
Preface

The human brain is constantly exposed to variable sensory information about the
surrounding environment. How does the brain integrate this information to make
reliable inferences and predictions as the basis for decision making? If the available
information is to be used in an optimal manner, sophisticated statistical methods
need to be employed. The question which methods the brain uses to come to
decisions and predictions is still unsolved and one of the most exciting questions of
neuroscience today (Bach 2014; Lisman 2015).

In the statistical field, Bayesian decision theory combines all available infor-
mation in an optimal fashion and thus offers a useful theoretical framework for
explaining probabilistic inference by humans (Jaynes 2003; Robert 2007). In this
framework prior beliefs are constantly updated to posterior beliefs in light of
observed data according to Bayes’ theorem (Baldi and Itti 2010). Thus, the
Bayesian brain hypothesis, which states that the brain codes and computes Bayesian
probabilities, has been proposed and is increasingly recognized as providing a
framework for investigating cognitive brain functions (Kersten et al. 2004; Knill
and Pouget 2004; Friston 2005; Doya et al. 2007; Gold and Shadlen 2007; Kopp
2008; Friston 2010; Bach and Dolan 2012).

Predictive coding theories of cortical functions and the free energy principle
instantiate the Bayesian brain hypothesis (Friston 2002, 2010). They are widely
applied frameworks for functional neuroimaging and electrophysiological studies of
sensory cortical processing (Summerfield et al. 2006; Garrido et al. 2009;
Summerfield and Egner 2009; Egner et al. 2010; Rauss et al. 2011; Winkler and
Czigler 2011; Lieder et al. 2013). Put simply, these theories state that the brain tries
to minimize any “surprise” or prediction error about sensory input. Specifically,
predictive coding theories propose that the brain maintains an internal model of the
world which it updates in dependence on the surprise about a current stimulus, in
order to minimize the surprise about future stimuli (Friston 2002; Friston 2005;
Spratling 2010). While earlier research provided results that are consistent with the
Bayesian brain hypothesis (Hampton et al. 2006; Ostwald et al. 2012; Vilares et al.
2012; Lieder et al. 2013), definite empirical support is surprisingly scarce, and no
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unchallenged conclusion about the utility of the Bayesian brain hypothesis as a
theoretical framework for explaining cognitive functions of the brain has been
achieved so far (Clark 2013).

This work aims at filling this gap by collecting key experimental data in support
of the Bayesian brain hypothesis. Which means are necessary to achieve this goal?
First, some window into the brain is needed. The electroencephalogram (EEG),
which is the signal of the electrical fields of the brain, was first presented nearly 90
years ago with the potential of providing this window (Berger 1929). Although the
EEG data are severely corrupted by noise (Schimmel 1967), they provide signals of
neural activity with a high temporal resolution (Makeig et al. 2004), which enables
studies of brain signals in direct relation with complex cognitive tasks (da Silva
2013) and makes the EEG a useful tool for brain imaging (Michel and Murray
2012). From all the activity which can be seen in the brain, the so-called
event-related potentials (ERPs) are particularly useful for a better understanding of
brain functions. They are the “scalp-recorded neural activity that is generated in a
given neuroanatomical module when a specific computation operation is per-
formed.” (Luck 2014). This implies that by understanding the amplitude fluctua-
tions of these ERPs, the computations of the brain themselves can be deduced.

Thus, the goal of this work is to better understand the probabilistic reasoning of
humans by developing observer models to predict event-related potentials, select the
models which best explains the EEG data using Bayesian model selection, and make
deductions from the properties of the winning models. Note that this is a
meta-Bayesian model-based analysis in the sense that Bayesian model selection is
used to choose between Bayes-optimal observer models (Daunizeau et al. 2010;
Lieder et al. 2013). Inference about the algorithms employed by the brain is then based
on the winning models (Mars et al. 2012). A framework of Bayesian updating and
predictive surprise is used for dissociating the functions underlying ERP amplitude
fluctuations. Bayesian updating refers to changes in probability distributions given
new observations and can be differentiated into Bayesian surprise, which constitutes
the changes in beliefs about hidden states, and postdictive surprise, which represents
the changes in predictions over observable events. In contrast, predictive surprise
equals the surprise about observations under their current probabilities.

In a first step, the P300 component of event-related brain potentials is investi-
gated. The P300 is a positive potential that is typically measured at parietal scalp
regions in a time interval starting 300 ms after an unforeseeable stimulus is pre-
sented, and has long been in the focus of research concerned with the brain’s ability
to infer statistical regularities of the environment (Sutton et al. 1965). It reflects the
degree of surprise related to the processing of sensory input in a way that “surprising
events elicit a large P300 component.” (Donchin 1981). A variant of the
well-established oddball task (Ritter and Vaughan 1969) is used to collect the EEG
data for developing and testing a digital filtering model (DIF), which fuses properties
of the most popular and comprehensive model of P300 amplitude fluctuations with a
completely computational model. These were proposed by Squires et al. (1976) and
Mars et al. (2008), respectively. While Squires et al.’s model remains descriptive,
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Mars et al.’s observer simply integrates the sensory data over an infinitely long
period of time and cannot explain the well-documented effects of the recent stimulus
sequence on the P300 (Squires et al. 1976; Leuthold and Sommer 1993). The model
selection results show that P300 amplitude fluctuations are best explained by pre-
dictive surprise based on the DIF model, which provides direct evidence for the
coding of probability distributions in the human brain. Evidence for the updating
of the probability distributions is, however, only implicit.

In the next step, the analyses are extended to enclose a total of four temporally
and regionally distinguishable ERPs in order to find neural traces for the actual
updating of the probability distributions as well as their presence. These ERPs are
the frontocentrally distributed N250 (Hillyard and Picton 1987), the anteriorly
distributed P3a, the parietally distributed P3b, and the posteriorly distributed slow
wave (SW) (Matsuda and Nittono 2015). The P3a and P3b are dissociable com-
ponents of the P300 (Polich 2007), while the P3a, P3b, and SW make up the
so-called late positive complex (Sutton and Ruchkin 1984; Dien et al. 2004).
A variant of the urn-ball task (Phillips and Edwards 1966) is introduced, which was
specifically designed to represent Bayes’ theorem. A Bayesian observer model is
then proposed from which a belief distribution over hidden states and a prediction
distribution over observable events are derived.

Additionally, it is investigated whether observer models that incorporate non-
linear probability weighting outperform their versions without weighting when
predicting ERP amplitude fluctuations. This nonlinear weighting of probabilities was
originally reported by prospect theory, which is a famous theory of economic
decision behavior (Kahneman and Tversky 1979; Tversky and Kahneman 1992; Fox
and Poldrack 2009). The model selection results show that the ERP components
of the late positive complex (P3a, P3b, Slow Wave) provide dissociable measures of
Bayesian updating and predictive surprise based on the Bayesian observer, while for
the N250 predictive surprise based on the DIF model proved superior. These results
indicate that the ERP components reflect distinct neural computations and provide
evidence for the coding and computing of probability distributions.

The structure of this work is as follows: Chap. 1 introduces basic principles of
ERP research which comprise the data acquisition methods used in this work,
signal-to-noise ratio estimation for event-related potentials, and the important
concept of circularity in data analyses. It further details the framework of Bayesian
updating and predictive surprise and the concept of probability weighting functions.
Chapter 2 introduces the parametric empirical Bayes methods and variational free
energy used for model estimation and selection. It first motivates the use of these
methods before thoroughly detailing their computation. In addition, an example
experiment analyzes the performance of these methods for single subjects and
group studies in light of the signal-to-noise ratio of the data.

Chapter 3 introduces the oddball task and the models taken from the literature
before giving a detailed derivation of the digital filtering (DIF) model. The results
are displayed and discussed for conventional ERP analyses as well as model-based
trial-by-trial analyses. Next, Chap. 4 introduces the urn-ball task and the Bayesian
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observer model. Probability weighting functions are applied to the Bayesian
observer model and to the DIF model. The discussion of the results for conventional
ERP analyses and model-based trial-by-trial analyses concludes this chapter.
Finally, Chap. 5 summarizes this work, draws the main conclusions, and closes
with an outlook.
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