Chapter 2
Intelligent Digital Signal Processing
and Feature Extraction Methods

Janos Szalai and Ferenc Emil Mozes

Abstract Intelligent systems comprise a large variety of applications, including
ones based on signal processing. This field benefits from considerable popularity,
especially with recent advances in artificial intelligence, improving existing pro-
cessing methods and providing robust and scalable solutions to existing and new
problems. This chapter builds on well-known signal processing techniques, such as
the short-time Fourier and wavelet transform, and introduces the concept of
instantaneous frequency along with implementation details. Applications featuring
the presented methods are discussed in an attempt to show how intelligent systems
and signal processing can work together. Examples that highlight the cooperation
between signal analysis and fuzzy c-means clustering, neural networks and support
vector machines are being presented.

Keywords Signal processing - Signal-adaptive processing -+ Frequency domain
transforms - Instantaneous frequency - Fuzzy c-means - Fuzzy systems - Support
vector machine - Frequency analysis - Time-frequency analysis + Neural networks

2.1 Introduction

Intelligent systems on their own are not always enough to handle complex tasks. In
these cases the preprocessing of the signals is a necessary step. Often the prepro-
cessing algorithms not only convert the initial data into a more advantageous for-
mat, but they are also capable of realizing feature extraction on the data. This aspect
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is equally important as the concept of intelligent systems themselves, for no clas-
sification can succeed if the features of the input data are not emphasized correctly
beforehand.

The goal of the chapter is to present well-known signal processing methods and
the way these can be combined with intelligent systems in order to create powerful
feature extraction techniques. In order to achieve this, several case studies are pre-
sented to illustrate the power of hybrid systems. The main emphasis is on instanta-
neous time-frequency analysis, since it is proven to be a powerful method in several
technical and scientific areas. The authors’ contributions to the computation of the
instantaneous frequency and application of the empirical mode decomposition are
also presented, highlighting the limitations of the existing methods and showing at
the same time a possible approach on T-wave peak detection in electrocardiograms.

Classical signal processing methods have been widely used in different fields of
engineering and natural sciences in order to highlight meaningful information
underlying in a wide variety of signals. In this chapter we aim to present not only the
best known signal processing methods, but also ones that proved to be the most
useful. The oldest and most utilized method is the Fourier transform, which has been
applied in several domains of scientific data processing, but it has very strong
limitations due to the constraints it imposes on the analyzed data. Then the
short-time Fourier transform and the wavelet transform are presented, as they pro-
vide both temporal and frequency information as opposed to the Fourier transform.
These methods form the basis of most applications nowadays, as they offer the
possibility of time-frequency analysis of signals. Finally, the Hilbert-Huang
transform is presented as a novel signal processing method, which introduces the
concept of instantaneous frequency that can be determined for every time point,
making it possible to have a deeper look into different phenomena.

The combinations of these methods with intelligent systems are described in the
second part of the chapter. Several applications are presented where fuzzy classi-
fiers, support vector machines and artificial neural networks are used for decision
making. Interconnecting these intelligent methods with signal processing will result
in hybrid intelligent systems capable of solving computationally difficult problems.

2.2 The Fourier Transform

It is a well known fact that periodic functions can be expanded into Fourier series
using weighted sums of sines and cosines. In the real world, however, most of the
physical phenomena can’t be treated as periodical occurrences. For these shapes
there exists the Fourier transform which is an integral taken over the whole defi-
nition domain. It is thus assumed that the function is represented on the whole real
axis. Applying the Fourier transform to real-world signals makes the spectral
analysis of phenomena possible, offering more information than it would be
available in the time domain.
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The definition of the Fourier transform is given by Eq. 2.1 for any integrable
function f : R — C [1]

Flo) = l " f)e gy 2.1)

where ¢ is the time variable and o is the frequency variable of the Fourier plane.

The Fourier transform describes the original function (or signal) as a bijection,
thus the original function can be fully recovered if its Fourier transform is known.
This process is achieved by applying the inverse Fourier transform described by
Eq. 2.2.

f(t) = [ " F(o)e¥ ™ do (2.2)

o0

The Fourier transform is built upon the Fourier series and in a straightforward
manner on the decomposition of functions into sinusoidal basis functions. This can
be easily proven using Euler’s formula:

F(w) = /fof(t)(cos(—an)) + isin(—2ntw))dt (2.3)

However, most of the practical applications are not dealing with continuous domain
signals and functions. Instead they use digitally sampled signals. For these signals
an adapted version of the Fourier transform can be used, called the discrete Fourier
transform (DFT), defined by Eq. 2.4 for a time series x,, where n is the sample
number, & is the wave number and N is the total number of samples.

N-1 _
X, = ane%m (2.4)
n=0

Naturally, this also has an inverse transform described by Eq. 2.5.

lel

Xy = NZXkez’;Vﬂ (2.5)

k=0

Whenever possible, the fast Fourier transform (FFT) is used instead of the discrete
Fourier transform, mostly based on performance and execution time considerations
[2]. The most efficient way to use the FFT is to have signals with number of
samples equal to some power of two. This has to do with the way the FFT algorithm
is constructed. Further details can be found in [3, 4]. The computational complexity
that can be achieved this way is O(nlogn) as opposed to the DFT’s O(n?).
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The Fourier transform considers the analyzed signal in its full length, it is not
using an analyzing window, thus sometimes identifies false frequency components
that in reality aren’t present in the signal. This explains why the best results are
achieved for full periods of periodic signals.

2.2.1 Application of the Fourier Transform

The FFT is used in various fields, such as multimedia [5], optical [6], seismological
[7], spectroscopy [8] or magnetic resonance signal processing [9]. In this part an
application in the field of magnetic resonance imaging (MRI) is going to be pre-
sented briefly.

Magnetic resonance imaging produces images of the human body by exciting the
hydrogen (‘H) nuclei with radio frequency pulses and then measuring the radio
frequencies emitted by these nuclei as they recover to their initial energy state.
Localization of different frequencies is done by modifying the main magnetic field
using imaging gradients along the axes of the imaged plane. The frequencies emitted
by different nuclei are equal to their precessional frequencies [9]. By measuring the
electrical current induced in a receiver coil by the emitted RF frequencies the
Fourier-space (or k-space) of the image is constructed using frequencies relative to
the position of imaging gradients. The measured spatial frequency spectrum is then
transformed to space domain (image domain) using the inverse Fourier transform.

This is an example of using the inverse Fourier transform in more than one
dimension. Equations 2.6-2.9 describe the two dimensional continuous Fourier
transform, the two dimensional continuous inverse Fourier transform, the two
dimensional discrete Fourier transform and respectively, the two dimensional dis-
crete inverse Fourier transform.

o0 (o) .
Flu) = [ [ e 2 2.6)

o0 oo X
f()@y)z/ / F(u, v) ™) dydy (2.7)

In Egs. 2.6 and 2.7 x and y are space variables, u and v are spectral variables.

Ko e 2 HR) (2.8)

Xnm = —F7—= Xk,lezm(ﬁJr%) (29)
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In Egs. 2.8 and 2.9 n and m are discrete space variables, k and [ are discrete wave
numbers.

Figure 2.1 shows the equivalence between 2D spectral space and 2D image
space.

Fig. 2.1 Equivalence
between k-space and image
space. a k-space
representation of the
Shepp-Logan head phantom.
b Reconstructed image of the
Shepp-Logan head phantom
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2.3 The Short-Time Fourier Transform

The Fourier transform does not reveal any temporal information about the fre-
quency components present in the signal, making it impossible to locate them in
specific applications. The Fourier transform “looks” at the analyzed signal during
its whole time span and identifies frequency components as if they were present
during the whole signal. Obviously, this is not the case in most of the applications.
A way to introduce temporal information in the Fourier transform is to apply it on
the signal using a sliding window with a constant width [1]. Sliding this window
over the whole length of the signal will offer the possibility to get both spectral and
temporal information about the signal. Equation 2.10 defines the short-time Fourier
transform, where w is the windowing function, ¢ is the time variable, w is the
frequency variable and 7 is the time variable of the spectrogram.

F(w,1) = /fof(t)e’m””w(t — 1)dt (2.10)

Similarly to the Fourier transform, the short time Fourier transform is also invert-
ible. The original signal can be recovered using Eq. 2.11.

£r) = [ h [ " Flo, e dodt (2.11)

The discrete short-time Fourier transform is described by Eq. 2.12, where similarly
to the discrete Fourier transform, r is the discrete sample number of the time series
X, and k is the wave number. The time variable of spectrogram is represented by m.
Inverting the discrete short-time Fourier transform is not as simple as the contin-
uous one, it is heavily based on knowledge about the window function and the
overlap between successive windows.

o0
X = anwn,mefy (2.12)
n=0

A very important element of the short time Fourier transform is the windowing
function. The way the windowing function and its parameters are chosen, will affect
the spectrum produced by the transform. Hann and Hamming windows are often
used due to their favorable frequency responses. The most important parameters of
a window function are its length and overlap—the resolution of the short time
Fourier transform in both the temporal and spectral domain is influenced by
these parameters. As we reduce the length of the window, temporal localization
gets better in detriment of spectral resolution. If the window width is increased,
the temporal resolution decreases but the frequency resolution increases. This
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phenomenon is strongly related to Heisenberg’s uncertainty principle and is
expressed by the inequality described with Eq. 2.13 [10].

1

0.0 > yye (2.13)
Here, 0, and oy represent the standard deviations in time and frequency, respec-
tively, and their product is bounded. The windowing function that can offer max-
imal resolution in both domains is the Gaussian window [11]. This limitation on
resolution is the major drawback of the transform, making it unsuitable for situa-
tions where precise time and frequency information are both essential, e.g. in some
electrophysiological applications.

Another drawback of the short time Fourier transform is that it can become
numerically unstable [11], i.e. for small perturbations in the initial data set the
output would be significantly different. Using analyzing windows is necessary to
introduce temporal localization of frequency components of the signal, but there is a
drawback to this. The shape of the windowing function will determine the amount
of false frequency components in the spectrum and it also influences the amplitude
of the spectral components. This is why there exists such a wide range of window
functions to accommodate all needs.

2.3.1 Application of the Short-Time Fourier Transform

A wide range of applications exist for the short-time Fourier transform in the audio
signal processing domain. However, this transform can also be used in image
processing.

The short-time Fourier transform can be used to enhance fingerprint images, as it
is described in Chikkerur’s paper [12]. The authors present an enhancement tech-
nique based on frequency domain filtering of the fingerprint image. The short-time
Fourier transform is utilized first to get orientation and frequency maps of the
original image. Just like the Fourier transform, the short-time Fourier transform can
also be extended to higher dimensions. Equation 2.14 presents the 2D form of this
transform.

X(t1, 12,01, 02) = / / I(x,)W(x—11,y— rz)e_j(“"x”)zy)dxdy (2.14)

where W is the complex conjugate of a window function, x and y are spatial
variables, @, and w, are frequency variables and 7, and 7, are time variables of the
two-dimensional spectrogram. In the case of this application, the window function
is a raised cosine. After the short-time Fourier transform was carried out, the whole
image can be modeled as a surface wave function:
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I(x,y) = A(cos(2nr(xcos 8+ ysinf))) (2.15)

Here r and 0 are the frequency and the ridge orientation in the image and A is a
constant amplitude. They can be deduced from the short-time Fourier transform and
they are considered random variables as they are defined by probability density
functions. Thus the joint probability density function is defined by:

2
p(r,0) =L (2.16)

AR

where F represents the Fourier spectrum in polar form.
The marginal density functions for the frequency and the orientation are
described by Eqgs. 2.17 and 2.18.

p(r) :/ep(r, 0)do (2.17)

p(0) :/p(r, 0)dr (2.18)

Then the ridge orientation is computed as the expected value of the orientation
variable:

1., [,p(0)sin(20)d0
E(0) —un lf:))p(é)) cos(20)do (2.19)

This average is further smoothened using a Gaussian smoothing kernel.
The ridge frequency image is obtained by calculating the expected value of the
frequency variable:

E(r) :/p(r)rdr (2.20)

This frequency image is also smoothened, but an isotropic diffusion smoothing is used
to avoid errors being propagated from the edges of the image towards the middle of it.

In the next step an energy map is determined, used for differentiating areas
which do not contain ridges and thus have very low energy from the short-time
Fourier transform, from areas of interest. This energy map is then used as a basis of
thresholding in order to get two different regions of the image. Equation 2.21 gives
the definition of this energy based region mask.

E(x,y) = log ( / /6 |F(r, 9)|2> (2.21)
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To further reduce the discontinuities due to the block processing method, a coherence
image is produced, which takes into consideration the level of orientation matching
around individual points, as described by Eq. 2.22, (xo, yo) being the central point
and (x;, y;) are the points overlapped by the W window. The values of this map will be
high when the orientation of a block is similar to neighboring blocks’ orientation.

Z(iJ)EW COS (B(X(),y()) - H(XUyJ))
W x W

C(x0,y0) = (2.22)

The actual image quality enhancement is then produced by applying algorithms
described by Sherlock and Monro in [13].

2.4 The Wavelet Transform

The fixed width of the window used in the short time Fourier transform and the limited
resolution of both the spectral and temporal domain are key reasons why the STFT
cannot be used in many of the applications demanding time-frequency analysis. For
example, non-stationary signal analysis depends heavily on determining what fre-
quency components are present in the signal at a certain moment in time as well as on the
possibility to search the signal for the occurrences of certain frequency components.
A new transform method was developed to face all these problems, called the
wavelet transform. By definition, the wavelet transform is also an integral trans-
form, using windows to slide over the analyzed signal in order to obtain
time-frequency information from it [14, 15]. The major difference between this
transform and the short time Fourier transform is that the wavelet transform uses
windows which have variable width and amplitude, allowing the transform to
analyze every bit of the signal. There are many different analyzing windows and
they are called wavelets. Every wavelet is generally characterized by two param-
eters: scale (a) and translation (b). Equation 2.23 describes the continuous wavelet
transform where a represents the scaling factor, b is the translation factor, \ is a
continuous function (i € L?(R)) with i being its complex conjugate and x is the
analyzed signal in the time domain.  is also called the mother wavelet.

o= o

Mother wavelets have zero mean and their square norm is one, as presented by
Eqgs. 2.24 and 2.25.

t—>b
a

)dt (2.23)

/OC Y(t)dt =0 (2.24)

[o¢]
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/OO (1) Pde = 1 (2.25)

oo

Although applications exist for the continuous wavelet transform (mostly analyzing
theoretical aspects, see [16]), most of the problems necessitate a discrete wavelet
transform. This can be derived from the continuous transform by quantization and
without loosing any redundant information. Equation 2.26 defines the discrete
scaling (s) and translation () factors used for the definition of wavelet functions.

s=27 u=k27j kel (2.26)

The result of substituting these variables in the integral transform is described by
Eq. 2.27.

X(j, k) =2? / x(O (27t — k)dr (2.27)
By discretizing the analyzed signal function, the integral transform becomes a sum
as presented by Eq. 2.28.

X = 2> " xap(2n — k) (2.28)

The time-frequency resolution from wavelet decomposition point of view can be
represented by the Heisenberg rectangle, where time and frequency is spread
proportional to the scaling factor s and % With the variation of s the two parameters
of the rectangle, i.e. height and width, change accordingly but with a constraint
stipulating that the area remains the same, as illustrated in Fig. 2.2. In most cases
for a multiscale analysis, a scaling function ¢ is introduced. The relationship
between the two functions ¢ and  is presented below by Eq. 2.29.

Y(sw)| — (2.29)

With this notation the frequency analysis of the signal x at the scale of s is com-
puted as follows:

X(u,5) = (x(t), (1 — u)) (2.30)

Here (.) denotes the inner product of two functions and ¢, is given by:

ps(1) = %(p (é) (2.31)

In practice, the wavelet transform is computed for a defined number of scales (27).
The low frequency component W(u,2/) is often called the DC component of the
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Fig. 2.2 Heiseqberg (a) (b)
rectangles for different
transforms: a continuous
domain (equal windows in the
time direction, no frequency
information); b Fourier
transform (equal windows in
the amplitude direction, no
time information);

¢ short-time Fourier transform
(equal windows in both time
and frequency direction);

d Wavglet tr;,nsform (© (d)
(rectangles with equal area
but varying width and height)

signal. Wavelet coefficients W have a length of 9’—, as the largest depth is bounded by
the signal length.

For implementation purposes a set of conjugate mirror filters 4 and g is con-
structed using the scaling function ¢ and the wavelet function . Their definitions
are given by Egs. 2.32 and 2.33.

nw) = (= (5). 0l —m) (23)

1 t
s = (5v(3) 0 —m) (2.33)

These filter functions have to satisfy the following conditions (here k denotes a filter
function):
. 2 - 2
k()" + k(0 +m)| =2 (2.34)
and
k(0) =2. (2.35)

The discrete orthogonal wavelet decomposition can be calculated by applying the
filter functions on the signal recursively. The two functions separate the signal into
low and high frequency domains were h is a low-pass filter and g ia a high-pass
filter, as presented in Fig. 2.3, while Fig. 2.4 shows the whole decomposition and
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h[n]—>|downsample(by 2)}—>X(1, HPF)

e

x[n]
\g[n]—>|downsample(by 2)F—>X(1, LPF)
Fig. 2.3 One level of wavelet decomposition. LPF denotes a low-pass filter while HPF stands for

a high-pass filter. Further decompositions are usually carried out using the results of the high pass
filter

Filter Possibility
Decomposition \ Reconstruction

x[n] 2 G(w)

Fig. 2.4 Full wavelet decomposition and reconstruction scheme. Notice the down-sampler blocks
on the decomposition side and the up-samplers on the reconstruction side

reconstruction scheme, highlighting the places of eventual filters. A detailed proof
of this concept can be found in [15]. Another, more general approach can be
achieved by using bi-orthogonal decomposition and reconstruction filters. It allows
for a larger room for analyzing, modifying and filtering even multidimensional data.

Having a pair of wavelet function { and a reconstruction function y, the
decomposition and reconstruction is a straightforward implementation with H, G
and K filters satisfying the Eq. 2.36 [17].

P(20) = e H(w)o(
P (20) = e G(w)i(
720) = €K (w)i(0)

H(o)* + G(w)K (w) = 1

)

@) (2.36)

As it turns out, filtering a signal is equal to applying a simple scaling function after
the transformation. By modifying the wavelet coefficients after the decomposition,
we can attenuate or amplify different frequency bands according to the resolution.
This can be done even for a defined time-period depending on the scaling function.

2.4.1 Application of the Wavelet Transform

One of the most well-known examples of using the wavelet transform is the
JPEG-2000 image compression method. The widely used JPEG image compression
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format traditionally uses the discrete cosine transform and has limitations both in
compression efficiency and the quality of edge preserving. In order to overcome
these shortcomings, the JPEG-2000 standard was developed, which uses the dis-
crete wavelet transform in order to decompose the image and then compress it.

As a first step, the image is cut in rectangular tiles and all the following oper-
ations are executed on each tile separately. Each tile is transformed using the
one dimensional discrete wavelet transform, so 4 results are obtained: one with
low-resolution rows and columns, one with low resolution rows and high resolution
columns, one with high resolution rows and low resolution columns and one with
high resolution rows and columns. This decomposition is then repeated a number of
times on the low resolution image block. The decomposition process is called
dyadic decomposition. Both lossless and lossy decompositions are possible: when
using integer wavelet functions, the result is lossless decomposition, while using
real-valued wavelet functions, the result is a lossy decomposition. In both cases the
decomposition is done by applying low-pass and high-pass filters built up using
wavelet functions. On the reconstruction side quadrature mirror filter pairs [1] of the
decomposition side filters are used.

After the decomposition, the obtained coefficient values are quantized, i.e. this is
the step where information loss can occur. When using lossless compression,
though, there is no quantization, or the quantization step is 1.0. Following quan-
tization, entropy encoding of the bit planes is carried out. After this procedure is
done, the image is ready to be stored [18].

2.5 The Hilbert-Huang Transform

2.5.1 |Introducing the Instantaneous Frequency

All of the transform methods presented up until now use the classical definition of
frequency, i.e. the number of repetitions of a phenomenon in unit time. This means
that intra-wave oscillations are totally disregarded when analyzing non-stationary
signals. Already in the 1990s it was recognized that there are serious consequences
of not taking into consideration these intra-wave changes in frequency.

The basic idea behind the instantaneous frequency is very simple. For example,
if we consider a uniform circular motion, then the projection of this movement on
one of the x or y axes will result in one of the Fourier series, more accurately a
single sine or cosine wave. In this case the instantaneous frequency is constant. The
speed of the motion is described as the derivative of the angular position and it is
called angular velocity. This angular velocity is exactly the definition of the
instantaneous frequency. If the motion is uniform, i.e. has a constant speed, the
angular velocity will be constant, thus the frequency will be constant in each time
point. However, if the motion is non-uniform, the sinusoid will have time-variable
periods. This way, the definition of the instantaneous frequency becomes a gen-
eralization of the classical frequency model.
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From now on, we can treat every signal as a sum of non-uniform circular
motions with varying amplitude where the derivative of the angular position is the
instantaneous frequency. Analyzing data from this perspective exceeds the break-
down capability of the Fourier transform as we get an absolute time depending
spectral overview.

It was, however, not until recently when the computation of the instantaneous
frequency was made easily achievable and Huang [19] contributed significantly to
this by developing the Hilbert-Huang transform. Although the new definition of
frequency was also known before Huang [20], there were no straightforward
algorithms for its computation.

2.5.2 Computing the Instantaneous Frequency

There are many ways of computing the instantaneous frequency of a non-stationary
signal. The basic idea is to decompose the original signal into mono-components
which have only one oscillation per period and then computing the instantaneous
frequency of these components by determining the quadrature of the component
and computing the derivative of the phase of the two sub-signals. As we are talking
about empirical methods to decompose a signal into mono-components, there is a
high risk to end up with elements without any link to the original physical phe-
nomenon. A minimal change in the signal form will result in a totally different
decomposition.

The Hilbert-Huang transform is one of the modalities to calculate the instanta-
neous frequency. It consists of two steps:

1. Determine the mono-components of the original signal. This step uses the
empirical mode decomposition algorithm

2. Compute the instantaneous frequency with the Hilbert transform for every
mono-component.

The empirical mode decomposition (EMD) is an iterative algorithm that extracts
mono-components called intrinsic mode functions (IMF) from the original signal.
These IMFs hold two important properties:

1. They have the same number of local maxima and minima, or their number
differs at most in one;
2. Their upper and lower envelope averages to zero.

Because it is an iterative algorithm, the exact number of final IMFs is unknown
beforehand. The algorithm is described by listing 2.1. The mono-components or
intrinsic mode functions can be described by the general equation of a non-uniform,
variable-amplitude circular motion:
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Algorithm 2.1: Pseudocode of the EMD algorithm
1 s« getSignal();

281073

3 k—1;

4 while /isMonotonic(s) do

5 SDk — 1;

6 hieo < 83

7 i 0

8 while SD; > € do

9 max «+— getLocalMaxima(s);

10 min < getLocalMinima(s);
11 upperEnvelope < getSpline(maxima);
12 lowerEnvelope «— getSpline(minima);

upperEnvelope + lowerEnvelope

13 m; «— > ;
14 hici — hy i1 —m;

5 SDy S (hiiot —hy)? :

L zh%i—l

16 Ck —hii; // the k-th IMF
17 S 8§ —Ck;
18 k—k+1;

19 r+<s;// the residue

c(t) = A(t)cos(o(1)) (2.37)

where ¢(¢) is the IMF, A(#) describes the time-variable amplitude part and ¢(7)
represents the time-variable phase.

Due to their fundamental properties, it is easy to find their quadrature and the
Hilbert transform does exactly that. Taking the IMF c¢(¢), the corresponding
quadrature ¢(7) is given by Eq. 2.38.

1 oo
qlt) == / <®) 4 (2.38)
Moot — T
Then the phase difference between them is computed:
q(1)
t) = arctan —= 2.39
@(f) = arctan 0 (2.39)
Then the instantaneous frequency of the IMF will be:
do(t
o) = 21 (2.40)
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Although this transform is a powerful tool for calculating the instantaneous fre-
quency of an IMF, there are some limitations imposed by the Bedrosian and Nuttal
theorems. According to the Bedrosian theorem [21, 22], the IMFs should satisfy the
condition described by Eq. 2.41 in order for the analytical signal provided by the
Hilbert transform to make sense.

H{A(r)cos(o(1))} = A(1)H{cos(o (1))} (2.41)

This condition states that the IMFs should be band limited, i.e. the spectrum of the
time-variable amplitude and the one of the variable phase should not overlap [23].
Failure to conform to this requirement will result in the confusion of amplitude
frequencies in the instantaneous frequency of the IMF.

The Nuttall theorem [24] further states that the Hilbert transform of cos(¢(z)) is
not sin(¢(#)) for any arbitrary ¢(z). Therefore, the result of the Hilbert transform is
not necessarily equal to the true quadrature of the IMF. Because there are no further
restrictions on what an IMF can be, except the ones presented before, using the
Hilbert transform to get the instantaneous frequency of an IMF is considered
unsafe. In practice, the instability of the Hilbert transform can be easily spotted in
regions where the instantaneous frequency becomes negative or a sudden peak
appears in a region where there are no sudden frequency changes in the IMF.

A more accurate way to compute the instantaneous frequency of an IMF is to use
the empirical AM-FM decomposition algorithm [23]. This algorithm is also an
iterative one, just like the EMD and it is presented in listing 2.2. The aim of this
algorithm is to separate the two parts of the IMF, i.e. the amplitude part from the
phase part. The model used by this method is that of modulated signals: the
amplitude part is considered to be the modulator signal and the phase part the
carrier; this is considered the AM modulation in the IMF. The carrier is also
modulated in frequency; this constitutes the FM modulation in the IMF. The
decomposition results in two signals: AM(t), the amplitude part and FM(z), the
frequency part.

Algorithm 2.2: Pseudocode of the empirical AM-FM decomposition

1 s« getlmf();

2 50«5,

3 k1,

4 while s, € [—1;1] do

5 e — getSplineEnvelope(|sy_1]);
6 L Sk Sk—1/e;

7 FM «— sp;

8 AM — s/FM;
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The separation process implies successive approximations of the amplitude part
by cubic spline functions through the local maxima of the IMF signal. After the two
signals are separated, the quadrature of the frequency part is computed:

0(r) = +/1— FM2(r) (2.42)

From here, getting the instantaneous frequency of the IMF matches the Hilbert
transform-based method.

It is important to note that this method satisfies the conditions imposed by both
the Bedrosian and the Nuttall theorems. However, the method is not free of dis-
advantages. The cubic spline envelopes often cross the IMF, meaning that they are
not always greater or equal than the signal, which is a necessary condition for the
algorithm to converge in finite steps. Instead, the method will never converge and a
frequency part belonging to the [—1; 1] interval will never be reached. This problem
and a possible solution to it is addressed in [25].

First, the intervals where the spline crosses the IMF are identified. These
intervals are characterized by an entry and an exit point. The spline is approximated
with a line segment over these intervals and the maximum distance between this
approximation and the IMF is sought. To do this, the segment and the IMF are
rotated to the horizontal axis and the maximum of the IMF is identified. After an
inverse geometric transform a new spline is defined, which contains the maximal
distance point but not the previous extremum point, thus not intersecting the IMF
anymore. These steps are repeated for each interval, until the spline only touches
the IMF but does not cross it. The correction mechanism is illustrated in Fig. 2.5
and it is described as a pseudocode in listing 2.3.

Algorithm 2.3: Pseudocode of the empirical AM-FM decomposition

1 s« getlmf();

2 505,

3 k1,

4 while s, ¢ [—1;1] do

5 e — getSplineEnvelope(|sy_1]);

6 intervalList «— getCrossinglntervals(sz_1, e);

7 while /isempty(intervalList) do

8 p < getMaximumDistancePoint(s,_1, intervalList;);
9 e «— getSplineEnvelope(|sg_i |, p);
10 intervalList <+ getCrossinglntervals(si_1, e);
11 SkHSkfl/e;
12 FM «— s;

13 AM — s/FM;




76 J. Szalai and F.E. Mdzes
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2.5.3 Application of the Hilbert-Huang Transform

2.5.3.1 Detecting the Third and Fourth Heart Sounds
in Phonocardiograms

The Hilbert-Huang transform is an ideal tool for analyzing the heart activity since it
offers frequency information for every sample point. In the following, a detection of
the third and fourth heart sound will be presented through the usage of HHT. The
method is described in [26]. These sounds (S3, S4) represent an abnormal activity
of the heart indicating failure during diastolic period. Processing sound measure-
ments, i.e. identifying S3, S4 is a noninvasive way to detect early myocardial
ischemia. Deficient S3 is related with ventricle activity or problematic blood flow in
the rapid filling phase. The fourth heart sound, S4 is located before the first heart
sound and is a sign of forceful contractions in an effort to overcome a rigid ven-
tricle. The method localizes the presence of S3, S4 hearts sounds using
time-frequency distribution and K-means clustering in electronic stethoscope
recordings. The proposed method can be divided into three stages. The first step
preprocesses the signal, the second one applies the Hilbert-Huang transform to get a
time-magnitude-frequency decomposition followed by a clustering and recognition
procedure.

The role of preprocessing is to eliminate high frequency noise due to recording
artifacts by a low-pass, finite impulse response filter. Then an envelope is produced
using the Hilbert transform noted as Xenyeiope (1] (Eq. 2.43).

xenvelope(n) = |x(n) +]H{x(n)}| (243)
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This envelope is then normalized (Eq. 2.44) to fit the interval [—1;1] and seg-
mented into systolic (S1-S2) and diastolic (S2-S1) periods.

xenvelape (I’l)

max (-xenvelope (I’L)) (244)

Xnorm =

The detection of these terms is based on the Shannon energy as it shows a high rate
of noise rejection property, suppressing low amplitude components. Because of the
main components S1 and S2 will stand out, detection and, therefore, segmentation
is much easier. Equation 2.45 defines how the Shannon energy is computed.
SE(n) = —x2,,, (n)log(x2,,,.(n)) (2.45)
A threshold of 70 % of the maximum Shannon energy is set to differentiate S1
and S2 from other components. Naturally, a higher limit will result in a better
filtering but with the risk of missing some S2 sounds. Recognition is built upon the
following rules to ensure a correct result:

e If two peaks higher than the threshold are detected within 50 ms, the one with
lower energy is eliminated.

e For every interval between the peaks, an interval with shorter length than the
previous interval is denoted as a systolic period, while the other one is a diastolic
period. The uncertain intervals are annotated.

e For those uncertain intervals, a secondary threshold is set to find S1 or S2 which
probably have not been recognized.

As a second step the Hilbert-Huang transformation is applied to the nonlinear
signal, extracting the instantaneous frequencies. It is an iterative empirical proce-
dure resulting in a series of intrinsic mode functions and therefore a sum of
instantaneous frequencies is calculated for a single time instance (Hilbert-Huang
spectrum).

Having a time-frequency map allows for a cluster figure based on pairs of
instantaneous frequencies and their amplitudes. Correlating in-scope cluster points
with the time scale will reveal the position of S3 and S4 sounds. For the cluster
graph the instantaneous frequency with the highest magnitude is selected from the
sum of instantaneous frequencies for a particular time instance. Only one with the
highest impact factor is selected based on the magnitude. The number of points
depends on the resolution of the Hilbert spectrum. These pairs originate from the
diastolic interval as it was segmented in the second part of the method. The
K-means algorithm was used to divide pairs into different groups. Three separate
clusters have been formed depending on the frequency and magnitude distribution.
The one of interest is called the abnormal group with the highest frequencies or
magnitudes. Usually this group has the fewest of points and their projections on the
time axis is periodical. If the points appear right before S1 we found the S4 sound
but if they appear periodically after S2 we can identify S3 elements. For those
possibly missing components, an iterative method was applied to enhance accuracy.
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Records from the Cardiac Auscultatory Recording Database (CARD) of Johns
Hopkins University were used to test the proposed method. As a result, 13 signals
were processed. The method with iterative recognition, achieved a 90.3 % identi-
fication rate for S3, 9.6 % were missed and 9.6 % were marked falsely. For S4,
94.4 % were detected correctly and 5.5 % were missed; 16 % were false positive.
Sensitivity for S3 and S4 was 90.4 % and 94.5 %, respectively. Precision was 90.4
and 85.5 %.

Still, the existence of artifacts during diastolic period, such as diastolic murmur
or noise produced by the electronic stethoscope, would contribute to misjudgments.
Components with low amplitude make the separation of S3 and S4 from back-
ground noise difficult. The proposed method aims to detect early heart diseases,
such as left ventricle dysfunction, congenital heart failure or myocardial ischemia.

2.5.3.2 Identifying T Waves in ECG Signals

The empirical mode decomposition can also be used in ECG signal analysis.
Identifying T waves in an ECG is of special interest, since its morphology can
suggest different heart conditions. Finding the positions of these waves is often
done manually, thus an automated detector is much needed. In [27] we propose a
method that can solve this problem for a wide range of ECG sources.

The general idea behind the method is to identify and remove QRS complexes
from the ECG signal, because these are present in most of the IMFs owing to their
large amplitude and wide frequency spectrum. A method described in [28] is
employed for this task. According to this method, after the ECG is decomposed in
IMFs, the Shannon energy of the sum of the first three IMFs is computed, as
described by Egs. 2.46 and 2.47.

c(t) = i:IMF,-(t) (2.46)
k=1
E,(t) = —c(1)log(c(1)?) (2.47)

Then, using a threshold, the Shannon energy (Ej) is filtered to eliminate background
noise. The threshold is determined by Eq. 2.48 where N is the number of data
points in the Shannon energy.

T= lz E,(i) (2.48)

The threshold filter substitutes each value less than the threshold with zero and keeps
all the other values. Non-zero intervals correspond to the QRS complex intervals of
the ECG signal. After identifying each of these intervals, the corresponding places in
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the original ECG are exchanged with a line segment and the signal is decomposed
again using EMD.

In the newly obtained IMF set the 5th, 6th and 7th will contain waves that construct
the T wave, thus they are summed. Finally, the peaks in this newly calculated sum
appearing right after the positions of QRS complexes are marked as T waves in the
original signal. Figure 2.6 presents the steps of the identification process.

Signals from PhysioNet’s QT database [29] were used to test the algorithm. This
testing resulted in a 95.99 % positive predictability and 99.96 % sensitivity when
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Fig. 2.6 Graphical representation of the T wave identification process
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different ECG signals were presented to it. Noise tolerance was also tested by
feeding an ECG signal with different amplitudes of noise to the method. An
87.71 % positive predictability was obtained for a signal to noise ratio as low as
12 dB. The corresponding sensitivity was of 100 %.

2.6 Hybrid Signal Processing Systems

2.6.1 The Discrete Wavelet Transform and Fuzzy C-Means
Clustering

Medical signal processing represents an essential part of a medical decision making
system, however it is able to provide only signal conditioning and feature extraction
without offering any information on the diseases that are reflected in the acquired
signal. Getting information about any condition is basically a classification prob-
lem, and thus it can be addressed by a variety of artificial intelligence methods.
Therefore, it makes sense to combine artificial intelligence methods with
well-known signal processing methods to assist a medical decision making system.

A classical but also very important application area of medical decision making
systems is electrocardiogram (ECG) interpretation. ECG signal processing is a
much discussed topic. There are different ways of processing these signals
depending on what features are being sought for. Thus, there are methods using
classical Fourier analysis [30], time frequency analysis by making use of the
wavelet transform [31], the Hilbert-Huang transform [32, 33], the Wigner-Ville
distribution [34] or by using a multivariate signal analysis such as the independent
component analysis [35] or the principal component analysis [36]. Support vector
machine based analysis has also gained popularity in the past years [37, 38].

A very good example of combining a classical signal processing method with an
intelligent classification method is presented in [39] and describes a method of ECG
signal classification using a combination of the wavelet transform and fuzzy
c-means clustering. The main goal of said paper is to describe a way to implement
the classification system on a mobile device.

The presented approach makes use of the discrete wavelet transform, which
provides discrete wavelet coefficients that describe the signal. To achieve these
coefficients, the finite-length signal is convolved with filters that separate the signal
into low and high frequency sub-signals. The signal can be reconstructed with the
use of quadrature mirror filters from the coefficient sets.

The artificial intelligence algorithm used in this article is the fuzzy c-means
clustering. The idea of this method is to do a fuzzy partitioning of the data into
classes. In fact, the algorithm can be reduced to a constrained optimization problem.
The cost function to be optimized is:
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N c

T2 =3 > Aflli =l (2.49)

i=1 j=1

In this equation, Jy is the cost function, f is the level of fuzziness, chosen to be 1.5
in this specific application, N is the number of data vectors, ¢ represents the number
of clusters, A; is the grade of membership of data vector i to cluster j, x; is the ith
data vector and z; is the center of the jth cluster. The grades of membership are
computed as Euclidean distances of data vectors from the center of the cluster. The
detailed fuzzy c-means algorithm is described in [40].

Figure 2.7 presents the components of the diagnosing system. The ECG signals
collected by body sensors are first preprocessed, since they are contaminated by
both low and high frequency noise. The baseline drift represents a low frequency
component in the signal, while thermal noise is responsible for the high frequency
noise. Both artifacts are removed using the discrete wavelet transform, applying the
Daubechies-9 wavelet for the signal decomposition. By carefully combining some
of the signal components and then reconstructing the signal, the noises can be
filtered out. The signals were also normalized to lay between —1 mV and 1 mV.
This normalization is also convenient if at a later stage support for different body
sensors will be included in the overall system. This step was necessary because in
the testing phase the ECG signals from the MIT-BIH database were used, which
were recorded by a large variety of devices from all over the world.

The next stage consisted of extracting different features of the signals. In total 6
characteristics were chosen, as follows: the length of a heartbeat period, called the
RR period, the length of the QRS complex relative to the RR length, the length of
the RS interval relative to the QRS length, the period of the ST segment relative to
the RR length, the amplitude of the QRS complex and the amplitude of the T wave.
Measuring these parameter is done also by using the DWT and combining com-
ponents so that the QRS complex and the P-T-U waves could be separated.
An ECG time-series was thus characterized by a feature vector having 6 elements
corresponding to the measurements of the 6 aforementioned parameters.

ECG

Feature extraction
Preprocessing: - RR interval )
- Noise reduction - QRs interval / RR .|nterval .
- Baseline drift [ - RS interval / QRS interval »| Fuzzy clustering [———>
removal Clean| ST interval / RR interval Feat
- QRS amplitude eature Decision
ECG | - T amplitude vector

Fig. 2.7 The general architecture of the classification system
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In the last stage of the classification algorithm the feature vectors are separated
into clusters by the fuzzy c-means algorithm, using a fuzziness number = 1.5 and
3 clusters. Two ECG data sets from the MIT-BIH database were used. The first one
contained 25 ECG signals while the other one had 23 ECGs. Portions with a length
of 10 s were selected from each signal and their feature vectors were fed to the
fuzzy c-means clustering algorithm. Feature vectors corresponding to normal ECGs
were classified into one cluster and abnormal ones in the other two clusters. There
were, however mismatches too. 3 out of 25 ECGs from the first group and 6 out of
23 ECGs from the second group were misclassified.

The diagnostic system was implemented on a mobile device running
Windows CE having an ARM9 processor. The wavelet decomposition and fuzzy
c-means clustering were implemented in the Matlab environment and then C++
code was generated using Code Generator. According to the article, a nearly
real-time execution was made possible on the mobile device.

2.6.2 Automatic Sleep Stage Classification

The correct diagnosis of sleep stages is crucial when it comes to identifying and
treating possible sleep apnea, insomnia or narcolepsy conditions. Even today much
of this work is done visually by experts, based on polysomnogram (PSG) tech-
niques described by the American Academy of Sleep Medicine (AASM) [41] or by
the guidelines defined by Rechtschaffen’s and Kales’s [42]. Basically, most spe-
cialists try to identify 6 repeating sleep stages from electroencephalogram
(EEG) measurements combined with electrooculograms (EOG) and electromyogram
(EMG) signals to enhance accuracy. The initial stage is characterized by being
awake (Awa) followed by S1, transition between wakefulness and sleep. S2 is
considered to be the baseline; it may consist of 45-55 % of the entire sleep duration.
Stage three and four (S3, S4) represent the recovery mode of the body and mind also
known as deep-sleep period followed by the rapid eye movement (REM) stage.
From this perspective, two major phases can be distinguished when it comes to
sleep, REM and non-REM (NREM), where S1, S2, S3 and S4 are sub-divisions of
the NREM phase. These stages repeat themselves 4-5 times during one night.

The EMG activity is almost missing during REM phase. This helps to differ-
entiate S1 from REM using EMG measurements. Similarly EOG is useful when it
comes to eye movement detection in S1 and REM sleep. In the following, different
methods will be presented, all developed to make the evaluation of sleep signals as
automatic as possible. The task to design such a system usually takes into con-
sideration the amount of data and the complexity of classification algorithms. These
two parameters greatly influence the overall behavior of the end result. For instance,
multichannel EEG devices represent a drawback to patient comfort and in ambu-
latory environment compared to single channel devices. Therefore recent studies
aim to develop methods that use only one measurement to detect sleep stages
[43—49]. Another challenge represents the right choice and combination of different
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feature extraction methods working together with pattern recognition systems.
A great variety has been proposed over the years with different and surprising
outcomes. For instance Hidden Markov Models (HMM), fuzzy classifiers, different
types of artificial neural networks (ANN) using feature vectors based on power
spectral densities (PSD), wavelet decompositions or visibility graphs (VG). Still, it
is difficult to achieve a higher accuracy like the ones produced by experts using
manual techniques. However, in [50] several approaches are proposed for the
discussed problem through a particular neural network, financial forecast based
method, non-smooth optimization problem and frequency domain analysis.
The ANN approach suggests the usage of a time-delay neural network (TDNN)
with the property of reducing input data size, an important element when it comes
to processing EEG, EMG and EOG simultaneously. A particular output from such a
network depends not only on the input but it takes into consideration a range of the
previous input values. The benefit of this particularity makes it possible to reduce
the input-volume as previous information is already stored in the network. In this
study the network was configured with 1 input layer, 3 hidden layers and 1 output
layer. Normalized PSG variables were fed as input: direct EEG, EMG and EOG
measurements. The output layer consists of 6 nodes corresponding to the 6 sleep
stages. As a result, the network was able to obtain a classification accuracy of
76.15 % from thousands of test cases.

A similar model proposed by [51] uses a multi-layer perceptron (MLP), a neural
network designed for classification. The network had 5 input nodes and again 6
output nodes for the 6 sleep-stages. Electrode distribution followed the 10-20
system but only the C3-A2 left-right and C4-A1 right-left measurements were used.
A well known fact in EEG signal processing is related to the frequency bands that
reflect the mind’s different states. There are usually 5 frequency bands related to
mental activity: 6 (<4 Hz), 6 (4-7 Hz), « (8-12 Hz), ¢ (13-16 Hz) and 5 (>16 Hz).
Usually the short time Fourier transform is used to gain an overview in the
time-frequency domain. Due to the non-linearly of these signals, the power spectra
is used in this case. The proposed method calculates the relative spectral power
(RSP) for a window of 30 s, equal to the band spectral power (BSP) divided to the
total spectral power (TSP).

RSP, — BSP;
TSP

,i€{0,0,0,0,p} (2.50)

After training the network and finding the optimal structure the method was able to
recognize sleep states with an accuracy of 76 %. The final conclusion states that
Awa, S2, S4 and REM stages are easily recognized, however S1 is confused with
S2 and REM, being the hardest stage to identify. By adding the second derivative of
the EEG signal to the input vector the overall performance of the system did not
improve but remained in the 76-77 % range.

ANN combined with wavelet packet coefficients was suggested in [52] where
they used a 3-layer feed forward perceptron with 12 input nodes, 1 hidden
layer (with 8 neurons for best results) and 1 output layer (with 4 nodes) as a
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classifier. The goal of the perceptron was to distinguish between sleep stages Awa,
S1 + REM, S2 and SWS also known as deep-sleep stage. Adaptive learning rate
has been applied to avoid stagnation on the error surface. This translates to an
adaptive learning step solution minimizing the learning period. For testing purposes
PhysioBank’s EEG Database was used, more precisely Pz-Oz bipolar recordings.
Wavelet packets had been chosen as a feature extraction method, allowing for a
finer frequency resolution. After fine-tuning the packet tree, the structure shown in
Fig. 2.8 was defined as the transformation method supplying feature vectors to the
perceptron. The subbands represent the following EEG frequency bands:

. Delta—0.39-3.13 Hz

. Theta—3.13-8.46 Hz

. Alpha—g8.46-10.93 Hz

. Spindle—10.93-15.63 Hz
. Betal—15.63-21.88 Hz

. Beta2—21.88-37.50 Hz

AN B W

However, the 6 wavelet coefficient groups were further refined to a 5 element
classification series as a statistical time-frequency distribution representation. The
first element holds the mean quadratic value for each of the 6 bands. The second
element is the total energy, followed by multiple elements calculated as the ratio of
different energy bands (alpha, delta and theta). The fourth and fifth elements are the
mean of the absolute values and the standard deviation of the coefficients in each
sub-band. The 5 element series fed to the MLP resulted in a very high classification
rate, indicating that the method could discriminate between Awa, S1 + REM, S2
and SWS with a specificity of 94.4 + 4.5 %, a sensitivity of 84.2 + 3.9 % and an
accuracy of 93.0 &+ 4.0 %.

Another feature extraction method uses financial forecasting to predict sleep
stages based on the hypothesis that a variable from the sleep measurement depends
on the previous values. It relies on conditional probability to foretell the next stage.
Raw date is mapped into a 5 symbol series depending on preset derivative
thresholds. The new values are tagged as follows: BI (big increase), SI (small
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Fig. 2.8 Wavelet packet transform and selected subbands
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increase), N (no change), SD (small decrease) and BD (big decrease). After the
tagging the method looks for particular sequences like BI, BI, BI, SI, N, SD and SI
defining one of the sleep stages. As a result, this approach finds it hard to classify
S2 correctly; on the other hand its simplicity is a great advantage with an overall
accuracy of above 70 % compared again to expert classification structures.

Non-smoothing optimization is a relatively new extraction method having its
roots in the field of signal processing. The main idea behind it is simple, where the
algorithm tries to fit a sum of two sine waves on the raw EEG. The deviation from
the sine waves represents the information itself. In this case the amplitude is a linear
function resulting in a more adequate curve fitting procedure then with the ordinary
scalar value. This way sudden changes can be tracked maintaining vital information
of the signal. The sum is composed of two sine curves, a low frequency component
tracking the baseline wandering and a high frequency component being able to
adapt to all kind of shapes.

As a summary to the sleep-stage classification methods we can add that even
manual scoring done by experts show differences. Comparisons between results can
score below 80 %. This means that the actual automatic sleep stage classification
methods are as reliably as the experts.

2.6.3 The Hilbert-Huang Transform and Support Vector
Machines

In recent years the car industry has produced a whole new generation of vehicles,
more reliable, safer, and with build-in-intelligence to recognize and anticipate
different type of engine failures. Wang et al. present in [53] a method of failure
detection based on the Hilbert-Huang transform and support vector machines.
Based on the failure source, the engine fault diagnosis (EFD) technology defines 4
types of analysis methods: engine performance detection, lubricating oil analysis,
vibration based methods, and noise based diagnostic methods. The vibration and
noise based EFD methods normally extract the failure features from the vibration or
noise signals of a running engine and make decisions based on diagnostic results by
using pattern recognition algorithms. Usually such a system is composed of two
larger elements. One is responsible for processing the measured signals and sup-
plying useful features, called a feature extractor and the second element is a clas-
sifier. The classifier’s role is to separate the different engine failures into categories
based on feature types.

Noises from a car’s engine are non-stationary under working conditions, for this
reason the Hilbert-Huang transform presents itself as an ideal candidate supplying
time variant mono-components related to circular motions. For the classification
algorithm support vector machine (SVM) [54] has been used as a multi-category
classifier based on “one against one” voting decision method. Such a model will
define an optimal hyper-plane which separates fault types by mapping one group of
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feature vectors (belonging to a particular engine fault) on one side of the plane and
other groups on different sides thus categorizing them geometrically. Basically, for
n categories "("; ) SVM models are constructed from a training database for every
two differing category. A measurement sample will pass every model and in the end
it will be ranked upon the received votes. The final category is the one with the
largest number of votes.

For the analysis it is presumed that in fault conditions, particular engine noises
will reflect in the amplitude and frequency domain and certain failures will shift the
energy quantum from one frequency band to another. Therefore the energy pattern
of the intrinsic mode function is considered to be at the heart of the proposed feature
extraction method.

The process is performed in 4 steps. First the sound is filtered to remove
unwanted noise, and then the IMFs are calculated together with the residual ele-
ment. Usually the residual and particular IMFs are discarded as they carry almost no
energy. After selecting the IMFs, a correlation coefficient is calculated between the
original signal and every IMF with Eq. 2.51.

1o = [P = S0 — ) 251

Here § represents the original measurement, c; are the IMFs while .., ., and ug, s
are the mean values and the standard deviations of these signals. Every correlation
coefficient falls between O and 1, where 1 means that the two signals are identical
and 0 means that they are totally different. A large value means that the two signals
have much in common, giving the method a chance to choose between the IMFs.
Usually mono-components with a low correlation coefficient are discarded, there-
fore only IMFs with relevant information content are processed further. The third
step computes the energy moment of the selected IMFs, denoted with E;.

E=Y {(kAz)|ci(kAz)|2} (2.52)
k=1
As a last step a feature vector is constructed from the energy moments.
Tg = [E1, Eyy . . ., E7] (2.53)

These vectors also describe the energy distribution among the IMFs and reflect their
change through time. To further enhance the vector’s efficiency to track changes,
the marginal spectrum of the IMFS is added to them as the maximum amplitude A,
and the corresponding instantaneous frequency fy:

T = [ElaE27"'7E77A07f()] (254)
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The differences between features are then used to distinguish between the states of
the engine, including failures and normal regimes, making it possible to diagnose
engine faults.

The proposed method was tested using a sample car with a fault generator
reproducing valves, pistons, rods, crankshaft, timing belt and structure vibrations.
A microphone was placed over the engine to record its operation at 2500 rotations
per minute. The simulated 7 engine faults are: normal state without faults, a break
or short in the circuit of throttle threshold sensor, break or short in the circuit of
ignition coil, a break or short in the circuit of the Hall sensor, basic set errors in the
throttle control unit, defect in the circuit of the first cylinder injector and defect in
the circuit of the third cylinder injector. Every state was recorded 20 times, totaling
in 140 signals which were used to train and validate the SVM models through 7 and
9 dimensional feature vectors. An iterative training algorithm has been used to train
the SVM models by minimizing an error function. Based on the error function’s
form, two model types can be distinguished: C-SVM and nu-SVM. However results
show that the C-SVM model outperforms the nu-SVM regardless of the dimensions
of the feature vectors.

For testing purposes 70 measurements were used to evaluate the proposed
method. Measurements included faulty and normal behavior and both 9 and 7
dimensional feature vectors were used to see which model is best suited for EFD.
For a total of 56 engine states the 7 dimensional feature vector model classified
correctly 80 % of the states, where the one using a 9 dimensional model was able to
predict 91.43 % of it right. The difference between the accuracy can be acknowl-
edged to the extra information carried by Ay and fy. The outcome is greatly
influenced by the model’s ability to distinguish between states, however faults 4
and 5 are sometimes confused with state 1 and fault 2. This can be attributed to the
fact that faults 2 and 5 represent throttle problems which are hard to distinguish
only by engine noise and fault 4 is a failure of the Hall sensor which has almost no
effect on the acoustic properties of the engine, easily mistaken with the normal state
1. As a conclusion, the paper states that the noise based HHT SVM method can’t be
applied to all types of engine failures. Furthermore to enhance precision, a 5 state
classifier has been proposed (omitting faults 4 and 5) which resulted in 96 %
accuracy. To validate this new model a second set of measurements has been
acquired resulting in a test set of 50 states. Again, the model recognized every state
with an accuracy of 94-96 %. Thus, the HHT based 9 dimensional feature vectors
together with multi-class SVMs for pattern recognition can be used to design noise
based EFD with accuracy above 90 %. The approach itself can be extended to be
used in different fields of engineering, i.e. machinery diagnostics, speech and image
recognition.
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2.7 Conclusions

We have presented both classical and new signal processing and artificial intelli-
gence methods in the context of complex digital signal processing and feature
extraction. Signal processing methods were revisited in a historical order, from the
Fourier transform to the Hilbert-Huang transform, covering the whole interval of
frequency and time-frequency analysis.

The Fourier and discrete Fourier transform are the most basic ones still being in
use today. They are limited to offering information only on the frequency com-
ponents but none on their time localization. In contrast, the short-time Fourier
transform is capable of offering a basic insight into the time scale of frequency
distributions, however, it is limited by the maximum achievable resolution in both
time and frequency domains.

The wavelet transform comes to avoid this limitation of resolution by offering
variable width analyzing windows, which can adapt to the time scales present in the
analyzed signal. Still, it is the Hilbert-Huang transform which introduces the
instantaneous frequency and offers information about the signal in each time point.

These methods by themselves are capable to decompose signals in different
ways, but are not able to draw conclusions about them. Thus, integrating them in a
hybrid system with artificial intelligence methods offers a robust solution to many
signal processing problems. We have presented several hybrid systems having
various uses: a combination between the wavelet transform and the fuzzy c-means
clustering to aid the differentiation of ECG patterns on mobile devices. Another
hybrid system consists of using the Hilbert-Huang transform and support vector
machines together to perform engine-fault detection. The last presented method
combines the power of wavelet packet decomposition and artificial neural networks
in order to detect sleep stages, based on EEG, EMG and EOG signals.

In conclusion, the combination of intelligent methods with classical, well-known
signal processing transforms yield robust feature extraction systems with applica-
tions in different technical and scientific fields, as the presented case studies have
shown.
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