An Approach for Ensuring Reliable Functioning
of a Supercomputer Based on a Formal Model

Alexander Antonov, Dmitry Nikitenko, Pavel Shvets®), Sergey Sobolev,
Konstantin Stefanov, Vadim Voevodin®™), Vladimir Voevodin,
and Sergey Zhumatiy

Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
{asa ,dan,shpavel,sergeys,cstef,vadim,voevodin, serg}@parallel .ru

Abstract. In this article we describe the Octotron project intended
to ensure reliability and sustainability of a supercomputer. Octotron is
based on a formal model of computing system that describes system com-
ponents and their interconnections in graph form. The model determines
relations between data describing current supercomputer state (monitor-
ing data) under which all components are functioning properly. Relations
are given in form of rules, with the input of real monitoring data. If these
relations are violated, Octotron registers the presence of abnormal situ-
ation and performs one of the predefined actions: notification of system
administrators, logging, disabling or restarting faulty hardware or soft-
ware components, etc. This paper describes the general structure of the
model, augmented with details of its realization and evaluation at super-
computing center in Moscow State University.
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1 Introduction

A supercomputing center maintenance practice determines a set of strict require-
ments for the technologies and facilities supporting supercomputer operation:
maintaining high productivity of the supercomputer, constant monitoring of all
potential sources of emergency situations and the performance of all critical
components, automatic decision-making by maintenance and support systems,
and guaranteed operator notification about the supercomputers current status,
among other requirements. Until all of these requirements are met, neither the
efficient operation of the supercomputer nor the safety of its hardware can be
guaranteed.

The reasons for such requirements are clear. Supercomputers are expensive
and therefore downtime is unallowable. The demand for supercomputers is high,
and that means the maximum operational equipment should be available to
the users. Supercomputers require high power consumption, which means their
status needs to be monitored closely to avoid an equipment loss. And the com-
plexity of the maintenance problem grows extremely fast with the vast number
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of components in any modern supercomputer. Fulfillment of these requirements
sets the foundation for the Octotron system. Lets make a formal supercom-
puter operation model and make it available to the Octotron as an input data.
The Octotron will constantly observe the current state of supercomputer using
the monitoring systems and compare it to the model. If actual supercomputer
state does not correspond with the model, Octotron can perform one of the
preprogrammed actions, such as notifying the administrator via SMS, disabling
the malfunctioning device, and so on. With this approach we, first, guarantee
complete control over the situation; second, guarantee compliance between the
expected and actual behavior of the supercomputer; and third, will be confident
that we will find out about any event that deserves our attention.

This approach leads to a number of useful outcomes. In particular, it allows us
to not only guarantee the reliable operation of the existing fleet of systems within
a supercomputing center, but also to ensure continuity in maintenance when
moving to a new generation of machines. Indeed, once an emergency situation
arises, it is reflected in the model along with the causes and traceable features,
and an adequate reaction is programmed into the model.

The paper is organized as follows. In Sect. 2 we describe interesting existing
solutions for the discussed and related problems. In Sect. 3 we briefly state what
our goals for the Octotron system being created are. Section 4 contains detailed
description of the structure of our system, with the focus on one of its most
important parts supercomputer model. This structure description is continued
in Sect.5 with the explanation how our system operates. In Sect.6 we show
how the Octotron system is being used on real supercomputer systems in our
university. Finally, Sect. 7 contains conclusions and acknowledgments.

2 Background and Related Works

The work to ensure reliable supercomputer operations has been going on for a
while, and a broad range of materials and methods has been accumulated. The
following approaches to handling emergency situations are provided [1]: forecast-
ing potential failures and their consequences; preventing failures; reducing the
number of errors and their impact on system health; ensuring resilience against
failures.

In global practices, the resilience for a supercomputer is primarily viewed
in the context of ensuring reliable application execution. The methods avail-
able to support the execution of a large application in a potentially unreliable
environment are based on creating checkpoints and logging communications,
which allows the application to recover from failures in computing system com-
ponents [2]. However, these mechanisms do not address equipment safety issues.
Maintaining reliable operations and monitoring the status of a supercomputing
system can be done using proprietary vendor hardware and software solutions
(HP BTO Software [3], xCAT [4]). An alternative option is to install and con-
figure one of the freely distributed monitoring systems (Nagios [5], Zabbix [6],
Ganglia [7]) and writing a set of scripts to respond to specific subsets of poten-
tially dangerous situations.
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Currently, the aforementioned systems do not use a coherent model or
description of a computer as input data. In our opinion, lack of model usage
makes very difficult, if not impossible, to analyze and react properly on com-
plex global fault situations, which concern not only one component such as one
node or server, but a variety of cluster components. The powerful Zenoss [§]
monitoring system offers the target system modeling concept, but that is only
understood as automatic identification of the system configuration Failure detec-
tion based on a system of rules has been implemented in ClustrX Safe/AESS
(Automated Notification/Equipment Shutdown System) [9] by the T-Platforms
company. However, this system is focused solely on infrastructure monitoring
and does not affect the supercomputers computational and software parts. It is
also the vendors proprietary solution.

Another interesting recent development is the Taso [10] system designed by
NUDT University in China. This system supports the autonomous operation
of the Tianhe-2 supercomputer, the current leader of the Top500 rating. It is
an integrated piece of software that addresses all of the issues of automatic
fault detection and elimination within system components, locating the root
causes of failures, performing self-diagnostics and self-testing of the computing
system, and recovering applications after failures. The ideas implemented in
Taso partially correlate to the ideas of this project. Even though Iaso is declared
to be a universal software complex, it requires a modified Linux kernel on the
clusters computing nodes with its own client modules installed. Taso receives a
description of the target system as input, but this is mainly used for monitoring
and controlling the network infrastructure. Iaso is not publicly available at the
moment.

Therefore, currently there have not been found any open system that uses
formal model for maintaining reliability of a supercomputer.

It should be mentioned that Octotron system is intended to work with exist-
ing monitoring systems like collectd, Nagios, or Zabbix as data source thus avoid-
ing unnecessary duplication of data collecting agents.

3 Requirements for Octotron System

The primary functional requirement for the Octotron system has in fact been
formulated: the system must allow a supercomputer to independently control its
own operation by comparing its current state to a predefined model. Since this
task is not a trivial one, and Octotron must operate in a complex supercomputer
environment, an additional set of requirements has been formulated which the
system must meet:

1. be able to control all key failure causes in a supercomputers hardware and
software components;

2. allow the monitored area to be expanded to include any components that
were not originally controlled by the system but caused a failure;

3. be able to react to emergencies independently from the operator by perform-
ing a set of predefined actions to eliminate a failure or to notify support
team;
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4. support the current generation of teraflops and petaflops supercomputers and
be ready to work with the next generation of supercomputing systems, where
the number of components will increase by an order of magnitude;

5. verify the integrity of its own operation and evaluate the adequacy of infor-
mation it has received on the state of the supercomputer;

6. accumulate experience from previous supercomputing system support, min-
imizing the number of repeated failures on both existing and prospective
supercomputers.

Considering these requirements, an architecture was proposed for the Octotron
system based on a formal model of supercomputer operation, which is described
in the next section of this paper.

4 The Supercomputer Model

Octotron represents the supercomputer model in the form of a graph [11] (Fig. 1),
which is used to describe all typical modern supercomputer components and rela-
tions between them. The model is accompanied by a set of rules and reactions.
The rules help the supercomputer to register a failure or emergency, and the
reactions describe what actions need to be taken once a rule is triggered.

Vertices in the graph correspond to physical or logical components of the
supercomputer that need to be monitored: computing nodes, UPS modules, job
queues, software components, licenses, etc. The criteria are simple: everything
that the efficient operation of a supercomputer depends on must be reflected
in the model. The graph edges correspond to the relationships between compo-
nents, e.g. consists of, provides power to, connected with Infiniband. Each vertex
in the graph is associated with a set of attributes which describe that components
status: processor temperature, amount of memory, number of jobs in a queue,
etc. The Octotron system updates attribute values through the supercomputers
own monitoring systems (like collectd or Nagios) or directly via external inter-
faces on the components. The latter method is used, in particular, to work with
engineering infrastructure over the SNMP protocol, or to interact with a GSM
modem, or to get the current status of software licenses.

The core of Octotron is written in Java programming language. The system
generates operative graph in the memory, while using Neo4j database as a long-
term storage. All write requests are executed on both graphs so that we can
keep current supercomputer state description up-to-date, while read requests
use only memory-stored graph for improved performance. Neo4j can be used
independently from the Octotron system, serving as a standardized interface for
side tools, such as visualization, analysis, debugging and so on. Database support
is optional and can be disabled, but in case of termination or failures all data
will be lost.

Python language was chosen as the primary language for model description.
We use the Jython interpreter, which executes the code on a Java virtual machine
and allows classes from a Java code to be used in a Python program. Since
Python is a rather simple and clear language, even an untrained person can
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create a model, following the examples and documentation for the Octotron
system. Heres a sample of code describing the model shown on Fig. 1.

# creating basic components
room = CreateObject()
chiller = CreateObject()

# creating components with attributes

ups = CreateObject({"sensor" : {"load" : Long(}})

air_cond = CreateObject({"sensor" : {"fluid_temp" : Long()}})
hot_aisle = CreateObject({"sensor" : {"air_temp" : Long()}})
rack = CreateObjects(3, {"sensor" : {"temp" : Long()}})

# creating contains edges

OneToOne (room, ups, "contains")
OneToOne(room, air_cond, "contains")
OneToOne(room, hot_aisle, "contains")
OneToEvery(room, rack, "contains")

# creating power edges
OneToOne (ups, air_cond, "power")
OneToEvery (ups, rack, "power")

# creating chill edges
OneToOne(chiller, air_cond, "chill")
OneToOne (air_cond, hot_aisle, "chill")
OneToEvery (hot_aisle, rack, "chill")

Once created, such model can be rather easily updated in case supercomputer
structure is needed to be changed (for example, computational core upgrade
or some topology modifications is going to be made) by simply modifying this
model description and running model creation process again. In this case all
attributes from the older version of the model will persist if its object still exists
in the new model.

5 Octotron System Operation

After a supercomputing system model has been created, we need, first, to add
actual data on the structure of supercomputer components; second, to organize
verification of abnormal statuses for the components (i.e. rules); and third, to
define the respective system reactions to these situations. All of these activities
are implemented in the Octotron system.

The supercomputer model is accompanied with a set of rules, which define
deviations in the supercomputers behavior from what is set in the model. Each
attribute in the model is linked to a set of rules that is triggered with every
change in the value of the given attribute. In particular, the rules can be used
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Fig. 1. General idea of the Octotron supercomputer model: vertices (computing nodes,
UPS modules, job queues, software components, licenses, etc.), edges (relationships),
attributes

to determine the rate at which attribute values change, which helps control
situations similar to this: a rapid growth in the error rate on network interfaces
can signal about a network failure. The rules are assigned to vertices and edges
but can access attributes not only from the same vertex but also from adjacent
vertices with the given relationship type.

Most commonly used templates of rules and their compositions available in

our system are the following:

1.

compare an attribute value with a constant or another attribute. Example:
identify when a component temperature exceeds predefined limits;
aggregate values of several attributes and check the result. Example: identify
when temperature exceeds the predefined limits for several sensors in a hot
aisle;

check attribute values in two adjacent (according to the graph) vertices.
Example: different operational modes on a pair of ports directly connected to
an Ethernet network;

convert an attribute value for a further usage with other rule. Example: con-
vert an absolute value to percentage value;

In addition, reaction modifiers allow extending checks in two ways:

1.

check if reaction condition is maintained over a certain period of time. Exam-
ple: LoadAVG value (the number of OS processes ready for execution) at a
node can awhile go beyond ordinary limits, but if the value stays high for a
long time, this can indicate problems on the node;

. check if a reaction condition repeats several times in a row. Example: a node

fails an SSH access check more than three times in a row.

If a rule registers an abnormal operation of a component, the corresponding
reaction is triggered. A reaction represents a set of actions, such as recording
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data in the log file, notifying system administrators by e-mail or SMS, or invoking
a custom command. Rules and reactions, as well as the model itself, are written
in Python using a special library.

Set of rules to check and report number of available nodes is shown below.
It writes a message to a log file if more than 20 % of nodes are unavailable (ping

failed).

def NodeGr
return {

"VaI' n

oupModule (nodes_count) :

: {

# calculate the number of neighborhood objects with

# at
"fai
ED

# co

tribute "ping" equals to "false"
led_ping" : ASoftMatchCount(False,
ependencyType.0UT, "ping"),

nverts the number to a percentage value,

# basing on provided total nodes count

"fai
no

# re

led_pct_ping" : ToPct("failed_ping",
des_count),

turns true if the percentage is below 20 or

# false otherwise

"fai
Up
},

"react
# re
# at

led_pct_ping_ok"
perThreshold("failed_pct_ping", 20),

n : {
action for an object is triggered when the
tribute "failed_pct_ping_ok" becomes "false"

Equals("failed_pct_ping_ok", False):

#
#
(

H H H

}

Data on a

reaction writes the message with category
"Danger" to a log file

Danger("tag", "SYSTEM").Msg("descr",

"too many unavailable nodes")

when the "failed_pct_ping_ok" attribute turns
back to "true" -- another entry will be added to
a log file

Recover("tag", "SYSTEM").Msg("descr",
"nodes are available again"))

supercomputers status is imported into Octotron from external

sources: a monitoring system or directly via component interfaces. Octotron is
not tied to any specific monitoring system, but can work with any one through
a custom import module. Data from various supercomputer subsystems can be
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imported into Octotron at various intervals, depending on the necessary reaction
speed to failures in each respective component.

Users and administrators can interact with the system with a web browser
through HTTP requests. All requests are divided into few categories: view
requests, modification requests and control requests, with an option of a sep-
arate authentication. View requests allow users to query all information about
objects, attributes, rules and reactions. Modification requests allow to import
data and change the model. Control requests are used by administrators to per-
form such actions as terminating model, suppressing all reactions and accessing
system performance metrics.

Data import into Octotron system is made by import modules a set of tools
that convert output of different monitoring system or methods to required for-
mat. Import modules do not have a strict structure; the only requirement for
module is to provide a valid import request. We are planning to provide a default
modules for typical monitoring tools and methods, such as SNMP, collectd, ping
and ssh checks, written on Bash language and Python.

The Octotron system also features several levels of built-in diagnostics and
self-diagnostics. To verify the appropriate operation of the system, an indepen-
dent service graph with basic needed functionality is added to the system data-
base. Octotron processes the specific rule for this service graph that involves
this functionality, which in turn is verified by the external process. If the check
passes, the system is considered to be operating correctly.

Another check is related to the frequency by which attribute values associated
with the actual supercomputer components are updated. Each sensor attribute
can be assigned a timeout, during which its value should be received from the
source. If the value is not updated within that time, it indicates that either
the respective component is faulty, or there is an error in its monitoring status.
Similarly a timeout can be specified during which the value must change or, on
the contrary, remain stable.

The last verification level is the monitoring of one Octotron system with
another Octotron system: two independent copies of Octotron that are mon-
itoring two supercomputers are being monitored by the third one. This third
instance provides two types of diagnostics: (1) checks if Ocrotron processes are
alive and (2) send requests to service graph described earlier to verify that it is
handled correctly.

6 Evaluation of the Octotron System at Moscow State
University

Octotron system is deployed on two Moscow State University supercomputers:
Chebyshev (60 TFlops performance peak, 625 nodes, 5,000 cores, 42 racks and
1 hot aisle) and Lomonosov (1.7 PFlops peak, 5,000 nodes, 82,000 cores, 115
racks and 5 hot aisles). Chebyshev supercomputers model contains 10,228 ver-
tices, 24,698 edges and 205,044 attributes. Lomonosov supercomputers model
contains about 116,000 vertices, 332,000 edges and 2,400,000 attributes. Models
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reflect the following supercomputer components: a power supply system (UPS,
battery modules); a cooling system (chillers, in-row air conditioners, environment
monitoring); a management component (access nodes, job queues); a computing
component (chassis, nodes, disks, memory); a shared file system; Ethernet net-
work (switches, ports); and an Infiniband network (switches, network manager).
The following relationships exist between the said components: contains, chill,
connected via Ethernet, connected via service network, connected via Infiniband
network, includes and provides power to.

As an example, we describe how Octotron operates on the Chebyshev super-
computer mentioned above. The main supplier of operational data for this super-
computers computing components is the monitoring system based on collectd.
The hardware infrastructure supplies data via SNMP.

Every 10 min, the Chebyshev supercomputer hosts report the following data:
the number of active SSH user sessions; the number of active software licenses;
the number of jobs in each of the six partitions of the supercomputer (total num-
ber, jobs queued, jobs being executed, completed jobs); the number of processors
(total, available for job execution, blocked); and the GSM modem account bal-
ance for sending emergency SMS notifications.

The following data is collected from all computing nodes at a higher fre-
quency (every minute): the temperature inside the node; each processors tem-
perature; ID of a job being executed; the status of the file system; memory sta-
tus (total/free/occupied memory); Infiniband card status (sent/received packet
counter, errors); Ethernet card status (errors); average node load, number of
zombie processes, and other system data. SMART information on HDD status
is additionally collected from nodes equipped with local hard disks.

The following data is collected from the shared file system every 10min:
free/occupied space, the performance, as well as the status and load of each
blade module. Data from Ethernet switches are collected at the same intervals.

Information on the supercomputers climate control system is collected every
minute. It includes data from several indoor temperature and humidity sensors
and the status of each of 8 in-row air conditioners (air/coolant temperature
before/after the air conditioner, and a number of various alerts). More than 60
parameters are recorded at the same interval from each of the five UPS units:
the status of grid power and the UPS operating module, battery status, etc.

About 160 rules are used to control the operation of the Chebyshev super-
computer. Some of them are: GSM modem account balance is close to the deacti-
vation limit; failures in the operation of two or three chillers; substantial increase
in the error rate on network interfaces; number of user sessions at the host is
below threshold.

In both cases of Lomonosov and Chebyshev supercomputers, overhead of
monitoring systems is very low: <1 % of computation load of nodes and <1 %
of communication network bandwidth is used. Octotron instance for Lomonosov
supercomputer works on one dedicated server (2x Xeon E5450, 32 GB RAM),
uses <10 % of CPU and 6 GB of physical memory (20 GB of virtual). Chebyshev
instance requires much less resources.
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Within the evaluation period Octotron system is being used together with
ClustrX Safe/AESS (mentioned in Sect. 2) on Lomonosov supercomputer. In this
case Octotron only notifies about found failures but do not perform automatic
actions like shutting down hardware. We still had few opportunities to fully check
functionality of our system, since in most cases failures are local and not very
hard to find. The most common failures are: node went down; temperature of
HW component is rising; IB card failed; etc. A few less common cases that were
discovered: not expected RAM memory volume on several nodes; chiller failure;
not enough disk space on utility server; password attack on utility server. One
interesting case we’d like to mention here. During summer outside temperature
was getting very high, and at the same time small part of cooling hardware
was down. Supercomputer became to overheat, and Octotron system notified
administrators that this temperature problem is getting critical within the whole
machine.

7 Conclusion

Currently, Octotron is used to support the reliable autonomous operation of the
Chebyshev and Lomonosov supercomputer at MSU. In the near future, it will
be deployed on the new Lomonosov-2 supercomputer.

The architecture and implementation of the Octotron system meets all of the
criteria developed earlier. Potential sources of supercomputer failure are identi-
fied, thanks to a complete model of the target system and automatic monitor-
ing of each component. Octotron is easily scalable for any supercomputer with
petaflops performance, as confirmed by early experiments with the Lomonosov
supercomputer. There are interesting areas for development, too. For exam-
ple, further scalability can be achieved by breaking down the supercomputer
model into a set of smaller models and launching several independent copies
of Octotron, each monitoring its own part of the system. The overheads of the
current version of Octotron are small and have no serious impact on the super-
computers performance.

Now, the Octotron system is following several directions of development. One
is related to developing a shared bank of potential failures. Furthermore, inter-
active model visualization tools are being developed which allow the model not
only to be viewed, but also promptly modified. Automated model creating tools
will be expanded as well. Another interesting and promising area is an in-depth
analysis of the flow of events taking place inside a supercomputer. This is aimed
both at locating the root cause of failures and emergencies, and at forecasting
such situations in the future. It is important that all of this functionality can be
implemented by developing new modules and linking them to the already fully
functioning Octotron kernel.

It is also noteworthy that the supercomputer model gets a value of its own as
the key repository of knowledge on its structure. Moreover, the supercomputer
model can be effective for educational purposes, since it can easily be used to
demonstrate key components of a supercomputer and the relationships between
them.
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Octotron is available under an open MIT license [12,13].
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