate (DDR), i.e., they transfer one data word (which is as wide as the data bus)
on both the rising and the falling edge of the clock.

1 2402× 106 · 2× 230/8 bytes
2.419 · 106 s . Incidentally, this is only 0.15% less than the traffic flowing into the Ams-

terdam Internet Exchange (AMS-IX) in the samemonth [4] (645772 TB). The (live) construction of
an SDRAM cache of a significant portion the Internet traffic was hence possible, although it might
have been the last month this was feasible, given the growth trend of AMS-IX traffic. The power
footprint of this Internet cache might be problematic though.

http://dx.doi.org/10.1007/978-3-319-32094-6_5


2.1 SDRAM 19

Fig. 2.1 Schematic view on
the architecture of an
SDRAM device with the
dimensions of a 512MiB
DDR3-1600 chip (see
Appendix B)

The name of an SDRAM device starts with its generation name, followed by its
data rate in MHz, so for example DDR3-1600 refers to a DDR3 memory with a
800MHz command clock frequency. In this book, we refer to the generation name
as the SDRAM type. The width of the data bus is often indicated by a postfixed
‘x’ followed by the width in bits, e.g., an LPDDR2-1066x32 has a 32-bit data bus.
The capacity of SDRAM devices is usually expressed in multiples of Mib (220 bits)
or Gib (230 bits), although the ‘i’ is commonly dropped in datasheets. Bandwidths
in this book use SI prefixes. For example, fully reading a 512MiB SDRAM with a
bandwidth of 512MB/s takes about 1.049s (Gi is 7.3% larger than G).

2.1.1 SDRAM Commands

An SDRAM can be instructed to perform certain actions by giving it commands.
There are six main SDRAM commands: (1) Activate (ACT ), (2) Read (RD), (3)
Write (WR), (4) Precharge (PRE), (5) Refresh (REF) and (6) No operation (NOP).
The command bus of a DDR3 SDRAM consists of 4 wires: row address strobe
(RAS), column address strobe (CAS), chip select (CS) and write enable (WE). The
combination of these wires forms a (4-bit) command, which is clocked into the
SDRAM. The other generations use a similar interface, although some reuse parts
of the address bus as command wires. The commands work as follows:

• An ACT command opens a row in a bank, and makes it available for subsequent
RD and WR commands by moving its content to the row buffer of the bank. An
activate command is accompanied by the address of the row that should be opened.

• Each RD or WR command results in a burst of data, consisting of a range
of columns from the active row. One burst occupies the data bus for multiple



20 2 Reconfigurable Real-Time Memory Controller Architecture

consecutive cycles. The number of words per RD orWR is called the Burst Length
(BL). Across contemporary memory generations the commonly supported value
for BL is 8 [7–12]. The memory generations we consider all have a DDR, trans-
porting data on both the rising and falling clock edge. Therefore, it takes only BL/2
clock cycles to transfer a burst. A RD or WR command is accompanied by the
address of the first column of the burst, which generally must start at a multiple
of the burst length. Data is available on the data bus after the associated read or
write latency after the RD or WR has been issued. The latencies for RD and WR
commands may be different, but tend to be of the same order of magnitude (see
Table2.1).

• The PRE command closes a row, i.e., it stores the contents of the row buffer in
the memory array, allowing for another row to be subsequently opened. Only one
row per bank can be open at a time. An optional auto-precharge flag can be added
to RD and WR commands, such that the associated row is closed as soon as the
read or write is completed. A RD or WR with auto-precharge can be regarded as a
regular RD or WR, followed by a PRE command from a timing perspective. The
difference is that the precharge does not require the command bus. This frees a
slot in the command schedule, which may be used for other commands.
Another command that precharges banks is called Precharge All (PREA). As the
name suggests, it precharges all banks that are currently open.

• SDRAM is volatile, because the transistor–capacitor pairs it uses to store bits
lose their charge over time. To avoid data loss, the memory must be refreshed
periodically by issuing a REF command. The required refresh command interval
depends on the operating temperature and the memory size, and ranges between
approximately 1 and 10µs [7–12]. In this book, we assume the SDRAM always
works within a fixed temperature range, and that the refresh interval is set to an
appropriate (fixed) value.

• Finally, the NOP command does nothing. It is used to fill the time, e.g., while
waiting for timing constraints (see Sect. 2.1.2) to be resolved. Some standards also
support a deselect (DES) command that behaves similarly to a NOP, while others

Table 2.1 Approximate values of SDRAM timings relative to rc

Timing Related constraint Approximate value

rc ACT-to-ACT, same bank 45–60ns

ras ACT-to-PRE, same bank 70% of rc, 35ns

rcd ACT-to-RD/WR in the same bank 30% of rc, 15ns

rp PRE-to-ACT, same bank 30% of rc, 15ns

rrd ACT-to-ACT, same device 25–30% of rc, 12.5ns

rfc REF-to-ACT, same device 1–5 times rc, depends on capacity

rl, wl or cl RD/WR-to-data 30% of rc, 15ns

faw Four Activate Window 85% of rc (50% for DDR4)



2.1 SDRAM 21

only have DES commands.We do not require a distinction between NOP and DES
commands in this book, and always refer to unused command bus cycles as NOPs.

Four relevant command relate to the entry and exit of various power-downmodes.
They are called Self Refresh Entry (SRE), Self Refresh Exit (SRX), Power-down
Entry (PDE), Power-down Exit (PDX). Section4.3 explains what these commands
do exactly when it introduces the SDRAM power state machine.

The scheduling of PRE and ACT commands is determined by the memory con-
trollers’ page policy. Memory controllers that leave a row open after a request is
completed use an open-page policy, while those that close (precharge) it as soon as
possible use a close-page policy [13]. A request that does not require an activate
command, because the row it accesses is still open, is called a row hit or page hit.
Requests that target a closed row are called row misses or page misses. We return to
discuss page policies in Chap.6.

The relation between the command, address and data bus is shown in Fig. 2.2. In
figures,we often show traces of commands as a series of rectangular blocks, like at the
top of Fig. 2.2 for example. Each block in this series represents a command. A block
may contain a letter representing the command type, and a number, representing the

Fig. 2.2 High-level SDRAM operation. The activation of bank 3 happens in parallel with the read
command to bank 2. Data bursts of different banks are serialized, since the data bus is shared across
banks. The two cycles between A2 and A3 are the result of the ACT-to-ACT timing constraint
(rrd)

http://dx.doi.org/10.1007/978-3-319-32094-6_4
http://dx.doi.org/10.1007/978-3-319-32094-6_6


22 2 Reconfigurable Real-Time Memory Controller Architecture

bank to which the command is directed. We abbreviate ACT, PRE, RD and WR by
A, P, R, and W, respectively, and encode NOPs as empty boxes (Fig. 2.2).

2.1.2 Timings and Timing Constraints

Vendors of SDRAM devices characterize their memory chips by specifying their
timings. Timings define the maximum time between internal operations in the mem-
ory, usually relating to the (analog) propagation delay between distinct components
in the SDRAM. Timing constraints are built as mathematical expressions from these
timings, and they define the minimum time between pairs of commands based on the
state of the memory, which in turn is a consequence of earlier executed commands.
An SDRAM controller has to satisfy all timing constraints to operate correctly. A
detailed explanation of what each timing represents for a specificmemory generation
is found in the standards [7–12]. For the purpose of this book, these details are less
important, since we mostly consider the SDRAM as a black box that we merely have
to use according to its interface specification.AppendixB shows the numerical values
associated with the timings of a range of SDRAM devices, while Chap. 3 provides a
detailed view on the relation between timings and timing constraints. However, we
will sometimes refer to timings before Chap.3 to point out trends, and hence provide
some early intuition on their relative length in Table2.1. All numbers in this table
are approximates, because timings vary across SDRAM devices and generations.

Some constraints only restrict commands for a single bank, like rc, and rcd
for example, while others like rrd and rfc, are device-level constraints. The Four
Activate Window (faw) is different from other constraints. Instead of specifying a
minimumdistance between two commands, it defines a rolling timewindow inwhich
at most four activate commands may be executed. In this book, we typeset timings
in small caps.

2.1.3 Memory Generations

SDRAM technology has evolved over the years. JEDEC creates the standards that
ensure compatibility between devices of the same memory generation from dif-
ferent vendors. We consider six generations in this book. Chronologically ordered
by the date of their introduction, they are: DDR2 [12], DDR3 [8], LPDDR [7],
LPDDR2 [14], LPDDR3 [11], and DDR4 [10]. Newer standards evolve by defin-
ing timings for higher clock frequencies and modifications of the physical interface.
The optional LP-part in a generation name stands for Low Power, and the respec-
tive standards are more suited for power/energy constrained systems, for example,
by operating at a lower supply voltage, or by the introduction of more efficient
low-power modes. LPDDR devices have a maximum of 4 banks, while DDR2s can
have 4 or 8 banks, and DDR4 may have 8 or 16 banks. The remaining generations

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_3


2.1 SDRAM 23

always have 8 banks. Occasionally standards are augmented with new features, like
a reduced supply voltage, for example, as in the case of DDR3L [15].

2.1.3.1 DDR4 Bank Groups

DDR4 introduces bank groups: banks are clustered into (at least two) bank groups
per device. Banks in a bank group share power-supply lines. To limit the peak power
per group, sending successive commands to the same group makes certain timings
larger. These timings are postfixed with _l (long) or _s (short) for commands for
the same or a different bank group, respectively. Successive RD or WR commands
to the same group need to be separated by at least ccd_l cycles. Because ccd_l is
larger than the number of cycles per data burst (BL/2), performance is impacted by
ccd_l unless bursts are interleaved across bank groups.

2.1.4 Memory Hierarchies

SDRAM devices can be used as standalone chips, as generally done in embedded
SoCs [16–19] for example (Fig. 2.3). The Interface Width (IW ), which we define as
the width of the data bus between the memory controller and the SDRAM, is then
equal to the data bus width of this chip, and typically ranges from 8 up to 32 bits.

Fig. 2.3 Typical memory hierarchy for embedded SoCs and COTS systems



24 2 Reconfigurable Real-Time Memory Controller Architecture

Bigger and wider memories can be built by having multiple chips work in lock-step
in a rank, executing the same commands, producing or consuming data in parallel.
The IW of the controller is then equal to the combined data bus width of all these
chips. The request size divided by IW and BL determines how many data bursts, and
thus RD or WR commands should be generated for a request, with a minimum of
one burst.

Multi-device setups are typically used in Commercial-Off-the-Shelf (COTS) and
high-performance computer systems. Memory chips are not bought individually for
these systems, but instead come pre-combined on Dual Inline Memory Modules
(DIMMs) [20] or Small Outline DIMMs (SO-DIMMs) [21] that contain one or more
ranks with a combined data bus width of 64 bits. Ranks can share a command and
data bus, as long as they do not drive the data bus simultaneously. Finally, a memory
hierarchy may contain multiple independent groups of ranks called channels, each
with an individual SDRAM controller.

In this book, we target embedded SoCs, and hencemost of our examples are based
on relatively narrow interfaces compared to DIMMs. The techniques that we propose
are independent from how the memory hierarchy beneath the SDRAM controller is
built, i.e., both single devices or DIMMmodules can be supported. We do, however,
rely on a custom controller architecture (Sect. 2.2), which by definition places this
work outside of the COTS realm (assuming FPGA development kits are classified as
non-COTS).We also focus on a single SDRAM controller, leavingmultiple channels
out of the equation. The interested reader can refer to [22] for more information on
multi-channel real-time memory controller architectures and configuration.

2.2 Pattern-Based SDRAM Controllers

To create a predictable SDRAM resource, useful bounds on the response time of
memory requests have to be given. The underlying technique by which our memory
controller bounds the response time of a request is the approach from [1], revolving
around memory patterns. A memory pattern is a design-time constructed series of
SDRAM commands with a known execution time (length) and a specific function.

The commands in a pattern are scheduled such that all timing constraints within
the pattern itself are satisfied. Six different patterns types exist: (1) Read, (2) Write,
(3) Read-To-Write switch (RTW ), (4) Write-To-Read switch (WTR), (5) Refresh and
(6) Idle patterns. The sequences of patterns that can be executed by the controller
are summarized in Fig. 2.4. The function of each pattern type is the following:

• Read and write patterns are access patterns that transport data from and to the
SDRAM, respectively. Multiple read patterns and multiple write patterns may be
executed successively, indicated by their respective self-edges in Fig. 2.4. In their
construction, that factor has to be taken into account, such that SDRAM timing
constraints within and across these patterns are not violated. Typically, read and
write patterns contain between 1 and 32 bursts (RD or WR commands).
Read and write patterns implement a close-page policy. They activate the banks
they will be accessing, and all banks are precharged at the end of the pattern.



2.2 Pattern-Based SDRAM Controllers 25

Fig. 2.4 Allowed pattern
sequences

• Switching patterns consist of only NOPs. They are inserted between a read and
write pattern to resolve timing constraints across access patterns of opposing types.
If there are no such constraints, or if no additional NOPs are required to satisfy
them, then switching patterns may have a length of zero.

• A refresh pattern consists of a single refresh command preceded and succeeded
by enough NOPs such that it can be scheduled after an access pattern without
violating timing constraints. The switching patterns and the refresh pattern are
called the auxiliary patterns.

• Finally, the idle time of the controller can be discretized explicitly into idle or
power-down patterns [23]. We do not evaluate the use of power-down patterns in
combination with the techniques proposed in this book, and hence we stick to idle
patterns consisting only of NOPs. Idle patterns can be inserted on most edges in
Fig. 2.4 (only not between WTR and read patterns and RTW and write patterns).
Their minimum size is 1 cycle.

There is one pattern of each type available to the memory controller in what is called
a pattern set. The SDRAM controller makes scheduling decisions at the granularity
of patterns instead of individual commands, which simplifies bounding its perfor-
mance. Some close-page real-time controllers use variations of memory patterns in
their architecture [24–27], scheduling patterns from such a set instead of individual
commands. This simplifies the logic of the controller, since there are fewer con-
straints it has to track. Others define patterns only in their worst-case analysis [28,
29], knowing the behavior of their architecture is bounded by them. In both cases,
the analysis complexity is greatly reduced.

2.2.1 Burst Grouping

The smallest request size that a memory controller has to process is often larger
than the size of one read or write burst to a memory device in the embedded SoCs



26 2 Reconfigurable Real-Time Memory Controller Architecture

we focus on. This means that multiple bursts can be grouped together to form a
single atomic access at a larger access granularity. The relative order of bursts within
one such an atom is fixed, which gives it guaranteed properties that improve the
worst-case performance. Intuitively, this effect can be understood as a sort of batch
processing, in which groups of bursts that are relatively similar can be processed
more quickly than those that are relatively different. Most memory controllers try to
achieve some degree of burst grouping. The banks to which these grouped bursts are
sent is determined by the low-level memory map. Depending on this memory map,
grouping bursts can guarantee:

1. Bank parallelism: The atom is interleavedovermultiple banks thatwork in parallel
to produce or consume data. While one bank is precharged or activated, other
banks are accessed with read and write commands.

2. Consecutive bursts access the same row: Multiple bursts are fetched from the
same row in the same bank within an atom, in essence generating guaranteed row
hits, and guaranteeing no read-write switching of the data bus across those bursts.

Timing constraints enforce a minimum amount of time between consecutive activa-
tions of the same bank, and they also separate bursts of different types (read/write).
Atomically grouping bursts helps to reduce the overhead of these two effects, improv-
ing the memory efficiency, since more useful commands are executed in the same
amount of time, as shown in Fig. 2.5.

A trade-off exists between these two effects: requests have a fixed size, and hence
there is only a limited movement range within these two dimensions. The width of
the SDRAM’s data bus also plays an important role here. The wider it is, the more
bits are transferred per burst, and the fewer bursts can be grouped to fill an atom with
a given access granularity. DIMM-based (COTS) systems, which typically have a

(a)

(b)

(c)

Fig. 2.5 Examples of the effects of grouping bursts. Shaded bursts are page misses. It shows how
the number of bursts that can be executed within a fixed amount of time varies based on how they
are grouped. a Using BI 1, BC 1. b BI 1, BC 4. c BI 4, BC 2



2.2 Pattern-Based SDRAM Controllers 27

64-bit bus, are hence more limited in their ability to exploit burst grouping compared
to embedded SoCs that typically use single SDRAM chips with a smaller (8–32 bit)
interface.

We define two parameters to characterize where a controller operates within this
configuration space:

1. Bank Interleaving (BI): the number of banks that are accessed atomically, and
2. Burst Count (BC): the number of bursts per bank.

Using these parameters, we can describe the Access granularity (AG) of a pattern-
based controller, i.e., the number of bytes that are transported within a read or write
pattern. It depends of the number of bursts in the pattern, given by BI · BC, the length
of a burst in words (BL), and the number of bytes per word, which is equal to the
interface width in bytes (IW):

AG = BI · BC · BL · IW (2.1)

The worst-case or average-case behavior of an SDRAM controller’s command
scheduler can be characterized by a (BI, BC) combination, and this in turn determines
its performance. Some real-time memory controllers interleave bursts belonging to
one request over all available banks [25, 28, 29]. Others interleave consecutive bursts
to different banks [24, 26], but the origin of each of these bursts may be a different
request. Controllers using open-page policies generally assume each request maps
to a single burst [30, 31]. Stiliadis and Varma [25] considers the number of bursts
per bank as configuration parameter, but not the number of banks. Chapter 3 turns BI
and BC into an integral part of the generation of patterns for our memory controller,
and Chap.5 shows the configuration trade-offs when both degrees of freedom are
used.

2.3 Controller Architecture

The section describes the architecture template of a pattern-based SDRAM con-
troller. Figure2.6 shows the three main blocks that constitute its architecture. We
make a distinction between the resource front-end, which deals with the preparation
of requests from clients and the arbitration amongst them, and the SDRAM back-
end, which schedules patterns and translates them into SDRAM commands. Finally,
the Physical interface (PHY ), deals with the physical connection to the (off-chip)
SDRAM. The following sections introduce the different components within these
blocks, discuss their functionality, and their qualitative impact on the worst-case
performance where relevant.

http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_5


28 2 Reconfigurable Real-Time Memory Controller Architecture

Fig. 2.6 SDRAM controller architecture. Arrows indicate the flow direction of data

2.3.1 Resource Front-End

The first block we discuss is the resource front-end. Its primary function is to enable
sharing of the SDRAM amongst multiple clients. It implements and extends the
general template from [32]. First we look at the interface that is exposed to the
memory clients, and we discuss the contents of the front-end.

2.3.1.1 DTL Interfaces per Client

The controller has a Device Transaction Layer (DTL) interface [33] for each mem-
ory client, which is a handshake-based communication standard that is similar to
AXI4 [34]. DTL has individual command, read-data and write-data channels, and
supports multiple outstanding (pending) requests. Each DTL request consists of a
type, which can be either read or write, a size, specifying the number of words to
read or write, and an address. A multi-word request reads or writes its data from/to
consecutive locations in the logical address space. Byte masking is supported for
write-requests only, and addresses have to be byte-aligned. Requests are executed
by the controller in order of arrival on a per-client basis, i.e., requests from the same
client are never reordered, even though the DTL standard theoretically allows this.
DTL interfaces are also used to connect components within the front-end; all white
ports in Fig. 2.6 are DTL ports. The gray ports use non-DTL interfaces that are spe-
cific to the components they connect to. Commands and data passing though a pair
of DTL ports experience a cycle of latency, so each pair represents a pipeline stage
in the controller. Flow control is based on back-pressure by means of valid-accept
flags in the DTL interfaces of the blocks.



2.3 Controller Architecture 29

2.3.1.2 Atomizer

The commands in a pattern are fixed at design time, and the controller hence always
works at the same fixed access granularity, i.e., there is a specific number of bytes
associated with a read or write pattern. When clients send requests into the memory
controller, they are not necessarily of the same size as the access granularity. The
atomizer resolves this inconsistency by splitting incoming requests into atomic ser-
vice units called atoms. Access to the SDRAM is granted to clients by the arbiter
on a per-atom basis. This allows clients to be preempted at the granularity of atoms,
independently of the size of the requests they produce, which is a property we require
to be able to bound the interference from each client without making assumptions
about their behavior [2, 35]. The type of the atoms (read or write) is equal to the
type of the request they are based on, but the amount of data that is associated with
an atom is always equal to the access granularity of the memory controller, which
typically ranges from 16 bytes up to 1 KiB, depending on its configuration. The
atomizer concept was first shown in [32, 36], and we base our implementation on
these works.

To make the atomizer suitable for use with an SDRAM, it enforces the address
alignment of its outgoing requests to atom boundaries, and handles requests with
sizes that are non-integer multiples of the atom size by padding and masking them
where required. The atomizer is pipelined, such that the first stage acts as the input
buffer for the front-end, quickly terminating logic paths leading from the clients into
the controller, and allowing the overall design to run at a higher clock frequency. The
configuration port on the atomizer allows its access granularity to be (re)configured
at run time. The benefits and limitations of reconfiguration are explained in detail in
Chap.7. The atomizer uses the same data width as the client it is connected to.

2.3.1.3 Width Converter

The width converter accepts requests at the data width of the atomizer (generally 32-
bits wide), and converts them to the width the back-end works at, which is typically
larger. In essence, this is a common serial-to-parallel converter. Both the atomizer
and width converter work on a streaming basis, i.e., they contain no data buffers apart
from pipeline registers that break up the critical paths within the blocks. After width
conversion, all clients use the same data width on their DTL interfaces.

2.3.1.4 Atom Queue and Delay Block

The atom queue holds incoming atoms until either all associated data is buffered (for
write atoms), or enough space is available for the response (for read atoms). An atom
is only eligible for scheduling once this buffering requirement is satisfied. Internal
and individual buffering per client is necessary for two reasons

http://dx.doi.org/10.1007/978-3-319-32094-6_7


30 2 Reconfigurable Real-Time Memory Controller Architecture

1. the SDRAM determines when data must be provided to and accepted from it on
consecutive cycles, in accordance with the JEDEC specifications [7–12]. Clients
are not guaranteed (or required) to produce or consume all data for an atom on
consecutive cycles, and data must hence be buffered somewhere internally in the
memory controller to ensure this requirement is always satisfied.

2. Individual queues per client are needed to avoid situations where clients occupy
the shared resource before they are capable of reading/writing a complete atom.
If a shared queue would be used, then a noncooperative (blocking) client could
occupy the queue indefinitely and stall the resource as a result. This would break
the isolation between clients, because preempting (and flushing out) an ongoing
transaction is not supported. Using individual queues, a noncooperative client can
only indefinitely occupy its own queue, which is not disruptive for others.

Delay blocks wrap the atom queues. Each delay block can be configured such that
the data consumption and production behavior of the SDRAM is equal to a specific
Latency-rate (LR) curve [37] from the client’s point of view. It achieves this by
manipulating flow-control signals that govern the acceptance of incoming atoms and
their data, and the time at which responses are released by the atom queue. In essence,
it delays each response to its Worst-Case Response Time (WCRT ), as specified by
its LR guarantee. This is a generalization of the Logical Execution Time (LET )
idea [38, 39], which uses a single number to represent the WCRT. Delay blocks
were introduced in [32], and we use the same design here. An introduction on LR
servers is provided later in Sect. 2.4.1.

2.3.1.5 Resource Bus

The resource bus grants one client at a time access to the SDRAM back-end. Arbi-
tration decisions are made by a predictable arbiter (e.g., any arbiter in the class of
latency-rate servers [37]), which schedules one of the eligible atoms from the atom
queues to be processed by the back-end. Each scheduling decision corresponds to a
single atom, allowing for fine-grained interleaving of atoms from different clients.
The resource bus drives the pace at which scheduling decisions are made by request-
ing scheduling decisions from the arbiter. It can be configured to do that strictly
periodically, or on-demand, e.g., when the back-end indicates it is ready to accept
new atoms.

Various predictable arbiters are supported within the associated design flow [40].
One option is a reconfigurable TDM arbiter, described in detail in Chap. 7. Other
available arbiter types are round-robin [41] and Credit-Controlled Static-Priority
(CCSP) [42]. The arbiter type is chosen at design time. Other arbiter settings, like
TDM slot allocations or the priorities in CCSP for example, are configurable at
run-time through the configuration bus. To increase the clock frequency at which
the resource bus can be synthesized, the arbitration between clients takes place in a
separate pipeline stage.

http://dx.doi.org/10.1007/978-3-319-32094-6_7


2.3 Controller Architecture 31

Although the communication interface between the front-end and back-end uses
DTL signals, its flow-control semantics [43] are slightly different compared to the
other ports. Once a request for an atom is handed to the back-end, the front-end
is required to be able to deliver all the associated data for a write atom whenever
the back-end demands it. Similarly, the front-end has to accept data from a read
atom whenever the back-end offers it. Both of these requirements are satisfied by
the eligibility test that the atom queues perform before they forward requests (see
Sect. 2.3.1.4).

To reduce its complexity, Fig. 2.6 only contains two memory clients. However,
up to 16 ports can be instantiated automatically by the associated design flow if
required. Section2.6 evaluates the effect of varying the number of ports on the hard-
ware resource usage.

2.3.2 SDRAM Back-End

The SDRAM back-end receives atoms from the resource bus that consist of a type
(read/write) and a logical address. Its main function is to select patterns from the
pattern memory, and to transfer their commands to the PHY, translating atoms into
command sequences. It has to ensure that the timing constraints between the com-
mands are satisfied by only issuing valid pattern sequences (Fig. 2.4). It accepts one
atom at a time, and based on the type (read or write) and the type of the previously
executed pattern, it executes one or two patterns:

1. A write pattern, if the previously executed pattern was a write, refresh or idle
pattern, and the current atom is a write.

2. A RTW pattern followed by a write pattern, if the previously executed access
pattern was a read, and the current atom is a write.

3. A read pattern, if the previously executed pattern was a read, refresh or idle
pattern, and the current atom is a read.

4. A WTR pattern followed by a read pattern, if the previously executed access
pattern was a write, and the current atom is a read.

Figure2.7 shows a pattern execution example. The time between scheduling deci-
sions, or Scheduling Interval (SI), is variable as a result of this behavior, both across

Fig. 2.7 An example of the order inwhich patternsmay be executed. The shading on the commands
corresponds to bursts of data to different banks



32 2 Reconfigurable Real-Time Memory Controller Architecture

atom types and for atoms of the same type, i.e., a write atom could require a RTW
and write pattern, or only a write pattern, as shown in Fig. 2.7. In the continuation of
book, we use the following terminology for the pattern lengths: tp

r , t
p
w, t

p
wtr and tp

rtw rep-
resent the read, write, write-to-read and read-to-write pattern lengths, respectively.
Additionally, the refresh pattern length is denoted by tp

ref .
In contrast to [25], which uses a hard-coded finite-state machine to implement the

required functionality, we use a flexible reconfigurable back-end, which is shown in
detail in Fig. 2.8. An incoming atom first arrives at the pattern selector. It generates
an index for the pattern Look-Up Table (LUT ) based on the atom type (read or write)
and the previously executed pattern type. The index represents the type of pattern that
should be executed (the basic pattern types are mentioned in Sect. 2.2). There may
be more than one pattern set available in the pattern memory. An optional offset can
be added to the pattern index to switch to a different pattern set. Note that this offset
is not selectable per atom, but instead is part of the overall back-end configuration.
It can be used to switch between configurations in different use-cases, as further
explored in Chap.7.

The pattern LUT contains the starting addresses and the number of commands
of all patterns in the pattern memory. Its output is used by the command player to
read commands from the pattern memory. Both the pattern LUT and the pattern
memory are exposed to the resource manager through the configuration bus and are
thus reconfigurable.

The pattern memory is conceptually implemented as a simple SRAM memory,
containing a representation of an SDRAM command and optional bank at every

Fig. 2.8 SDRAM controller back-end

http://dx.doi.org/10.1007/978-3-319-32094-6_7


2.3 Controller Architecture 33

Fig. 2.9 Address generator. Both the shift amounts (s0–s3) and the masks (m0–m3) used by the
and-operators are configurable. (The and-operators and or-operators are bitwise.) The sizes of the
row, column, and bank components correspond to the ML605 memory (Appendix B)

entry. The command player increments the command address every clock cycle, and
triggers a new pattern selection when the current pattern ends, while also converting
the commands into control signals for the PHY. Section2.5 discusses the specific
implementation in our FPGA prototype.

The address generator translates a logical address to the corresponding bank, row
and column (physical) address elements (Fig. 2.9). The command player controls the
address generator such that the correct address is given to the PHY at the right time,
i.e., the row address when activating and the column address during read or write
commands. Auto-precharge flags have to be included in the column address of the
associated read or write command. The bit-position (loc) of this flag depends on the
SDRAM type. Commands in the pattern memory are directed to a specific bank.
The address of that bank is referred to as cmd.bank, and is included into the address
calculation. The address generator has four configurable masks (m0–m3) and shift
amounts (s0–s3) throughwhich the logical to physicalmemory-mapping function can
be selected. When combined with the or-operators, the following physical addresses
are generated:

row = (addr � s0) and m0 (2.2)
column = ((addr � s1) and m1) or ((addr � s2) and m2) or (autoPreFlag � loc) (2.3)

bank = ((addr � s3) and m3) or cmd.bank (2.4)

Each atom only has one logical address. This address is registered (in the reg. block
in Fig. 2.9) and incremented after each read or write command to generate the address
for the next burst (in case the atom consists of more than one burst). Section3.2.5
shows how to configure the address decoder, based on the selected memory map.

The final block to consider is the refresh timer, which is responsible for periodi-
cally inserting refresh patterns into the SDRAM. It consists of a cycle counter with
a configurable threshold value. When the counter reaches the threshold, it resets to
zero and a refresh is scheduled as soon as the currently executing pattern finishes.
Automatic refresh can optionally be disabled to allow manual refresh schemes, as
described in [24, 44] for example, to be used.

http://dx.doi.org/10.1007/978-3-319-32094-6_3


34 2 Reconfigurable Real-Time Memory Controller Architecture

2.3.3 PHY

The PHY handles the physical I/O connections to the SDRAM module. It acts as a
level of abstraction from the circuit-level details of the SDRAM, and offers a generic
interface to the back-end. Several companies create PHY IPs, and specifications like
DFI [45], for example, standardize the interface they expose. A PHY is inherently
specific to the SDRAMgeneration it connects to, although there is often a fair amount
of logic that can be reused across generations [46]. Since the FPGA prototype is
meant for a DDR3 memory, the following description of the PHY functionality is
also DDR3 specific.

Each byte on an SDRAM interface is individually clocked with a strobe signal,
and both the byte lanes and strobe signals are bidirectional, i.e., the same wires
are used for both reading and writing. At initialization, the PHY runs through a
calibration procedure (called read-leveling) to determine the time offset between
these strobe signals and the presence of valid data on the byte lanes when reading
from the memory. Each byte can have a different offset, based on the wire layout
of the PHY and its connection to the SDRAM chips. After calibration, the PHY
can compensate for these offsets appropriately by inserting delays, such that all the
bytes from a single memory word are aggregated and are forwarded to the back-end
synchronously. A similar timing-offset issue exists for data flowing into the SDRAM
(write-leveling), and it is solved in an analogous manner.

The PHY also configures the SDRAM by programming the mode registers in the
device. In this work, we assume that both the calibration and the configuration finish
in a bounded amount of time. Since this initialization process happens only once
(after the SoC comes out of reset), it can be regarded as part of the boot process and
has no further influence on the real-time analysis of the controller, assuming there
are no real-time requirements on the boot time.

The additional delay that the PHY introduces after calibration, on the other hand,
has to be included in the worst-case response time of the memory controller (in
δb
PHY), as we later discuss in Sect. 2.4.2. Since the hardware in the PHY can only
compensate for a limited byte-level offset (in the order of a few cycles), we use this
maximum compensation as a worst-case bound for the contribution of the PHY to
the WCRT.

2.3.4 Reconfiguration Infrastructure

The configuration bus allows various memory-mapped registers to be programmed
by a configuration host. The host does this by sending (DTL) configuration requests
to the reconfigurable components. Requests are generated by the driver code of the
memory controller running on the configuration host.

All components in the front-end can be pre-configuredwith a design-time selected
default configuration after reset, allowing potential early (predictable) access to the



2.3 Controller Architecture 35

back-end while the rest of the system is still booting. The back-end starts out with
an empty pattern memory, and hence needs to be configured before it can be used.
A small ROM containing a minimal back-end configuration can be added in case a
functioning memory controller is required before the configuration host is active in
the system.

2.4 Worst-Case Performance Analysis

This section discusses the worst-case performance analysis of the SDRAM con-
troller architecture that was presented in the previous section. The general structure
we apply is similar to that in [1], and relies on a Latency-rate (LR) server abstrac-
tion (Sect. 2.4.1) of the controller’s behavior. We present a word-level performance
model that shows in detail how (hardware) pipelining impacts the analysis. The two
performance metrics we derive for the memory controller are

1. Worst-case bandwidth (bwc), which specifies how much bandwidth the SDRAM
delivers in the worst-case when connected to our controller (assuming there is
always at least one request to serve). The worst-case bandwidth is distributable
amongst the different ports on the front-end, and

2. WCRT of a request for a client connected to the front-end.

The analysis is split in two parts. First, we look at the performance of the back-end
in Sect. 2.4.2, which we characterize with a LR server. Second, we repeat that effort
for the front-end in Sect. 2.4.3. Finally, we derive the WCRT of the combination of
the back-end and front-end in Sect. 2.4.4 by concatenating their two respective LR
servers.

2.4.1 Latency-Rate Servers

To characterize the (predictable) performance of the memory controller, we rely on
a LR server abstraction [37]. A LR server guarantees a (client specific) minimum
rate, ρ, after a maximum service latency, �, to each of its clients. When the LR
abstraction is applied to amemory controller, the rate (ρ) maps to a certain bandwidth
(bytes/second). The service latency is expressed in a unit of time (seconds or cycles),
and it intuitively captures the initial latency a client experiences before the server
can sustain the guaranteed rate. This linear service guarantee has to (lower) bound
the amount of data that can be transferred during any interval. We proceed with a
brief intuitive introduction of the properties of LR servers.

Figure2.10 plots the service bound as a thick black line, given the example
requested service line (dotted line). A LR guarantee is conditional and only applies
if the client requests enough service to keep the server busy. This is captured by the
concept of busy periods, which are periods where a client requests at least as much



36 2 Reconfigurable Real-Time Memory Controller Architecture

Fig. 2.10 A LR server and its associated concepts

service as it has been allocated on average (ρ). In Fig. 2.10, the client is busy as long
as the requested service line is above the busy line, and hence the start of the first busy
period is marked by the first intersection of the dash-dotted and dotted line (at t = 0).
It ends at the second intersection with the dash-dotted line. The second busy period
starts when the requested service exceeds the busy line again, which is equivalent to
one or more new requests entering the memory controller. After� units of time have
passed since the start of this second busy period, the server once again guarantees
the ρ in the second busy period.

The service bound line is equal to the busy line delayed by �, and hence starts �

after the start of the busy period and increases with rate ρ. The provided service is
always greater than or equal to the service guarantee, since it follows the actual-case
performance, and not the worst-case performance. An example of what the provided
service curve could look like is drawn in Fig. 2.10with the thick gray line. The service
bound is maximal if the client continuously remains busy, i.e., if the client requests
service at a sufficiently high rate (≥ρ).

Note that requests arrive instantaneously, as shown by the discrete jumps in the
requested service line. A read request is considered to instantaneously arrive once the
request arrives in the atom queue and there is space for the corresponding response.
A write arrives when its last data word arrives in the atom queue. The service bound
and busy line are fractional, and therefore shown as continuous curves. The provided
service for a memory controller is discrete at the level of words, bursts, or atoms,
whichever is preferred (in Sect. 2.4, we use a word-level characterization).

2.4.2 Back-End Performance

The back-end performance refers to the performance the SDRAM controller would
deliver if it was not shared amongst multiple clients. We characterize back-end per-
formance with a LR server with parameters (�be, ρbe). The server describes the
behavior of the interface at the dotted line in Fig. 2.11 (annotated with “back-end
performance”).



2.4 Worst-Case Performance Analysis 37

Fig. 2.11 The interface characterized by the back-end performance. The call-outs on the MTL
channels show the relevant groups of wires they consist of

The requested service increases by one atom worth of bytes when the request for
the atom is offered by the front-end to the back-end. For simplicity, we assume that
the back-end runs at the same clock frequency as the SDRAM. It has dedicated read
and write data buses (the PHY later serializes writes and reads onto the bidirectional
SDRAM data bus). Each of these buses is twice as wide as the IW of the SDRAM,
such that the difference in data rate between the controller and SDRAM (SDR vs.
DDR) is compensated for. TheLR server gives guarantees onwhen a specific amount
of data is available from/consumed by the back-end. This amount corresponds to the
sum of the number of handshakes on the read (valid flags) and the write (valid/accept
pairs) data buses.

First, we evaluate the overhead of refresh in Sect. 2.4.2.1. Thenwe focus onworst-
case bandwidth, bwc, in Sect. 2.4.2.2. The worst-case analysis of memory patterns
in terms of bandwidth has been extensively discussed in related work [1, 47, 48].
We apply the same procedure to derive our results as described in those works, but
for convenience and completeness provide a small summary of it in this section.
No assumptions are made on the order in which read and write atoms are given to
the back-end. This decouples the inter-client scheduling from the analysis of the
back-end, simplifying both. Later, in Sect. 2.4.2.3, we determine the value of ρbe and
�be such that the LR server with parameters (�be, ρbe) conservatively bounds the
behavior of the back-end.



38 2 Reconfigurable Real-Time Memory Controller Architecture

2.4.2.1 Refresh

An SDRAM needs to be refreshed once every refi cycles on average (Appendix B).
During a refresh, the SDRAM is unavailable to clients, which impacts the worst-case
performance. Most works [1, 29, 30, 49] assume refresh is triggered asynchronously
with respect to the inter-client scheduling by an internal timer in the controller, and
has precedence over requests from clients. Refresh then impacts both bandwidth and
response time.

The refresh efficiency describes the refresh-related bandwidth reduction when
such a timer-based refresh mechanism is used. It is defined as one minus the fraction
of time spent on refreshing, which for a pattern-based controller is equal to

eref = 1 − tp
ref

refi
(2.5)

where tp
ref is the length of the refresh pattern as defined earlier. The refresh efficiency

ranges from 0.96 to 0.99 for the devices we evaluate in this book, and hence only
a small fraction of all requests is actually affected by a refresh. In related works,
refresh has been incorporated in the worst-case analysis in several ways.

Busy-Period-Level Refresh

Each request might have to wait for a refresh. A conservative request-level WCRT
therefore incorporates at least one refresh pattern. When the worst-case analysis is
based on LR servers, like in [1], then it has to account for at least one refresh at the
start of a busy period, which may span many requests.

Application-Level Refresh

Other approaches, like [29, 30, 49, 50], let go of the notion of a conservative request-
level WCRT, and instead derive an application-level bound. First, the Worst-Case
Execution Time (WCET ) of an application interacting with the SDRAM is deter-
mined, without accounting for refresh. Based on this, the maximum number of inter-
fering refreshes is found by dividing this number by refi. A cost is assigned to each
of these refreshes, and added to the application’s WCET. This can lead to smaller
application-level WCET bounds compared to [1], as shown in [50], which also does
this.

Manual Refresh

Finally, there is an approach thatwe refer to asmanual refresh [24, 26, 44].Activating
and precharging a row effectively refreshes it, so data is retained as long as each row
is visited at regular intervals. Controllers that use manual refresh do not have an
internal timer, but instead have a refresh client that cycles over all rows, activating
and precharging them.

When manual refresh is used, eref can be set to 1. The cost of refresh is instead
taken into account when bandwidth is set aside for the refresh client in the front-end.
Manual refresh is less efficient [44, 51] than the (built-in) REF command, because



2.4 Worst-Case Performance Analysis 39

it refreshes fewer rows per cycle, and hence the fraction of the available bandwidth
that needs to be reserved for the refresh client is larger than 1 − eref . However, the
number of consecutive cycles for which the SDRAM is unavailable during a manual
refresh can be smaller, which generally reduces the WCRT of a single request.

For the remainder of this book, we ignore refresh at the level of busy periods,
and assume it is taken into account at a later (application-level) stage, as is done
in [29, 30, 49, 50]. Akesson and Goossens [1] shows how to include refresh at the
busy-period level for a pattern-based controller for the interested reader.

2.4.2.2 Calculating Worst-Case Bandwidth

Theworst-case bandwidth delivered by a pattern set is a function of its pattern lengths,
the clock frequency, the amount of data that is transported per read/write pattern (the
access granularity, AG), and the refresh period.

The worst-case bandwidth (bwc) is a lower bound on the average amount of bytes
transported across the data bus per unit of time. This bound is valid during a busy
period, for every interval starting �be after the start of that busy period. To find bwc,
we need to identify the pattern sequence allowed by the pattern state machine that has
the lowest average data transfer rate (excluding sequences that include idle patterns).
This could imply continuously reading or writing, transportingAG bytes per pattern,
or constantly switching between reads and writes, transporting 2 · AG bytes per pair
of read and write patterns. Note that in the latter case switching patterns are required,
reducing the efficiency. All these pattern sequences are periodically interrupted by
refreshes, and hence we multiply with the refresh efficiency

(
eref

)
(see Sect. 2.4.2.1

for its definition). Finally, multiplying with the command clock frequency f to obtain
a bytes/seconds metric, leads to the following worst-case bandwidth equation:

bwc = eref · AG · min

(
1

tp
r
,
1

tp
w
,

2

tp
w + tp

r + tp
wtr + tp

rtw

)
· f (2.6)

The peak bandwidth (bpeak) that an SDRAMwould theoretically deliver if its data
bus was fully utilized is obtained by multiplying the data clock frequency by the
interface width in bytes (IW). The data clock frequency is 2 · f for double data rate
memories

bpeak = 2 · f · IW (2.7)

The ratio of the worst-case bandwidth and the peak bandwidth is referred to as
the memory efficiency (e) of a pattern set

e = bwc

bpeak
(2.8)



40 2 Reconfigurable Real-Time Memory Controller Architecture

The memory efficiency shows how well a certain pattern set performs with respect
to the theoretical maximum bandwidth of a memory device.

2.4.2.3 Calculating Back-End Service Latency

The back-end service latency (�be) has to be chosen such that bwc bounds the band-
width after this latency has passed since the start of each busy period.Wefirst consider
the scenario in which the largest amount of time passes between the request for an
atom (requested service) by the front-end and the associated data handshakes (pro-
vided service), since �be necessarily has to include this time. Figure2.12 shows the
relation between the variables we introduce, and the events they relate to.

First, we account for the latency related to pipeline stages in the hardware, both
in the back-end and the PHY. We use the symbol δ to represent these latencies.

1. δ
f
be on the request (forward) path: cycles that a request for an atom spends in
pipeline stages in the back-end, before the back-end begins to issue commands
to the PHY. We assume write data words traversing the back-end experience the
same latency.

(a)

(b)

Fig. 2.12 Latency experienced by a read or write atom arriving at an idle back-end at the start of
a busy period. a Read atom. b Write atom



2.4 Worst-Case Performance Analysis 41

2. δ
f
PHY on the request path: cycles that a command or write data word spends in
pipeline stages in the PHY before it is issued to the SDRAM.

3. δb
PHY on the response (backward) path: cycles that a read data word spends in
pipeline stages in the PHY before it emerges on its interface to the back-end.

4. δb
be on the response path: cycles that a read data word spends in pipeline stages in
the back-end before it emerges on the back-end interface.

We combine the pipeline latencies on the forward and backward paths into a single
variable, sincewe do not require them individually in the continuation of the analysis:

δf = δ
f
be + δ

f
PHY (2.9)

δb = δb
be + δb

PHY (2.10)

To account for the time between the start of a pattern and the actual transfer of
data on the SDRAM data bus, we use the symbol �.

1. �r is the number of cycles between the first command of a read pattern entering
the SDRAM, and the emergence of the first word of read data on the SDRAMdata
bus. It is the sum of the relative cycle of the first RD command in the read pattern
with respect to the start of that pattern, and the RD-to-data latency (usually rl)
of the SDRAM.

2. �w is the number of cycles between the first command of a write pattern entering
the SDRAM, and the transfer of the first word of write data by the SDRAM data
bus. It is the sum of the relative cycle of the firstWR command in the write pattern
with respect to the start of that pattern, and the WR-to-data latency (usually wl)
of the SDRAM. Relative to this number, write data handshakes on the back-end
interface happen δf cycles earlier, under the assumption that commands and data
are equally deeply pipelined.

Both for �r and �w we assume that all data associated with a pattern exits/enters
the SDRAM on consecutive cycles.2

We define �′
r and �′

w as the offset from the start of the pattern (first command
enters the SDRAM) until data handshakes happen on the back-end interface. For
reads, this happens later than �r , since they generate data on the response path,
while for writes it happens earlier than �w on the request path

�′
r = �r + δb (2.11)

�′
w = �w − δf (2.12)

Now,we can describe the number of cycles after which service starts for a read or
write atom arriving at the start of a busy period as θr and θw, respectively

2If this is not the case, i.e., when there are bubbles in the transfer, compensation is required. The
number of additional idle cycles should then be added to �r and �w.



42 2 Reconfigurable Real-Time Memory Controller Architecture

θr = δf + tp
wtr + �′

r = tp
wtr + �r + δf + δb (2.13)

θw = δf + tp
rtw + �′

w = tp
rtw + �w (2.14)

Analogously to Eq. (2.6), we have to conservatively cover three scenarioswhenwe
determine (�be, ρbe): continuously reading, writing, or switching between reads and
writes. These three scenarios are illustrated in Figs. 2.13, 2.14 and 2.15, respectively.
The figures consist of two parts. The bottom half is a gantt chart of the activity in
various parts of the controller. When a request for an atom is offered to the back-
end by the front-end, a block is drawn on the atom in line. The commands that the
PHY issues to the SDRAM are drawn as blocks on the SDRAM command bus line,
and the corresponding pattern is drawn above it on the pattern line. Read and write
commands result in data transfers on the SDRAM data bus after a certain latency.
The blocks on the SDRAM data bus line, represent one word of data on this bus. Note
that two words can be transferred per clock cycle for a DDR memory, and hence the
blocks on the SDRAM data bus line are half as wide as on the command bus. We
assume the rate difference is compensated for by the double width of the back-end
data buses, as mentioned earlier. Finally, the back-end (read/write) lines represent
handshakes on the data buses that the back-end exposes to the front-end. Each block
on these buses corresponds to a 1 word increase of the provided service curve on the
top half of the figures. Based on ρbe in each scenario, the requested service curve
and busy line are drawn. Each increase of the requested service corresponds to the
arrival of an atom (an atom is worth 4 words in this example). Atoms arrive as late
as possible within a busy period, which leads to the minimum provided service.

Fig. 2.13 Worst-case back-end behavior for continuous reads. In this (fictional) example, we
used: tp

r = 6, tp
w = 8, tp

rtw = 3, tp
wtr = 1,�r = 3,�w = 2, δf = 5, δb = 3, and each atom is worth

4 words. To simplify the drawing, we assume eref = 1



2.4 Worst-Case Performance Analysis 43

Fig. 2.14 Worst-case back-end behavior for continuous writes, using the same parameters as
Fig. 2.13

Fig. 2.15 Worst-case back-end behavior for interleaved read/write atoms, using the same parame-
ters as Fig. 2.13

In one of these three scenarios (the worst-case, Fig. 2.15 for the particular set of
parameters we used to draw the figures), ρbe is equal to bwc. Which scenario this is,
depends on the length of the patterns. We want to make no assumptions on the order
of reads and writes, and hence select:



44 2 Reconfigurable Real-Time Memory Controller Architecture

ρbe = bwc (2.15)

In this scenario, the worst-case distance between the “atom in” blocks in Figs. 2.13,
2.14 and 2.15, the Worst-Case Inter-Atom Time (WCIAT ), is given by

WCIAT = max

(
tp
r , tp

w,
1

2
· (

tp
w + tp

r + tp
wtr + tp

rtw

)
)

(2.16)

It is proportional to the slope of the busy line, and shows at what intervals the
requested service line has to increase to remain within a busy period.

The number of commands that are executed forone specific atomcanbe larger than
WCIAT. For example, if the first argument of the max-term in Eq. (2.16) dominates,
then an atom that triggers a switch fromwriting to reading takes tp

wtr + tp
r ≥ tp

r cycles.
WCIAT is the average time the back-end spends per atom when serving a worst-case
sequence of atoms. Equation (2.6), which calculates bwc, uses the same duration.
We call the maximum time between two atom scheduling decisions the Worst-Case
Scheduling Interval (WCSI):

WCSI = max
(
tp
rtw + tp

w, tp
wtr + tp

r

)
(2.17)

When WCSI > WCIAT, the back-end can alternate between generating one atom
worth of service quicker than and slower than WCIAT, respectively. This behavior
is drawn in Fig. 2.16 as the atoms completed line. The graph starts at max(θr, θw),
i.e., at the time where we know the provided service starts to increase when serving
only read or write atoms. If read and write atoms are mixed, we must ensure that

Fig. 2.16 Demonstration of latency compensation for WCSI, using the same parameters as
Fig. 2.13. The compensated service bound is conservative in cycles 30 and 31, while the uncom-
pensated service bound is not. Note that the x-axis starts at max(θr, θw)



2.4 Worst-Case Performance Analysis 45

the time required for each possible pair of atoms is conservatively bounded by the
(average) WCIAT. To achieve this, we addWCSI − WCIAT to �be. This effectively
shifts the start of the rate phase of the server forward in time to make the service
guarantee conservative. This amount of time can be seen in Fig. 2.16 as the 2-cycle
difference between the compensated service bound and the uncompensated service
bound. The figure also shows that a bound based on atoms that always take WCSI
cycles is overly pessimistic if WCSI > WCIAT. Finally, the expression for �be is
equal to:

�be = WCSI − WCIAT + max(θr, θw) (2.18)

2.4.3 Front-End Performance

Clients observe a certain performance from the memory controller through the port
bywhich they are connected to it. The arbiter in the front-end regulates which clients’
atom is processed by the back-end. Each client has an abstract allocation within the
arbiter that for most intents and purposes can be seen as a specific fraction of the
total shared resource time. We assume that the allocation of client c in the arbiter
can be described with two new LR parameters,

(
�c

arb, ρ
c
arb

)
. These parameters are

normalized, such that ρc
arb represents the fraction of the total server bandwidth that

a client receives after it has waited for �c
arb scheduling slots. Because the arbiter

schedules atoms, each scheduling slot represents an atom-sized access.
We always assume a predictable arbiter is used within the memory controller, like

TDM, round-robin [41] or CCSP [42]. [37] shows how to derive the LR parameters
for various popular arbiter types, [42] focuses on CCSP, and [52, 53] extensively
discuss TDM arbiters in the context of LR servers. For the purpose of this book, we
only need to look at the details for TDM arbiters, which is done later in Sect. 7.4.1.
All these arbiters guarantee that the allocated fraction of back-end performance is
always visible and usable by clients, even during worst-case interference from other
clients. The guarantees that our controller gives to a client are (solely) based on
this (guaranteed) fraction of the back-end performance (budget), which is hence not
dependent on the behavior of other clients. This implies that the memory controller
offers predictable performance to a client.

Fig. 2.17 The LR server
describing the memory
controller’s performance is
the concatenation of the
front-end server and the
back-end server

http://dx.doi.org/10.1007/978-3-319-32094-6_7


46 2 Reconfigurable Real-Time Memory Controller Architecture

We characterized the front-end for client c as another LR server with parameters(
�c

fe, ρ
c
fe

)
. ρc

fe represents the bandwidth that is allocated to the client.

ρc
fe = ρc

arb · ρbe | 0 < ρc
arb ≤ 1 (2.19)

Intuitively, we can see that if ρc
arb = 1, the client has the full back-end at its disposal.

Finally, we de-normalize �c
fe such that it is expressed in clock cycles instead of

scheduling slots. We do this by multiplying with the duration of such a slot in the
back-end. We can use WCIAT for this, since the back-end LR server is guaranteed
to process at least one atom per WCIAT once �be has passed. Additional pipeline
stages in the front-end, on the forward and backward path, are represented by δfe:

�c
fe = ⌈

�c
arb

⌉ · WCIAT + δfe (2.20)

2.4.4 Worst-Case Response Times

A client uses the concatenation of its front-end server and the back-end server. When
two LR servers are concatenated, a single server equivalent has a latency equal to
the sum of latencies of the individual servers, and the minimum of their rates [37].
We use

(
�c

ctrl, ρ
c
ctrl

)
to represent the combined server (Fig. 2.17)

�c
ctrl = �c

fe + �be (2.21)

ρc
ctrl = min

(
ρc

fe, ρbe
) = ρc

fe (2.22)

The WCRT of a request is defined as the maximum time difference between the
arrival of the request in the controller and the departure of the response. Intuitively,
the WCRT of a request can be read directly from the LR curve for the client, as the
difference between the time at which the request arrives (i.e., where the requested
service increases with one request worth of service), and the time at which the service
bound reaches the same vertical height (see Fig. 2.15 for example). LR guarantees
are dependent on the client’s (prior) behavior (the number of outstanding requests,
and when they arrived), and because of that, the WCRT cannot be described as a
single simple number, contrary to what we did earlier with the worst-case bandwidth.
Instead, each requests may have its own WCRT.

The LR server that describes a client’s memory performance can be included
as a component in a larger analysis model to validate the client’s requirements. A
general outline of this process can for example be found in [2, 54], which use the
dataflow [55] model of computation for this purpose. In this context, it is not useful
or required to define a single WCRT that is valid for all requests.



2.4 Worst-Case Performance Analysis 47

Introducing additional assumptions can take the client’s behavior out of the equa-
tion if this is really desired. Arguably, the most conservative option is to assume that
each request starts a new busy period, for example, but this potentially introduces
a large amount of undesirable pessimism into the performance analysis. In general,
the WCRT of a number of outstanding requests with a total size s for client c is equal
to:

WCRT(s) = �c
ctrl + s

ρc
ctrl

(2.23)

The remaining contributions of this book directly impact the back-endLR server,
but have little impact on the front-end server, since only δfe increases slightly due
to the addition of a few extra pipeline stages, as explained in Sect. 2.3.1. Hence,
we focus on the quantification of the back-end performance in Chap.5, leaving the
front-end (mostly) out the equation.

2.5 CompSOC Controller Instance

The proposed controller has been integrated into the CompSOC flow [40] in two
different forms:

1. Transaction-level SystemC. This implementation is flexible in terms of the mod-
eled SDRAM generation. The PHY is not included in this model.

2. Synthesizable VHSIC Hardware Description Language (VHDL), targeted at
DDR3 devices on theML605 [56] FPGA development board. A fully functioning
PHY is included in the controller design, and hence both simulation with a VHDL
simulator such as Modelsim, and actual runs on the FPGA hardware are enabled.

The SystemC model is aimed at prototyping controller features, and verification
of its functional correctness. It can produce cycle-level accurate SDRAM command
traces, which can for example be used to check for timing constraint violations,
and/or power estimation through external tools, like DRAMPower [57] for example.
Simulating the model offers superior visibility on the internal state of the controller
compared to FPGA-based experiments, but is unfortunately 3–4 orders of magnitude
slower.

The VHDL version of the controller for the ML605 board is called Raptor.3 This
board contains a Virtex 6 FPGA (XC6VLX240T) from Xilinx, which is connected
to a DDR3 SO-DIMM slot. The PHY of Raptor is generated by the Xilinx Memory
Interface Generator (MIG) 3.6 tool [59], and uses an interface that closely resembles
the DFI 2.1 standard [45].

3Raptor is a forced acronym for reconfigurable and predictable open-page controller, and also
short for Velociraptor, a genus of dinosaurs, and a type of Predator [58].

http://dx.doi.org/10.1007/978-3-319-32094-6_5


48 2 Reconfigurable Real-Time Memory Controller Architecture

A small LUT in the pattern player converts the commands from the pattern mem-
ory into a 6-bit control field and a 3-bit bank field. The control field contains values
for the standard RAS, CAS, CS and WE signals, and the value for the 10th address
bit in the physical address, which is the auto-precharge flag location for DDR3 (as
used earlier in Fig. 2.9). The final bit is reserved for a strobe signal that is specific
to the used PHY (and not part of the DFI standard), and selects the desired data bus
(read/write) direction. The 3-bit bank field specifies the bank for which the command
is meant. The pattern memory is implemented using Block RAM (BRAM) resources
on the FPGA.

The back-end of the controller runs at half the frequency of the SDRAMcommand
clock, and sends two commands (and four data words) per clock cycle into the
PHY to compensate for this difference. This degree of parallelism is needed because
the FPGA fabric is relatively slow compared to the SDRAM device, which makes
designing a controller thatworks at the native command rate infeasible [60]. ThePHY
eventually serializes the commands and data before sending them to the SDRAM.
Note that this is common practice, and both the DFI standard and commercially
available controllers [61] may provide this operating mode as an option.

The SDRAM slot of an ML605 by default contains a 512 MiB DDR3-1066
device [62] (speed grade 1G1), capable of running at a 533MHz command clock,
although later versions have started shipping with larger and slightly faster devices.
Figure2.18 shows how this memory is typically used. The SDRAM is under-clocked
to run at 400MHz to match it up to the attainable controller frequencies on the
FPGA, effectively turning it into a DDR3-800 with the controller back-end run-
ning at 200MHz. The full data bus width of the DIMM is 64 bits, but a user of
the CompSOC flow has the option to synthesize a controller with a 32-bit interface
(connecting only half of the data pins) to save synthesis time or to emulate memories
with a smaller interface, at the cost of making only half the memory accessible.

Fig. 2.18 Typical clock frequencies and data bus widths for Raptor



2.6 Evaluation 49

2.6 Evaluation

The goal of this section is to show that the VHDL implementation of our real-time
memory controller is not prohibitively expensive in terms of hardware usage, and to
give the reader a feeling for its relative size. Section2.6.1 explains how the experi-
ment was setup and why this specific setup was chosen, while Sect. 2.6.2 discusses
the results.

2.6.1 Synthesis Setup

The demonstrated concepts in Raptor are technology agnostic, but its prototype
implementation is bound to FPGA: the PHY is FPGA specific, and hence can-
not straight-forwardly be synthesized to an Application-Specific Integrated Circuit
(ASIC). Furthermore, the back-end generates two commands in parallel due to speed
restrictions of the FPGA fabric. An ASIC implementation would be significantly
different, primarily in terms of the high-speed I/O implementation of the PHY. Com-
parisons with ASIC implementations would hence have to based on the front-end
and/or back-end only, but that still leaves the 2-to-1 command ratio as a significant
difference. Although there are works which describe combinations of back-ends and
PHYs on ASIC [46, 63], they provide insufficient information to clearly separate
the contribution of the two components, and lack details on the controller imple-
mentation. Hence, a comparison with the back-end of these works would be hard to
interpret, and at most of limited use.

The authors of [30] provide a verilog implementation of their controller front-end
and back-end, and also have an FPGA as synthesis target. However, this controller
has only been tested in simulation and lacks an FPGA PHY, the addition of which we
expect impacts the back-end design in a similar way as that of Raptor (i.e., requiring
a lower clock frequency and a parallel generation of multiple commands per cycle).
Since the authors furthermore indicate that improvement of and further elaboration
on the implementation is part of future work, we will not attempt to compare to it in
its current state. An FPGA implementation of the controller from [64] is available,
but it uses a relatively low-frequency SDR SDRAM. The hardware requirements on
such a controller are so different from ours that a comparison is not useful.

An appropriate comparison that we can actually make involves the Multi-Port
Memory Controller (MPMC) controller [65] fromXilinx. TheMPMC iswidely used,
because it is the default SDRAM controller for Virtex 6 FPGAs and relatively easy
to instantiate from the Xilinx tools. Its PHY is similar in structure to that of Raptor,
uses the same I/O resources, and targets the same memory generation (DDR3). Both
controllers generate two commands per (back-end) cycle. This allows us to focus
the comparison on the main contributions of Raptor, which are the reconfigurable
back-end and front-end. The number of basic FPGA resources (registers and LUTs)
consumed by each design is used as the metric for comparison. Version 13.3 of the



50 2 Reconfigurable Real-Time Memory Controller Architecture

Xilinx tools are used, and unless mentioned otherwise, we use the default settings
provided by the Base System Builder wizard of the XPS tool to create the MPMC-
based controllers. The MPMC version is v6.05.a.

The MPMC by default uses BRAMs to implement its equivalent of the atom
queues. This has advantages in terms of timings, since they are essentially dedicated
SRAMs on the FPGA fabric, but it also over-allocates the queues in terms of capacity,
because the minimal size of a BRAM block is 4 KiB. Alternatively, the MPMC can
be configured to use a Shift-Register Lookup (SRL) buffer implementation, which
also maps efficiently to FPGA resources, but is available at smaller granularities.
We select this configuration and set the atom queues in the Raptor front-end to the
same size as the default MPMC SRL size, which is 512B per read or write queue per
port. Raptor’s atom queues also map to SRL resources on the FPGA, which hence
leads to comparable results in terms of size. Note that for Raptor, this queue size is
configurable at design time, and does not necessarily have to be 512B.

The MPMC and Raptor use different protocols for communicating with their
clients: MPMC provides several protocol sockets, while Raptor uses DTL.We select
Processor Local Bus (PLB) as the socket for the MPMC front-end, since it is similar
to DTL in terms of wiring signature (AXI4 would be a more obvious choice, but
is not available). We use a 32-bit SDRAM bus for both controllers (leaving half of
the DIMM unconnected). The Raptor instances use a reconfigurable TDM arbiter,
configured to have the same number of table slots as there are ports on the front-end.
TheMPMCuses a round-robin arbiter.We limit the fan-out of Raptor’s configuration
bus (Fig. 2.6) to 16 ports, and instantiatemultiple buses ifmore than 16 reconfigurable
components (more than 7 clients) are present.

2.6.2 Synthesis Results

Figure2.19 shows the resource usage of theMPMCandRaptorwith a varying number
of front-end ports (eight is the maximum number of supported ports on the MPMC).
Note that these numbers are indicative only, since place and route has not been done
yet at this stage, and hence the wiring cost is not visible yet. The performance (clock
frequency) after routing will vary based on the success of the mapping and routing
heuristics, which is highly dependent on the other hardware which is placed on the
same FPGA.

The figure shows that the LUT and register usage of Raptor and the MPMC are
of the same order of magnitude, although Raptor consistently uses more resources:
the MPMC uses 1305 registers and 930 LUTs per additional port on average, versus
1882 registers and 2304 LUTs per port for Raptor. The difference in size can mainly
be attributed to:



2.6 Evaluation 51

Fig. 2.19 Resource usage of Raptor versus MPMC using 512 byte read/write queues (1024 bytes
in total) per port

• The modularity of the design: each DTL port incurs a handshaked-pipeline stage
with double buffering for the command and data lines. This modularity allows the
blocks in the front-end to be easily reused and individually instantiated as needed,
at the cost of more hardware at their interfaces.

• The MPMC is tailored for the Virtex 6, often spelling out the exact mapping to
basic FPGA resources, leaving very little to the imagination of the synthesis tool.
This improves the maximum clock frequency and lowers the resource usage, but
complicates portability to a different FPGA. Raptor is written at a slightly higher
level of abstraction, and has not been extensively optimized for size.4

• The MPMC is synthesized as a single unit, while Raptor is separated in two, the
first one containing the front-end, and the second containing the back-end and
PHY. This means that the synthesis tool has more knowledge to exploit when it
eliminates constants and unused hardware for the MPMC. Global optimization
across blocks happens after the point where the numbers in Fig. 2.19 are extracted,
and its results are hence not incorporated in the data set.

• Raptor can generate anySDRAMcommand at any cycle, while theMPMCrestricts
activates and precharges to even-cycles, and read and write commands to odd-
cycles. This constraint has a slight performance implication in terms of bandwidth
and response time.

4Compared to earlier publications on the approximate size of the controller [66], we did however
reduce the resource usage of all FIFOs significantly by modifying their implementation such that
they map to SRL and LUTRAM resources instead of individual registers. Hence, a 4-port controller
with 512 bytes per queue now uses 88% fewer registers in Fig. 2.19 than a version with 256 bytes
per queue in [66].



52 2 Reconfigurable Real-Time Memory Controller Architecture

(a) (b)

Fig. 2.20 Front-end LUT and register usage break-down per port. 100% = 1915 registers,
2837 LUTs. a Registers. b LUTs

• The reconfiguration infrastructure and delay block functionality that exists in Rap-
tor is not available in the MPMC.

For a single-port controller, the front-end/back-end ratio is 0.48 for registers and 0.60
for LUTs, i.e., the back-end is bigger, while for an 8-port controller this shifts to 3.7
and 4.5, respectively, with the front-end dominating the resource usage.

Figure2.20 shows a break-down of the resource usage in the front-end, obtained
by individually synthesizing its components. Buses are dimensioned for eight front-
end ports, and their size is divided by eight as an approximation of the contribution
of each port. Since splitting the front-end into multiple synthesis units reduces the
global optimization opportunities as mentioned earlier, the total number of registers
and LUTs accounted for by the sum of the components is, respectively, 1.8% and
23% higher than the costs per port estimated based on Fig. 2.19. This underlines the
importance of these optimizations, and should serve as awarning that the break-down
is approximate only.

Figure2.20a shows that the resource bus uses the most registers, at least relatively.
It contains a set of pipeline registers as wide as its total fan-in (i.e., for each port),
implemented as registers. The atom queues store significantly more bits, but use
LUTs to do this, which is more efficient.5 Hence, the proportional register usage
of the resource bus and the delay block might at first glance look unintuitive. The
atomizers use a relatively large amount registers because they also contain the input-
buffers for the front-end. For similar reasons, they use relatively more LUTs than the
other components, as shown in Fig. 2.20b. The delay block spends approximately
half of its LUTs on the atom queues, while the resource bus uses practically all of
them to implement the required multiplexing logic.

532 bits can be stored in a single LUT (although only one of those 32 bits can be read/written at a
time), versus 1 bit per register.



2.6 Evaluation 53

Raptor and MPMC have different design goals: the first one provides real-time
guarantees and isolation per client, while the second does not. MPMC is built to
sustain a high average-case throughput and was optimized for size, while this is
not the main focus of the Raptor prototype. It is hence not possible to connect hard
conclusions to a size comparison of the two solutions, since they have different prop-
erties and applications areas. We observe that Raptor is consistently larger (2.2 and
1.3 times the size of the MPMC in LUTs and registers, respectively, according to
Fig. 2.19). However, keeping in mind that Raptor is still the prototype stage, the
results indicate that the cost of the extra functionality that Raptor offers appear to
be manageable.

2.7 Conclusion

This chapter introduced the architecture template of a real-time memory controller.
Themain novel feature is its reconfigurability,which is expressed in twoways. Firstly,
the components in the front-end are reconfigurable, allowing the performance that is
provided to each port to be changed at run-time by modifying its front-end settings,
i.e., budgets in the arbiter and delay block settings. Secondly, the back-end contains
a pattern memory that holds the SDRAM commands the controller issues to the
memory. The contents of the pattern memory can be changed at run-time to modify
the properties of the scheduling algorithm implemented by the patterns. The appli-
cation, properties and limitations of the available reconfiguration mechanisms will
be discussed further in Chap. 7, while Chap.3 elaborates on the possible configura-
tions of the scheduling algorithm used to create the memory patterns that are stored
in the back-end. Furthermore, we have shown how the worst-case performance of
our SDRAM controller can be characterized in terms of worst-case bandwidth and
WCRT. We apply this analysis later in Chap. 5 to compare the worst-case perfor-
mance of different contemporary memory devices.

The Raptor instance of this controller template has been implemented and cus-
tomized for use on an FPGA, and is a part of the CompSOC platform. The complete
integration all the way down to the PHY level shows the controller successfully com-
municates with real SDRAM devices, and allowed for a resource usage comparison
with the MPMC controller from Xilinx. This proved that our controller template can
provide real-time capabilities at competitive costs, which has significant added value
for mixed time-criticality systems. Additionally, Raptor has been used on a daily
basis both in lab-based courses [67] and as a research vehicle [2, 68] for several
years now, and has shown to be a stable and versatile component for these purposes.

http://dx.doi.org/10.1007/978-3-319-32094-6_7
http://dx.doi.org/10.1007/978-3-319-32094-6_3
http://dx.doi.org/10.1007/978-3-319-32094-6_5


54 2 Reconfigurable Real-Time Memory Controller Architecture

References

1. Akesson B, Goossens K (2011) Memory controllers for real-time embedded systems. Embed-
ded systems series. Springer, New York

2. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y, Mir-
zoyan D, Molnos A, Nejad AB, Nelson A, Sinha S (2013) Virtual execution platforms for
mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev
10(3):23–34

3. DRAMExchange (2015) Monthly worldwide DRAM output in 2015. http://www.
dramexchange.com/Market/Market_Activity. Online; Accessed 15 Oct 2015

4. Amsterdam internet exchange (2015) Historical monthly traffic volume. https://ams-ix.net/
technical/statistics/historical-traffic-data?year=2015. Online; Accessed 15 Oct 2015

5. Dennard RH (1968) Field-effect transistor memory. US Patent 3,387,286
6. Jacob B, Ng S, Wang D (2007) Memory systems: cache, DRAM, disk. Morgan Kaufmann Pub
7. JEDEC (2009) Low power double data rate specification JESD209B
8. JEDEC (2010) DDR3 SDRAM specification JESD79-3E
9. JEDEC (2010) Low power double data rate 2 specification JESD209-2D
10. JEDEC (2012) DDR4 SDRAM specification JESD79-4
11. JEDEC (2013) Low power double data rate 3 specification JESD209-3B
12. JEDEC (2009) DDR2 SDRAM specification JESD79-2F
13. Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling. In:

International symposium on computer architecture (ISCA), pp 128–138
14. Mobile LPDDR2 SDRAM (2010) 2gb_mobile_lpddr2_s4_g69a.pdf - Rev. N 3/12 EN. Micron
15. DDR3L SDRAM (2011) 4Gb_DDR3L.pdf - Rev. I 9/13 EN. Micron
16. Kollig P, Osborne C, Henriksson T (2009) Heterogeneous multi-core platform for consumer

multimedia applications. In: Design, automation and test in Europe conference and exhibition
(DATE), pp 1254–1259

17. RM57L843 16- and 32-Bit RISC Flash Microcontroller (2014). Texas Instruments Inc
18. van der Wolf P, Geuzebroek J (2011) SOC infrastructures for predictable system integration.

In: Design, automation and test in Europe conference and exhibition (DATE), pp 1–6
19. Snapdragon 800 (2015) Snapdragon 800 processor specs. https://www.qualcomm.com/

products/snapdragon/processors/800. Online; Accessed 30 Mar 2015
20. JEDEC (2014) 240 pin DDR3 DIMM, 1.00mm pitch MO-269J
21. JEDEC (2014) DDR3 unbuffered SODIMM reference design specification 4.20.18, revision

2.8, release 24
22. GomonyMD, Akesson B, Goossens K (2015) A real-timemultichannel memory controller and

optimal mapping of memory clients to memory channels. ACM Trans Embed Comput Syst
14(2):25:1–25:27

23. Chandrasekar K, Akesson B, Goossens K (2012) Run-time power-down strategies for real-time
SDRAM memory controllers. In: Design automation conference (DAC), pp 988–993

24. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization
for predictability and temporal isolation. In: Proceedings of CODES+ISSS, pp 99–108

25. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers
for improved system integration. In: Design, automation and test in Europe conference and
exhibition (DATE), pp 1–6

26. Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank
privatization and fixed priority scheduling. In: Embedded and real-time computing system and
application (RTCSA)

27. Hassan M, Patel H, Pellizzoni R (2015) A framework for scheduling DRAMmemory accesses
for multi-core mixed-time critical systems. In: Real-time and embedded technology and appli-
cation symposium (RTAS), pp 307–316

28. ShahH,RaabeA,Knoll A (2012) BoundingWCETof applications using SDRAMwith priority
based budget scheduling in MPSOCs. In: Design, automation and test in Europe conference
and exhibition (DATE), pp 665–670

http://www.dramexchange.com/Market/Market_Activity
http://www.dramexchange.com/Market/Market_Activity
https://ams-ix.net/technical/statistics/historical-traffic-data?year=2015
https://ams-ix.net/technical/statistics/historical-traffic-data?year=2015
https://www.qualcomm.com/products/snapdragon/processors/800
https://www.qualcomm.com/products/snapdragon/processors/800


References 55

29. PaolieriM,QuiñonesE,Cazorla FJ (2013)Timing effects ofDDRmemory systems in hard real-
time multicore architectures: issues and solutions. ACM Trans Embed Comput Syst 12(1s):64

30. Krishnapillai Y, Pei Wu Z, Pellizzoni R (2014) ROC: a rank-switching, open-row DRAM con-
troller for time-predictable systems. In: Euromicro conference on real-time systems (ECRTS),
pp 27–38

31. Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar R (2014) Bounding memory
interference delay in COTS-basedmulti-core systems. In: Real-time and embedded technology
and application symposium (RTAS), pp 145–154

32. AkessonB,HanssonA,GoossensK (2009) Composable resource sharing based on latency-rate
servers. In: Digital system design (DSD)

33. Device transaction level (DTL) protocol specification (2002) Version 3.2. Philips semiconduc-
tors

34. AMBA AXI and ACE protocol specification (2011). ARM Limited
35. Akesson B, Molnos A, Hansson A, Ambrose Angelo J, Goossens K (2010) Composability and

predictability for independent application development, verification, and execution. In: Hübner
M, Becker J (eds) Multiprocessor system-on-chip — hardware design and tool integration,
Circuits and systems, chapter 2. Springer. ISBN 978-1-4419-6459-5

36. Hansson A, Goossens K, Bekooij M, Huisken J (2009) CompSOC: a template for composable
and predictable multi-processor system on chips. ACM TODAES 14(1)

37. StiliadisD,VarmaA (1998)Latency-rate servers: a generalmodel for analysis of traffic schedul-
ing algorithms. IEEE/ACM Trans Netw 6(5)

38. Kopetz H (1997) Real-time systems: design principles for distributed embedded applications.
Springer

39. Ghosal A, Henzinger TA, Kirsch CM, Sanvido MA (2004) Event-driven programming with
logical execution times. In: Hybrid systems: computation and control, pp 357–371. Springer

40. Goossens S, Akesson B, KoedamM, Nejad AB, Nelson A, Goossens K (2013) The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th FPGAworld conference,
pp 7:1–7:6

41. Nagle JB (1987) On packet switches with infinite storage. IEEE Trans Commun COM-35(4)
42. Akesson B, Steffens L, Strooisma E, Goossens K (2008) Real-time scheduling using credit-

controlled static-priority arbitration. In: Embedded and real-time computing system and appli-
cation (RTCSA), pp 3–14

43. Memory transaction level (MTL) protocol specification (2002) CoReUse 3.2.1. Philips semi-
conductors

44. Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real-Time Syst 47(5):430–453
45. Denali (2010) DDR PHY interface (DFI) specification version 2.1.1
46. Kaviani K, Wu T, Wei J, Amirkhany A, Shen J, Chin T, Thakkar C, Beyene W, Chan N, Chen

C, Chuang BR, Dressler D, Gadde V, Hekmat M, Ho E, Huang C, Le P, Mahabaleshwara CM,
MishraN,RaghavanL, SaitoK, Schmitt R, SeckerD, ShiX, Fazeel S, SrinivasG, Zhang S, Tran
C, Vaidyanath A, Vyas K, Jain M, Chang K-Y K, Yuan X (2012) A tri-modal 20-Gbps/Link
differential/DDR3/GDDR5 memory interface. IEEE J Solid-State Circuits 47(4):926–937

47. AkessonB (2010) Predictable and composable system-on-chipmemory controllers. PhD thesis,
Eindhoven University of Technology

48. Akesson B, Hayes Jr W, Goossens K (2010) Classification and analysis of predictable memory
patterns. In: Embedded and real-time computing systems and applications (RTCSA), pp 367–
376

49. Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor
systems. In: Real-time systems symposium, pp 372–383

50. Shah H, Knoll A, Akesson B (2013) Bounding SDRAM interference: detailed analysis vs.
latency-rate analysis. In: Design, automation and test in Europe conference and exhibition
(DATE), pp 308–313

51. Bhati I, Chishti Z, Lu SL, Jacob B (2015) Flexible auto-refresh: enabling scalable and energy-
efficient DRAM refresh reductions. In: International Symposium on Computer Architecture
(ISCA)



56 2 Reconfigurable Real-Time Memory Controller Architecture

52. Akesson B, Minaeva A, Sucha P, Nelson A, Hanzalek Z (2015) An efficient configuration
methodology for time-divisionmultiplexed single resources. In: Real-time and embedded tech-
nology and application symposium (RTAS)

53. Minaeva A, Šůcha P, Akesson B, Hanzálek Z (2016) Scalable and efficient configuration of
time-division multiplexed resources. J Syst Softw 113:44–58

54. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming appli-
cations on a composable and predictable multi-processor SOC. J Syst Archit

55. SriramS, Bhattacharyya S (2000) Embeddedmultiprocessors: scheduling and synchronization.
CRC

56. Xilinx (2011) ML605 documentation UG533. http://www.xilinx.com/support/documentation/
boards_and_kits/ug533.pdf

57. Chandrasekar K, Weis C, Li Y, Akesson B, Wehn N, Goossens K (2014) Drampower: open-
source DRAM power and energy estimation tool. http://www.drampower.info

58. Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory con-
troller. In: Proceedings of CODES+ISSS

59. Xilinx (2011) Virtex-6 FPGA memory interface solutions - user guide UG406
60. Cosoroaba A (2013) Achieving high performance DDR3 data rates, Xilinx, WP383 (v1.2).

White paper
61. Cadence Design Systems Inc (2014) Multi-protocol LPDDR4/3/DDR4/3 controller and

PHY subsystem IP. http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_
LPDDR4_3_DDR4_3_Subsystem_ds.pdf

62. DDR3 SDRAM SODIMM - MT4JSF6464H - 512MB JSF4C64_64x64HY.fm - Rev. B 3/08 EN
(2007). Micron

63. Chang K, Lee H, Chun J-H, Wu T, Chin T, Kaviani K, Shen J, Shi X, Beyene W, Frans Y,
Leibowitz B, Nguyen N, Quan F, Zerbe J, Perego R, Assaderaghi F (2008) A 16Gb/s/link,
64GB/s bidirectional asymmetric memory interface cell. In: 2008 IEEE symposium on VLSI
circuits, pp 126–127

64. Lakis E, Schoeberl M (2013) An SDRAM controller for real-time systems. In: 2013 IEEE 16th
international symposium on object/component/service-oriented real-time distributed comput-
ing (ISORC), pp 1–8

65. Xilinx (2011) LogiCORE IP - multi-port memory controller DS643
66. Goossens S, Kuijsten J, Akesson B, Goossens K (2013) A reconfigurable real-time SDRAM

controller for mixed time-criticality systems. In: 2013 international conference on hard-
ware/software codesign and system synthesis (CODES+ISSS), pp 1–10

67. Nelson A, Molnos A, Nejad AB, Mirzoyan D, Cotofana S, Goossens K (2013) Embedded
computer architecture laboratory: A hands-on experience programming embedded systems
with resource and energy constraints. In: Proceedings of the workshop on embedded and
cyber-physical system education, pp 7:1–7:8

68. Schoeberl M, Abbaspour S, Akesson B, Audsley N, Capasso R, Garside J, Goossens K,
Goossens S, Hansen S, Heckmann R, Hepp S, Huber B, Jordan A, Kasapaki E, Knoop J,
Li Y, Prokesch D, Puffitsch W, Puschner P, Rocha A, Silva C, Sparsø J, Tocchi A (2015)
T-CREST: time-predictable multi-core architecture for embedded systems. J Syst Archit

http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.drampower.info
http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf
http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf


http://www.springer.com/978-3-319-32093-9


	2 Reconfigurable Real-Time Memory Controller Architecture
	2.1 SDRAM
	2.1.1 SDRAM Commands
	2.1.2 Timings and Timing Constraints
	2.1.3 Memory Generations
	2.1.4 Memory Hierarchies

	2.2 Pattern-Based SDRAM Controllers
	2.2.1 Burst Grouping

	2.3 Controller Architecture
	2.3.1 Resource Front-End
	2.3.2 SDRAM Back-End
	2.3.3 PHY
	2.3.4 Reconfiguration Infrastructure

	2.4 Worst-Case Performance Analysis
	2.4.1 Latency-Rate Servers
	2.4.2 Back-End Performance
	2.4.3 Front-End Performance
	2.4.4 Worst-Case Response Times

	2.5 CompSOC Controller Instance
	2.6 Evaluation
	2.6.1 Synthesis Setup
	2.6.2 Synthesis Results

	2.7 Conclusion
	References


