
Chapter 2
Algebraic hyperbolicity

2.1 Hyperbolicity and genus of curves

We shall make things here in the absolute case, but everything still works in the
more general framework of directed manifolds.

Let X be a compact Kobayashi hyperbolic manifold. Then X is Brody hyperbolic
and thus it cannot contain any holomorphic image of C. In particular, from the
algebraic point of view, X cannot contain any rational nor elliptic curve (and, more
generally, any complex torus). Hence, curves of genus 0 and 1 are prohibited by
hyperbolicity. In fact, one can say something stronger.

Proposition 2.1.1 ([17]). Let X be a compact hermitian manifold, with hermitian
metric !. If X is (infinitesimally) hyperbolic, then there exists a "0 > 0 such that for
every curve C � X one has

��.bC/ D 2 g.bC/ � 2 � "0 deg! C;

where bC is the normalization of C and deg! C D R
C !.

Proof. Let C � X be a curve in X and 
WbC ! C � X its normalization. Since X is
(infinitesimally) hyperbolic and compact, there is an absolute constant " > 0 such
that the infinitesimal Kobayashi pseudometric satisfies a uniform lower bound

kX.v/ � "jjvjj!
for every v 2 TX . Now, the universal Riemannian cover of bC is necessarily the
complex unit disc, by the hyperbolicity of X: let it be � W� ! bC. We shall endowbC
by the induced metric of constant negative Gaussian curvature �4 such that
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��kbC D k� D jd�j
1 � j�j2 :

Call �� D i
2

d� ^ d�=.1� j�j2/2 and �bC the corresponding area measures. Then the
classical Gauss-Bonnet formula yields

�4
Z
bC �bC D

Z
bC ‚.TbC;kbC/ D 2� �.bC/;

where ‚.TbC;kbC/ is the curvature of TbC with respect to the metric kbC.
Next, if �W C ! X is the inclusion, the distance decreasing property of the

Kobayashi pseudometric applied to the holomorphic map � ı 
WbC ! X gives

kbC.�/ � kX..� ı 
/� �/ � " jj.� ı 
/� �jj!;

for all � 2 TbC. From this, we infer that �bC � "2.� ı 
/�!, hence

��
2
�.bC/ D

Z
bC �bC �

Z
"2.� ı 
/�! D "2

Z

C
!:

The assertion follows by putting "0 D 2 "2=� . ut
In other words, for X a hyperbolic manifold, the ratio between the genus of

curves and their degrees with respect to any hermitian metric (or any ample divisor)
is bounded away from zero: this, following [17], can be taken as a definition of
“algebraic” hyperbolicity.

Definition 2.1.1. Let X be a projective algebraic manifold endowed with any
hermitian metric ! (for instance, ! can be taken to be the curvature of any ample
line bundle on X). We say that it is algebraically hyperbolic if there exists a constant
"0 > 0 such that for every algebraic curve C � X one has

2 g.bC/ � 2 � "0 deg! C:

When ! D i‚.A/, where A is any hermitian ample line bundle and i‚.A/ its
Chern curvature, the right-hand side of the inequality is just the usual degree of a
curve in terms of its intersection product C � A: in this case the inequality is purely
algebraic.

By Riemann-Hurwitz formula, one can take, in the previous inequality of the
definition of algebraic hyperbolicity, any finite morphism f W C ! X from a smooth
projective curve.

This algebraic counterpart of hyperbolicity satisfies an analogue of the openness
property of the Kobayashi hyperbolicity, this time with respect to the Zariski
topology.
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Proposition 2.1.2. Let X ! S be an algebraic family of projective algebraic
manifolds, given by a projective morphism. Then the set of s 2 S such that the
fiber Xs is algebraically hyperbolic is open with respect to the countable Zariski
topology of S (by definition, this is the topology for which closed sets are countable
unions of algebraic sets).

Proof. Without loss of generality, we can suppose that the total space X is quasi-
projective. Let ! be the Kähler metric on X obtained by pulling-back the Fubini-
Study metric via an embedding in a projective space. Fix integers d > 0 and g � 0

and call Ad;g the set of s 2 S such that Xs contains an algebraic 1-cycle C D P
mj Cj

with deg! C D d and g.bC/ D P
mj g.bCj/ � g.

This set is closed in S, by the existence of a relative cycle space of curves of
given degree and the lower semicontinuity with respect to the Zariski topology of
the geometric genus. But then, the set of nonhyperbolic fibers is by definition

\
k>0

[
2g�2<d=k

Ad;g:

ut
An interesting property of algebraically hyperbolic manifolds is

Proposition 2.1.3. Let X be an algebraically hyperbolic projective manifold and V
be an abelian variety. Then any holomorphic map f W V ! X is constant.

Proof. Let m be a positive integer and mV W V ! V , s 7! m � s. Consider fm WD f ımV

and A an ample line bundle on X. Let C be a smooth curve in V and fmjCW C ! X.
Then

2g.C/ � 2 � "C � f �
m A D "m2 C � f �A:

Letting m go to infinity, we obtain that necessarily C � f �A D 0. Thus f is constant
on all curves in V and therefore f is constant on V . ut

It is worthwhile here to mention that in the projective algebraic case, Kobayashi
hyperbolicity and algebraic hyperbolicity are expected to be equivalent, but not
much is known about it. Both of these properties should be equivalent to the
following algebraic property.

Conjecture 2.1.1 (Lang). Let X be a projective manifold. Then X is hyperbolic if
and only if there are no nontrivial holomorphic maps V ! X where V D C

p=ƒ is a
compact complex torus.

One may be tempted to extend the conjecture to non-projective manifolds but
then it becomes false, as shown by the following
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Example 2.1.1 ([11]). Let X be a non-projective K3 surface1 with no algebraic
curves (the existence of such a surface is a classical result on K3 surfaces). Then
there exists a non-constant entire curve f WC ! X. On the other hand, if V is a
compact torus, every holomorphic map FW V ! X is constant.

Let us justify briefly the claims of the example. The existence of non-constant
entire curves is a consequence of the density of Kummer surfaces2 in the moduli
space of K3 surfaces. Since Kummer surfaces contain lots of entire curves (inherited
from the starting torus), one just has to apply Brody’s theorem. The second claim
follows from the non-existence of surjective maps FW V ! X. Indeed, considering
� a non-vanishing holomorphic 2-form on X, if F is surjective, then F�� is a non-
zero section of the trivial bundleƒ2T�

V : the rank of this 2-form is therefore constant,
equal to 2. Then, one obtains that F factors through a two dimensional compact
torus and induces a covering V ! X which contradicts the fact that X is simply
connected.

Another characterization of hyperbolicity should be the following.

Conjecture 2.1.2 (Lang). Let X be a smooth projective algebraic manifold. Then X
is hyperbolic if and only if all subvarieties of X including X itself are of general type.

In the next section we shall see some partial result in this direction. The latter
conjecture should be put in perspective with this other celebrated one.

Conjecture 2.1.3 (Green-Griffiths [31], Lang). Let X be a smooth projective
algebraic manifold of general type. Then there should exist a proper algebraic
subvariety Y ¨ X such that all entire curves f WC ! X have image f .C/ contained
in Y .

This conjecture is largely open, too. Nevertheless, related to algebraic hyperbol-
icity we have the following.

Theorem 2.1.4 (Bogomolov [8]). Let X be a smooth projective surface of general
type with c1.X/2 > c2.X/. Then there are only finitely many rational or elliptic
curves in X.

Proof. We will see later in some details that the hypothesis on the second Segre
number c1.X/2 > c2.X/ implies that h0.X; SmT�

X / 	 m3. A nontrivial symmetric
differential ! 2 H0.X; SmT�

X / defines a multifoliation on X. Recall that there is an
isomorphism (we will come back later on this, too)

H0.X; SmT�
X / Š H0.P.TX/;OP.TX/.m//:

1A K3 surface is a simply connected surface X with irregularity q.X/ D h1.X;OX/ D 0 and trivial
canonical bundle KX ' OX .
2Let T be a two dimensional complex torus with a base point chosen. The involution �W T ! T has
exactly 16 fixed points, namely the points of order 2 on T , so that the quotient T=h1; �i has sixteen
ordinary double points. Resolving the double points we obtain a smooth surface X, the Kummer
surface Km.T/ of T . Kummer surfaces are special case of K3 surfaces.
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If � 2 H0.X; SmT�
X / and x 2 X, then �.x/ defines naturally a polynomial of degree m

on P.TX;x/ ' P
1. The zeroes of �.x/ determine the directions of the multifoliation.

Let C be a smooth projective curve and f W C ! X. The curve f .C/ is a leaf of
the multifoliation defined by � if f �� 2 H0.C;T�˝m

C / is trivial. Equivalently if
tf W C ! P.TX/ is the lifting of f , then f .C/ is a leaf if tf .C/ lies in the zero locus of
� 2 H0.P.TX/;OP.TX/.m//.

The sections of OP.TX/.m/ for m large enough provide a rational map
'W P.TX/ ! P

N generically 1 � 1 onto its image. Let us denote Zm � P.TX/

the union of the positive dimensional fibers of ' and of the base locus of OP.TX/.m/.
Let f W C ! X be a curve. Then, f .C/ is said to be irregular if tf .C/ � Zm,

otherwise it is regular. The set of irregular curves can be broken into 2 sets: the
curves that are leaves of multifoliations and the curves whose lifts lie on the positive
dimensional fibers of '.

Let C0 be a regular curve with normalization f W C ! C0 � X. There is
a symmetric differential � 2 H0.X; SmT�

X / such that f �� 2 H0.C; .T�
C/

˝m/ is
nontrivial but vanishes somewhere. Hence degC T�˝m

C D m deg KC > 0 and C
cannot be rational or elliptic.

Let C0 be an irregular curve and write Zm D Z1m [ Z2m where Z1m is the union
of components not dominating X, Z2m is the union of components dominating X.
The number of curves that lift in Z1m is clearly finite. The components of Z2m have a
naturally defined foliation on them. Curves whose lifts lie in Z2m are leaves of these
foliations. By Jouanolou’s theorem on compact leaves of foliations, either there are
finitely many compact leaves or they are fibers of a fibration. Thus there are finitely
many such elliptic or rational curves: X being of general type, the second situation
is not possible since a surface of general type cannot be ruled or elliptic. ut

In the transcendental case, the only result for a quite general case has been
obtained McQuillan in [38], for dim X D 2 and the second Segre number
c1.X/2 � c2.X/ of X positive. The heart of his proof is

Theorem 2.1.5. Consider a (possibly singular) holomorphic foliation on a surface
of general type. Then any parabolic leaf of this foliation is algebraically degenerate.

An immediate corollary of the two previous results is a confirmation of the
Green-Griffiths conjecture in this situation.

Corollary 2.1.6. Let X be a smooth projective surface of general type with
c1.X/2 > c2.X/. Then there are finitely many curves C � X such that any non-
constant entire curve takes value in one of these curves.

Unfortunately, these “order one” techniques are insufficient to work with surfaces
of degree d in projective 3-space. In this case in fact

c1.X/
2 D d.d � 4/2 < d.d2 � 4d C 6/ D c2.X/; d � 3:

In higher dimensions, there are few results. For the algebraic version, let us
mention the following result of Lu and Miyaoka.
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Theorem 2.1.7 ([37]). Let X be a projective manifold of general type. Then X
has only a finite number of nonsingular codimension-one subvarieties having
pseudo-effective anticanonical divisor. In particular, X has only a finite number of
nonsingular codimension-one Fano, Abelian, and Calabi-Yau subvarieties.

For some partial result in all dimensions for the transcendental case, we refer to
next chapters.

2.2 Algebraic hyperbolicity of generic projective
hypersurfaces of high degree

Consider the Grassmannian G.1; n C 1/ of projective lines in P
nC1 which is

canonically identified with the Grassmannian Gr.2; n C 2/ of 2-planes in C
nC2:

its complex dimension is 2n. We are interested in understanding when a generic
projective hypersurface X � P

nC1 contains a line. Fix an integer d > 0.
Then a projective hypersurface of degree d is an element of the linear system
jO

PnC1 .d/j or, equivalently, can be identified with a point in the projectivization
P.H0.PnC1;O

PnC1 .d///. One has dimP.H0.PnC1;O
PnC1 .d/// D Nd � 1, where

Nd D �nCdC1
nC1

� D h0.PnC1;O
PnC1 .d// is the dimension of homogeneous polyno-

mials of degree d in n C 2 variables.
Now, consider the incidence variety

L D f.`;X/ 2 G.1; n C 1/ � P
Nd�1 j the line ` is contained in Xg:

By construction, the image of L in P
Nd�1 by the second projection is the set of

projective hypersurfaces of degree d which contain at least one line. Of course, if
dimL is less than Nd � 1, then a generic projective hypersurface of degree d does
not contain lines, since the second projection cannot be dominant. On the other
hand, L is always mapped onto G.1; n C 1/ by the first projection, since every
line is always contained in some degree d hypersurface. Next, an easy parameter
computation shows that generically a homogeneous polynomial of degree d in nC2

variables must satisfy d C 1 condition in order to contain a line. Therefore, the fiber
of the first projection has dimension Nd � d � 2 and thus dimL D Nd C 2n � d � 2.

After all, the second projection maps a variety of dimension Nd C 2n � d � 2 to
a variety of dimension Nd � 1 and so we have proved the following.

Proposition 2.2.1. If d � 2n, then a generic projective hypersurface of degree d in
P

nC1 cannot contain any line.

This digression shows that if we are interested in hyperbolicity of generic
projective hypersurfaces, we surely have to exclude low degree ones. On the other
hand, by the Euler short exact sequence

0 ! O
PnC1 !

nC2M
jD1

O
PnC1 .1/ ! T

PnC1 ! 0;
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combined with the classical adjunction formula

KD ' .KY ˝ OY.D//jD
for smooth divisors D � Y in a smooth manifold Y , one finds straightforwardly, by
taking determinants, that the canonical bundle of a smooth hypersurface X of degree
d in projective .n C 1/-space is given by

KX D OX.d � n � 2/:

So, the higher the degree of the hypersurface X is, the more positive its canonical
bundle is. This is somehow consistent with the picture presented at the end of
Chapter 1, where hyperbolicity was heuristically linked to the positivity properties
of the canonical bundle.

More precisely, Kobayashi made the following.

Conjecture 2.2.1 ([34]). Le X � P
nC1 be generic projective hypersurfaces of

degree d, n � 2. Then X is Kobayashi hyperbolic if its degree is sufficiently high,
say d � 2n C 1.

This conjecture and the bound on the degree are closely related to the conjecture
in the case of complements of hypersurfaces.

Conjecture 2.2.2 ([34]). Le X � P
n be generic projective hypersurfaces of

degree d. Then P
n n X is Kobayashi hyperbolic if its degree is sufficiently high, say

d � 2n C 1.

One possible explanation for the bounds on the degrees comes, as far as we know,
from the following facts. Consider in P

n with homogeneous coordinates ŒZ1 W � � � W
Zn
 the divisor D of degree d defined by the homogeneous equation P.Z/ D 0. Then,
one can construct a cyclic d W 1 cover of Pn by taking in P

nC1 with homogeneous
coordinates ŒZ0 W � � � W Zn
 the divisor X defined by Zd

0 D P.Z1; : : : ;Zn/ together
with its projection onto P

n. This covering ramifies exactly along D and thus all
holomorphic maps f WC ! P

n n D lift to X. It is then clear that the hyperbolicity
of Pn n D is intimately correlated with the hyperbolicity of X. On the other hand,
if a holomorphic map f WC ! P

n misses 2n C 1 or more hyperplanes in general
position, then it is a constant map; this is the by now classical result of Dufresnoy
[28] and Green [32]. Now, just remark that a configuration of d hyperplanes in
general position can be seen as a generic completely reducible divisor of degree d.

One has to notice anyway that if one believes to the equivalence of Kobayashi
and algebraic hyperbolicity in the projective algebraic setting then, as we shall see
in the next section, this bound should probably be d � 2n, at least for n � 6 [44].
Anyway the state of the art on the subject is for the moment very far from these
optimal bounds, no matter in which one we want to believe.

The rest of this chapter will be devoted to prove several algebraic properties of
generic projective hypersurfaces of high degree, such as their algebraic hyperbolic-
ity and the property of their subvarieties of being of general type.
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2.2.1 Global generation of the twisted tangent bundle
of the universal family

First, given a holomorphic vector bundle E ! X over a compact complex manifold
X, we say that E is globally generated, if the global sections evaluation maps

H0.X;E/ ! Ex

are surjective for all x 2 X, where Ex is the fiber of E over the point x. If a
vector bundle is globally generated, so are all its exterior powers, in particular its
determinant, as it is easy to verify.

Now, consider the universal family of projective hypersurfaces in P
nC1 of a given

degree d > 0. It is the subvariety X of the product PnC1 � P.H0.PnC1;O
PnC1 .d///

defined by the pairs .Œx
;X/ such that Œx
 2 X. The starting point is the following
global generation statement.

Proposition 2.2.2 (See [53, 57]). The twisted tangent bundle

TX ˝ p�O
PnC1 .1/

is globally generated, where pWX ! P
nC1 is the first projection.

Proof. We shall exhibit on an affine open set of X a set of generating holomorphic
vector fields and then show that when extended to the whole space, the pole order
of such vector fields in the P

nC1-variables is one.
Consider homogeneous coordinates .Zj/jD0;:::;nC1 and .A˛/j˛jDd, respectively, on

P
nC1 and P

Nd�1, where ˛ D .˛0; : : : ; ˛nC1/ 2 N
nC2 is a multiindex and j˛j D P

˛j.
The equation of the universal hypersurface is then given by

X
j˛jDd

A˛ Z˛ D 0; Z˛ D Z˛00 � � � Z
˛nC1

nC1 :

Next, we fix the affine open set U D fZ0 ¤ 0g � fAd0���0 ¤ 0g ' C
nC1 � C

Nd�1 in
P

nC1 � P
Nd�1 with the corresponding inhomogeneous coordinates .zj/jD1;:::;nC1 and

.a˛/j˛jDd;˛0<d. On this affine open set we have

X \ U D
8
<
:
X

j˛jDd

a˛ z˛11 � � � z
˛nC1

nC1 D 0

9
=
; ; ad0���0 D 1:

Its tangent space in C
nC1 � C

Nd�1 � C
nC1 � C

Nd�1 with affine coordinates
.zj; a˛; z0

j; a
0̨ / is then given by the two equations
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8̂
<̂
ˆ̂:

P
j˛jDd a˛ z˛11 � � � z

˛nC1

nC1 D 0; ad0���0 D 1P
j˛jDd;˛0<d

PnC1
jD1 ˛j a˛ z˛11 � � � z

˛j�1
j � � � z

˛nC1

nC1 z0
j

CP
j˛jDd;˛0<d z˛11 � � � z

˛nC1

nC1 a0̨ D 0;

the second of which is obtained by formal derivation. For any multiindex ˛ with
˛j � 1, set

Vj
˛ D @

@a˛
� zj

@

@aj
˛

;

where aj
˛ is obtained by the multiindex a˛ lowering the j-th entry by one. It is

immediate to verify that these vector fields are tangent to X0 and, by an affine
change of coordinates, that once extended to the whole X it becomes rational with
pole order equal to one in the z-variables.

Now consider a vector field on C
nC1 of the form

V0 D
nC1X
jD1

vj
@

@zj
;

where vj D PnC1
kD1 vj;k zk C vj;0 is a polynomial of degree at most one in the

z-variables. We can then modify it by added some “slanted” direction in order to
obtain a vector field tangent to X0 as follows. Let

V D
X

j˛jDd;˛0<d

v˛
@

@a˛
C V0;

where the v˛’s have to be determined. The condition to be satisfied in order to be
tangent to X0 clearly is

X
˛

v˛ z˛ C
X
˛;j

a˛ vj
@z˛

@zj

 0

and thus it suffices to select the v˛ to be constants such that the coefficient in
each monomial z˛ is zero. Here, an affine change of variables shows that once
the extension of V to the whole X is taken, the pole order is at most one in the
z-variables.

It is then straightforward to verify that these packages of vector field generate the
tangent bundle, and the poles are compensated by twisting by O

PnC1 .1/, since they
appear at order at most one and only in the variables living in P

nC1. ut
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2.2.2 Consequences of the twisted global generation

Two remarkable consequences of the twisted global generation of the tangent space
of the universal family are the following. First, the very generic projective hypersur-
face of high degree (is of general type and) admits only subvarieties of general type,
that is very generic projective hypersurfaces of high degree satisfy Lang’s conjecture
stated above, which is conjecturally equivalent to Kobayashi hyperbolicity. Second,
very generic projective hypersurfaces are algebraically hyperbolic, which would be
implied by their hyperbolicity (and should be in principle equivalent) as we have
seen: this can be regarded as another evidence toward Kobayashi’s conjecture.

Theorem 2.2.3. Let X � P
nC1 be a (very) generic projective hypersurface of

degree d � 2n C 2. If Y � X is any subvariety, let 
WeY ! Y be a
desingularization. Then

H0.eY;KeY ˝ 
�O
PnC1 .�1// ¤ 0:

Proof. Let X � P
nC1�P

Nd�1 be the universal hypersurface of degree d and Y � X
be a subvariety such that the second projection Y ! P

Nd�1 is dominant of relative
dimension `. For simplicity, we shall skip here a technical point which consists to
allow an étale base change U ! P

Nd�1 for the family.
Let 
WeY ! Y be a desingularization and consider an open dense subset

U � P
Nd�1 over which both eY and X are smooth. What we have to show is that

H0.eYs;KeYs
˝ 
�O

PnC1 .�1// ¤ 0;

for Ys the fiber over a generic point s 2 U. To this aim, observe that, since the normal
bundle of a fiber in a family is trivial,

KeYs
' KeY jeYs

D
kCNd�1^

T�eY
ˇ̌
ˇ̌
eYs

;

by adjunction and that

kCNd�1^
T�
X

ˇ̌
ˇ̌
Xs

' KXs ˝
n�k̂

TX

ˇ̌
ˇ̌
Xs

by linear algebra and adjunction again.
Therefore, we have to show that

VkCNd�1 T�eY ˝ 
�O
PnC1 .�1/ˇ̌eYs

is effective.
Now, we have a map

kCNd�1^
T�
X ˝ O

PnC1 .�1/
ˇ̌
ˇ̌
Xs

!
kCNd�1^

T�eY ˝ 
�O
PnC1 .�1/

ˇ̌
ˇ̌
eYs

induced by the generically surjective restriction T�
X ! T�eY , which is non-zero for a

generic choice of s 2 U.
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It is then sufficient to prove that KXs ˝ Vn�k TX
ˇ̌
Xs

˝ OXs.�1/ is globally
generated. Now,

KXs D OXs.d � n � 2/ D OXs..n � k/C .d � 2n C k � 2//

and thus

KXs ˝
n�k̂

TX

ˇ̌
ˇ̌
Xs

˝ OXs.�1/ D
n�k̂

TX ˝ O
PnC1 .1/

ˇ̌
ˇ̌
Xs

˝ OXs.d � 2n C k � 3/:

By the global generation of TX ˝O
PnC1 .1/, the right-hand term is globally generated

as soon as d � 2n C 3 � k so that d � 2n C 2 will do the job.
We have thus proved that the theorem holds for the general fiber of the family Y .

To conclude, it suffices to let the family Y vary, that is to let vary the Hilbert
polynomial. In this way we obtain the same statement for all subvarieties of Xs

outside a countable union of closed algebraic subvarieties of the parameter space U,
that is for very generic X. ut
Corollary 2.2.4. Let X � P

nC1 be a (very) generic projective hypersurface of
degree d � 2n C 2. Then any subvariety Y � X (and of course X itself) is of
general type.

Proof. This is an immediate consequence of the theorem above: such a subvariety
has in fact a desingularization whose canonical bundle can be written as an effective
divisor twisted by a big one (the pull-back by a modification of the ample divisor
O

PnC1 .1/) and hence it is big. ut
This corollary can be sharpened as soon as n � 6, see [44].

Corollary 2.2.5. A very generic projective hypersurface in P
nC1 of degree greater

than or equal to 2n C 2 is algebraically hyperbolic.

Proof. Let ! D i‚.OX.1// be the reference hermitian metric on X and C � X
a curve. Consider the finite-to-one normalization morphism 
WeC ! C, which is
in fact a desingularization, if necessary. Then, the preceding theorem states that
KeC ˝ 
�O

PnC1 .�1/ is effective and so of nonnegative degree on eC. By the Hurwitz
formula c1.KeC/ D 2g.eC/ � 2 and thus

��.eC/ D 2g.eC/ � 2 � 
�O
PnC1 .1/ �eC D

Z

C
!:

ut
Another consequence of the global generation statement is the following result

on the non-deformability of entire curves in projective hypersurfaces of high degree.
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Theorem 2.2.6 ([25]). Consider X � P
nC1 � P

Nd�1 the universal hypersurface of
degree d, U � P

Nd�1 an open set, and ˆWC � U ! X a holomorphic map such
that ˆ.C � ftg/ � Xt for all t 2 U. If d � 2n C 2, the rank of ˆ cannot be maximal
anywhere.

In other words, the Kobayashi conjecture may possibly fail only if there is an
entire curve on a general hypersurface X which is not preserved by a deforma-
tion of X.

Now, let us sketch the proof of the previous result.

Proof. Suppose that ˆWC � U ! X has maximal rank and U is the polydisc
B.ı0/Nd�1. We consider the sequence of maps

ˆkWB.ı0k/Nd ! X

given by ˆk.z; �1; : : : �Nd�1/ D ˆ.zkNd�1; 1k �1; : : : ;
1
k �Nd�1/: The sections

Jˆk.z; �/ D @ˆ

@z
^ @ˆ

@�1
^ � � � ^ @ˆ

@�Nd�1
.z; �/ 2 ƒNd TX ;ˆ.z;�/

are not identically zero and we can assume Jˆk.0/ non-zero. Thanks to the global
generation statement of TX ˝ O

PnC1 .1/, we can choose n � 1 vector fields

V1; : : : ;Vn�1 2 TX ˝ O
PnC1 .1/

such that

Jˆk.0/ ^ˆ�
k .V1 ^ � � � ^ Vn�1/ ¤ 0

in K�1
X ˝ O

PnC1 .n � 1/ˆk.0/: We consider the sections

�k D Jˆk ^ˆ�
k .V1 ^ � � � ^ Vn�1/;

of ˆ�
k .K

�1
X ˝ O

PnC1 .n � 1// over the polydisc. If d � 2n C 2, the restriction of
KX ˝ O

PnC1 .1 � n/ over U is ample and we can endow this bundle with a metric
h of positive curvature. We consider the sequence of functions fk W B.ı0k/Nd ! R

C
defined by

fk.w/ D jj�k.w/jj2=Nd

ˆ�
k h�1 :

The ampleness implies that there exists a positive C such that

� log fk � Cfk:
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This gives

fk.0/ � Ck�2;

and therefore fk.0/ ! 0 which contradicts the fact that, by construction, there exists
a positive constant b such that for all k, fk.0/ D b. ut

Let us briefly describe the generalization of the above results to the logarithmic
case, that is the case of complements of hypersurfaces. If X is an n-dimensional
complex manifold and D a normal crossing divisor, i.e., in local coordinates
D D fz1 : : : zl D 0g, l � n, we call the pair .X;D/ a log-manifold.

In the case of complements we have the following notion stronger than hyper-
bolicity.

Definition 2.2.1. Let .X;D/ be a log-manifold and ! a hermitian metric on X. The
complement X n D is said to be hyperbolically embedded in X, if there exists " > 0
such that for every x 2 X n D and � 2 TX;x, we have

kX.�/ � "jj�jj!:

To generalize to this setting the notion of algebraic hyperbolicity, we need to
introduce the following.

Definition 2.2.2. Let .X;D/ be a log-manifold, C � X a curve not contained in
D, and 
WbC ! C the normalization. Then we define i.C;D/ to be the number of
distinct points in 
�1.D/.

Then, we have the next.

Definition 2.2.3. The pair .X;D/ is algebraically hyperbolic if there exists " > 0

such that

2g.bC/ � 2C i.C;D/ � " deg!.C/

for all curves C � X not contained in D.

As in the compact case, analytic and algebraic hyperbolicity are closely related.

Proposition 2.2.7 ([47]). Let .X;D/ be a log-manifold such that XnD is hyperbolic
and hyperbolically embedded in X. Then .X;D/ is algebraically hyperbolic.

The algebraic version of the Kobayashi conjecture is also verified.

Theorem 2.2.8 ([47]). Let Xd � P
n be a very generic hypersurface of degree

d � 2n C 1 in P
n. Then .Pn;Xd/ is algebraically hyperbolic.



24 2 Algebraic hyperbolicity

2.3 A brief history of the above results

The chronicle of the above results about algebraic hyperbolicity is the following.
First, in [12] it is shown that if X is a generic hypersurface of degree d � 2 in

P
nC1, then X does not admit an irreducible family f W C ! X of immersed curves of

genus g and fixed immersion degree deg f which cover a variety of codimension less
than D D ..2� 2g/= deg f /C d � .n C 2/. As an immediate consequence, one gets,
for example, that there are no rational curves on generic hypersurfaces X of degree
d � 2n C 1 in P

nC1.
Two years later, [30] studies the Hilbert scheme of X � G, a generic complete

intersection of type .m1; : : : ;mk/ in the Grassmann variety G D G.r; n C 2/. As
a remarkable corollary one gets that any smooth projective subvariety of X is of
general type if m1Cm2C� � �Cmk � dim X CnC2. It is also proved that the Hilbert
scheme of X is smooth at points corresponding to smooth rational curves of “ low”
degree.

The variational method presented here is due to [57]. By variational method
we mean the idea of putting the hypersurfaces in family and to use the positivity
property of the tangent bundle of the family itself. The main result of this paper is
the following theorem which improves Ein’s result in the case of hypersurfaces: let
X � P

nC1 be a hypersurface of degree d. If d � 2n � `C 1, 1 � ` � n � 2, then any
`-dimensional subvariety Y of X has a desingularization eY with an effective
canonical bundle. Moreover, if the inequality is strict, then the sections of KeY
separate generic points of eY . The bound is now optimal and, in particular, the
theorem implies that generic hypersurfaces in P

nC1 of degree d � 2n, n � 3, contain
no rational curves. The method also gives an improvement of a result of [60] as well
as a simplified proof of Ein’s original result.

Lastly, let us cite [44]: this paper gives the sharp bound d � 2n for a general
projective hypersurface X of degree d in P

nC1 containing only subvarieties of
general type, for n � 6. This result improves the aforesaid results of Voisin and Ein.
The author proves the bound by showing that, under some numerical conditions,
the locus W spanned by subvarieties not of general type (even more than this) is
contained in the locus spanned by lines. This is obtained in two steps. First, with
the variational technique inherited by Voisin the author proves that W is contained
in the locus spanned by lines with highly nonreduced intersection with X, the so-
called bicontact locus. Then the latter is proved to be contained in the locus of lines
by using the global generation of certain bundles. Finally, let us mention that similar
results have also been obtained independently and at the same time in [13].
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