Chapter 2
Introduction to Model Estimation
and Selection Methods

When conducting interdisciplinary research, the employed methods may not be com-
mon knowledge in all involved fields. This chapter serves to make this work accessible
to a wide audience by describing in detail the methods used for model estimation and
selection, which are the fundamental concepts of model-based analyses (Mars et al.
2012). The first sections aim at making the reader accustomed to the terminology and
concepts underlying the different kinds of hypotheses and models classically used
in (neuro-)psychology. After showing cases where classical methods are inadequate
for model selection, state of the art in Bayesian methods are presented.

This chapter is structured as follows: It starts with a simple exemplary study which
is used to illustrate different types of hypotheses and models as well as statistical
methods for comparing them. The presented methods are not an exhaustive list, as this
would be beyond the scope of this work. Next, a detailed description of hierarchical
linear models and the parametric empirical Bayes (PEB) schemes employed for all
analyses in this work is given. A tutorial with an example experiment that inspired
Kolossa et al. (2016) concludes this chapter.

A short note on notation: In the following, not emphasized letters refer to scalars,
bold lowercase letters to (column) vectors, bold capital letters to matrices, and the
superscript [ ]7 denotes the transpose.

2.1 An Example Study

This section describes a fictitious study which exemplifies the different kinds of
hypotheses and models in the following sections. Has learning for an exam any
effect on the achieved result? In order to answer this question, a study is carried out
in which a test subject takes a total of N exams, each of which is indexed with a trial
number n € {1, ..., N}. For each trial, the time spent learning and the achieved points
are recorded, forming the predictors x (n) and dependent variables y(n), respectively.
Note that the dependent variable is simply the measured data, which are the ERP
sequences in the rest of this work. The examples in this chapter are the only instances
© Springer International Publishing Switzerland 2016 15

A. Kolossa, Computational Modeling of Neural Activities
for Statistical Inference, DOI 10.1007/978-3-319-32285-8_2



16 2 Introduction to Model Estimation and Selection Methods

where the y(n) contains data other than the ERP sequence. The single-level models
described in the following section represent a single subject. Multiple-level models
representing more than one subject at once are presented subsequently.

2.2 Classical Single-Level Models

Classical hypothesis testing as used in psychological research relies on p-values,
which will be explained shortly (Fisher 1926; Neyman and Pearson 1933). In some
cases, these tests do not give the answers the researchers actually seek, but are
still used lacking more sophisticated methods (Cohen 1994; Goodman 1999a). More
useful methods have been proposed, with Bayes factors being the most advantageous
(see, e.g., Kass and Raftery 1995; Goodman 1999b; Friston et al. 2002; Hoijtink 2012;
Penny 2012). This section shortly comments on evaluation methods for informative
hypotheses before going into detail about methods for trial-by-trial models which
model each individual data point. It closes with showing how Bayesian evaluation
schemes work and why they were used in this work.

2.2.1 The Null and Informative Hypotheses

To test the hypothesis that learning for exams has any effect on the achieved points
(see Sect. 2.1), the subject does not prepare for one group of exams while he/she does
prepare for the other group. This yields two experimental conditions c € C = {1, 2}
with N, trials each and the total number of trials N = > _. N.. The relation of
the points achieved in the two conditions is of interest. The null hypothesis Hj
constitutes that learning does not have any effect, i.e., that there is no difference in
the condition-specific mean points .. It is formalized via the equality

1= 2, (2.1

with p; as the mean points for tests taken without learning and u, as the mean
points for tests taken with learning. Classically, the null hypothesis is tested using
p-values (Rutherford 2001; Weiss 2006). They represent the probability of getting
the observed (or more extreme) data in the absence of any effect, i.e., if Hy was
true, but not the probability of Hj being true (Biau et al. 2010). If the p-value is
sufficiently small, the null hypothesis is rejected. This is sometimes confused with
the likelihood that a specific effect of interest is present, which is not valid because
Hj can be false due to any effect (Cohen 1994). Ronald Fisher (1926) proposed an
arbitrary boundary saying “We shall not often be astray if we draw a conventional
line at 0.05...”, which everyone followed suit. Soon p = 0.05 was established as
the significance boundary to reject the null hypothesis, which is contested because
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“... surely, God loves the 0.06 nearly as much as the 0.05.” (Rosnow and Rosenthal
1989) and led to a bias of p-values just below 0.05 in publications (Masicampo and
Lalande 2012).

This traditional null hypothesis testing is nowadays challenged as outdated ‘“20th
century thinking” (Osborne 2010). The main argument is that the null hypothesis is
never true as “the probability that an effect is exactly zero is itself zero.” (Friston
and Penny 2003). Consequently, by increasing the amount of data, one can always
reject the null hypothesis with p < 0.05 (Cohen 1994; Van de Schoot et al. 2011;
Friston 2012), which has been exaggerated to the point that the collection of data
is unnecessary for rejecting the null hypothesis (Royall 1997). See Wagenmakers
(2007) for an overview on the critiques against p-values and Wainer (1999) for cases
where they are useful.

Hoijtink et al. (2008) propose the evaluation of informative hypotheses using
Bayes factors based on accuracy and complexity terms. Bayes factors can be used to
select between competing informative hypotheses like

1 > p2, (2.2)

which states that y; is larger than p;, or

M1 < 2, (2.3)

which states that p; is smaller than p,. While these methods accommodate more
sophisticated hypotheses than classical approaches, they are still not quantitatively
incorporating the single-trial predictors x(n) and are not capable to select between
trial-by-trial models as proposed in this work.

2.2.2 The General Linear Model

The general linear model accommodates trial-by-trial models, which incorporate the
quantitative influence of learning for each single exam as well as an error term. As
defined in Sect. 2.1, the amount of learning for an exam n € {1, ..., N.} is quantified
as predictor x(n) (for ease of presentation x(n) € R is assumed in the following).
The achieved points of that exam y(n) (for ease of presentation y(n) € R is assumed
in the following) are modeled via the single-level general linear model (GLM)

y(n) =x(n)0 + e(n), 2.4

with the exam-independent unknown parameter 6, which parameterizes the influence
of learning and €(n) as the exam-specific error which encompasses all deviations from
this model. These may be due to the student having a particularly bad or good day,
the test being especially difficult or easy, or any other influences on the achieved
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grade. The term x ()6 can be interpreted as the estimate 5(n) of the clean data s (n),
yielding
y(n) =5n) + e(n) = x(n)0 + e(n). (2.5)

The parameter 6 is classically estimated by minimizing the error €(n), using linear
regression (Fahrmeir and Tutz 1994). While (2.5) models only one data point, it can
be expressed for all exams simultaneously in matrix notation as

y=S+e=x0+¢, (2.6)

with data vectory = [y(n=1), ..., y(n=N)]" eR", clean data estimate S = [s(n =
D,...,5n = N)]” e R", design matrix (here a vector) X = [x(n = 1), ..., x(n =
N)]” e RV, and error vector € =[e(n=1), ..., e(n = N)]” € R". Examining (2.6)
makes the exam-independent nature of the parameter 6 apparent.

For more complex models, the framework of the GLM accommodates not only
one single but R different predictors x,(n) with r e R={1, ..., R}. These predictors
can, e.g., be influences like social status, private lessons, gender, etc. Consequently,
R model parameters 8, represent the weights of the predictors, giving the clean data
estimate 5(n) the form

5(n) = x,=1 (M)0,=1 + ... + X, (M)0r—p (2.7)
9r=1

=[x - k@] | 0| (2.8)
er:R

Modeling all trials at once yields

Sn=1) Xr=i(n=1) -+ x,op(r=1) | | 0,2
o= z 29)
s(n=N) Xp=i(n=N) - x,—g(n=N) | | Or=r
s=X6, (2.10)
which again results in the model of the measured data as in (2.6)
y=S+e=X0+¢, (2.11)

with the design matrix X € RV*R and vector 8 € RR. A common type of model
consists of R = 2 predictors with one being a constant x;(n) = 1, which models
an intercept (i.e., 6, are the points the student would get without any preparation).
Consequently, x»(n) is the amount of time spent learning for test n, while 6, is the
influence of time spent learning on the achieved points.
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In contrast to classical or informative hypotheses, competing models m € M, with
m as model index and M as model space, are not specified by different inequality
constraints of means y, but by different predictors in the design matrices X (e.g.,
m = time spent learning versus m = time spent playing video games). Note that if
the design matrix of one model consists of multiple predictors x,, the estimated
parameters 6, allow for inference regarding the influence of the specific predictors
(Friston et al. 2002). Methods for parameter estimation and model selection are
described in Sect.2.4.

2.3 Hierarchical Multiple-Level Models

A single-level GLM (2.11) can be extended by additional levels which allow for the
parameters of a lower level themselves to be modeled by a higher level. In these
multiple-level GLMs, the first-level models the data y as a linear combination of
predictors X" weighted by parameters 8", and an additive error €, which is
exactly (2.11) with an additional superscript ( Y indicating the first level (Kiebel
and Holmes 2003). The second level sets priority on the first-level parameters by
modeling them as consisting of a design matrix X®, parameters 0, and errors
€ (Friston and Penny 2003). The second level parameters can again be modeled
by a third level, which consists of a design matrix X®, parameters 8, and errors
€® (Friston et al. 2002). This section elaborates on multiple-level GLMs within the
scope to which they are applied in this work. Readers interested in a more generalized
introduction to linear hierarchical models are referred to Fahrmeir and Tutz (1994).

2.3.1 The First Level

The first level of a multiple-level GLM is the same as the single-level GLM (2.11)

y(n=1) xD (n—l) xl n—l) 00, eVn=1)
E = : : Cot :
yo=N | O =Ny - x =) L0V LeOm=n)
(2.12)

or, in matrix notation,

y=XVoW + €, (2.13)

RNXR

with data vector y e RV, design matrix X! € , parameter vector 8" e R¥, and

error vector eV e RV,
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2.3.2 The Second Level

The second level models the first-level parameters 8" following
0" =X + €?, (2.14)

with design matrix X® e RR*R_ parameters 8® € R¥, and error €® € R¥ (Penny et
al. 2003). If the second level design matrix X is chosen to be all zeros X® =0 ¢
RR*R an unconstrained prior is set on the first-level parameters oW (Friston et al.
2007)

0 = e?, (2.15)

which allows for single-level Bayesian inference (Ostwald et al. 2012). This two-level
GLM

y = XDgW 4 b
0 = e?. (2.16)

is used for Bayesian model estimation throughout this work.

2.3.3 The Third Level

For studies with L different subjects £ € {1, ..., L}, the second level can be used
to facilitate a mixed effects analysis (Friston et al. 2002). In this case, each subject
is modeled with an individual set of first-level parameters 021) which are shrunk
towards subject-independent second level group parameters 8'”. These parameters
are consequently modeled by a third level

0@ = X9 1 O, (2.17)

with design matrix X® € R®*R parameters 8 € R, and error € € RX. Such
three-level GLMs are used in the studies by Mars et al. (2008) and Kolossa et al.
(2013), where the data from all L subjects is modeled simultaneously. These studies
use an unconstrained prior on the second level parameters 8 by employing an
all-zero third-level design matrix X® =0 e R¥*R_ The detailed composition of the
vectors and matrices is as follows: The subject-specific data vectors y, € RV with
N as the number of trials of a subject £, design matrices X, € RV*R_ first-level
parameters 021) € RX, and error vectors ezl) € RN are augmented to yield the first
level of the GLM (Friston et al. 2002)
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1)

X2t Onixr 0 Oy xr o0 o
Ye=1 0 XD e=1 €=1
A et S S R CRT)
S I T | i

i
On,_,xr -+ On_,xr XE;L

with all-zero matrices Oy, x g € RY*F specifying inter-subject independence of the
parameters 021) . Note how this model allows for unbalanced data sets, i.e., variable
N, over subjects. The first level (2.18) is written in condensed form as

y=XPoW + €W, (2.19)

with data vector y € RV, where N = ZLI Ny is the total number of trials over
subjects, design matrix XV € RV*ER parameter vector 81 € RER | and error vector
eV € RY. The second level models the subject-individual first-level parameters
921) as samples from subject-independent group parameters 8 € R¥. This requires
a second level design matrix X® € RER*R that consists of L stacks of identity
matrices Iz € RR*R_ giving the second level the form

0:2) Ir )
: SR (2.20)
021=)L Ir 61(52=)L
which is summarized as the standard second level (2.14)

0D = X@9?D 4 @ (2.21)

The third level (2.17) sets an unconstrained prior on the parameters of the second
level via an all-zero third-level design matrix X® = 0 € R®*R_which yields

0? =¥, (2.22)
and, in summary, the complete three-level GLM

y=XDg0 4 0
0 — X@9D 4 @ (2.23)
00 — O
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2.4 Model Estimation and Selection

After having specified the linear models in the previous sections, final results are
obtained in two steps: (1) Estimation of the unknown parameters 8, and (2) calcula-
tion of the model likelihoods for model selection. This section starts with motivating
the use of Bayesian model estimation methods, which is followed by a detailed
description of the estimation schemes for the two-level GLM used in this work (see
Sect.2.3.2). It is concluded by instructions for Bayesian model selection. Readers
interested in generalized Bayesian estimation schemes for GLMs of any order are
referred to Friston et al. (2002).

A well-known method for single-level model estimation and selection is based
on the mean squared error (MSE) between the clean data estimates s (2.5) and the
measured data y (Kleinbaum et al. 2013)

1 N
MSEG,y) = — > () — y(m)*. (2.24)
n=1

(1) For each model m € M, the parameters 8,, are optimized by finding the parameters
which yield the smallest MSE

On,opt = arg rr(;in {MSE (5,,, y)} . (2.25)

(2) Now the models employ 6, op and the model
Mopt = arg mnin {MSE©71,opts Y)} ) (2.26)

with the smallest MSE is selected as the best model m,p, as it offers the best fit (or
accuracy) of the measured data. A major shortcoming of this comparison scheme is
its blindness to the complexity of the models, i.e., the number R of model parameters
0., which are used to calculate s(7).

Bayesian evaluation schemes take the complexity of the models into account by
employing a penalty factor for complexity, which is often referred to as Occam’s
razor (MacKay 1992). The reason is to choose the least complex model that offers a
good explanation of the data (Myung and Pitt 1997). The most vivid factor influencing
model complexity is the number R of model parameters. In the context of general lin-
ear models, the design matrix of the least complex model consists of only one constant
predictor per trial (i.e., R=1), yielding an all-one vector x =[1...1]7 e R", which
is equivalent to the classical null hypothesis. Consequently, the most complex model
fits the data perfectly and has as much predictors as trials, i.e., R =N, and an identity
design matrix XV =Iy € RV*N, Obviously, this model is overfitted and offers no
theory behind the data-generating process (MacKay 1992; Pitt and Myung 2002). In
this work, these shortcomings are addressed by parametric empirical Bayesian (PEB)
methods used for parameter estimation and model selection (Friston et al. 2002).
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In this framework, competing models are selected based on their log-likelihoods,
which are derived by taking a complexity-accuracy trade-off into account (Friston et
al. 2007). It is important to note that complexity is not solely based on the number
of model parameters, but on other factors like parameter independence as well (see
Stephan et al. 2009 for details). This Bayesian framework is proven to be a useful
tool for model selection in many fields (Hoeting et al. 1999; Pitt and Myung 2002;
Penny et al. 2010) and has been able to significantly advance neuroimaging research
(Woolrich 2012).

2.4.1 Collapsing and Augmenting the Hierarchical Model

The first step for parameter estimation and evidence calculation via PEB are alter-
ations to the model structure of the two-level GLM (see Sect.2.3.2). Specifically,
the model is first collapsed to a non-hierarchical form and subsequently augmented,
so that all parameters appear in the error vector and can be estimated at once using
expectation maximization (EM) (Friston et al. 2002). For the two-level GLM (2.13),
(2.14)

y = XD 4 (2.27)
0 — X@9@ 1 @ (2.28)

the errors on both levels are assumed to be normally distributed

eV ~ N, =) (2.29)
e? ~N(©,=?), (2.30)

with zero mean and isotropic error covariance matrices

M =\ (2.31)
2@ = \P1,. (2.32)

The hyper-parameters A" and A® control the variances at level (1) and (2), respec-
tively (Mars et al. 2008). They are called hyper-parameters because they parameterize
the covariance of the errors €’ and € (Friston and Penny 2003; Penny 2012). Note
that this section covers only models where there are no hyper-priors on the hyper-
parameters (see Friston et al. 2007 for details). Identity matrices Iy € R¥*N and
Iz e RR*X place independence assumptions over trials and parameters, respectively
(Ostwald et al. 2012). While there can be multiple covariance components on any
level, only one covariance component per level is assumed in this work. Substitution
of (2.28) in (2.27) yields the non-hierarchical form
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y = XDe®@ L xHx@9@ 4 D (2.33)

@
=[x XDX?)] [;(2)} + e, (2.34)

which is augmented so that the parameters appear in the error vector

y XD xOXO® e e
Orxi | = | =1z Orxr |:0(2):| + | e?|. (2.35)
Orx1 Orxr  —Ig 0@
The augmented model can be expressed condensedly as
y=X6+¢< (2.36)

This reformulation of the hierarchical model is computationally efficient and allows
an instructive form of the EM algorithm (Friston et al. 2002; Friston et al. 2007). The
error covariance matrix of the augmented form is assembled following

2

i=I

with \; = A\®, as each level is modeled with a single covariance component. The
matrices Q; € RWF2ROXIN+2R) apd Q, € RNF2RX(N+2R) are the augmented forms
of the identity matrices in (2.31) and (2.32), more precisely

Iy Onxr Onxr
Qi = | Ogxn Orxr Orxr (2.38)
0R><N 0R><R 0R><R

and
0N><N 0N><R 0N><R
Q= |[0zrxr Iz Orxr|. (2.39)
0R><N 0R><R 0R><R

The parameter covariance matrix %z € RNV T2R*NV+2R) jg of the form

0N><N 0N><R 0N><R
Y5 = | Orxn Orxr Orxr |, (2.40)
Orxr Orxr Eéz)

with 2;2) = ¢'%Iz € RR*R gpecifying an unconstrained prior on the second-level
o 1

. , -
parameters, with Euler’s number e=>_ "~ <.
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2.4.2 Model Parameter Optimization and Likelihood
Calculation

Based on the augmented model (2.36), PEB methods commence to compute the
conditional posterior probability densities of the parameters using empirical data,
coining the term parametric empirical Bayes (Friston et al. 2002). In this frame-
work, the parameters 6 are modeled to be normally distributed random variables
p(Oly) =N (0; M3}y X7),) with conditional means 7, and covariance matrix X7,
This approach is fundamentally different from classical parameter optimization,
where the parameters are assumed to be fixed values.

The parameter densities p(@|y) are estimated via expectation maximization (EM).
The EM algorithm estimates the parameter densities by maximizing the free energy
Fy, which gives a lower bound approximation of the log-likelihood of the data con-
ditioned on the hyper-parameters (Friston et al. 2002)

Fj < logp(y|A) =log / p(6. yI\)d6. (2.41)

See Friston et al. (2002, 2007) for a detailed and thorough derivation. For the aug-
mented general linear model (2.36), the free energy is calculated according to (Friston
et al. 2007)

N 1 1 o1
Fj === log(2m) — 5(Gy)ng(Gy) + 7 log| % "+ 5 loglZg,l,  (242)

with |- | denoting the determinant of a matrix and G = ©=' — £ IXE%XT ="' The
composition of all the terms in (2.42) will be described shortly during the summary
of the EM algorithm. Generally, EM is an iterative algorithm for maximum like-
lihood estimation of data conditional on unobserved parameters (Neal and Hinton
1998). Readers completely unfamiliar with EM algorithms are referred to Fahrmeir
and Tutz (1994) for a general introduction to EM in the context of linear models.
In the PEB framework, the EM algorithm alternates between maximizing the free
energy with regard to the parameter distribution p(@]y) = N (8; py, v Z7)y) in the
E-step and with regard to the hyper-parameters A =[\; A\;]” in the M-step. Under
Gaussian assumptions, the E-step is simply the calculation of the conditional mean
and covariance of the model parameters while keeping the hyper-parameters fixed,
following (Friston 2002)

2
=T+ ) AQ (2.43)

i=1
%, = (X'5'X) (2.44)
g, = 35,X" =Y. (2.45)
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The M-step serves to estimate the error covariances Xz which rest upon the hyper-
parameters X, as can be seen in (2.43). They are obtained by maximizing the free
energy Fj while keeping the conditional mean and covariance of the parameters fixed
(Friston et al. 2002)

G=x' - = 'X5 X (2.46)
9 ~ ~

h— dff _ —1u{GQu} + 1Y GTQ,Gy 2.47)

o) | -5u{GQ) + 557 GTQ:GY '

0%F; 9 F;

H= (_ a/\lg)\l d)\[g()\a _ tr{GQIGQ]} ‘tr{GQlGQz} (2 48)

(—2) (- 20 | T [r(6Q6Q) r(6QGQ:) ‘
A=A+H'"h=A+ AN (2.49)

The operator tr{-} denotes the trace of a matrix, (-) is the expectation operator, h is
a gradient vector, and H is referred to as Fisher’s information matrix (Friston et al.
2002). Note that (2.46) and (2.47) use the first and expected second partial derivatives
of the free energy with regard to the hyper-parameters, which are known as Fisher
scoring (Friston et al. 2002). Steps (2.43)—(2.48) are repeated until convergence,
which can be a specific value of AX or some fixed number of iterations. Readers
interested in the formal derivation of (2.43)—(2.48) and more generalized applica-
tions, such as multiple covariance constraints on any level or higher order models,
are referred to Friston et al. (2002).

After convergence of the EM algorithm, the parameter densities are estimated and
the free energy Fj is adjusted to yield the variational free energy F used for model
selection (Friston and Penny 2003; Friston et al. 2007)

N 1 1 _
F:——log(27r)—f(G“)TZ~(Gy)+flog|Z~ |+ 5 log |35, + 7 log | — H|.

accuracy term complexity term

(2.50)

The variational free energy is a lower bound approximation of the usually not directly
computable log-likelihood log(p(y|m)), i.e., the logarithm of the probability of the
datay given the model m e M ={1, ..., M} (Penny etal. 2010). Many approximations
to the log-likelihood have been proposed, with the variational free energy F being
superior and commonly used in neuroimaging (Beal 2003; Beal and Ghahramani
2003; Friston et al. 2007; Penny 2012).

The only values of further interest besides the variational free energy are the
conditional means of the parameters which serve as their point estimates. They can
be used for model fitting or comparison of effect sizes, with the latter being only
sound if the data and regressors have been normalized (Hoijtink 2012). Using the
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T
vector of the conditional means of the augmented model p7, = [“2‘2)) ugi] from

(2.45), the conditional means of the first-level parameters are calculated according to
1 2 2
p), = XOud + ). (2.51)

The described methods for parameter estimation and variational free energy calcula-
tion are implemented in the spm_PEB.m function of the freely available Statistical
Parametric Mapping (SPM8) software (Dempster et al. 1981; Friston et al. 2002,
2007), which was used for model estimation in this work.

2.4.3 Model Selection Using Bayes Factors and Posterior
Model Probabilities

After parameter estimation and calculation of the variational free energy F (2.50)
in the previous chapter, the best model m can be selected. If the choice is solely
among two models M = {1, 2}, the Bayes factor (BF) is a suitable measure (Kass
and Raftery 1995). It is the ratio of the model likelihoods

 plylm=1)

BF1—>2 - P
p(ylm=2)

(2.52)

whose natural logarithm, log(BF), equals the difference of variational free energy
(Penny et al. 2004)

p(ylm=1)

lo &F%)zk)(
SN2 =08 by im=2)

) = Fu=1 — Fn=2. (2.53)

Positive values reflect evidence in favor of model 1 over 2. The interpretation of log-
Bayes factors is often unintuitive, and their bilateral nature makes the description of
selection procedures with M > 2 models unnecessarily complex. The interpretation
becomes most vivid and independent of the number of evaluated models by comput-
ing posterior model probabilities (PMP) P(m|y), which are calculated based on the
model likelihoods following Bayes’ rule (Penny et al. 2010)

p(y|lm)P(m)
P(mly) = YT
Y = S PG

pneM

Ym e M, (2.54)

with P(m) as the prior probability of model m. Assuming equal prior probabilities
of P(m)= ﬁ, Vm e M, (2.54) simplifies to
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Table 2.1 Bayes factors BF, log-Bayes factors log(BF), posterior model probabilities P(m|y), and
how to interpret them (Kass and Raftery 1995; Penny et al. 2004)

BF_» log (BF1-2) P(mly) Significance
1-3 0-1.1 0.50-0.75 Weak

3-20 1.1-3 0.75-0.95 Positive
20-150 3-5 0.95-0.99 Strong

>150 >5 >0.99 Very strong

The Bayes factor and log-Bayes factor compare model m =1 with model m =2. The significance
boundaries as indicated apply only for the comparison of two models. As the posterior model
probability P(m|y) allows for simultaneous selection among any number of models, the size of the
model space has to be taken into account for interpretation

_plylm) €M
B ST S (259
HeEM HeM

The posterior model probability is normalized to the model space M = {1, ..., M}
with 3"+ P(m|y) =1 and is interpreted as the probability that model m is the best
model, given the observed data and given all evaluated models. Table2.1 gives an
overview for the interpretation of Bayes factors BF, log-Bayes factors log(BF), and
posterior model probabilities P(m|y). Note that the indicated significance boundaries
apply for the comparison of two models only. To calculate P(m|y) for a model space
M with M > 2 is feasible, but the interpretation of the achieved posterior model
probabilities has to account for the size of the model space. For M = 3 models,
P(m|y)~0.33 states equal posterior model probabilities.

2.4.4 Group Studies

Studies typically contain data from more than one subject. While Mars et al. (2008)
and Kolossa et al. (2013) model all subjects at once using third-order GLMs as
described in Sect. 2.3.3, there is an emerging tendency in neuroimaging to use subject-
specific model estimation with subsequent group-level selection (see, e.g., Garrido
et al. 2009; Ostwald et al. 2012; Lieder et al. 2013; Kolossa et al. 2015).

This strict separation of single-subject estimation and group-level selection
enables the specification of assumptions about the model distribution over subjects.
Specifically, fixed-effects (Stephan et al. 2007) and random-effects analyses (Stephan
et al. 2009) can be applied. Penny et al. (2010) give an overview on both approaches:
Fixed-effects analyses assume that all subjects use the same model, and should be
applied for models of basic functions which are not expected to differ across sub-
jects. Random-effects analyses allow for individual subjects to use different models,
and should be used for cognitive tasks which can be solved with different learned
strategies. An important drawback of both approaches is the so-called brittleness:



2.4 Model Estimation and Selection 29

For fixed-effects analyses, the results can become ambiguous if different subjects
use different models, or if the model space consists of a large number of models,
while for random-effects analyses the addition of just one model to the model space
may alter the mutual ranking of all other models (Penny et al. 2010).

Probabilistic inference is assumed to be a basic function and not a consciously
available learned scheme. Throughout this work the model space remains small with
M <20. Based on these considerations, fixed-effects analyses for group studies will
now be introduced and applied in this work.

Given the subject-specific model likelihoods p(y,|m), the group-level likelihood
p(y|m) is obtained following (Stephan et al. 2007)

L
p(ylm) = [ [ p(yelm), (2.56)
=1

which can be equivalently expressed in log-likelihood and variational free energy as

L L
log (p(ylm)) = D log (p(yelm)) = F = D Fyn. 2.57)
=1 =1

Based on the group log-likelihoods, the group log-Bayes factor log (GBF) (2.53)
between two models can be calculated according to

p(ylm =1)

lo (GBFH)zlo(
SRR =08 pyim = 2)

) = Fy=1 — Fy=2, (2.58)

while the posterior model probability P(m|y) (2.55) for any number of models follows

Cpylm) e
PUnly) = 5= = S e (2.59)
pnemM pneM

Table 2.1 can be used for the interpretation of group (log-)Bayes factors and posterior
model probabilities.

2.5 A Transfer Example Experiment—Setup

This section introduces an exemplary experiment which illustrates parameter esti-
mation and model selection as employed in this work. The experiment transfers the
methods to the field of speech communication in order to show how widely applica-
ble they are, but the origins of event-related potentials will not be left completely out
of sight. This example provided the initial idea for (Kolossa et al. 2016).
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Any proposed speech communication system has to be evaluated with regard to
the degree to which it distorts the clean speech signal and how these distortions are
perceived by humans. Mean opinion scores of listening quality subjective (MOS-
LQS) are obtained in formal listening tests, where test subjects are presented with
speech samples, the quality of which they rate from 1 (very bad) to 5 (excellent)
(ITU 20064, 2006b). These tests are important, as human perception is the absolute
reference concerning speech signal quality, but they are also expensive and time
consuming. ITU-T Recommendation Q.862 (ITU 2007) defines the perceptual eval-
uation of speech quality (PESQ) for automatized and fast speech quality assessment.
These mean opinion scores of listening quality objective (MOS-LQO) range from 1
(very bad) to 4.5 (excellent).

The comparison of MOS-LQS with MOS-LQO values is not simple and straight-
forward. The sequences of MOS-LQS and MOS-LQO values can be interpreted as
signals, and while at first glance MOS-LQS seems like a clean signal which captures
the listening quality ratings of the subjects, it is in fact corrupted by noise. This
noise consists of inter-subject as well as intra-subject contributions (Holmes and
Friston 1998), the same as for neuroimaging data in general (Friston et al. 2002) and
a sequence of ERP amplitudes in particular (Mars et al. 2008). Inter-subject noise
captures subject-individual differences in speech quality perception, which are, for
example, different score offsets or individual sensitivity to speech distortions. Intra-
subject noise subsumes systematic score deviations which are, e.g., a dependency
on the order the files were listened to, and random deviations which occur due to
non-deterministic behavior of humans: the same person might rate the same file dif-
ferently on multiple occasions (Carron and Bailey 1969). Listening tests are designed
to reduce this noise by presenting the same file multiple times with different adjacent
files and then average the results, but the noise is not eliminated completely. If an
alternative model of MOS-LQO is challenging PESQ as the best approximation for
the MOS-LQS values, noise has to be taken into account during the model selection
phase. Parametric empirical Bayes (see Sect.2.4) offers a useful tool for evaluating
models of speech quality.

In this example experiment, PESQ is assumed to be the ground truth model for
speech quality perception. Two kinds of noise are added with different signal-to-
noise ratios (SNR) to simulate inter- and intra-subject variability yielding synthetic
noisy MOS-LQS values. The MOS-LQO values obtained from the ground truth
model, a model which is similar to but distinct from the ground truth model, the
null model and the encompassing model are used as competing models, which enter
model estimation and selection using parametric empirical Bayes (see Sect. 2.4), log-
Bayes factors, and posterior model probabilities (see Sects.2.4.3 and 2.4.4). It will
be shown how confidently the methods used in this work identify the correct model
in dependence on the SNR, and how the results depend on the number of trials N,
as these are the marginal conditions for model selection (Penny 2012).

The rest of this section is structured as follows: First, an overview on the com-
putation of the signal-to-noise ratios is given, followed by a description of the data-
generating framework and test conditions. Next, the four competing models entering



2.5 A Transfer Example Experiment—Setup 31

model selection are introduced. The selection is done for a single subject and a
group of 16 subjects to show the effect of both intra- and inter-subject variability. A
summary of the evaluation results concludes this chapter.

2.5.1 Signal-to-Noise Ratio Simulation

The signal-to-noise ratio simulation for this tutorial is based on the same signal model
(1.6) as used in Sect. 1.2 but with a time-variant clean signal s(n). Modeling s(n) to
be time-variant over trials is realistic for ERP sequences (Squires et al. 1976; Mars et
al. 2008; Kolossa et al. 2013, 2015), which makes the results of these simulations well
applicable to SNRs obtained from real ERP sequences with the methods proposed
in Sect. 1.2. To recapitulate, the measured signal y(n) is modeled to be composed of
a clean signal s(n) and the additive noise e(n):

y(n) =s(n) +en), (2.60)

with n € {1, ..., N}. Note that in contrast to (1.6) no stimulus-specific index is nec-
essary. This signal model is similar to the one-level linear model (2.11), but with a
known clean signal s(n) instead of the estimate 5(n) and the term “noise” instead of
“error”. As in (1.7) the signal-to-noise power ratio (SNR) is defined as

P;
SNR = —, (2.61)
P
which is in decibel p
SNR [dB] = 10log,, (F) , (2.62)
with the signal power
N
1
Po= ;sz(n) (2.63)
and the noise power
P. = o> (2.64)

Inserting (2.64) in (2.62) and solving for of yields

Py

€ = L SNRiB]°
10

(2.65)

which can be used to calculate the necessary variance o of the error for a desired
SNR [dB], given a signal s(n).
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2.5.2 Synthetic Data and Experimental Conditions

This section describes the framework for the generation of the synthetic data and
test conditions. A note on the version of PESQ which is employed in this section:
When calculating MOS-LQO values PESQ integrates speech signal disturbances
over frequency and time into two factors which capture symmetric and asymmetric
disturbances (Rix et al. 2001). In order to give here a example that is easily trans-
ferable to ERP data, only the symmetric disturbance is included in the PESQ model.
Furthermore, the disturbances are not derived by using clean and degraded speech
signals but are simply sampled, which has no influence on the methods and results but
enables a clear and an easy-to-follow presentation. In order to transfer this example
to model estimation and selection for event-related potentials, the ERP amplitudes
take the place of the MOS-LQO values, while the observer models and link functions
yield the predictors.
The employed simplified version of PESQ follows (Rix et al. 2001)

PESQ(n) = 4.5 — dyym(n) - 0.1, (2.66)

with dgym(n) € {0, ..., 35} as the symmetric disturbance of speech sample n. The
specific formula (2.66) can be generalized to a linear model with two parameters

s(n) = 0; — dym(n)0,. (2.67)

These parameters are used to introduce inter-subject variability, with 6; ~ N (4.5, ‘75. )
and 6, ~ N(0.1, a§7) as random Gaussian variables with means 4.5 and 0.1, and
variances 051 and ng’ respectively. While this is no noise in the classical sense, the
same definitions as in Sect. 2.5.1 are used to make the magnitude of randomness vivid.
Adding zero-mean Gaussian noise € ~ N (0, Uf) to (2.67) models the intra-subject
variability

y(n) =sn) +en) = 0; — dym(n)0, + €(n). (2.68)

The integer values for dynamic distortions dgym(n) are sampled from a uniform dis-
tribution in the interval [0, 35], and (2.63) along with (2.65) are used to calculate the
variance of necessary to create noise conditions of SNR [dB] € {8, 6, 4, 2, 0, —2}.
While these SNR values are not expected for intra-subject variability in speech
quality perception, they are realistic for EEG data (see Sects.3.6.1 and 4.7.1 for
subject-specific SNR values obtained in the studies in this work). The number of
trials varies with N € {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, yielding 60
scenarios with different combinations of SNR and trial numbers. For the simulation
with multiple subjects, the scenarios are identical for each subject. After subject-
individual model estimation, fixed-effects analyses are applied in order to get the
group-level results (see Sect.2.4.4). The estimation for all scenarios is repeated a
thousand times with new error and stimulus sampling. (Group) log-Bayes factors
and posterior model probabilities are calculated for each repetition and subsequently
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Fig. 2.1 Clean (—) and noisy (- - -) synthetic MOS-LQS values over trials n € {1, ..., N = 100}
for decreasing SNR [dB] €{8, 6, 4, 2,0, —2}

averaged over repetitions (Penny 2012). Figure 2.1 shows clean (—) and noisy (- - -)
synthetic MOS-LQS values with parameters #; =4.5 and 6, = 0.1 in the scenarios
with N =100 trials for a single repetition and all SNR conditions. The clean signal
becomes gradually more disturbed and is unrecognizable for the lowest SNRs.

2.5.2.1 A Single Subject

For a single subject the parameters are set to the distribution means (; = 4.5 and
0, = 0.1), and the noisy signal is calculated according to (2.68). The results are
presented later on in Sect.2.6.1 as log-Bayes factors (log(BF), (2.53)) and posterior
model probabilities (P(my), (2.55)), both based on the variational free energy F,,
(2.50).

2.5.2.2 Multiple Subjects

For L = 16 subjects inter-subject variability is introduced by sampling the parame-
ters 0y and 6,7, £ € £ = {1, 2, ..., L = 16}, from their respective distributions
0, ~N4.5, 051) and 0, ~ N(0.1, Uﬁz). Standard deviations are set to gy, = 0.45
and 0y, =0.01, i.e., the inter-subject parameter variability corresponds to an SNR of
20dB (2.62). The variational free energy F), ; is calculated for each subject within
one scenario and then summed over the subjects to obtain F,, (2.57), which is used
to calculate group log-Bayes factors (log(GBF), (2.58)) and posterior model proba-
bilities (P(m|y), (2.59)) for model selection in Sect.2.6.2.
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2.5.3 The Model Space

This section introduces the four models which make up the model space M =
{TRU, SQD, NUL, ENP} and specifies the respective design matrices which are input
to the PEB estimation framework (see Sect.2.4). The ground truth (TRU) model is
the data-generating model, while the squared distortion (SQD) model assumes a
quadratic instead of a linear dependence on the symmetric distortion dgym(n). The
null (NUL) model is the least complex hypothesis, claiming that all variability in the
data is due to noise and will be used as reference model for the log-Bayes factors.
The encompassing (ENP) model fits the data perfectly, but is the most complex
conceivable model.

2.5.3.1 The Ground Truth Model (TRU)

The ground truth (TRU) model correctly assumes the estimated signal 5(n) to depend
on an offset ¢; minus the dynamic distortion dgym, (n) multiplied with 05:

5(n) =0, — dsym(”)QZ’ (2.69)

which is a two-parameter linear model (2.10). Consequently, the first-level design
matrix is of the form

1 _dsym (n=1)
X0 =1: : e RV*2, (2.70)
1 —dym(n=N)
2.5.3.2 The Squared Distortion Model (SQD)

The squared distortion (SQD) model states that 5(n) depends on an offset §; minus
the square of the dynamic distortion

S(n) = 0) — d3,, ()6, 2.71)

yielding the first-level design matrix

1 —di, (n=1)
XV = : e RV, (2.72)
1 —d2, (n=N)

sym



2.5 A Transfer Example Experiment—Setup 35
2.5.3.3 The Encompassing Model (ENP)

The encompassing (ENP) model assumes that all trials are independent of each other
without any additive noise

y(n) =5(n) =0,. (2.73)

The corresponding first-level design matrix is an identity matrix

LIS c RVXN. (2.74)

which models each trial with an independent predictor. Note that the data can be
modeled perfectly, but at the cost of highest complexity.

2.5.3.4 The Null Model (NUL)

The null (NUL) model represents the least complex hypothesis, claiming that all
variation in the data is due to noise. It models 5(n) as constant over trials

5(n) = 6;. (2.75)
The first-level design matrix is an all-one column vector

1
XU =xD=|:]eR". (2.76)
1

The NUL model is used as common reference model for the (group) log-Bayes
factors, which is inspired by classical null hypothesis testing (see Sect.2.2.1).

2.6 A Transfer Example Experiment—Results

This section shows the results of Bayesian model estimation and selection depend-
ing on the number of trials N and the signal-to-noise ratio. It starts with Fig.2.2
which shows the clean (—) and fitted (- --) MOS-LQS values for the TRU model
for the scenarios depicted in Fig.2.1. The means of the optimized parameter den-
sities pg,|y = 01 and pg,), = 0, are written in each panel and used as point esti-
mates for the model fitting (see Sect.2.4.2). The difference between the clean
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Fig. 2.2 Clean (—) and fitted (---) MOS-LQS values for trials n € {1,..., N = 100} and
SNR[dB] € {8, 6, 4, 2, 0, —2}. The fitted MOS-LQS values are based on the TRU model and the
point estimates of the parameters §; and 6>, which are shown in the plots above the respective curves

and fitted MOS-LQS values is graphically indeterminable for SNRs higher than
4 dB. The fit between clean and fitted MOS-LQS values is still good for lower SNRs,
but errors become visible.

The rest of this section is split between Bayesian model selection based on a single
subject and a group of L = 16 subjects. The respective selection results start with
Figs.2.3 and 2.5 depicting the (group) log-Bayes factors ((2.53) and (2.58)) followed
by Figs.2.4 and 2.6 showing posterior model probabilities ((2.55), (2.59)).

2.6.1 A Single Subject

Figure 2.3 shows the log-Bayes factors log(BF) of the TRU (——), SQD (-e-), and
ENP (&) models versus the NUL model over an increasing number of trials N
in noise conditions SNR [dB] € {8, 6,4, 2, 0, —2}. Throughout all conditions, an
increasing number of trials N is accompanied by nearly linearly growing log-Bayes
factors for the TRU and SQD model, while for the ENP model the log-Bayes factor
is rapidly decreasing. The log-Bayes factors of the SQD model remain constantly
below those the TRU model, meaning that the TRU model is favored over the SQD
model for any number of trials and all SNR conditions. For an SNR of 8 dB, the TRU
model is superior to all other models regardless of the number of trials. At 6 and 4dB
SNR and N =50 trials, all log-Bayes factors are negative, e.g., the NUL model has
the greatest variational free energy, while the TRU model is superior for N = 100
and more trials. The number of trials necessary for a positive log-Bayes factor for
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Fig. 2.3 Log-Bayes factors log(BF,,—.nuL) (2.53) with m € {TRU, SQD, ENP} in dependence on
the number of trials N and SNR [dB] € {8, 6, 4, 2, 0, —2} for a single subject
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Fig. 2.4 Posterior model probabilities P(m|y) (2.54) with m € {TRU, SQD, ENP, NUL} in depen-
dence on the number of trials N and SNR [dB] € {8, 6, 4, 2, 0, —2} for a single subject



38 2 Introduction to Model Estimation and Selection Methods

the TRU model versus the NUL model increases with decreasing SNR. For 2dB,
0dB, and —2dB, the necessary number of trials is N =150, N =250, and N =350,
respectively. The area at which the NUL model ceases to be supported is magnified
in the lower parts of the panels.

Posterior model probabilities P(m|y) (2.55) offer a more intuitive way of model
selection. Figure 2.4 shows posterior model probabilities for the TRU (——), SQD
(-e-), ENP (&), and NUL (-+-) models in dependence on the number of trials N
in noise conditions SNR [dB] € {8, 6, 4, 2, 0, —2}. Naturally, they mirror the results
obtained from Fig.2.3, as they are also based on the variational free energy, but the
characteristic areas where the model with the highest posterior model probability
changes are much clearer. In contrast to the steady increase in log-Bayes factors,
posterior model probabilities change more rapidly around the critical trial number
necessary for correctly identifying the TRU model as the best model. For SNRs of
0 and —2dB, the statistical significance even at high trial numbers of N =250 and
N =350 is still very low with posterior model probabilities of P(TRU|y) & 0.65 and
P(TRUJy)~20.55, respectively. Thus, inference based on a single participant in very
noisy conditions is not feasible or requires a lot of trials.

2.6.2 Multiple Subjects

Figure2.5 shows the group log-Bayes factors (log(GBF), i.e., log-Bayes factors
summed over subjects (2.58)) of the TRU (=), SQD (-e-) and ENP ( o) mod-
els versus the NUL model over an increasing number of trials N in noise conditions
SNR[dB] € {8, 6,4, 2,0, —2}. The results are qualitatively very similar to those
obtained for a single subject in Fig.2.3, i.e., linear evolution of group log-Bayes
factors for an increasing number of trials N in all noise conditions, but the absolute
values are on a larger scale. For conditions with an SNR of 6 dB or lower and only a
few trials, the log(GBF) favors the NUL model. The number of trials necessary for
correctly identifying the TRU model as the best model and rejecting the NUL are
close to those for a single subject, i.e., N =100, N =100, N =150, N =200, and
N =300 for 6dB, 4dB, 2dB, 0dB, and —2 dB, respectively.

Figure2.6 shows posterior model probabilities (2.59) for the TRU (—), SQD
(-e-), ENP (o), and NUL (- ¢ -) models in dependence on the number of trials N
for noise conditions SNR [dB] € {8, 6, 4, 2, 0, —2}. As expected, the results mirror
those depicted in Fig. 2.5, while meaningful differences are revealed in comparison
to Fig.2.4: Up to 2dB SNR the critical trial numbers are identical to those of a single
subject, but for a signal-to-noise ratio of 0 and —2dB, N =200 and N =300 trials
suffice for correctly identifying the TRU model as best model. In each case these are
50 trials less than for a single participant, for whom the posterior model probabilities
of about 0.5 did not permit to draw meaningful conclusions at these points. Over all
data points the statistical significance is greatly increased in comparison to Fig.2.4
allowing for much more reliable conclusions (see Table 2.1 for details).
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Fig. 2.5 Group log-Bayes factors log(GBF,,,nuL) (2.58) with m € {TRU, SQD, ENP} in depen-
dence on the number of trials N and for noise conditions SNR [dB] € {8, 6, 4, 2, 0, —2} for a group
of L =16 subjects
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Fig. 2.6 Posterior model probabilities P(m|y) (2.59) with m € {TRU, SQD, ENP, NUL} in depen-
dence on the number of trials N and for noise conditions SNR [dB] € {8, 6, 4, 2, 0, —2} for a group
of L =16 subjects
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2.7 Evaluation Summary

Log-Bayes factors and posterior model probabilities derived in the parametric empir-
ical Bayes (PEB) framework are proven to be very useful for model estimation and
selection. The use of this method is limited by the quality and quantity of the data, i.e.,
the signal-to-noise ratio (SNR) and the number of trials N. In view of the variability
of SNRs across subjects, N > 200 trials per subject should be sufficient for reliably
identifying the best model (see Sects.3.6.1 and 4.7.1 for subject-specific SNR values
obtained in this work).

A major shortcoming of log-Bayes factors is that only two models are directly
compared with each other simultaneously, which makes it complicated to get a clear
view of the results for the complete model space. Additionally, (group) log-Bayes
factors can become extremely large (see Fig. 2.5 with group log-Bayes factors in the
magnitude of 10%), which leads to a tendency to judge small (group) log-Bayes factors
as not appropriately significant (see Table2.1 with log-Bayes factors greater than
five denoting very strong significance). Posterior model probabilities do not suffer
from these shortcomings. All models composing the model space are simultaneously
compared to each other, and the probabilities are normalized to the model space.
The interpretation of statistical significance is intuitive and reminiscent of classical
approaches, making Bayesian model selection also accessible to non-experts. Taking
multiple subjects into account decreases the required number of trials per subject for
correctly selecting the TRU model under low signal-to-noise ratios and increases the
statistical power of the results. Group studies are therefore mandatory in order to
report meaningful results.
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