
Chapter 2
Banach Spaces and Banach Lattices

We shall now give some background in the theory of normed and Banach spaces,
including the key definitions of dual and bidual spaces and of an isomorphism and
an isometric isomorphism between two normed spaces. In particular, we shall show
how certain bidual spaces can be embedded in other Banach spaces. In §2.3, we
shall also recall some basic results and theorems concerning Banach lattices. We
shall define complemented subspaces of a Banach space in §2.4, and also we shall
discuss, in §2.5, the projective and injective objects in the category of Banach spaces
and bounded operators. We shall conclude the chapter by discussing dentability and
the Krein–Milman property for Banach spaces in §2.6.

2.1 Banach spaces

We now recall the basics of the Banach-space theory that we shall use.
There is a huge literature on the theory of normed and Banach spaces; for ex-

ample, see [3, 6, 30, 82, 85, 94, 100, 166, 175, 176, 183, 218, 225]. There is a
collection of instructive essays on topics in Banach-space theory in [147]. We shall
regard the texts of Albiac and Kalton [3], Allan [6], and Rudin [218] as accessible
and elementary accounts and shall rarely repeat proofs from those sources.

Let E be a linear space or a real-linear space, with underlying field K, still always
C or R. A semi-norm on E is a map p : E → R

+ such that

p(x+ y)≤ p(x)+ p(y) (x,y ∈ E) , p(αx) = |α| p(x) (α ∈K, x ∈ E) ;

the semi-norm is a norm if, further, p(x) = 0 if and only if x = 0. Then (E,‖·‖) is
a normed space if ‖·‖ is a norm on E; (E,‖·‖) is a Banach space if it is complete
with respect to the metric dE defined by

dE(x,y) = ‖x− y‖ (x,y ∈ E) .
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48 2 Banach Spaces and Banach Lattices

For example, (Cb(X), | · |X ) is a Banach space for each non-empty topological
space X .

Let E be a normed space. Then there is a Banach space containing E as a dense
subspace (with the same norm); the latter space is the completion of E . Let p be a
semi-norm on a linear space E , and set F = {x ∈ E : p(x) = 0}. Then we can regard
p as a norm on the quotient space E/F and on the completion of E/F .

Two norms ‖·‖1 and ‖·‖2 on a linear space E are equivalent it there exist con-
stants m,M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤ M ‖x‖1 (x ∈ E) ,

and so the two norms define equivalent metrics and the same topology on E . For
example, any two norms on the linear space Cn, where n ∈ N, are equivalent.

Let F be a real linear space, with complexification E = F ⊕ iF , so that E is a
(complex) linear space. Suppose that F is a normed space. Then E is a normed
space for the norm specified by

‖x+ iy‖= sup{‖xcosθ − ysinθ‖ : θ ∈ [0,2π ]} ,

and F is a closed real-linear subspace of E; E is a Banach space whenever F is a
Banach space. But the above is not always the most appropriate choice of a norm
on F; indeed, various choices for various different purposes can be made. For a dis-
cussion of this point, see [187]. For example, for the norm on the complexification
of a Banach lattice, see equation (2.7).

Let (E,‖·‖) be a normed space. We denote by E[1] the closed unit ball of E; more
generally,

E[r] = {x ∈ E : ‖x‖ ≤ r} and Br(x) = {y ∈ E : ‖y− x‖< r}

for r ≥ 0 and x ∈ E; the unit sphere of E is

SE = {x ∈ E : ‖x‖= 1} .

A barrel in E is a closed, bounded, absolutely convex, absorbent set; in the case
where E is a Banach space, each of these is the closed unit ball of E with respect to
a norm on E that is equivalent to the given norm.

Let F be a closed subspace of a normed space (E,‖·‖), with quotient map
π : E → E/F . Set

‖x+F‖= inf{‖x+ y‖ : y ∈ F}= inf{‖z‖ : z ∈ E, π(z) = x+F} (x ∈ E) .

Then ‖·‖ is the quotient norm on E/F; always (E/F,‖·‖) is a normed space, called
the quotient space, and the quotient map π is continuous and open; (E/F,‖·‖) is a
Banach space whenever E is a Banach space.

A (Hausdorff) locally convex space is a linear space E (over R or C) with a
collection P of semi-norms on E such that P separates the points of E , in the
sense that, for each x ∈ E with x �= 0, there exists p ∈P with p(x) �= 0. We define
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a topology on E by saying that a subset U of E is open if, for each x ∈U , there are
p1, . . . , pn ∈P and ε > 0 such that

{y ∈ E : p j(y− x)< ε ( j ∈ Nn)} ⊂U .

A topological linear space is a linear space with a Hausdorff topology such that
addition and scalar multiplication are continuous. A topological linear space E is a
locally convex space if and only if there is a base of neighbourhoods of 0E consisting
of convex sets.

Let E be a locally convex space. We denote by E ′ the dual space of E , so that E ′
is the space of all continuous linear functionals on E . The action of λ ∈ E ′ on x ∈ E
gives the complex number λ (x) that we shall usually denote by 〈x, λ 〉.

In the case where E is a normed space, the dual space E ′ is itself a Banach space
for the norm specified by

‖λ‖= sup{|〈x,λ 〉| : x ∈ E[1]} (λ ∈ E ′) .

The dual space (E ′)′ of (E ′,‖·‖) is denoted by E ′′; it is called the second dual
or bidual space of E . Occasionally, we shall refer to the third dual of E; this is
E ′′′ = (E ′′)′.

For examples of locally convex spaces, let E be a normed space, and define

pλ (x) = |〈x,λ 〉| (x ∈ E)

for each λ ∈ E ′. Then each pλ is a semi-norm on E , and the family {pλ : λ ∈ E ′}
defines a topology, called σ(E,E ′), with respect to which E is a locally convex
space; this topology is the weak topology on E . Let (xγ ) be a net in E , and take
x ∈ E . Then limγ xγ = x weakly (i.e., with respect to the weak topology) if and only
if limγ 〈xγ , λ 〉= 〈x, λ 〉 (λ ∈ E ′). The closure of a set S in E with respect to the weak
topology is called the weak closure, etc.

Now define
px(λ ) = |〈x,λ 〉| (λ ∈ E ′)

for each x ∈ E . Then each px is a semi-norm on E ′, and the family {px : x ∈ E} de-
fines a topology, called σ(E ′,E), with respect to which E ′ is a locally convex space.
The topology σ(E ′,E) is the weak∗ topology on E ′. Clearly σ(E ′,E)⊂ σ(E ′,E ′′);
every weakly convergent net in E ′ is weak∗-convergent. We have (E,σ(E,E ′))′ =E ′
and (E ′,σ(E ′,E))′ = E , for example. Later we shall use the weak∗ topology
σ(E ′′,E ′) on E ′′.

For a discussion of locally convex spaces and these topologies, see [6, 68, 94,
144, 183, 218], for example.

We shall mention the following class of spaces at a few later points; in particular,
see §4.5.

Definition 2.1.1. Let E be a Banach space. Then E is a Grothendieck space, or E
has the Grothendieck property, if every weak∗-convergent sequence in E ′ is weakly
convergent.
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The proto-typical example of a Grothendieck space is the space C(K), where K is
a Stonean space [124, Théorème 9, p. 168], as we shall show in Theorem 4.5.6. This
class of examples includes the spaces �∞(S) for each set S as particular instances; a
generalization of these examples will be noted in Example 6.7.1. Many character-
izations of Grothendieck space are listed, without proofs, in [85, Theorem p. 179];
some of these are proved in [184, Proposition 5.3.10].

The following is a form of the Hahn–Banach theorem; see [6, Corollaries 3.4 and
3.27], for example.

Theorem 2.1.2. (i) Let E be a normed space, and suppose that F is a linear sub-
space of E. Take λ ∈ F ′. Then there exists Λ ∈ E ′ with Λ | F = λ and ‖Λ‖ = ‖λ‖ .

(ii) Let E be a real locally convex space, and let A and B be non-empty, convex
subsets of E with A compact, B closed, and A∩B = /0. Then there exists λ ∈ E ′ with

sup
x∈A

〈x,λ 〉< inf
x∈B

〈x,λ 〉 .

(iii) Let E be a complex locally convex space, and suppose that B is an abso-
lutely convex, closed subset of E and that x0 ∈ E \B. Then there exists λ ∈ E ′ with
|〈x,λ 〉| ≤ 1 (x ∈ B) and 〈x0,λ 〉> 1. ��

The functional Λ in clause (i), above, is a norm-preserving extension of λ .

Corollary 2.1.3. Let E be a normed space, and let S be a circled subset of SE. Then
coS = E[1] if and only if

‖λ‖ ≤ sup{|〈x,λ 〉| : x ∈ S} (λ ∈ E ′) . (2.1)

Proof. Suppose that coS = E[1], and take λ ∈ E ′. For each ε > 0, there exist n ∈ N,
x1, . . . ,xn ∈ S, and α1, . . .αn ∈ I with ∑n

i=1 αi = 1 such that
∣
∣
∣
∣
∣

〈
n

∑
i=1

αixi,λ

〉∣
∣
∣
∣
∣
> ‖λ‖− ε ,

and so |〈xi,λ 〉|> ‖λ‖− ε for some i ∈Nn. Hence (2.1) follows.
Conversely, assume that there exists x0 ∈ E[1] with x0 �∈ coS. Since S is circled,

the set coS is absolutely convex, and so, by Theorem 2.1.2(iii), there exists λ ∈ E ′
with |〈x,λ 〉| ≤ 1 (x ∈ S), but with 〈x0,λ 〉 > 1, a contradiction of equation (2.1).
Thus coS = E[1]. ��

Let E be a normed space. It follows from Theorem 2.1.2(i) that, for each x ∈ E ,
there exists λ ∈ SE ′ with ‖x‖ = 〈x, λ 〉. The action of Φ ∈ E ′′ on λ ∈ E ′ gives the
complex number 〈Φ, λ 〉, and we define the canonical embedding κE : E → E ′′ by

〈κE(x), λ 〉= 〈x, λ 〉 (x ∈ E, λ ∈ E ′) .
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Clearly κE is a linear map; by our remark, ‖κE(x)‖ = ‖x‖ (x ∈ E), and so κE iden-
tifies E as a closed subspace of E ′′; the space E is reflexive if E = E ′′ under this
identification. For example, � p and Lp(I) are both reflexive whenever 1 < p < ∞.

Here are some further standard theorems; the weak∗ topology on E ′ is σ(E ′,E).

Theorem 2.1.4. Let E be a Banach space.

(i) The closed unit ball E ′
[1] is weak∗-compact and convex.

(ii) The space κE(E[1]) is weak∗-dense in E ′′
[1].

(iii) The weak∗ topology on E ′
[1] is metrizable if and only if (E,‖·‖) is separable.

(iv) The following conditions on a linear functional M on E ′ are equivalent:

(a) M ∈ κE(E);

(b) M is weak∗-continuous on E ′;
(c) M is weak∗-continuous on E ′

[1].

(v) The weak and norm closures of a convex subset of E coincide.

(vi) A convex set C in E ′ is weak∗-closed if and only if C∩E ′
[r] is weak∗-closed

for each r > 0.

(vii) A subset S of E is relatively weakly compact if and only if each countable,
infinite subset of S has a weak limit point in E if and only if each sequence in S has
a subsequence converging weakly in E.

Proof. Clause (i) is the Banach–Alaoglu theorem; see [6, Theorem 3.21]. Clause (ii)
is Goldstine’s theorem; see [6, Corollary 3.30]. For (iii) and (iv), see [94, Theorems
V.5.1, V.5.6], for example. Clause (v) is Mazur’s theorem [6, Corollary 3.28], clause
(vi) is the Krein–Šmulian theorem [94, V.5.7], and clause (vii) is the Eberlein–
Šmulian theorem [3, Theorem 1.6.3]. ��

Proposition 2.1.5. Let X be a completely regular topological space. Then there ex-
ists a compactification K of X such that each f ∈ Cb(X) has an extension to a
function f β ∈C(K).

Proof. Set E =(Cb(X), | · |X), a Banach space. The weak∗ topology on E ′ is denoted
by σ , so that (E ′

[1],σ) is compact by Theorem 2.1.4(i). For x∈X , define ε(x) on E by

ε(x)( f ) = f (x) ( f ∈ E) .

Then ε(x) ∈ E ′
[1] (x ∈ X), and the map ε : X → (E ′

[1],σ) is a continuous injection;
since X is completely regular, it is easily seen that ε is a homeomorphism onto its
range, and so we can regard X as a subspace of (E ′

[1],σ). Take K to be the closure

of X in (E ′
[1],σ), so that K is a compactification of X , and, for f ∈Cb(X), define f β

on K by
f β (λ ) = 〈 f , λ 〉 (λ ∈ K) .

Then f β ∈C(K) and f β extends f , identified with f ◦ ε . ��
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Thus K = β X is the Stone–Čech compactification of X , as discussed in §1.5.
Recall that w(X) and d(X) are the weight and density character, respectively, of

a topological space X .

Proposition 2.1.6. Let E be a normed space. Then d(E)≤ d(E ′). In particular, E is
separable whenever E ′ is separable.

Proof. We may suppose that d(E ′) is infinite.
Let S be the unit sphere of E ′. Then there is a dense subset, say {λα : α ∈ A}, of

S with |A|= d(E ′). For each α ∈ A, choose xα ∈ E[1] with |〈xα , λα〉|> 1/2, and set
F = lin{xα : α ∈ A}.

Assume towards a contradiction that F is not dense in E . By the Hahn–Banach
theorem, there exists λ ∈ S with λ |F = 0. There exists α ∈ A with ‖λα −λ‖< 1/2,
and so

1
2
< |〈xα , λα〉| ≤ |〈xα , λα −λ 〉|+ |〈xα , λ 〉|= |〈xα , λα −λ 〉| ≤ ‖λα −λ‖< 1

2
,

a contradiction. Thus F = E .
It follows that linear combinations with coefficients in Q+ iQ of the elements

xα constitute a dense subset of E with cardinality |A|. Hence d(E)≤ d(E ′). ��

Theorem 2.1.7. Let K be a non-empty, compact space. Then:

(i) C(K) is separable if and only if K is metrizable;

(ii) w(K) = d(C(K)).

Proof. For (i) and (ii), it is clearly sufficient to prove the analogous results for the
real Banach space CR(K); set E =CR(K).

We regard K as a subset of (E ′
[1],σ(E ′,E)) by identifying x ∈ K with εx ∈ E ′

[1],

where εx( f ) = f (x) ( f ∈ E), as above. The restriction of the topology σ(E ′,E) to
K is the original topology on K.

(i) Suppose that E is separable. By Theorem 2.1.4(iii), (E ′
[1],σ(E ′,E)) is metriz-

able, and so K is metrizable.
Conversely, suppose that d is a metric that defines the topology of K. Then (K,d)

is separable, say {xn : n ∈ N} is a dense subset of K. For n ∈ N, define fn ∈ E by
setting fn(x) = d(x,xn) (x ∈ K). Let A and B be the subsets of E formed by taking
all the elements p(1, f1, . . . , fn), where p is a polynomial in n+ 1 variables, n ∈ N,
and p has coefficients in Q and R, respectively. Then A is countable and dense in B,
and B is a subalgebra of E . Further, B contains the constants and separates strongly
the points of K. By the Stone–Weierstrass theorem, Theorem 1.4.26(i), B is dense
in (E, | · |K), and so A is also dense in this space. Thus E is separable.

(ii) Set κ = d(E); necessarily κ is infinite.
Let { fα : α < κ} be a dense subset of E , and define Uα = {x ∈ K : fα (x) > 0}

for α < κ . It is easy to check that {Uα : α < κ} is a subbase for the topology of K,
and so w(K)≤ κ .
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Conversely, let B be a base for the topology of K with |B|=w(K), and let A be
the family of all pairs (U,V ) ∈B×B such that U ∩V = /0, so that |A |= w(K). By
Urysohn’s lemma, Theorem 1.4.25, for each (U,V ) ∈ A , there exists f ∈ C(K,I)
with f |U = 1 and f |V = 0. Form the sets A and B with respect to these functions
f as in (i). Then |A| = w(K), and again A is dense in E by the Stone–Weierstrass
theorem. Thus κ ≤ w(K). ��

Corollary 2.1.8. Let E be a normed space, and set B = (E
′
[1],σ(E

′
,E)). Then

w(B) = d(E).

Proof. The space B is compact. We regard E as a linear subspace of C(B) that
separates the points of B. By Corollary 1.4.27, d(E) = d(C(B)), and, by
Theorem 2.1.7(ii), d(C(B)) = w(B). Hence d(E) = w(B). ��

The following result was originally proved by Choquet [54, p. 7] by a rather
indirect and complicated argument; our simple proof is taken from [104, Proposition
2.9] and [201, Proposition 1.3].

Proposition 2.1.9. Let K be a compact, convex set in a locally convex space E.
Suppose that the relative topology on K is metrizable. Then exK is a Gδ -set in E.
Further, exK is either countable or has cardinality c.

Proof. Let d be a metric that gives the relative topology on K from E . For n ∈ N,
take Kn to be the set of points x in K such that 2x = y+ z for some y,z ∈ K for which
d(y,z) ≥ 1/n. Then each Kn is closed in K, and the complement of the union of the
sets Kn is a Gδ -set. But this set is exactly exK.

By Proposition 1.4.14, exK is either countable or has cardinality c. ��

Let E be a normed space, and let ∗ : E → E be an isometric linear involution
on E . For λ ∈ E ′, define λ ∗ ∈ E ′ by

〈x, λ ∗〉= 〈x∗, λ 〉 (x ∈ E) .

Then the map ∗ : λ �→ λ ∗, E ′ → E ′, is an isometric linear involution; this map is
clearly also continuous with respect to the topology σ(E ′,E). Continuing, we obtain
an isometric linear involution ∗ on E ′′; the restriction of this linear involution to the
subspace E of E ′′ is the original linear involution.

Let {(Eα ,‖·‖α) : α ∈ A} be a family of normed spaces, defined for each α in a
non-empty index set A (perhaps finite). Then we shall consider the following spaces.

First set

⊕

∞
Eα =

{

(xα : α ∈ A) : ‖(xα)‖= sup
α

‖xα‖α < ∞
}

.
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Similarly, for p with 1 ≤ p < ∞, we define

⊕

p

Eα =

{

(xα : α ∈ A) : ‖(xα )‖=
(

∑
α
‖xα‖ p

α

)1/p

< ∞

}

.

Clearly
⊕

∞ Eα and
⊕

p Eα are normed spaces; they are Banach spaces if each of
the spaces Eα is a Banach space. We write

E ⊕∞ F and E ⊕p F

for the sum of two normed spaces E and F with the appropriate norms, etc., and we
write � p

n (E) for En with the norm given by

‖(x1, . . . ,xn)‖=
(

n

∑
i=1

‖xi‖p

)1/p

(x1, . . . ,xn ∈ E) .

We write � p(E) and �∞(E) for
⊕

p{En : n ∈ N} and
⊕

∞{En : n ∈ N}, respectively,
when each En is equal to E .

Take p with 1 ≤ p < ∞. Then it is easy to see that we can identify the dual space
of the normed space

⊕

p Eα with
⊕

q E ′
α , where q is the conjugate index to p, with

the obvious duality, so that

(

⊕

p

Eα

)′
=

⊕

q

E ′
α . (2.2)

We shall sometimes refer to E ×F , the product of two Banach spaces E and
F ; there are many equivalent norms on E ×F making it into a Banach space. For
example, we could take the norm to be given by

‖(x,y)‖ = ‖x‖+ ‖y‖ (x ∈ E, y ∈ F) .

Thus we can identify this space with E ⊕1 F in an obvious way.

Proposition 2.1.10. Let E be a normed space, and suppose that F and G are sub-
spaces such that E = F ⊕1 G. Then exE[1] = exF[1]∪ exG[1].

Proof. First take x ∈ E with ‖x‖ = 1. We claim that there exist y ∈ F and z ∈ G
with ‖y‖= ‖z‖= 1 and α,β ∈ I with α +β = 1 such that x = αy+β z. Indeed, set
x = y1+z1 with y1 ∈ F and z1 ∈ G and ‖y1‖+‖z1‖= 1. We may suppose that y1 �= 0
and z1 �= 0, for otherwise the claim is trivial. Set α = ‖y1‖ and β = ‖z1‖, so that
α,β > 0 and α +β = 1, and set y = α−1y1 and z = β−1z1. Then the requirements
are satisfied.

To show that exE[1] ⊂ exF[1]∪ exG[1], take x ∈ exX[1]. Then ‖x‖ = 1. If x ∈ F ,
then trivially x ∈ exF[1], and similarly if x ∈ G. Assume that x /∈ F∪G. By the claim,
x is a convex combination of two norm 1 elements from F and G, with coefficients
in (0,1), a contradiction.

The reverse inclusion is trivial. ��
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2.2 Isomorphisms and isometric isomorphisms

Let E and F be normed spaces over R or C. Then a linear operator T from E to F
is bounded if and only if it is continuous on E if and only if it is continuous at 0E ,
and then

‖T‖= sup{‖Tx‖ : x ∈ E[1]}
defines the operator norm ‖·‖ of T . The linear space B(E,F) of all bounded linear
operators from E to F is itself a normed space with respect to the operator norm;
we write B(E) for B(E,E), so that B(E) is a normed algebra with respect to the
composition of operators; see §3.1. The space B(E,F) is a Banach space whenever
F is a Banach space. Of course the basic inequality is that

‖T x‖ ≤ ‖T‖ ‖x‖ (x ∈ E, T ∈B(E,F)) .

An operator T ∈ B(E,F) is a contraction if ‖T‖ ≤ 1; a projection in B(E) is a
bounded projections on E .

The following is the famous uniform boundedness theorem.

Theorem 2.2.1. Let E be a Banach space, let {Eα : α ∈ A} be a family of normed
spaces, and let Tα : E → Eα be a bounded operator for each α ∈ A. Suppose that
sup{‖Tα x‖ : α ∈ A}< ∞ for each x ∈ E. Then sup{‖Tα‖ : α ∈ A}< ∞. ��

Corollary 2.2.2. Let E be a normed space. Then a subset of E is bounded if and
only if it is weakly bounded. ��

The following is a form of the open mapping theorem, together with Banach’s
isomorphism theorem.

Theorem 2.2.3. Let E and F be Banach spaces, and suppose that T ∈B(E,F) is
a surjection. Then T is an open mapping. In particular, in the case where T is a
bijection, T−1 ∈B(F,E). ��

Definition 2.2.4. Let E and F be normed spaces. A bijection T in L (E,F) is an
isomorphism or a linear homeomorphism if both T and T−1 are bounded. Two
normed spaces E and F are isomorphic if there is an isomorphism from E onto
F , and in this case we write

E ∼ F .

An operator T ∈B(E,F) is an embedding if it is an isomorphism onto a subspace
of F , and E embeds in F if there is such an embedding.

Of course, in the case where E and F are Banach spaces, each bijection in
B(E,F) is an isomorphism. An operator T ∈B(E,F) is an embedding if and only
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if there exists δ > 0 with ‖Tx‖ ≥ δ ‖x‖ (x ∈ E). Indeed, when we consider an em-
bedding T : E → F as an isomorphism onto its range, we see that T has a bounded
inverse T−1 : T (E) → E; clearly, for x ∈ E , we have ‖x‖ ≤ ∥

∥T−1
∥
∥‖T x‖, and so,

when E �= {0}, we can take δ =
∥
∥T−1

∥
∥−1

. (The constant δ is sometimes called the
embedding constant of T .)

Definition 2.2.5. Let C be a class of Banach spaces. Then a property is an iso-
morphic invariant for the class C if each Banach space E in C has the property
whenever E is isomorphic to another Banach space in C that has the property.

For example, it is clear that ‘separability’ and ‘having a separable dual space’
are isomorphic invariants of the class of all Banach spaces. Also, the Grothendieck
property of Definition 2.1.1 is an isomorphic invariant of this class.

Let E and F be normed spaces, and take T ∈ B(E,F). Then, as on page 9, T
induces a linear map

T : x+ ker T �→ Tx , E/ker T → F ,

such that T : E/ker T → T (E) is a linear isomorphism from E/ker T onto T (E). In
our present setting, ker T is closed in E , and T is bounded with

∥
∥T

∥
∥ ≤ ‖T‖ when

E/ker T has the quotient norm; in the case where E and F are Banach spaces and
T has closed range, the map T : E/ker T → T (E) is an embedding.

Many, but not all, Banach spaces E have the property that E ∼ E ×E . (This is
not true, for example, for the James space, J, described in [3, p. 233].) In particular,
the following is clear.

Proposition 2.2.6. Take p with 1 ≤ p ≤ ∞, and let E be either of the two Banach
spaces � p and Lp(I). Then E ∼ E ×E. ��

We caution that it is possible that two (complex) Banach spaces E and F can
fail to be isomorphic (as complex Banach spaces), but to be such that their under-
lying real spaces are isomorphic (as real Banach spaces): see [43] and, for a more
elementary example, [151].

The following definition is given in [3, Definition 7.4.5], for example.

Definition 2.2.7. Let E and F be isomorphic normed spaces. Then the Banach-
Mazur distance, d(E,F), from E to F is given by

d(E,F) = inf{‖T‖∥∥T−1
∥
∥ : T ∈B(E,F) is an isomorphism} .

Definition 2.2.8. Let E and F be normed spaces. A map T ∈B(E,F) is isometric if
‖T x‖= ‖x‖ (x ∈ E), and then T is a linear isometry; T is an isometric isomorphism
if it is a surjective linear isometry from E onto F . When there is such an isometric
isomorphism, we say that E and F are isometrically isomorphic and write
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E ∼= F .

A linear isometry from E onto a subspace of F is an isometric embedding.

Thus d(E,F) = 1 whenever E ∼= F; the converse is true when E and F are both
finite-dimensional spaces, but it is not true in general. An isomorphism T ∈B(E,F)
is isometric if and only if T and T−1 are both contractions.

Sometimes, with a slight abuse of language, we say that ‘E =F’ or ‘E is F’ when,
strictly, we mean that ‘E ∼=F’. For example, in the case where 1≤ p<∞, we say that
the duals of the Banach spaces � p and Lp(I) are �q and Lq(I), respectively, where q is
the conjugate index to p. Also, the dual of c0 is �1, so that c′′0 =(�1)′ = �∞ =C(βN).

The difference between the corresponding ‘isomorphic’ and ‘isometric’ theories
of Banach spaces is of great significance, as we shall see shortly. For example,
here is a result that applies in the isometric, but not necessarily in the isomorphic,
theory: Let E and F be Banach spaces, and suppose that T : E → F is an isometric
isomorphism. Then T (exE[1]) = exF[1].

Since we shall be concerned with linear isometries, we give a gem, the Mazur–
Ulam theorem from 1932; see [30, Chapitre 6, §3].

Lemma 2.2.9. Let E and F be two real Banach spaces. Suppose that a map
Ψ : (E,dE)→ (F,dF) is isometric and that Ψ (0E) = 0F . Then Ψ is real-linear.

Proof. Take x1,x2 ∈ E with x1 �= x2, and set x0 = (x1+x2)/2. We inductively define
subsets En of E for n ∈N by setting

E1 = {x ∈ E : 2dE(x,x1) = 2dE(x,x2) = dE(x1,x2)}

and
En+1 = {x ∈ En : 2dE(x,y)≤ diam En (y ∈ En)} .

Then x0 ∈ E1 and diam E1 < ∞. Further diam En+1 ≤ (diam En)/2 (n ∈ N), and so
limn→∞ diam En = 0.

We claim that, for each n ∈ N, the point y := x1 + x2 − y belongs to En whenever
y ∈ En. First suppose that y ∈ E1. Then

dE(y,x1) = dE(x2,y) and dE(y,x2) = dE(x1,y) ,

and so y ∈ E1. Now assume that the claim holds for n ∈ N, and take y ∈ En+1. For
each z ∈ En, we have z ∈ En, and so

2dE(y,z) = 2dE(y,z)≤ diam En ,

and hence y ∈ En+1. Thus the claim follows by induction on n ∈ N.
We next claim that x0 ∈ En (n ∈ N). Clearly x0 ∈ E1. Take n ∈ N and y ∈ En.

Then dE(y,y)≤ diam En. But 2dE(x0,y) = dE(y,y), and so x0 ∈ En+1. This gives the
claim.

Since limn→∞ diam En = 0 and the metric space (E,dE) is complete, it now fol-
lows that

⋂∞
n=1 En = {x0}.
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Set y1 =Ψ(x1), y2 =Ψ(x2), and y0 = (y1+y2)/2. We now define subsets Fn of F
in an analogous way to the above with respect to y1 and y2, so that

⋂∞
n=1 Fn = {y0}.

However Ψ (En) = Fn (n ∈ N) because Ψ : (E,dE)→ (F,dF) is an isometry, and so
Ψ(x0) = y0. It follows that

Ψ
(

1
2
(x1 + x2)

)

=
1
2
(Ψ (x1)+Ψ(x2)) (x1,x2 ∈ E) .

Further, Ψ (x/2) =Ψ(x)/2 (x ∈ E) because Ψ(0E) = 0F , and so

Ψ (x1 + x2) =Ψ (x1)+Ψ(x2) (x1,x2 ∈ E) .

It follows that Ψ(αx) = αΨ (x) (α ∈Q, x ∈ E), and so Ψ is linear over Q. Since Ψ
is continuous, it follows that Ψ is real-linear. ��

We cannot say that an isometric map Ψ between two Banach spaces is (complex)
linear in the above situation: indeed, the map Ψ : z �→ z, C→C, is an isometry with
Ψ(0) = 0.

Theorem 2.2.10. Let E and F be two real Banach spaces, and suppose that there is
an isometry from E onto F. Then E and F are isometrically isomorphic.

Proof. Let Φ : E → F be an isometry, and set Ψ (x) = Φ(x)−Φ(0E ) (x ∈ E). Then
Ψ : E → F is also an isometry with Ψ(0E) = 0F , and so, by Lemma 2.2.9, Ψ is a
real-linear isometry; it is a surjection whenever Φ is a surjection. ��

Let F be a normed space, and let M and N be closed subspaces of F and F ′,
respectively. Define

M ◦ = {λ ∈ F ′ : 〈x,λ 〉= 0 (x ∈ M)} ◦N = {x ∈ F : 〈x,λ 〉= 0 (λ ∈ N)} .

Then M ◦ and ◦N are closed linear subspaces of (F ′,σ(F ′,F)) and (F,σ(F,F ′)),
respectively; M ◦ is the annihilator of M and ◦N is the pre-annihilator of N. Clearly,
(◦N)◦ is the σ(F ′,F)-closure of N in F ′, so that (◦N)◦ =N whenever N is σ(F ′,F)-
closed.

Now suppose that F ′ ∼=E . Then it is standard that M′ ∼=E/M ◦ and (F/M)′ ∼=M ◦,
and so, in the case where N is σ(E,F)-closed in E , we obtain the following result
by setting M = ◦N.

Proposition 2.2.11. Let E be a Banach space with E ∼= F ′ for a normed space F.
Suppose that N is a σ(E,F)-closed linear subspace of E. Then N ∼= (F/◦N)′ and
E/N ∼= (◦N)′. ��

Let E and F be normed spaces. The dual (or adjoint) of T ∈ B(E,F) is the
operator T ′ ∈B(F ′,E ′), defined by the formula

〈x, T ′λ 〉= 〈T x, λ 〉 (x ∈ E, λ ∈ F ′) ;
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of course, ‖T ′‖ = ‖T‖ and T ′ : F ′ → E ′ is weak∗-weak∗-continuous. Using dual
maps, it is easy to see that E ′ ∼ F ′ and E ′ ∼= F ′ whenever E ∼ F and E ∼= F , respect-
ively. Suppose that there is a bounded linear surjection T from a Grothendieck space
onto a Banach space E . Then, by consideration of T ′ and T ′′, it is easily seen that E
is also a Grothendieck space.

The following standard results are given in [6, §3.16] and [183, pp. 287–293].

Proposition 2.2.12. Let E and F be Banach spaces, and take T ∈B(E,F). Then:

(i) T is a surjection if and only if T ′ : F ′ → E ′ is an embedding if and only if there
exists c > 0 such that ‖T ′λ‖ ≥ c‖λ‖ (λ ∈ E) ;

(ii) T is an injection if and only if T ′(F ′) is weak∗-dense in E ′ ;
(iii) T is an injection with closed range if and only if T ′ is a surjection;

(iv) T is a bijection if and only if T ′ is a bijection. ��

Proposition 2.2.13. Let E and F be Banach spaces. Then each weak∗-weak∗-con-
tinuous operator from F ′ to E ′ has the form T ′ for some operator T ∈B(E,F). ��

Proposition 2.2.14. Let E be a normed space, and take B to be the weak∗-compact
space E ′

[1].

(i) The map

J : x �→ κE(x) | B , E →C(B)⊂ �∞(B) ,

is an isometric embedding.

(ii) Suppose that S is a weak∗-closed, circled subspace of B with co(S) = B. Then
the map

J : x �→ κE(x) | S , E →C(S) ,

is an isometric embedding.

Proof. (i) Clearly Jx ∈C(B) (x ∈ E), and the map J : E →C(B) is linear. Further,

|Jx|B = sup{|〈κE(x), λ 〉| : λ ∈ B}= ‖x‖ (x ∈ E) ,

and so T is an isometric embedding of E into C(B).

(ii) This follows from Corollary 2.1.3. ��

Definition 2.2.15. Let E and F be normed spaces, and take T ∈B(E,F). Then T is
a quotient operator if T maps the open unit ball in E onto the open unit ball in F .

Proposition 2.2.16. Let E and F be normed spaces, and take T ∈B(E,F). Then T
is a quotient operator if and only if the induced operator T : E/ker T → T (E) is an
isometric embedding into F.
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Proof. Certainly T is always a bounded operator with
∥
∥T

∥
∥≤ ‖T‖.

It is clear that T is an isometric isomorphism onto T (E) whenever T is a quotient
operator.

Now suppose that T is an isometric isomorphism onto T (E). Then ‖T x‖ < 1
when ‖x‖ < 1 in E . Take y ∈ T (E) with ‖y‖ < 1. Then there exists z ∈ E/F with
‖z‖ < 1 and T z = y, and there exists x ∈ E with ‖x‖ < 1 and x+F = z. We have
T x = y, and so T is a quotient operator. ��

Each Banach space E is a quotient of a space �1(Γ ) for some index set Γ . Indeed,
we can take Γ = E[1] and define the map

∑αγ δγ �→ ∑αγγ , �1(Γ )→ E .

Proposition 2.2.17. Let E be a separable Banach space. Then:

(i) there is an isometric embedding of E into �∞ ;

(ii) there is a quotient operator from �1 onto E ;

(iii) there is an isometric embedding of E ′ into �∞.

Proof. (i) Let S = {xn : n ∈ N} be a dense subset of SE . For each n ∈ N, choose
λn ∈ E ′ with 〈xn, λn〉= ‖λn‖= 1. Then the map

T : x �→ (〈x, λn〉) , E → �∞ .

is an isometric embedding.

(ii) Let S = {xn : n ∈ N} be a dense subset of E[1]. We define

T : (αn) �→
∞

∑
n=1

αnxn , �1 → E .

Then clearly T is a linear contraction with T δn = xn (n ∈ N).
Now take x ∈ E with 0 < ‖x‖ < 1, say ‖x‖ = η , choose ε > 0 with ε < 1−η ,

and set y = x/η , so that y ∈ SE . First choose n1 ∈ N such that ‖y− xn1‖ < ε , and
then inductively choose a strictly increasing sequence (nk) in N such that

∥
∥
∥
∥
∥

y−
(

k

∑
j=1

ε j−1xn j

)∥
∥
∥
∥
∥
< εk (k ∈ N) .

Set α = ∑∞
j=1 ε j−1δn j , so that α ∈ �1 with ‖α‖1 = (1− ε)−1 and

y =
∞

∑
j=1

ε j−1xn j = Tα ∈ T (�1) .

Thus x= T (ηα) with ‖ηα‖1 < 1. This shows that T : �1 → E is a quotient operator.

(iii) By Proposition 2.2.16, E is isometrically isomorphic to �1/ker T , and then
E ′ is isometrically isomorphic to (ker T )◦, a closed subspace of �∞. ��
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The following notion, which may be new, will be useful in answering questions
about when a certain Banach space is not embedded in another.

Definition 2.2.18. Let E be a normed space. Then a subset S of E has bounded finite
sums if there is a constant M > 0 such that

∥
∥∑{x : x ∈ F}∥∥≤ M

for each finite subset F of S.

The following is clear.

Proposition 2.2.19. Let E and F be normed spaces. Suppose that E has a subset of
cardinality κ that has bounded finite sums, and suppose that there is an embedding
of E into F. Then F has a subset of cardinality κ that has bounded finite sums. ��

Example 2.2.20. Let K be a non-empty, separable, locally compact space. Then
each subset of C0(K) that has bounded finite sums is countable.

Indeed, take {xn : n ∈ N} to be a dense subset of K, and take S to be a subset of
C0(K) that has bounded finite sums. For each n ∈ N, the set { f ∈ S : f (xn) �= 0} is
countable, and so

⋃

{{ f ∈ S : f (xn) �= 0} : n ∈ N}
is countable. But the above set is S \ {0}, and so S is countable. ��

Example 2.2.21. Let S be an infinite set. By Proposition 1.5.5, there is a family
{S∗α : α ∈ A} of non-empty, pairwise-disjoint, clopen subsets of S∗, where |A| = c.
The family of characteristic functions in C(S∗) of the sets S∗α has cardinality c and
has bounded finite sums. ��

Example 2.2.22. It is immediate from the above two examples and Proposition
2.2.19 that there is no embedding of C(N∗) ∼= �∞/c0 into C(βN) ∼= �∞. A stronger
result will be given in Corollary 2.2.25. ��

Theorem 2.2.23. Let K be a non-empty, locally compact space. Then the following
conditions on K are equivalent:

(a) K does not satisfy CCC;

(b) there is an uncountable subset of C0(K) with bounded finite sums;

(c) there is an uncountable set Γ such that c0(Γ ) embeds into C0(K).
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Proof. (a) ⇒ (b), (c) Let {Uγ : γ ∈ Γ } be a pairwise-disjoint family of non-empty,
open subsets of K such that each Uγ is compact. For each γ ∈Γ , choose fγ ∈C0(K,I)
such that

∣
∣ fγ

∣
∣
K = 1 and supp fγ ⊂ Uγ . Then { fγ : γ ∈ Γ } has bounded finite sums,

and, by (a), the set Γ is uncountable, giving (b).

Let α = (αγ : γ ∈ Γ ) be an element of c0(Γ ), and set

T α = ∑{αγ fγ : γ ∈ Γ } .

Then T α ∈C0(K), and T : c0(Γ )→C0(K), is a linear isometry that identifies c0(Γ )
with the closed subspace lin{ fγ : γ ∈ Γ } of C0(K), giving (c).

(c) ⇒ (b) The family {χ{γ} : γ ∈ Γ } has bounded finite sums, and so (b) follows
from Proposition 2.2.19.

(b) ⇒ (a) Let S := { fγ : γ ∈ Γ } be a family with bounded finite sums, where Γ
is an uncountable index set and fγ �= fδ when γ,δ ∈ Γ with γ �= δ . By replacing
the set S by {ℜ fγ : γ ∈ Γ } or {ℑ fγ : γ ∈ Γ }, we may suppose that S ⊂ C0,R(K).
There exists η > 0 such that { f ∈ S : | f |K > η} is uncountable, and so we may
suppose, by passing to a subset of Γ and scaling, that | f |K > 1, and in fact that
sup{ f (x) : x ∈ K}> 1, for each f ∈ S.

For each γ ∈ Γ , set

Uγ = {x ∈ K : fγ (x)> 1} ,
so that Uγ is a non-empty, open set in K. The assumption that S has bounded finite
sums implies that there exists M ∈ N such that the intersection of any family of M
of the sets Uγ is empty. 1

We shall inductively define a certain family {Wα : α < ω1} of pairwise-disjoint,
non-empty, open subsets of K to satisfy the following properties for each α < ω1:

(i) for each β <α , there is a finite subset Γβ of Γ such that Wβ =
⋂{Uγ : γ ∈Γβ};

(ii) for each β < α , we have Wβ ∩Uγ = /0 (γ ∈ Γ \Γβ );

(iii) for each β1,β2 < α with β1 �= β2, we have Γβ1
∩Γβ2

= /0.

First choose a subset Γ1 of Γ to be maximal with respect to the property that
⋂{Uγ : γ ∈ Γ1} �= /0, and set W1 =

⋂{Uγ : γ ∈ Γ1}. We observe that |Γ1| < M and
that W1 ∩Uγ = /0 (γ ∈ Γ \Γ1).

Now take α < ω1, and assume that we have defined Wβ for each β < α such
that (i), (ii), and (iii) hold. We observe that Γ \⋃{Γβ : β < α} is uncountable; we
then choose Γα ⊂ Γ \⋃{Γβ : β < α} to be maximal with respect to the property
that

⋂{Uγ : γ ∈ Γα} �= /0, and set Wα =
⋂{Uγ : γ ∈Γα}. This continues the inductive

construction.
In this way, we obtain a family of cardinality ℵ1 of non-empty, pairwise-disjoint,

open subsets of K. Thus (a) holds. ��

Corollary 2.2.24. Let K and L be two non-empty, locally compact spaces. Suppose
that C0(K) embeds in C0(L) and that L satisfies CCC. Then K satisfies CCC.

1 An immediate contradiction can be obtained at this point by an appeal to a lemma of Rosenthal
(see [131, Proposition 7.21]); we provide a somewhat simpler, self-contained argument here.
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Proof. This follows from Proposition 2.2.19 and Theorem 2.2.23. ��

For more comprehensive versions of Corollary 2.2.24, see [131, Theorem 7.22]
and [211, Theorem 4.6].

Corollary 2.2.25. Let S be an infinite set, and let L be a compact space that satisfies
CCC. Then there is no embedding of C(S∗) into C(L).

Proof. By Proposition 1.5.5, S∗ does not satisfy CCC. Thus the claim follows im-
mediately from Corollary 2.2.24. ��

Definition 2.2.26. Let X be a topological space. Then the Souslin number of X is the
minimum cardinal number κ such that every family of non-empty, pairwise-disjoint,
open subsets of X has cardinality at most κ ; it is denoted by c(X).

Thus X satisfies CCC if and only if c(X)≤ ℵ0.
An easy modification of the above argument shows that c(K) = c(L) whenever K

and L are two non-empty, locally compact spaces with C0(K)∼C0(L), and so c(K)
is an isomorphic invariant of the spaces C0(K); for further isomorphic invariants of
these spaces, see §6.1.

We now introduce a definition that encapsulates a key theme of this work.

Definition 2.2.27. Let E be a Banach space. Then a Banach space F is an isometric
predual of E if E ∼=F ′ and an isomorphic predual of E if E ∼F ′. Similarly, a Banach
space F is an isometric pre-bidual of E if E ∼= F ′′ and an isomorphic pre-bidual of
E if E ∼ F ′′. We say that E is isomorphically/isometrically a (bi) dual space if E
has an isomorphic/isometric pre-(bi)dual.

It will be apparent through several later examples that a Banach space E might
have many isomorphic preduals, but no isometric preduals. In fact, there is a general
result of this nature, due to Davis and Johnson [79]. Let (E,‖·‖) be a Banach space
that is not reflexive. Then there is a norm ||| · ||| on E that is equivalent to ‖·‖ and
such that (E, ||| · |||) is not isometrically a dual space. Thus, let F be a non-reflexive
Banach space, and set E = F ′. Then there is a norm ||| · ||| on E such that F is an
isomorphic predual, but not an isometric predual, of (E, ||| · |||).

Theorem 2.2.28. Let E be a Banach space.

(i) The space E is isometrically a dual space if and only if there is a topology τ
on E such that (E,τ) is a locally convex space and (E[1],τ) is compact.

(ii) The space E is isomorphically a dual space if and only if there is a topology
τ on E such that (E,τ) is a locally convex space and for which (B,τ) is compact for
some barrel B in E.
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Proof. (i) Suppose that E ∼= F ′ for some Banach space F . Then we take τ to be the
topology σ(E,F).

Conversely, suppose that there is a topology τ as specified, and let F ⊂ E ′ consist
of the τ-continuous functionals on E , so that F is a closed subspace of E ′. There is
a natural mapping j : E → F ′ defined by

〈λ , j(x)〉 = 〈x, λ 〉 (x ∈ E, λ ∈ F) .

Clearly j is injective and continuous, with ‖ j(x)‖ ≤ ‖x‖ (x ∈ E). Furthermore, j
is continuous from (E,τ) to (F ′,σ(F ′,F)), and so j(E[1]) is a σ(F ′,F)-compact
subset of F ′

[1]. It follows immediately from Theorem 2.1.2(iii) that j(E[1]) = F ′
[1]. We

now see that j : E → F ′ is an isometry.

(ii) This follows easily from (i). ��

We now consider the uniqueness of isometric preduals.

Definition 2.2.29. Let E be a Banach space with an isometric predual F . Then F
is unique if, whenever G is also an isometric predual of E , it follows that F ∼= G.
The unique predual of a Banach space E is denoted by E∗ when it exists. Further,
F is strongly unique if, whenever G is also a Banach space and T : E → G′ is an
isometric isomorphism, the map T ′ : G′′ → F ′′ = E ′ carries κG(G) onto κF(F).

A predual F of a Banach space E is strongly unique if and only if the above map
T : F ′ → G′ is weak∗-weak∗-continuous. Thus E has a unique predual whenever it
has a strongly unique predual. All known examples of Banach spaces with a unique
predual actually have a strongly unique predual.

For a fine survey concerning the existence and uniqueness of isometric preduals
of Banach spaces, including a discussion of strongly unique preduals, see [115]; see
also [50]. The definition of ‘E has a strongly unique predual’ in [115] is that there
is a unique bounded projection π : E ′′′ → E ′ with ‖π‖ = 1 and such that ker π is
weak∗-closed; as noted in [50], this is equivalent to our definition.

It is certainly not the case that every Banach space that is isometrically a dual
space has a unique predual; for example, we shall discuss the many isometric pre-
duals of the Banach space �1 in §6.3.

We continue this section with a representation theorem for the bidual E ′′ of a
Banach space E that we shall use later.

Let E be a Banach space. We shall suppose that there is a subset S of the unit
sphere SE ′ of E ′ such that, for each μ ∈ S, there is a closed subspace Fμ of E ′ and
that the family {Fμ : μ ∈ S} of these subspaces has the property that

‖Λ‖ = sup
μ∈S

{|〈Λ ,y〉| : y ∈ (Fμ)[1]} (Λ ∈ E ′′) . (2.3)

Set
F =

⊕

1

{Fμ : μ ∈ S} , so that F ′ =
⊕

∞
{F ′

μ : μ ∈ S} . (2.4)
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Thus
F ′ = {(λμ) = (λμ : μ ∈ S) : λμ ∈ F ′

μ , sup
∥
∥λμ

∥
∥< ∞} ,

with
∥
∥(λμ)

∥
∥

∞ = sup{∥∥λμ
∥
∥ : μ ∈ S}. For each x ∈ E and μ ∈ S, define xμ ∈ F ′

μ by

〈y, xμ〉= 〈y, x〉 (y ∈ Fμ) .

Then it is easy to see that the map x �→ (xμ), E → F ′, is a linear isometry. We shall
extend this map to a representation of E ′′.

Suppose, further, that E has an isometric linear involution ∗, so that ∗ induces
an isometric linear involution on E ′, and that each Fμ is a ∗-closed subspace of E ′.
Then we define a linear involution on F coordinatewise, and hence obtain an iso-
metric linear involution on F ; in turn we obtain an isometric linear involution on F ′.
Clearly, the map x �→ (xμ), E → F ′, is ∗-linear and each F ′

μ is a ∗-closed subspace
of F ′.

Theorem 2.2.30. Let E be a Banach space, and let S, {Fμ : μ ∈ S}, and F be as
above. For each Λ ∈ E ′′ and μ ∈ S, define Λμ on Fμ by

Λμ(y) = 〈Λ , y〉 (y ∈ Fμ) .

Then Λμ ∈ F ′
μ with

∥
∥Λμ

∥
∥≤ ‖Λ‖. Further, (Λμ : μ ∈ S) ∈ F ′ with

∥
∥(Λμ)

∥
∥

∞ = ‖Λ‖.
The map

T : Λ �→ (Λμ : μ ∈ S) , E ′′ → F ′ ,

is a linear isometry, and T : (E ′′,σ(E ′′,E ′))→ (F ′,σ(F ′,F)) is continuous.
Suppose, further, that E has an isometric linear involution ∗ and that Fμ is a

∗-closed subspace of E ′. Then T : E ′′ → F ′ is ∗-linear.

Proof. It is clear that, for each μ ∈ S, we have Λμ ∈ Fμ with
∥
∥Λμ

∥
∥≤ ‖Λ‖, and so

(Λμ : μ ∈ S) ∈ F ′ with
∥
∥(Λμ)

∥
∥

∞ ≤ ‖Λ‖. By (2.3), for each ε > 0, there exist ν ∈ S
and y ∈ (Fν)[1] with |〈Λ , y〉| ≥ ‖Λ‖− ε , and so

∥
∥(Λμ)

∥
∥

∞ ≥ ‖Λν‖ ≥ ‖Λ‖− ε .

This holds for each ε > 0, and hence
∥
∥(Λμ)

∥
∥

∞ ≥ ‖Λ‖. Thus T : E ′′ → F ′ is a linear
isometry.

Let Λα → 0 in (E ′′,σ(E ′′,E ′)). Then

〈(Λα)μ , y〉= 〈Λα , y〉 → 0 (y ∈ Fμ)

for each μ ∈ S, and so T (Λα)→ 0 in (F ′,σ(F ′,F)). This shows that the linear map
T : (E ′′,σ(E ′′,E ′))→ (F ′,σ(F ′,F)) is continuous.

We check immediately that T is ∗-linear in the case where the further hypotheses
hold. ��

Finally in this section we give a technical result that will be used later; see
Theorem 4.6.8.
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Proposition 2.2.31. Let G be a Banach space, and let F be a separable Banach
space. Suppose that J is an uncountable set and that, for each j ∈ J, L j is a Banach
space which does not embed into G. Then there is no embedding of the Banach space

⊕

1

{Lj : j ∈ J}

into F ⊕1 G.

Proof. Set E =
⊕

1{Lj : j ∈ J} and regard each Lj as a closed subspace of E . Set
H = F ⊕1 G, with F and G as stated in the theorem, and take πF : H → F and
πG : H → G to be the associated bounded projections, so that

y = πF(y)+πG(y) (y ∈ H) .

Assume towards a contradiction that there is an embedding T : E → H. Then
there exists δ > 0 such that ‖Tx‖≥ δ‖x‖ (x∈E). For each j ∈ J, there exists x j ∈ Lj

with ‖x j‖= 1 such that ‖πG(T x j)‖< δ/2. Indeed, otherwise there exists j ∈ J such
that ‖πG(T x)‖ ≥ δ‖x‖/2 (x ∈ Lj), so that (πG ◦ T )(Lj) is a subspace of G that is
isomorphic to Lj, contradicting the assumption on Lj.

For each i, j ∈ J with i �= j, we have

‖Txi −Tx j‖ ≥ δ‖xi − x j‖= δ (‖xi‖+ ‖x j‖) = 2δ .

Now
‖y‖= ‖πF(y)+πG(y)‖ ≤ ‖πF(y)‖+ ‖πG(y)‖ (y ∈ H) ,

and so (taking y = T xi −Tx j), we have

‖πF(T xi)−πF(T x j)‖ ≥ ‖Txi −Tx j‖−‖πG(T xi)−πG(T x j)‖> 2δ − 2(δ/2) = δ .

Thus there is an uncountable family of mutually disjoint balls in F , contradicting
the hypothesis that F is separable. ��

2.3 Banach lattices

We shall require some basic notions in the theory of Banach lattices; for much more
on Banach lattices, see [1, 174, 184, 223], for example.

Definition 2.3.1. Let (E,≤) be a Riesz space. A norm ‖·‖ on E is a lattice norm if
‖x‖ ≤ ‖y‖ whenever x,y ∈ E with |x| ≤ |y|. A normed Riesz space is a Riesz space
equipped with a lattice norm. A real Banach lattice is a normed Riesz space which
is a Banach space with respect to the norm.
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For example, the spaces Lp
R
(I) for 1 ≤ p ≤ ∞ and the spaces C0,R(K) for a non-

empty, locally compact space K are real Banach lattices with respect to the pointwise
lattice operations and the specified norm.

We recall that a linear subspace F of a real Banach lattice E is a sublattice if
x∨ y,x∧ y ∈ F whenever x,y ∈ F and a lattice ideal if x ∈ F whenever x ∈ E and
|x| ≤ |y| for some y ∈ F .

Suppose that E is a linear space such that E = ER⊕ iER for a real Banach lattice
(ER,‖·‖), so that E , a linear space over the field C, is a complex Riesz space. Then
we make the following definitions. First, set E+ = E+

R
and

E+
[r] = E[r]∩E+ (r > 0) .

Take z ∈ E , say z = x+ iy, where x,y ∈ ER, and define the modulus |z| ∈ E+ of z by

|z|=
(

|x|2 + |y|2
)1/2

(2.5)

(the right-hand side of (2.5) is well defined in ER by the ‘Youdine–Krivine func-
tional calculus’). Alternatively, we can set

|z|= |x+ iy|= sup{x cosθ + y sinθ : 0 ≤ θ ≤ 2π} ; (2.6)

the supremum always exists in E+ and the two definitions of |z| are consistent. We
then define

‖z‖= ‖|z| ‖ (z ∈ E) . (2.7)

We see that ‖·‖ is a norm on E and that (E,‖·‖) is a Banach space. This complex-
ification of a real Banach lattice is defined to be a (complex) Banach lattice.

For example, the spaces Lp(I) for 1 ≤ p ≤ ∞ and the spaces C0(K) for a non-
empty, locally compact space K are Banach lattices which are the complexifications
of the analogous real Banach lattices.

Again, a linear subspace F of a Banach lattice E is a lattice ideal if x ∈ F when-
ever x ∈ E and |x| ≤ |y| for some y ∈ F .

Let {Eα : α ∈ A} be a family of Banach lattices, and take p with 1 ≤ p ≤ ∞.
Then the Banach space

⊕

p{Eα : α ∈ A} is also a Banach lattice for the obvious
operations.

For details of these remarks, including a discussion of the Youdine–Krivine func-
tional calculus, see [1, §3.2], [73], [176, §1.d], [180], [184, §2.2], [223, Chapter II,
§11], and [245, §13].

Definition 2.3.2. A Banach lattice is Dedekind complete (respectively, Dedekind
σ -complete) if it is Dedekind complete (respectively, Dedekind σ -complete) as a
complex Riesz space.

Clearly, to show that a Banach lattice E is Dedekind complete, it suffices to show
that each increasing net in E+ that is bounded above has a supremum.

The following well-known theorem is proved in [68, Proposition 4.2.29(i)].
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Theorem 2.3.3. Let K be a non-empty, compact space. Then K is Stonean if and
only if C(K) is Dedekind complete, and K is basically disconnected if and only if
C(K) is Dedekind σ -complete.

Proof. Suppose that CR(K) is Dedekind complete, and let U be an open set in K.
Take F to be the family of functions f ∈CR(K) such that f (x) = 0 (x ∈ K \U) and
0 ≤ f ≤ 1. Then F has a supremum, say f0 ∈ CR(K). Clearly f0(x) = 1 (x ∈ U)
and f0(x) = 0 (x ∈ K \U), and so f0 = χU . Thus U is open. This shows that K is
Stonean.

Conversely, suppose that K is Stonean, and let F be a family in C(K)+ which is
bounded above, say by 1. For r ∈ I, define

Ur =
⋃

{{x ∈ K : f (x)> r} : f ∈F} .

Then Ur is open in K, and so Vr :=Ur is also open in K. Clearly V1 = /0. Define

g(x) = sup{r ∈ I : x ∈Ur} ∈ I .

If g(x) ∈ (r,s), then x ∈Vr \Vs, and, if x ∈Vr \Vs, then g(x) ∈ [r,s].
Take x0 ∈ K, and take a neighbourhood V of g(x0). Then there exist r,s ∈R with

g(x0) ∈ (r,s)⊂ [r,s]⊂V . Since Vr \Vs is an open set and

x0 ∈Vr \Vs ⊂ g−1([r,s]) ⊂ g−1(V ) ,

we see that g is continuous at x0. Thus g ∈CR(K).
Now take h ∈CR(K) with h ≥ f ( f ∈F ). Assume that there exists x0 ∈ K with

h(x0) < g(x0). Then h(x0) < r for some r with x0 ∈ Vr. Let W be a neighbour-
hood of x0 with h(x)< r (x ∈W ). Then there exists x ∈ W with f (x) > r for some
f ∈F , a contradiction. Thus h ≥ g, and so g = supF . We have shown that CR(K)
is Dedekind complete.

The proof that K is basically disconnected if and only if CR(K) is Dedekind
σ -complete is a small variation of the above. ��

In fact, the term ‘Stonean’ was used first by Dixmier in the seminal work [91],
where a Stonean space was defined to be a compact space K such that (CR(K),≤)
is Dedekind complete.

The following, related theorem was proved by Seever in [224]; this paper is based
on his thesis written under the direction of William Bade. In the proof, we shall use
the notation ≺ from page 24. See also [225, Theorem 24.7.5].

Theorem 2.3.4. Let K be a non-empty, compact space. Then K is an F-space if and
only if, whenever ( fn) and (gn) are sequences in CR(K) with fm ≤ gn (m,n ∈ N),
there exists f ∈CR(K) with fm ≤ f ≤ gn (m,n ∈ N).

Proof. Suppose that CR(K) has the stated property, and take disjoint cozero sets U
and V , say
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U = {x ∈ K : f (x) > 0} and V = {x ∈ K : g(x)> 0} ,

where f ,g ∈C(K,I). For n ∈N, set fn = 1∧n f and gn = (1−g)n. For m,n ∈N, we
have fm ≤ gn in C(K)+, and so there exists h ∈C(K)+ with fm ≤ h ≤ gn (m,n ∈N).
Clearly h(x) = 1 (x ∈U) and h(x) = 0 (x ∈V ), and so K is an F-space.

Conversely, suppose that K is an F-space, and take ( fn) and (gn) to be as speci-
fied; we may suppose that

0 < fn(x)≤ fn+1(x)≤ gn+1(x)≤ gn(x)< 1 (x ∈ K, n ∈ N) .

Let D be the set of dyadic rationals in [0,1], and, for r ∈ D, define

U(r) =
⋃

{{x ∈ K : fn(x)> r} : n ∈N} , V (r) =
⋃

{{x ∈ K : gn(x)< r} : n ∈N} ,

so that U(r) and V (r) are disjoint cozero sets, and so U(r)∩V (r) = /0 because K
is an F-space. Further, U(r) ⊃U(s) and V (r) ⊂V (s) when r,s ∈ D with r < s, and
U(1) =V (0) = /0.

We claim that there exist cozero sets W (r) in K for r ∈ D such that:

(i) V (r)≺W (r)≺ K \U(r) for r ∈ D ;

(ii) W (r)≺W (s) for r,s ∈ D with r < s.

Indeed, start with W (0) = /0 and W (1) =K. Now take n∈N, and assume inductively
that the sets W (k/2n) have been defined for k = 0, . . . ,2n. Take k ∈ {0, . . . ,2n − 1}.
We have

V ((2k+ 1)/2n+1)⊂V ((k+ 1)/2n)≺W ((k+ 1)/2n)

and W (k/2n)≺W ((k+ 1)/2n), and so

V ((2k+ 1)/2n+1)∪W(k/2n)≺W ((k+ 1)/2n) .

Also, V ((2k+ 1)/2n+1)≺ K \U((2k+ 1)/2n+1) and

W (k/2n)≺ K \U(k/2n)⊂ K \U((2k+ 1)/2n+1) ,

and so
V ((2k+ 1)/2n+1)∪W (k/2n)≺ K \U((2k+ 1)/2n+1) .

Thus

V ((2k+ 1)/2n+1)∪W (k/2n)≺W ((k+ 1)/2n)∩ (K \U((2k+ 1)/2n+1)) .

By a remark on page 24, there is a cozero set U with

V ((2k+ 1)/2n+1)∪W(k/2n)≺U ≺W ((k+ 1)/2n)∩ (K \U((2k+ 1)/2n+1)) ;

we take W ((2k+1)/2n+1) to be this set U . This completes the definition of the sets
W (k/2n+1) for k = 0, . . . ,2n+1. We see that the recursion continues.

Now define f (x) = inf{r ∈ D : x∈Wr} (x ∈K). As in Theorem 2.3.3, f ∈C(K)+.
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Fix n ∈ N. For each x ∈ K and ε > 0, choose r,s ∈ D with

f (x)− ε < r < f (x) < s < f (x)+ ε .

Then x �∈ W (r). By (i), x �∈ V (r), and so gn(x) ≥ r. Hence gn(x) ≥ f (x)− ε . This
holds true for each ε > 0, and so gn(x) ≥ f (x), whence f ≤ gn. Similarly, f ≥ fn.
Thus f has the required properties. ��

Let E and F be Banach lattices that are the complexifications of the real Ba-
nach lattices ER and FR, respectively. An operator T ∈B(E,F) is a Banach-lattice
homomorphism or Banach-lattice isomorphism if T | ER : ER → FR is a Riesz
homomorphism or a Riesz isomorphism, respectively; it is a Banach-lattice isome-
try if, further, T is a linear isometry. The Banach lattices E and F are Banach-lattice
isomorphic or Banach-lattice isometric if there is a Banach-lattice isomorphism or
isometry, respectively, between them; an isometric lattice embedding is an isometric
embedding that is a lattice homomorphism.

Let E and F be Banach lattices, and take T ∈ B(E,F). Then T is positive if
T (E+)⊂ F+. It is clear that an isomorphism T ∈B(E,F) such that T and T−1 are
positive operators is a lattice isomorphism from ER onto FR, and so is a Banach-
lattice isomorphism.

The following remark establishes some consistency in our terminology.

Proposition 2.3.5. Let E and F be Banach lattices, and suppose that T ∈B(E,F)
is a Banach-lattice isomorphism such that ‖T x‖= ‖x‖ (x ∈ E+). Then

|T z|= T (|z|) (z ∈ E) ,

and T : E → F is a Banach-lattice isometry.

Proof. Take z = x+ iy ∈ E , where x,y ∈ ER, and set

S = {x cosθ + y sinθ : 0 ≤ θ ≤ 2π} .

Then T (S) = {(T x)cosθ + (Ty)sinθ : 0 ≤ θ ≤ 2π}, and, by (2.6), sup S = |z|
and sup T (S) = |T z|. Since T is a lattice isomorphism, T (supS) = supT (S), i.e.,
T (|z|) = |Tz|. Hence ‖T z‖ = ‖|T z|‖ = ‖T (|z|)‖ = ‖|z| ‖ = ‖z‖, and so T : E → F
is a linear isometry. ��

Let E be a real Banach lattice, with dual space E ′. Then E ′ is ordered by the
requirement that λ ∈ E ′ belongs to (E ′)+ if and only if 〈x, λ 〉 ≥ 0 (x ∈ E+) (cf.
page 9). One checks easily that this ordering gives a lattice ordering, and so E ′
becomes a real Banach lattice. The equations that define the lattice operations are
the following; they are called the Riesz–Kantorovich formulae. Take λ ,μ ∈E ′. Then
〈x, λ ∨μ〉 and 〈x, λ ∧μ〉 are defined for x ∈ E+ by

{ 〈x, λ ∨μ〉 = sup{〈y, λ 〉+ 〈z, μ〉 : y,z ∈ E+, y+ z = x} ,
〈x, λ ∧μ〉 = inf{〈y, λ 〉+ 〈z, μ〉 : y,z ∈ E+, y+ z = x} , (2.8)
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and then λ ∨μ and λ ∧μ are extended linearly to all of E ′. The dual of a real Banach
lattice E is also a real Banach lattice for these operations; this is the dual Banach
lattice of E .

It is standard that a dual Banach lattice is Dedekind complete. Indeed, let E be a
Banach lattice, and take F to be a non-empty, bounded subset of (E ′)+. Consider
the net G of finite subsets of F , and, for each x ∈ E+, set

λ (x) = lim
{〈

x,
∨

S
〉

: S ∈ G
}

.

Then λ is additive, homogeneous, and positive on E+, and thus λ extends uniquely
to an element, also λ , of E ′. Clearly λ =

∨{F : F ∈ F}, and so E ′ is Dedekind
complete.

Let F be a real Banach lattice, and set E = F ⊕ iF , its complexification. Let λ be
a continuous, real-linear functional on F . Then λ extends to a continuous, complex-
linear functional on E: indeed, we define

λ (x+ iy) = λ (x)+ iλ (y) (x,y ∈ F) ,

and so we may regard F ′ as a real-linear subspace of E ′. For each λ in E ′, there
exist λ1 and λ2 in F ′ such that

λ (x) = λ1(x)+ iλ2(x) (x ∈ F) ,

and so E ′ is isomorphic as a complex Banach space to the complexification F ′ ⊕ iF ′.
In fact, this identification is isometric; the details of this are given in [1, Corollary
3.26] and [184, Proposition 2.2.6], for example. Thus we obtain the dual Banach
lattice of a Banach lattice.

Let E be a Banach lattice, and take λ ∈ E ′. Then clearly (E ′)+ is weak∗-closed
in E ′. We have

‖λ‖= sup{〈x, λ 〉 : x ∈ E+
[1]} (λ ∈ (E ′)+) .

Further, take x ∈ E . Then x ∈ E+ if and only if 〈x, λ 〉 ≥ 0 (λ ∈ (E ′)+); this follows
from the Hahn–Banach theorem.

The bidual E ′′ of a Banach lattice E is also a Banach lattice, and the embedding
κE : E → E ′′ is an isometric lattice embedding. It also follows from the Hahn–
Banach theorem that E+

[1] is weak∗-dense in (E ′′)+
[1].

Proposition 2.3.6. Let F be a real Banach lattice which is isometrically the dual
of a real Banach space. Then the complexification of F is also isometrically a dual
space.

Proof. Set E = F ⊕ iF, the complexification of F; we recall that E ′ = F ′ ⊕ iF ′.
Suppose that F ∼=G′ for a real Banach space G, and regard G as a closed subspace

of F ′; set H = G⊕ iG, so that H is a closed subspace of E ′ ∼= G′′ ⊕ iG′′ = H ′′, and
hence H is a Banach space. We shall show that H ′ ∼= E , which will give the result.
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Take z ∈ E , and set λ (h) = 〈z, h〉 (h ∈ H). Then λ ∈ H ′ with ‖λ‖ ≤ ‖z‖, and the
map S : z �→ λ , E → H ′, is a linear contraction.

Take λ ∈H ′, and set λ1 =ℜλ |G and λ2 =ℑλ |G, so that λ1 and λ2 are bounded,
real-linear functionals on G with λ = λ1 + iλ2. Thus there exist unique elements x
and y in F such that λ1(g) = 〈x, g〉 and λ2(g) = 〈y, g〉 for g ∈ G. Set z = x+ iy ∈ E .
Then, for each g1,g2 ∈ G, we have

λ (g1 + ig2) = (λ1 + iλ2)(g1 + ig2) = 〈x, g1〉− 〈y, g2〉+ i(〈y, g1〉+ 〈x, g2〉)
= 〈x+ iy, g1 + ig2〉= 〈z, g1 + ig2〉 ,

and so λ = Sz. Thus S : E → H ′ is a surjection.
Now fix ε > 0. Since H is weak∗-dense in H ′′, there exists h ∈ H with ‖h‖ = 1

and |〈z, h〉|> ‖z‖− ε , and hence ‖λ‖> ‖z‖− ε . This holds for each ε > 0, and so
‖λ‖ ≥ ‖z‖. We have shown that S : E → H ′ is an isometric isomorphism. ��

A somewhat more general version of the above result is given in [187, Proposi-
tion 7]. We shall prove the converse of the above theorem in the special case where
F = CR(K) in Proposition 6.2.5; we do not know whether the converse holds in
general.

Finally, we define some special types of Banach lattices.

Definition 2.3.7. A (real or complex) Banach lattice (E,‖·‖) is an AL-space (or
abstract L-space) if

‖x+ y‖= ‖x‖+ ‖y‖ whenever x,y ∈ E+ with x∧ y = 0 ,

and an AM-space (or abstract M-space) if

‖x∨ y‖= max{‖x‖ ,‖y‖} whenever x,y ∈ E+ with x∧ y = 0 .

For example, each space of the form L1(Ω ,μ), where (Ω ,μ) is a measure space,
is an AL-space, and each space C0(K), where K is a non-empty, locally compact
space, is an AM-space.

Let E be a Banach lattice. Then it is standard that E is an AL-space if and only if

‖x+ y‖= ‖x‖+ ‖y‖ (x,y ∈ E+) ,

and an AM-space if and only if

‖x∨ y‖= max{‖x‖ ,‖y‖} (x,y ∈ E+).

The following duality result is [5, Theorem 4.23] or [184, Proposition 1.4.7], for
example.

Theorem 2.3.8. Let E be a Banach lattice, with dual Banach lattice E ′. Then E is
an AL-space if and only if E ′ is an AM-space, and E is an AM-space if and only if
E ′ is an AL-space. ��
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The following central representation theorem is proved in [1, Theorems 3.5 and
3.6], [5, Theorems 4.27 and 4.29], [174, II. §1.b], and [184, Theorems 2.1.3 and
2.7.1], for example. The proofs are usually given for real Banach lattices, but the
complex versions are valid; the technique for the complex version is illustrated in [1,
Theorem 3.20]. We shall call this result ‘Kakutani’s theorem’; detailed attributions
for the various statements are given in [1].

An AM-unit in a Banach lattice E is an element e ∈ E with e > 0 such that
E[1] = {x ∈ E : |x| ≤ e}. Thus ‖x‖ = inf{r ∈ R : |x| ≤ re} for x ∈ E , and so E is an
AM-space. An AM-unit is an order unit in the ordered linear space (ER,≤).

Theorem 2.3.9. (i) A Banach lattice is an AL-space if and only if it is Banach-lattice
isometric to a Banach lattice of the form L1(Ω ,μ) for some measure space (Ω ,μ).

(ii) A Banach lattice is an AM-space if and only if it is Banach-lattice isometric
to a closed sublattice of a space C(K) for some non-empty, compact space K.

(iii) A Banach lattice with an AM-unit is Banach-lattice isometric to a space
C(K) for some non-empty, compact space K. ��

2.4 Complemented subspaces of Banach spaces

We first define complemented subspaces of a normed space; earlier we defined com-
plemented subspaces of a linear space.

Definition 2.4.1. Let E be a normed space. A closed subspace F of E is comple-
mented in E if there is a closed subspace G of E such that E = F ⊕G.

In the case that a Banach space E is such that E = F ⊕G for closed subspaces F
and G, we have E ∼ F ×G and E/F ∼ G.

It is elementary that finite-dimensional subspaces and subspaces of finite co-
dimension in a normed space E are complemented in E , but we shall see soon that
there are closed subspaces of a Banach space that are not complemented. It is re-
markable that there is an infinite-dimensional Banach space E such that the only
closed subspaces that are complemented in E are those that are either of finite di-
mension or of finite codimension; see page 195.

The following result is a standard consequence of the closed graph theorem.

Proposition 2.4.2. Let E be a Banach space, and suppose that F and G are closed
subspaces of E such that E = F ⊕G. Then there is a unique projection P ∈B(E)
with P(E) = F and (IE −P)(E) = G. ��

It follows immediately from the preservation of the Grothendieck property by
bounded linear surjections (see page 59) that a closed, complemented subspace of a
Grothendieck space is also a Grothendieck space.
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Definition 2.4.3. A closed, complemented subspace F of a Banach space E is
λ -complemented (for λ ≥ 1) if there is a projection P ∈B(E) with P(E) = F and
‖P‖ ≤ λ .

Thus a closed, complemented subspace of a Banach space is λ -complemented
for some λ ≥ 1.

Proposition 2.4.4. Let E be a normed space. Then E ′ is 1-complemented in E ′′′.

Proof. The required bounded projection from E ′′′ to E ′ is the dual of the canonical
injection κE : E → E ′′; it is called the Dixmier projection. ��

Corollary 2.4.5. Let E be a Banach space such that E is isomorphically a dual
space. Then E is complemented in E ′′. ��

Proposition 2.4.6. Let K be an infinite, locally compact space.

(i) The space C0(K) contains a subspace that is isometrically isomorphic to c0.

(ii) Suppose that K contains a convergent sequence of distinct points. Then C0(K)
contains a 2-complemented subspace that is isometrically isomorphic to c0.

Proof. (i) The space K contains sequences (xn) of distinct points and (Un) of
pairwise-disjoint, open subsets such that xn ∈Un and Un is compact for each n ∈ N.
For each n ∈N, there exists fn ∈C0(K)+ with fn(xn) = | fn|K = 1 and supp fn ⊂Un.
Essentially as in the proof of Theorem 2.2.23, (a) ⇒ (c), set

Tα =
∞

∑
n=1

αn fn (α = (αn) ∈ c0) .

Then T : c0 →C0(K) is a linear isometry that identifies c0 with the closed subspace
lin{ fn : n ∈N} of C0(K).

(ii) Let (xn) be a convergent sequence of distinct points in K, say xn → x0 as
n → ∞; we may suppose that xn �= x0 (n ∈ N). Choose neighbourhoods of each xn

as in (i) such that x0 �∈Un (n ∈ N), and let ( fn) and T : c0 →C0(K) be as in (i), so
that T is an isometric embedding.

For g ∈C0(K), set

Pg =
∞

∑
n=1

(g(xn)− g(x0)) fn .

Then Pg ∈ C0(K) (g ∈ C0(K)) and P ∈B(C0(K)) is a projection onto T (c0) with
‖P‖= 2. Hence T (c0) is 2-complemented in C0(K). ��

In fact, the following result concerning complemented copies of c0 in C(K)–
spaces is given in [184, Corollary 5.3.12 and Proposition 5.3.6], for example;
Grothendieck spaces were defined in Definition 2.1.1.
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Proposition 2.4.7. Let K be a non-empty, compact space. Then the Banach space
C(K) is a Grothendieck space if and only if C(K) contains no complemented sub-
space that is isomorphic to c0. ��

Proposition 2.4.8. The Banach space �1 is isometrically isomorphic to a 1-comp-
lemented subspace of L1(I).

Proof. Let {In : n ∈ N} be a family of pairwise-disjoint, closed intervals in I, and,
for each n ∈ N, let χn be the characteristic function of In, �n the length of In, and
fn = χn/�n, so that ‖ fn‖1 = 1. Then take E = lin{ fn : n ∈ N}, so that E is a closed
subspace of L1(I).

Take α = (αn) ∈ �1. Then it is clear that the map

α �→
∞

∑
n=1

αn fn , �1 → E ,

is an isometric embedding, and so E ∼= �1.
Define the map

P : f �→
∞

∑
n=1

(∫

In
f

)

fn , L1(I)→ L1(I) .

Clearly P is a linear map with

P fn = fn (n ∈ N) and ‖P f‖1 ≤ ‖ f‖1 ( f ∈ L1(I)) .

Thus P is a bounded projection onto E with ‖P‖= 1, and so E is a 1-complemented
subspace in L1(I). ��

A similar argument [3, Proposition 6.4.1] shows that, for each p with 1 < p < ∞,
the Banach space � p is isometrically isomorphic to a 1-complemented subspace
of Lp(I).

We also remark that, for r, p > 1, the Banach space � r is isomorphic to a comp-
lemented subspace of Lp(I) if and only if r = p or r = 2 [3, Proposition 6.4.21].
Now take r ≥ 1. For p with 1 ≤ p ≤ 2, the Banach space � r is isomorphic to a
closed subspace of Lp(I) if and only if p ≤ r ≤ 2, and, for 2 < p < ∞, the space � r is
isomorphic to a closed subspace of Lp(I) if and only if r = 2 or r = p [3, Proposition
6.4.19].

We now present a beautiful result of Pełczyński from [196]; it will be used later. It
is called the Pełczyński decomposition method. Our proof is taken from [3, Theorem
2.2.3].

Theorem 2.4.9. Let E and F be normed spaces such that both E and F are isomor-
phic to complemented subspaces of the other. Further, suppose that either E ∼E×E
and F ∼ F ×F or that E ∼ �∞(E). Then E ∼ F.
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Proof. There exist normed spaces G and H such that F ∼ E ⊕G and E ∼ F ⊕H, so
that F ∼ E ×G and E ∼ F ×H.

In the first case, we have

E ∼ F ×H ∼ (F ×F)×H ∼ F × (F ×H)∼ F ×E

and, similarly, F ∼ E ×F . But E ×F ∼= F ×E , and so E ∼ F .
In the second case, we have E ∼ E ×E , and so F ∼ E ×F , as before. But now

E ∼ �∞(E)∼ �∞(F ×H)∼ �∞(F)× �∞(H)∼ F × �∞(F)× �∞(H)∼ F ×E ,

and so we again see that E ∼ F . ��

Since we shall discuss complemented subspaces of Banach spaces of the form
C(K), it is important to note that not all such closed subspaces are complemented;
indeed, the most famous counter-example to this possibility is given by Phillips’
theorem that c0 is not complemented in �∞. A slightly stronger version of this theo-
rem already follows easily from a previous result. Indeed, assume towards a contra-
diction that c0 is complemented in �∞. Then there is an embedding of �∞/c0 into
�∞ ∼=C(βN). However it follows from Example 2.2.22 that there is no such embed-
ding. See also [148, p. 19].

Nevertheless, we wish to give the classical, elementary proof of Phillips’ theo-
rem; it is taken from [240]. See also [3, Theorem 2.5.5] and [183, Theorem 3.2.20].

Definition 2.4.10. Let E be a Banach space. A subset T of E ′ is total if x = 0 when-
ever x ∈ E and 〈x, λ 〉= 0 (λ ∈ T ); a Banach space E has property (T) if E ′ contains
a countable, total subset.

Note that property (T) is preserved under isomorphisms and under the passage to
closed subspaces.

Theorem 2.4.11. The subspaces c0 and c are not complemented in �∞.

Proof. First, assume towards a contradiction that there is a closed subspace F of �∞

such that �∞ = c0 ⊕F . We regard F as a Banach space by setting

‖x‖= d(x,c0) (x ∈ F) ,

the distance from x to c0 in �∞, thus identifying F with the quotient space �∞/c0.
Clearly {δn : n ∈ N} is a countable, total subset of (�∞)′, and so (F,‖·‖) has

property (T).
Let {Sα : α ∈A} be a family of subsets ofN as specified in Proposition 1.5.5, and,

for α ∈ A, let fα be the coset in F that corresponds to χSα , so that ‖ fα‖= 1 (α ∈ A).
Take λ ∈ F ′. We claim that the set {α ∈ A : 〈 fα , λ 〉 �= 0} is countable. For this,

it suffices to show that, for each n ∈N, the set

Cn := {α ∈ A : |〈 fα , λ 〉| ≥ 1/n}
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is finite. Indeed, fix n ∈ N, and then, for m ∈ N with m ≤ |Cn|, choose distinct ele-
ments α1, . . . ,αm ∈Cn; set gi = fαi (i ∈ Nm) and

βi = sgn〈gi, λ 〉 (i ∈ Nm) and g =
m

∑
i=1

βigi .

Then there exists a number N ∈N such that Sαi ∩Sα j ⊂NN for i, j ∈Nm with i �= j,
and so ‖g‖= 1, regarding g as an element of F . Thus

‖λ‖ ≥ |〈g, λ 〉|=
m

∑
i=1

|〈gi, λ 〉| ≥ m
n
,

and so |Cn| ≤ n‖λ‖+ 1. Hence Cn is finite, and the claim follows.
Now suppose that Λ is a countable set in (F,‖·‖)′. Then there are only countably

many values of α ∈ A such that 〈 fα , λ 〉 �= 0 for some λ ∈ Λ , and so there exists an
index α ∈ A with 〈 fα , λ 〉= 0 for all λ ∈ Λ . Thus the set Λ is not total in (F,‖·‖)′,
a contradiction of the fact that F has property (T).

It follows that c0 is not complemented in �∞. Clearly c is not complemented in
�∞: if c were so complemented, then c0 would be complemented in �∞ because it is
complemented in c. ��

The following generalization by Conway of Phillips’ theorem is taken from [64].

Theorem 2.4.12. Let K be a non-empty, locally compact space that is not pseudo-
compact. Then C0(K) is not complemented in Cb(K).

Proof. There is a function f ∈ C(K,R+) \Cb(K). Choose x1 ∈ K with f (x1) > 1,
and then inductively choose (xn) in K such that f (xn+1)> f (xn)+4 for each n ∈N;
set

Un = {x ∈ K : | f (x)− f (xn)|< 1} (n ∈N) .

For each n ∈ N, choose fn ∈ C0(K,I) with fn(xn) = 1 and supp fn ⊂ Un, and
define

T α =
∞

∑
n=1

αn fn (α = (αn) ∈ �∞) .

For each x ∈ K, the neighbourhood {y ∈ K : | f (y)− f (x)|< 1} of x has non-empty
intersection with at most one set Un, and it follows easily from this that Tα ∈Cb(K)
for each α ∈ �∞. We see that T (c0) ⊂ C0(K) and that T : �∞ → Cb(K) is a linear
isometry.

Define Sg = (g(xn)) (g ∈C0(K)). Since the sequence (xn) has no accumulation
point in K, each compact subset of K contains at most finitely many points of this
set, and so Sg ∈ c0 (g ∈ C0(K)). Clearly S : C0(K) → c0 is a linear isometry and
(S ◦ T )(α) = α (α ∈ c0).

Assume to the contrary that there is a bounded projection P : Cb(K) → C0(K).
Then the map S ◦P ◦ T : �∞ → c0 is a bounded projection. But this is a contradiction
of Theorem 2.4.11. Thus C0(K) is not complemented in Cb(K). ��
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An elementary special case of the above is the following.

Corollary 2.4.13. Let Γ be an infinite set. Then c0(Γ ) is not complemented in
�∞(Γ ). ��

The space [0,ω1) is pseudo-compact. Here C0([0,ω1)) has codimension 1, and
so is complemented, in Cb([0,ω1))∼=C([0,ω1]).

The following result, called Sobczyk’s theorem, is taken from [3, Theorem 2.5.8],
[20, Theorem 2.3], and [175, Theorem 2.f.5]; the elegant proof is due to Veech [238].

Theorem 2.4.14. Let E be a separable Banach space containing c0 as a closed
subspace. Then c0 is 2-complemented in E.

Proof. Since E is separable, it follows from Theorem 2.1.4(iii) that there is a metric,
say d, giving the weak∗ topology on E ′

[1].
Let n ∈ N. Then the map δn : (αm) �→ αn is a continuous linear functional on c0

with ‖δn‖= 1. Let λn ∈ E ′ be a norm-preserving extension of δn, and set

S = {λ ∈ E ′
[1] : λ | c0 = 0} .

Since each weak∗-limit point of {λn : n ∈N} belongs to S, limn→∞ d(λn,S) = 0, and
so there is sequence (μn) in S with limn→∞ d(λn,μn)= 0. Since limn→∞(λn−μn) = 0
in (E ′

[1],σ(E ′,E)), the map P : x �→ (〈x,λn −μn〉) , E → c0, is a bounded projection
onto c0, and clearly ‖P‖ ≤ 2. ��

For interesting extensions of Sobczyk’s theorem, see [14]. In fact, it is a theorem
of Zippin that a Banach space that is complemented in every separable Banach space
that contains the space as a closed subspace is isomorphic to c0 [246, 247]. For an
entertaining essay on Sobczyk’s theorem and Phillips’ theorem, see [48].

Theorem 2.4.15. Let E be a Banach space containing c0 as a closed, complemented
subspace. Then E is not complemented in E ′′ and E is not isomorphically a dual
space. In particular, c0 is not isomorphically a dual space.

Proof. There is a bounded projection P of E onto c0. Assume that there is a bounded
projection Q of E ′′ onto E . We may regard the spaces c0 and �∞ = c′′0 as closed
subspaces of E ′′, and then (P ◦ Q) | �∞ is a bounded projection of �∞ onto c0, a
contradiction of Theorem 2.4.11. Thus E is not complemented in E ′′. By Corollary
2.4.5, E is not isomorphically a dual space. ��

Corollary 2.4.16. Let E be a separable Banach space containing c0 as a closed
subspace. Then E is not complemented in E ′′ and E is not isomorphically a dual
space.

Proof. By Theorem 2.4.14, c0 is complemented in E , and so this follows from the
theorem. ��
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Corollary 2.4.17. Let K be a locally compact space that contains a convergent seq-
uence of distinct points. Then C0(K) is not complemented in C0(K)′′ and C0(K) is
not isomorphically a dual space.

Proof. By Proposition 2.4.6(ii), C0(K) contains c0 as a closed, complemented
subspace, and so the result follows from Theorem 2.4.15. ��

In particular, the above corollary covers the cases where K is an infinite, compact,
metrizable space, where K = [0,α] for an ordinal α ≥ ω , and where K = Z

κ
2 , the

Cantor cube of weight κ : in each of these cases, it is easy to see that the space
contains a convergent sequence of distinct points.

Definition 2.4.18. Let E be a Banach space. Then E is prime if every comple-
mented, infinite-dimensional, closed subspace of E is isomorphic to E .

Clause (i) of the following theorem is a famous result of Pełczyński [3, Theorem
2.2.4]; clause (ii) is a theorem of Lindenstrauss [3, Theorem 5.6.5].

Theorem 2.4.19. (i) The spaces c0 and � p, for 1≤ p<∞, are prime Banach spaces.

(ii) The space �∞ is a prime Banach space. ��

Definition 2.4.20. Let E be a Banach space. Then E is primary if, whenever E is
isomorphic to the direct sum of two Banach spaces, E is isomorphic to one of the
two summands.

As stated in [3, p. 122], L1(I) and C(I) are not prime, but both are primary. In
fact, each space Lp(I) for 1 ≤ p ≤ ∞ is primary [176, Theorem 2.d.11].

It is easily seen that C(N∗) is isomorphic to C(N∗)⊕ �∞, and so we can regard
(a copy of) �∞ as a complemented, infinite-dimensional, closed subspace of C(N∗).
However, by Example 2.2.22, �∞ is not isomorphic to C(N∗), and so C(N∗) is not
prime. It is known that, with CH, C(N∗) is primary [92], but it is not known whether
this is a theorem of ZFC. Incidentally, we note that it is proved in [92] that, with
CH, C(N∗)∼ �∞(C(N∗)) and in [46] that it is consistent with ZFC that C(N∗) is not
isomorphic to �∞(E) for any Banach space E .

A major result in this area is the following solution of the complemented sub-
space problem, due to Lindenstrauss and Tzafriri [173]. For a proof of this theorem,
see [3, §12.4].

Theorem 2.4.21. Let E be an infinite-dimensional Banach space such that every
closed subspace of E is complemented in E. Then E is isomorphic to a Hilbert
space. ��
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2.5 Projection properties and injective Banach spaces

We now consider the appropriate versions of projectivity and injectivity in the cate-
gory of Banach spaces and bounded operators that we are considering.

Definition 2.5.1. A Banach space E has the projection property if, whenever F is
a closed subspace of a Banach space G that is isometrically isomorphic to E , the
space F is complemented in G. More generally, a Banach space E is a Pλ -space (for
λ ≥ 1) if such a space F is λ -complemented in G.

Suppose that E is a Pλ -space for some λ ≥ 1. Then the projection constant of E
is the infimum of the numbers λ such that E is a Pλ -space.

We represent the above situation with the following commutative diagram:

G

P

E F .

The following is an immediate property of Pλ -spaces. Let E be a Pλ -space, and
suppose that E is a closed subspace of a Banach space G, that F is a Banach space,
and that T ∈ B(E,F). Then there is an extension T̃ of T in B(G,F) such that
∥
∥
∥T̃

∥
∥
∥≤ λ ‖T‖. Indeed, let P : G → E be a bounded projection with ‖P‖ ≤ λ , and set

T̃ = T ◦ P.
We represent the above situation with the following commutative diagram:

G
T̃

E
T

F .

It is proved in [171, Theorem 6.10] that a real Banach space which is a P1+ε-
space for each ε > 0 is already a P1-space. It seems to be unknown whether the
same result holds for complex Banach spaces. However an example in [143] shows
that a (real) Banach space which is a P2+ε-space for each ε > 0 is not necessarily a
P2-space.

The next definition gives a similar concept with the spaces E and F ‘the other
way round’.

Definition 2.5.2. A Banach space E is injective if, for every Banach space G, every
closed subspace F of G, and every T ∈B(F,E), there is an extension T̃ ∈B(G,E)
of T ; the space E is λ -injective if, further, we can always find such a T̃ such that∥
∥
∥T̃

∥
∥
∥≤ λ ‖T‖.
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We represent this situation with the following commutative diagram:

G
T̃

F
T

E .

For a discussion of injective spaces, see [20, Chapter 1].
Clearly an injective space is complemented in any Banach space that contains it

as a closed subspace, and injectivity is an isomorphic invariant for the class of all
Banach spaces. For example, by Theorem 2.4.12 and Corollary 2.4.17, respectively,
C0(K) is not injective whenever K is a non-empty, locally compact space that is
not pseudo-compact and whenever K is a compact space that contains a convergent
sequence of distinct points.

We see that a real Banach space is injective if and only if its complexification is
injective.

We shall use the following obvious remark.

Proposition 2.5.3. A complemented subspace of an injective space is injective; a
1-complemented subspace of a 1-injective space is 1-injective. ��

The next proposition is immediate from Theorem 2.4.9.

Proposition 2.5.4. Let E and F be injective Banach spaces such that E ∼ E ×E
and F ∼ F ×F and such that both E and F are isomorphic to closed subspaces of
the other. Then E ∼ F. ��

The following result was first noted by Phillips in [202, Corollary 7.2].

Proposition 2.5.5. The space �∞(S) = C(β S) is 1-injective for each non-empty
set S.

Proof. Take a Banach space G, a closed subspace F , and T ∈B(F, �∞(S)). For each
s ∈ S, the functional λs : x �→ (T x)(s) on F is continuous with ‖λs‖ ≤ ‖T‖. By the
Hahn–Banach theorem, Theorem 2.1.2(i), each λs has a norm-preserving extension
λ̃s to G. Set

(T̃ x)(s) = 〈x, λ̃s〉 (s ∈ S, x ∈ G) .

Then T̃ ∈B(G, �∞(S)) is an extension of T with
∥
∥
∥T̃

∥
∥
∥= ‖T‖. ��

Corollary 2.5.6. Let E be a Banach space. Then E is isometrically isomorphic to a
subspace of a 1-injective space.

Proof. By Proposition 2.2.14(i), E is isometrically isomorphic to a closed subspace
of a space of the form �∞(S). ��
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Take p ∈ N
∗, and set Mp = { f ∈ C(βN) : f (p) = 0}. Then Mp is a comple-

mented subspace of C(βN), and so Mp is injective. This gives an example of a non-
compact space K = βN\{p} such that C0(K) is injective; see also Example 6.9.1 for
a slightly stronger fact. Of course, as in Example 1.5.3(ii), K is a pseudo-compact
space.

On the other hand, the following result is immediate from Theorem 2.4.15.

Proposition 2.5.7. Let E be a Banach space containing c0 as a closed, comp-
lemented subspace. Then E is not injective. ��

Proposition 2.5.8. Let E be a separable, infinite-dimensional Banach space. Then
E is not injective.

Proof. By Proposition 2.2.17(i), there is an isometric embedding of E into �∞.
Assume to the contrary that E is injective. Then E is complemented in �∞. But,

by Theorem 2.4.19(ii), �∞ is prime, and so E is isomorphic to �∞. But �∞ is not
separable, a contradiction. ��

It follows from Theorem 2.1.7(i) that C(K) is not injective whenever K is an
infinite, compact, metrizable space; a stronger result was given in Corollary 2.4.17.

Proposition 2.5.9. Take λ ≥ 1. Then a Banach space is λ -injective if and only if it
is a Pλ -space, and it is injective if and only if it has the projection property.

Proof. Suppose that the Banach space E is λ -injective. Take F to be a closed sub-
space of a Banach space G such that E ∼= F , and let T : F → E be a linear isometry.
Then there is an extension S∈B(G,E) of T with ‖S‖≤ λ . Set P= T−1 ◦ S : G→F .
Then P is a bounded projection with ‖P‖ ≤ λ , and so E is a Pλ -space.

Now suppose that E is a Pλ -space. Take F to be a closed subspace of a Banach
space G, and take T ∈B(F,E). By Corollary 2.5.6 , we can identify E as a closed
subspace of a 1-injective space, say H. There is a bounded projection P from H onto
E with ‖P‖ ≤ λ , and, since T ∈B(F,H), there is a norm-preserving extension, say
L ∈B(G,H), of T . Set T̃ = P ◦ L to obtain the required extension of T .

Similarly, E is injective if and only if it has the projection property. ��

Proposition 2.5.10. A Banach space with the projection property is a Pλ -space for
some λ ≥ 1.

Proof. It is easy to see that F0 is a Pλ μ-space whenever F is a Pλ -space, and there is
a bounded projection of norm μ from F onto the subspace F0. By Corollary 2.5.6,
each Banach space E is a closed subspace of a 1-injective space F . In the case where
E has the projection property, there is a bounded projection P : F → E , and so E is
Pλ -space with λ = ‖P‖. ��
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It follows that an injective Banach space is λ -injective for some λ ≥ 1.

Let K and L be two non-empty, compact spaces. First, let η : K → L be a contin-
uous map, and define

η ◦ : f �→ f ◦ η , C(L)→C(K) . (2.9)

Then η ◦ is a bounded operator with ‖η ◦‖= 1. Further, η ◦ is a surjection if and only
if η is an injection, and η ◦ is an injection if and only if η is a surjection if and
only if η ◦ is isometric. In particular, let (GL,πL) be the Gleason cover of L, as in
Theorem 1.6.5. Then the map π ◦

L : C(L)→C(GL) is an isometric embedding.

We first generalize Proposition 2.5.5.

Theorem 2.5.11. Let K be a non-empty, Stonean space. Then C(K) is 1-injective.
Further, C(K) is isometrically isomorphic to a complemented subspace of C(β Kd),
which is isometrically a bidual space.

Proof. By Theorem 1.6.3, (a) ⇒ (b), there is a retraction θ : β Kd → K.
Let η : K → β Kd be the natural embedding, so that θ ◦η is the identity on K.

Then the map θ ◦ : C(K)→ C(β Kd) is an isometry and η ◦ : C(β Kd) → θ ◦(C(K))
is a linear surjection with ‖η ◦‖ = 1. Since η ◦ ◦ θ ◦ is the identity on C(K), the
map η ◦ is a bounded projection. By Proposition 2.5.5, C(β Kd) is 1-injective, and
so C(K) is 1-injective.

Of course, C(β Kd) is isometrically the bidual of C0(Kd). ��

We shall see in Theorem 6.8.3 that, conversely, K is Stonean whenever C(K) is
1-injective. Indeed, Question 3 on page 212 will raise the possibility that the only
injective Banach spaces are those isomorphic to C(K) for K a Stonean space.

Corollary 2.5.12. Let K be a non-empty, compact space. Then C(GK) is 1-injective.

Proof. By Theorems 1.6.5, GK is a Stonean space. ��

There is a closely related theory of extensions of Banach spaces. Some of these
results will be used in the characterization of 1-injective Banach spaces to be given
in Theorem 6.8.6. The next few results are based on Bade’s notes [23, 24]; see also
[166, §11].

Definition 2.5.13. Let E be a closed subspace of a Banach space F . Then:

(i) F is an essential extension of E if, for each Banach space G and each con-
traction T ∈B(F,G) such that T | E is an isometry, T is also an isometry;

(ii) F is a rigid extension of E if, for each contraction T ∈ B(F) such that
T | E = IE , necessarily T = IF .

Proposition 2.5.14. Let E be a Banach space. Then each essential extension of E
is rigid.
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Proof. Let F be an essential extension of E , and assume towards a contradiction that
F is not rigid. Then there are a contraction T ∈B(F) and y ∈ F such that T | E = IE

and Ty �= y, say z = y−Ty, so that z �= 0; we may suppose that ‖y‖= 1. Set M =Cz.
Then the quotient map q : F → F/M is a contraction that is not an isometry because
q(z) = 0.

We claim that q | E is an isometry; this will give the required contradiction. In-
deed, assume that q | E is not an isometry. Then there exist x ∈ E with ‖x‖ = 1
and δ > 0 such that ‖x+ δ z‖ < 1. There exists η > 0 such that ‖w+ δ z‖ < ‖w‖
whenever ‖w− x‖ ≤ η . For such an element w, we have

‖w‖< ‖w−ηz‖ , (2.10)

for otherwise

‖w‖ ≤ η
δ +η

‖w+ δ z‖+ δ
δ +η

‖w−ηz‖< ‖w‖ .

We apply (2.10) with w = x+ηy, so that w−ηz = x+ηTy = T (x+ηy), to see that
‖x+ηy‖ < ‖T (x+ηy)‖; this is a contradiction of the fact that T is a contraction.
Thus q | E is an isometry. ��

Proposition 2.5.15. Let E be a closed subspace of a Banach space (F,‖·‖). Then
the following are equivalent:

(a) for each semi-norm p on F with p(x) = ‖x‖ (x ∈ E) and p(y)≤ ‖y‖ (y ∈ F),
necessarily p(y) = ‖y‖ (y ∈ F);

(b) F is an essential extension of E.

Proof. (a) ⇒ (b) Let G be a Banach space, and suppose that T : F → G is a con-
traction such that T | E is an isometry. Set p(y) = ‖Ty‖ (y ∈ F). Then p is a semi-
norm on F satisfying the conditions in (a), and so p(y) = ‖y‖ (y ∈ F), whence T is
an isometry.

(b) ⇒ (a) Let p be a semi-norm on F satisfying the conditions in (a), and set
K = {y ∈ F : p(y) = 0}. Take q to be the quotient map from F onto the space F/K,
let F/K have the norm induced by p, and take G to be the completion of this space.
Then q : F → G is a contraction and q | E is an isometry, and so, by (b), q is an
isometry. It follows that p(y) = ‖y‖ (y ∈ F). ��

Theorem 2.5.16. Let E be a closed subspace of a Banach space F, and suppose
that F is a 1-injective space. Then there is a closed subspace G of F containing E
such that G is a 1-injective space and G is a rigid extension of E.

Proof. Let F be the family of semi-norms p on F such that p(x) = ‖x‖ (x ∈E) and
p(y) ≤ ‖y‖ (y ∈ F). For p,q ∈F , set p ≤ q if p(y)≤ q(y) (y ∈ F). Then (F ,≤)
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is a partially ordered space. Clearly each chain in (F ,≤) has a lower bound, and so
(F ,≤) has a minimal element, say p0. Let H be the completion of F/ker p0, and
let π : F → F/ker p0 be the quotient map.

We can regard E as a closed subspace of H. Since F is 1-injective, there is a
contraction T : H → F with T | E = IE . Set P = T ◦ π , so that Px = x (x ∈ E) and
‖P‖= 1.

Set p1(y) = ‖Py‖ (y ∈ F). Then p1 ≤ p0 in (F ,≤), and so p1 = p0 by the
minimality of p0. Next define

p2(y) = limsup
n→∞

∥
∥
∥
∥
∥

1
n

n

∑
i=1

Piy

∥
∥
∥
∥
∥

(y ∈ F) .

Then p2 ≤ p1 in (F ,≤), and so p2 = p0. Further,

p2(y−Py) = limsup
n→∞

∥
∥
∥
∥

1
n

(

Py−Pn+1y
)
∥
∥
∥
∥
= 0 (y ∈ F) ,

and so
∥
∥Py−P2y

∥
∥= p1(y−Py) = p2(y−Py) = 0 (y ∈ F). This shows that P2 = P

in B(F).
Set G = P(F). Then G is a closed subspace of F containing E and G is a

1-injective space.
Finally, we show that G is an essential extension of E; for this, we verify

clause (a) of Proposition 2.5.15. Indeed, let p be a semi-norm on G such that
p(x) = ‖x‖ (x ∈ E) and p(y)≤ ‖y‖ (y ∈ G). Then p ◦ P ∈F , and

(p ◦ P)(y)≤ ‖Py‖= p1(y) = p0(y) (y ∈ F) ,

and so p ◦ P = p0 and p(y) = ‖y‖ (y ∈ G), as required.
By Proposition 2.5.14, G is a rigid extension of E . ��

The rigid extension G of E clearly has the property that, for each 1-injective sub-
space H of G with E ⊂ H, necessarily H = G. Further, suppose that H has the same
properties as G. Then H is isometrically isomorphic to G by a map that is the iden-
tity on E . The space G is the injective envelope of E; we shall see in Theorem 6.8.6
that an injective envelope of a Banach space has the form C(K) for a certain Stonean
space K.

Recall from page 15 that Δ denotes the Cantor set.

Proposition 2.5.17. Let E be a separable Banach space. Then there is an isometric
embedding of E into C(Δ).

Proof. By Proposition 2.2.14(i), there is a non-empty, compact, metrizable space B
and an isometric isomorphism T : E →C(B). By Proposition 1.4.6(i), there is a con-
tinuous surjection η : Δ → B. Thus η ◦ : C(B) →C(Δ) is an isometric embedding.
The map η ◦ ◦ T : E →C(Δ) is also an isometric embedding. ��
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The above results say that C(Δ) is universal in the class of separable Banach
spaces. It follows easily that C(I) is also universal in the class of separable Banach
spaces. This is the Banach–Mazur theorem, already given in [30, Chapitre XI, §8];
see also [3, Theorem 1.4.3] and [225, Theorem 8.7.2]. These results are contained
in [23, Chapter 4]; early texts in which they appeared are [82, p. 123] and [225], and
the standard account is [175, §2f]. For example, it is proved in [175, Theorem 2.f.3]
that every infinite-dimensional injective Banach space contains a closed subspace
that is isomorphic to �∞. For a more recent discussion of these properties, see [247].
It is stated in [172, p. 337] that a Banach space is injective if and only if it is a
so-called L∞ space and is isomorphic to a complemented subspace of a dual space.

We have noted in equation (1.6) that w(N∗) = d(C(N∗)) = |C(N∗)| = c. By a
famous theorem of Parovichenko (see [99, p. 236] and [239, p. 81]), every compact
(Hausdorff) space of weight at most ℵ1 is a continuous image of N∗. Recall from
Proposition 2.2.14(i) that each Banach space E is isometrically embedded in the
space C(B), where B = E ′

[1] and that d(E) = w(B) by Corollary 2.1.8. Hence every
Banach space of density at most ℵ1 can be isometrically embedded in C(N∗), and
so, with CH, C(N∗) is universal in the class of Banach spaces of density c. How-
ever this is not a result of the theory ZFC: it is consistent with ZFC that there is
no isometrically universal Banach space of density c [226]. For further related and
stronger results, see [45, 46]. For example, it is consistent with ZFC that the Banach
space C([0,c]) does not embed into C(N∗).

There is an extension of the notion of an injective space. A Banach space E is
separably injective if, for every separable Banach space G, every closed subspace F
of G, and every T ∈B(F,E), there is an extension T̃ ∈B(G,E) of T . Obviously,
every injective space is separably injective. By Zippin’s theorem, mentioned above,
the only separable and separably injective Banach space is c0. The idea of extend-
ing the notion of separably injective spaces to non-separable spaces was introduced
by Rosenthal in [214]. Examples of non-separable spaces which are separably in-
jective but not injective are certain Banach spaces �∞

c (Γ ), to be discussed below at
Example 6.7.1, and C(N∗) (due to Lindenstrauss). For accounts of separably injec-
tive Banach spaces, including these examples, see [19, 20] and [247, p. 1722].

We shall discuss the injectivity of C(K)-spaces further in §6.8.

Although it is not strictly relevant to our work, we briefly introduce the dual
concept to that of an injective space.

Definition 2.5.18. A Banach space E is projective if, for every Banach space G,
every quotient Banach space F of G with quotient map q : G→F , and every operator
T ∈B(E,F), there is a lifting T̃ ∈B(E,G) of T , in the sense that T = q ◦ T̃ ; the
space E is λ -projective (for λ ≥ 1) if, further, we can always find such a T̃ with∥
∥
∥T̃

∥
∥
∥≤ λ ‖T‖.

We represent the above situation with the following commutative diagram:
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G

q

E

T̃

T
F.

Each projective Banach space is λ -projective for some λ ≥ 1. The following
results give characterizations of projective Banach spaces.

Theorem 2.5.19. A Banach space is (1+ ε)-projective for each ε > 0 if and only if
it is isometrically isomorphic to a Banach space of the form �1(Γ ) for a non-empty
set Γ .

Proof. This is proved in [166, Theorem 9, p. 178] and in [225, Theorem 27.4.2];
that a 1-projective space has the form �1(Γ ) is due to Grothendieck [125]. ��

Theorem 2.5.20. A Banach space is 1-projective if and only if it is isometrically
isomorphic to a Banach space of the form L1(Ω ,μ) for a measure space (Ω ,μ).

Proof. This is proved in [166, Corollary to Theorem 8, p. 178]. ��

Theorem 2.5.21. A Banach space is projective if and only if it is isomorphic to a
Banach space of the form �1(Γ ) for a non-empty set Γ .

Proof. For this, see [175, p. 108]; the result is due to Köthe [162]. ��

2.6 The Krein–Milman and Radon–Nikodým properties

We shall be concerned with the extreme points of the closed unit ball and other
bounded subsets of a Banach space; we shall discuss, rather briefly, the seminal no-
tions of Banach spaces having the Krein–Milman property and the Radon–Nikodým
property.

The first result is the famous Krein–Milman theorem; see [6, Theorem 3.31] or
[218, Theorem 3.23], for example.

Theorem 2.6.1. Let L be a non-empty, compact, convex subset of a locally convex
space over R or C. Then L = co(exL). ��

Corollary 2.6.2. Let E be a normed space. Then the set co(exE ′
[1]) is weak∗-dense

in E ′
[1]. ��
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Corollary 2.6.3. Let E be a Banach space such that exE[1] = /0. Then E is not iso-
metrically a dual space.

Proof. Assume that E ∼= F ′ for a Banach space F . Set L = E[1], so that L is a non-
empty, compact, convex subset of the locally convex space (E,σ(E,F)), and hence,
by the theorem, exL �= /0, a contradiction. ��

We shall see in Example 6.9.1 that there are Banach spaces E such that exE[1] = /0
and E is isomorphically a dual space.

Corollary 2.6.4. Let E be Banach space, and set B=E ′
[1]. Suppose that L is a closed

subset of B such that ci L = exB. Then the map

J : x �→ κE(x) | L , E →C(L) ,

is an isometric embedding.

Proof. The set ci L is a circled subspace of B with co(ci L) = B, and so it follows
from Proposition 2.2.14(ii) that, for each x ∈ E , there exist λ ∈ L and ζ ∈ T such
that ‖x‖= |〈x, ζλ 〉|. But then ‖x‖= |〈x, λ 〉|, and so J is an isometry. ��

We now give a geometric property, that of ‘dentability’, of subsets of a Banach
space. This is a notion that was introduced by Rieffel in [208].

Definition 2.6.5. Let E be a Banach space. Then a bounded subset S of E is dentable
if, for each ε > 0, there exists x ∈ S such that x �∈ co(S \Bε(x)).

The next theorem, Theorem 2.6.7, is due to Rieffel [208, Theorem 3]; it will be
used in the proof of Corollary 2.6.12.

Lemma 2.6.6. Let E be a Banach space, and let S be a bounded subset of E. Sup-
pose that coS is dentable. Then S is dentable.

Proof. Take ε > 0. Then there exists x0 ∈ (coS)\Q, where

Q = co((coS)\Bε/2(x0)) .

Assume that S ⊂ Q. Then coS ⊂ Q and x0 ∈ Q, a contradiction. So S �⊂ Q, and there
exists an element x1 ∈ S\Q; necessarily x1 ∈ Bε/2(x0). Thus Bε/2(x0)⊂ Bε(x1), and
so S \Bε(x1)⊂ Q, whence co(S \Bε(x1))⊂ Q. This shows that

x1 ∈ S \ co(S \Bε(x1)) ,

and so S is dentable. ��

Theorem 2.6.7. Let Γ be any non-empty set. Then every non-empty, bounded subset
of �1(Γ ) is dentable.
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Proof. We shall work in the underlying real-linear space of �1(Γ ).
By Lemma 2.6.6, it suffices to show that every non-empty, closed, convex,

bounded set in �1(Γ ) is dentable. Let S be such a set, and suppose without loss
of generality that sup{‖ f‖1 : f ∈ S}= 1. Take ε > 0.

Choose f ∈ S with ‖ f‖1 > 1− ε/6. Then there is a finite subset F of Γ such
that ∑γ∈F | f (γ)|> 1−ε/6. Let P : �1(Γ )→ �1(F) be the natural projection, so that
‖P f‖1 > 1− ε/6.

The set P(S) is convex and bounded in the finite-dimensional space �1(F), and so
P(S) is convex and compact. By the Krein–Milman theorem, Theorem 2.6.1, there is
an extreme point g0 of P(S) with ‖g0‖1 > 1−ε/6, and so g0 �∈ co(P(S)\Bε/6(g0)).
By the Hahn–Banach theorem, Theorem 2.1.2(ii), there is a real-linear functional λ
in the underlying real-linear space of �∞(Γ ) such that

〈g0, λ 〉> 1 and 〈g, λ 〉< 1 (g ∈ P(S)\Bε/6(g0)) .

Choose g ∈ S with ‖Pg− g0‖1 < ε/6 and 〈Pg, λ 〉> 1. We claim that

g �∈ co(S \Bε(g)) . (2.11)

Indeed, take h ∈ S with 〈Ph, λ 〉 ≥ 1. Then ‖Ph− g0‖1 ≤ ε/6, and so we have
‖Ph−Pg‖1 ≤ ε/3 and ‖Ph‖1 > 1− ε/3; also, ‖Pg‖1 > 1− ε/3. Since

‖Pg‖1 + ‖g−Pg‖1 = ‖g‖1 ≤ 1 ,

we have ‖g−Pg‖1 < ε/3; similarly, ‖h−Ph‖1 < ε/3. Thus ‖g− h‖1 < ε . It follows
that 〈Ph, λ 〉 < 1 for each h ∈ S \Bε(g), and hence 〈Ph, λ 〉 < 1 for each element
h ∈ co(S \Bε(g)). Since 〈Pg, λ 〉> 1, our claim that (2.11) holds is valid.

It follows that S is dentable. ��
We remark that the following related theorem of Rieffel is proved in [190]; see

also [123, Appendix 2].

Theorem 2.6.8. Let E be a separable Banach space. Then every weakly compact,
convex subset of E is dentable. ��

Definition 2.6.9. Let K be a closed, bounded, convex set in a Banach space E . Then
K has the Krein–Milman property if L = co(exL) for every closed, convex subset
L of K. A Banach space E has the Krein–Milman property if E[1] has the Krein–
Milman property.

Suppose that E has the Krein–Milman property. Then every closed, bounded,
convex set in E has the Krein–Milman property. Suppose, further, that F is a Ba-
nach space with F ∼ E . Then F has the Krein–Milman property; the Krein–Milman
property is an isomorphic invariant.

The study of the Krein–Milman property is assisted by the Bishop–Phelps theo-
rem from [37]; we state an extension of the theorem given by Bollobás [40]. For a
proof, see [85, VII, Theorem 4] and [100, Theorem 7.41], for example.
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Theorem 2.6.10. Let E be a real Banach space. Suppose that x ∈ SE, that λ ∈ SE ′ ,
and that ε > 0. Then there exist y ∈ SE and μ ∈ SE ′ such that 〈y, μ〉 = 1, such that
‖μ −λ‖< ε , and such that ‖y− x‖< ε + ε2. ��

A short, direct proof of the following theorem, using the Bishop–Phelps theorem,
is given in the Handbook article of Johnson and Lindenstrauss [148, p. 35] and in
[85, Theorem 5, p. 190]; see also [100, Theorem 11.3].

Theorem 2.6.11. Let E be a Banach space for which every non-empty, bounded
subset is dentable. Then E has the Krein–Milman property. ��

Corollary 2.6.12. Let Γ be a non-empty set. Then �1(Γ ) has the Krein–Milman
property.

Proof. This follows from Theorem 2.6.7 and the above theorem. ��

The above results give examples of Banach spaces that do have the Krein–
Milman property. We shall now show, in Theorem 2.6.15, that the spaces C0(K)
never have the Krein–Milman property whenever K is infinite.

Proposition 2.6.13. Let K be a non-empty, locally compact space, and suppose that
f ∈C0(K). Then f ∈ exC0(K)[1] if and only if | f (x)| = 1 (x ∈ K).

Proof. Set B =C0(K)[1]. Suppose that f ∈ B and that there exists x0 ∈ K such that
| f (x0)|< 1. Set ε = (1−| f (x0)|)/2. Then there exists U ∈Nx0 with | f (x)|< 1− ε
for x ∈ U . Take g ∈ CR(K) such that 0 ≤ g ≤ χU and g(x0) = 1. Then f ± εg ∈ B
and

f =
1
2
( f + εg)+

1
2
( f − εg) ,

and so f �∈ exB.
It is easy to see that each f ∈C0(K) with | f (x)|= 1 (x ∈ K) belongs to exB. ��

Corollary 2.6.14. Let K be a locally compact space that is not compact. Then
C0(K)[1] has no extreme points, and C0(K) is not isometrically a dual space. ��

In particular, we see again that c0 is not isometrically a dual space.

Theorem 2.6.15. Let K be an infinite, locally compact space. Then C0(K) does not
have the Krein–Milman property.

Proof. By Corollary 2.6.14, we may suppose that K is compact. Since K is infinite,
there is a non-isolated point, say x0, of K. Consider the set

{ f ∈C(K)[1] : f (x0) = 0} :

this set is closed, bounded, and convex in C(K), but it follows from Proposition 2.6.13
that it has no extreme points. ��
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The results in the remainder of this section require more background than our
guidelines indicate, and so we shall omit most proofs.

The main theorem relating the above properties is the following.

Theorem 2.6.16. Let E be a Banach space. Then the following conditions on E are
equivalent:

(a) E ′ has the Krein–Milman property;

(b) each bounded subset of E ′ is dentable;

(c) each separable subspace of E has a separable dual space.

Proof. The implication (b) ⇒ (a) follows from Theorem 2.6.11. For proofs of the
other implications, see [85, pp. 190, 198], where histories of the theorems are also
given. A key original source is a paper of Stegall [230]; see also [100, Theorem
11.14]. ��

Corollary 2.6.17. Let E be a separable Banach space. Then E ′ has the Krein–
Milman property if and only if E ′ is separable.

Proof. This follows from the equivalence (a) ⇔ (c) of the above theorem. ��

Corollary 2.6.18. Let Γ be a non-empty set. Then �1(Γ ) is isomorphically the dual
of a separable Banach space if and only if Γ is countable.

Proof. We have �1(Γ )∼= (c0(Γ ))′ and c0(Γ ) is separable whenever Γ is countable.
Now suppose that �1(Γ ) ∼ E ′ for a separable Banach space E . By

Corollary 2.6.12, �1(Γ ) has the Krein–Milman property, and so E ′ has this prop-
erty. By Corollary 2.6.17, E ′ is separable, and so �1(Γ ) is separable. Hence Γ is
countable. ��

Corollary 2.6.19. Let E be a separable Banach space such that exE[1] = /0. Then E
is not isomorphically a dual space.

Proof. Assume that E ∼ F ′ for a Banach space F . By Proposition 2.1.6, F is sepa-
rable, and so, by Corollary 2.6.17, F ′ has the Krein–Milman property, and hence E
has this property. In particular, exE[1] �= /0, a contradiction. ��

We outline, without defining terms, a proof of one implication in Corollary 2.6.17,
namely, of the fact that E ′ has the Krein–Milman property whenever E ′ is separa-
ble; this implication will be used in the proof of Theorem 4.4.17(i). The proof uses
an idea of Bessaga and Pełczyński [35] concerning a re-norming theorem of Kadec
and Klee for spaces with a separable dual. The full proofs are available in readily
accessible texts, but this argument may not be as well known as some others.

The first step is as follows.
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Proposition 2.6.20. Let E be a Banach space such that E ′ is separable. Then E
admits an equivalent norm which is Fréchet differentiable at every x ∈ E with x �= 0.

Proof. An explicit formula for such an equivalent norm on E ′ is given in [33, Theo-
rem 4.13, p. 89]. This norm is shown to be the dual of the desired equivalent Fréchet-
differentiable norm on E . ��
Proposition 2.6.21. Let E be a Banach space whose norm is is Fréchet differen-
tiable at every x ∈ E with x �= 0. Then E ′ is dentable.

Proof. This is also a standard result; it is again a straightforward application of the
Bishop–Phelps theorem, Theorem 2.6.10. See [100, Proposition 8.11, p. 391], for
example. ��

The stated implication in Corollary 2.6.17 now follows from Theorem 2.6.11.
There is another elegant proof of the above proposition due to Namioka [189].

This article introduced and crystallized the important concept of points of weak∗-to-
norm continuity of the identity map on a dual Banach space (although the concept
was already implicit in Bessaga–Pełczyński [35]). Namioka’s proof is reproduced
in [83, p. 159]; the original article is not cited in [83].

Let E be a Banach space. The Radon–Nikodým property for E delineates when
there is an E-valued version of the standard Radon–Nikodým theorem: see [85,
III.1] and [100], for example. The fine text [85] contains many different character-
izations of the Radon–Nikodým property. See Chapters III, IV, and VII of [85] for
a discussion of this property and some of its variants; in particular, pages 217/218
summarize many equivalent formulations of this property, and pages 218/219 spec-
ify many spaces that do and do not have the property. Each Banach space with the
Radon–Nikodým property has the Krein–Milman property; it is not known whether
the converse of this statement holds.

It is shown in [85, pp. 190, 198] and [100, Theorem 11.14] that the three clauses
in Theorem 2.6.16 are also equivalent to the condition that E ′ have the Radon–
Nikodým property.
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