
Chapter 2
Mathematical Exposition of the Design
Axioms

Hilario L. Oh

Abstract Axiomatic design (AD) offers designers two fundamental principles to
follow for a successful design: (1) identify and define the design objectives, i.e.,
functional requirements (FRs), in such a way that they are inherently independent;
and (2) conceive solutions for the FRs that comply with two design axioms: the
independent axiom and the information axiom. In the previous chapter, the rationale
and origin for the axiomatic nature of the design axioms were provided. In this
chapter, the two axioms are given a deeper mathematical understanding, thereby
strengthening their value. Starting with the formal definition of functional inde-
pendence, the criterion for functional independence of FRs in a design is derived as
the Jacobian determinant |J| ≠ 0. Since | J | ≠ 0 implies independence of FRs and
existence of design solutions, the |J| criterion corroborates the declaration of
independence axiom that a good design must “maintain the independence of the
functional requirements.” The |J| criterion further reveals that AD criterion for
functional independence—design with single input–single output—is only a suffi-
cient condition. For rigor and completeness, the |J| criterion is shown to be nec-
essary and sufficient. In implementing information axiom, AD assessment of
uncertainty in design should cover a larger extent than it currently does. AD has not
and should begin to recognize and identify the sources of variability and the
countermeasures to them. The chapter ends with a summary of implementation
steps in AD expressed in mathematical terms.

2.1 Introduction

Axiomatic design (AD) offers designers two fundamental principles to follow for a
successful design: (1) define the design objectives, i.e., functional requirements
(FRs), in such a way that they are inherently independent; and (2) conceive solu-
tions in terms of design parameters (DPs) that maintain the independence of FRs as
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originally intended and have the highest probability of achieving FRs’ targets. AD
uses independent axiom to check for functional independence and information
axiom to assess probability of success. What follows are mathematical expositions
of the two axioms. Chapter 1 discusses the dual application of the two axioms in
design synthesis and design analysis. In this chapter, we will consider design
analysis only.

2.2 Mathematical Exposition of Independence Axiom

Independent axiom in AD declares a criterion to check whether a conceived
solution in terms of DPs maintains the functional independence of FRs. We develop
another criterion derived from formal definition of functional independence. In the
sections to follow, we discuss these two criteria. The discussion is confined to no
more than 3 FRs and 3 DPs. However, the logic behind the discussion can be
extended to n FRs and n DPs, n > 3.

2.2.1 AD Criterion for Functional Independence

Per independence axiom, “in an acceptable design, the DPs and the FRs are related
in such a way that specific DP can be adjusted to satisfy its correspondent FR
without affecting other functional requirements,” p. 48 [1]. In other words, AD
criterion for functional independence is that adjustment Δ, of one and only one DP
should affect only correspondent FR but not other FRs. It implies a single input–
single output (SISO) relationship of FRs to DPs. A mathematical representation of
the criterion is as follows:

DFR1 ¼ DFR1 DDP1ð Þ
DFR2 ¼ DFR2 DDP2ð Þ
DFR3 ¼ DFR3 DDP3ð Þ

An alternative representation is with a design matrix (DM). A DM is indexed
row-wise by FRj and column-wise by DPk. If DPk has an effect on FRj, the cell DM
(j, k) is marked “X”. If it has no effect, the cell is marked “O”.

In DM representation, AD’s SISO criterion for independence is a diagonal DM.
Such a design is called an uncoupled design.

DFR1

DFR2

DFR3

2
4

3
5 ¼

X O O
O X O
O O X

2
4

3
5 DDP1

DDP2
DDP3

2
4

3
5

50 H.L. Oh

http://dx.doi.org/10.1007/978-3-319-32388-6_1


Another representation that also satisfies the SISO criterion is as follows:

DFR1 ¼ DFR1 DDP1ð Þ;
DFR2 ¼ DFR2 DDP1; DDP2ð Þ
DFR3 ¼ DFR3 DDP1; DDP2; DDP3ð Þ:

In the above representation, ΔFRk can be made a function solely of ΔDPk if the
adjustment ΔDPk to satisfy the corresponding ΔFRk follows the sequence: k = 1
firstly—so that ΔFR1 becomes a constant in subsequent equation for ΔFR2—fol-
lowed by k = 2 secondly, and so on:

DFR1 ¼ DFR1 DDP1ð Þ;
DFR2 ¼ DFR2 DFR1; DDP2ð Þ;
DFR3 ¼ DFR3 DFR1; DFR2; DDP3ð Þ:

This adjustment sequence is known as forward substitution; an algorithm used in
solving lower triangular linear systems [2]. If the adjustment adheres to the
sequence, the above shows ΔFRk is a function exclusively of ΔDPk. The SISO rule
is thereby fulfilled. The DM is triangular. The design is called a decoupled design.
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In AD, only uncoupled and decoupled designs are acceptable. Since they are
SISO, the FRs are obviously functionally independent of one another.

SISO ) functional independence

Any other design with DM that is neither diagonal nor triangular cannot satisfy
SISO criterion. Such designs are called coupled designs. Per AD, they should be
avoided since it is not obvious that the associated FRs are functionally independent
of one another. We will show later that FRs in a design that does not satisfy SISO
can still be functionally independent. In other words,

Functional independence : ) SISO

Accordingly, the independence axiom with SISO criterion is only a sufficient
condition for functional independence.

To recap, per independent axiom, there are three categories of design: uncou-
pled, decoupled, and coupled. Within the coupled design, there are three
subcategories.

One subcategory is designed with cyclic interaction: DP1 affects FR2, DP2
affects FR3, and DP3 affects FR1:
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Another subcategory is redundant design with more DPs than FRs:
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A third subcategory is design with insufficient DPs:
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We next show examples of various categories and subcategories of design.

2.2.1.1 Examples of Various Categories of Design

Water Faucet Illustrating Coupled and Uncoupled Design

An example frequently used to illustrate the uncoupled and coupled design has the
two alternative designs of a water faucet shown in Fig. 2.1. In the figure,
Q subscripted h and c are respectively the flow rate of the hot and cold water. Both
faucet designs a and b have the same functional requirements:

Q, T Q, T 

Qh 

Qc 

Qh/QcQh+Qc

(a) (b)

Fig. 2.1 Alternative designs a and b of a water faucet
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FR1 ¼ control flow rate Q;

FR2 ¼ control flow temperature T :

For Faucet a, we choose as DP1: the left knob controlling Qh and as DP2, the
right knob controlling Qc (see Fig. 2.1a). By assessing the effect of DPs on FRs, we
arrive at the first category of coupled DM exhibiting cyclic interaction below.

FR1

FR2

� �
¼ X X

X X

� �
DP1
DP2

� �

Similarly for Faucet b, we choose as DP1, the up/down of the lever to control
total flow rate (Qh + Qc); and as DP2, the clockwise/counterclockwise of the lever
to control the ratio of the hot/cold water flow rate (Qh/Qc), see Fig. 2.1b. Again, by
considering the effect of DPs on FRs, we obtain the uncoupled DM below that is
acceptable per AD’s SISO criterion for functional independence.
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� �
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The examples above illustrate a practical aspect of AD. That is, by simply
considering the effects of DPs on FRs with (X, O), we can differentiate an
acceptable design from an unacceptable design without going into the details of the
physics. This practicality is very useful at the concept selection stage of design.

Projector Illustrating Redundant Design

Projector has two FRs:

FR1 ¼ magnify the image;

FR2 ¼ focus the image on the projection plane:

Figure 2.2a shows a projector; and Fig. 2.2b, the associated ray tracing of the
light beam from the object plane, through the lens, and to the projection plane.

From the similar triangles shown in Fig. 2.2b, we have

FR1 ¼ image height
object height

¼ D
d
;

Also per camera equation, the image is focused whenever

FR2 ¼ 1
D

þ 1
d
þ 1

f
¼ 0:
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Thus, we have a redundant design with 2 FRs and 3 DPs as shown below.
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In the above, DP1 is D, the distance of the lens from the screen aka the throw of
the projector; DP2 is d, the distance of the lens from the object, and DP3 is f, the
focal length of the lens.

A redundant design with more DPs than FRs cannot satisfy SISO criterion unless
we fix the extra DPs. For example in the type of overhead projector shown in
Fig. 2.2a, the focal length of the lens DP3 is fixed. Hence, we have a design with
equal number of FRs and DPs shown below. In this case, the design is coupled.
With this type of projector, it would take several trial and errors to get the right
magnification of the image focused at a given throw.
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� �
¼ X X

X X

� �
DP1
DP2

� �

By contrast, in a portable projector used in a variety of room sizes that requires
various throws, the distance of the object from the lens DP2 is fixed. A zoom lens
with varying focal length DP3 is used. Thus we have a decoupled design:

FR1

FR2

� �
¼ X O

X X

� �
DP1
DP3

� �
:

With a portable projector, to attain a certain magnification focused at a certain
throw is easy: set the throw for magnification then adjust the zoom lens for focus.

Image

Object 

f 

D d

Image

Object

D

d

(a) (b)

Fig. 2.2 Schematic a of a projector and its ray-tracing b
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Disbursement Algorithm Illustrating a Redundant Design

Let us say we have an ATM that has in it the following bank notes denomination:
$20, $10, $5, and $1. Three demands are made of the ATM as follows:

FR1: disburse bills that sum up to $Total.
FR2: disburse number of bills that totals to NTotal.
FR3: ensure the number of small bills is twice that of large bills.

There are four design parameters (DPs):

DP1: number of $20 bills, N$20.
DP2: number of $10 bills, N$10.
DP3: number of $5 bills, N$5.
DP4: number of $1 bills, N$1.

The 4 DPs would satisfy the three FRs as follows:

FR1 ¼ $20N$20 þ $10N$10 þ $5N$5 þ $1N$1 ¼ $Total

FR2 ¼ N$20 þN$10 þN$5 þN$1 ¼ NTotal

FR3 ¼ 2N$20 � N$1 ¼ 0:

Above is a redundant design with 3 FRs and 4 DPs with a DM as shown below:

FR1

FR2

FR3

2
66664

3
77775 ¼

X X X X

X X X X

X O O X

2
66664

3
77775

N$20

N$10

N$5

N$1

2
664

3
775

If we were to fix an extra DP to get equal number of FRs and DPs, we would
have 4 (=4C3) possible DM solutions as follows:
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Note in solution (2.1a), FR3 = (FR1 − $10 × FR2)⁄$5. So that FR3 = f(FR1,
FR2) is no longer independent as originally planned. In fact, design Eq. (2.1a) is
itself a redundant design with 2 FRs and 3 DPs. In short, fixing extra DPs in a
redundant design to obtain a square DM does not guarantee a solution. It may
induce coupling and destroy the functional independence originally planned for.

Hubcap Illustrating Insufficient DPs

Figure 2.3a shows the front of GM 1986–88 Pontiac 6000 hubcap. Figure 2.3b shows
the wheel rim with a circumferential ledge, shown white, onto which the hubcap
snapped on. The diameter of the ledge is Drim. Figure 2.3c shows three pairs of clips at
the back of the hubcap. The pair at the 4 o’clock position is shown enlarged in
Fig. 2.3d. The clips are cantilevers fixed on a post. As seen in Fig. 2.3c, the three pairs
of clips are spaced 120° apart such that the 6 clips form a circle of diameter Dclip, larger
than Drim. As the hubcap is snapped on to the rim, the rim ledge catches the cantilever
clips. Wheel retention is developed through interference fit = kδ; where k is the spring
rate of the cantilever clips and δ is the interference = (Dclip − Drim)⁄2.

The are two FRs for the hubcap design:

FR1 = retain the hubcap over road bumps and on cornering;
FR2 = ease the removal of hubcap during a flat tire repair.

There is only one design parameter:

DP1 = interference, the larger the better for retention; the smaller the better for
removal.

Obviously the design is flawed since it has insufficient DPs: one DP, the
interference, cannot satisfy two conflicting FRs, retention, and removal. It violates
the AD’s SISO criterion of one DP affecting only one FR.

FR1

FR2

� �
¼ X

X

� �
DP1½ �

The consequence was 25 % of hubcaps fell off as the car corners or hits bumps
or potholes. And some customers have difficulty removing the hubcap for a flat
repair. The solution [3] back then was to implement robust design optimization to
find a clip spring rate k that reduces the design sensitivity to the variation in
interference. The solution had limited success, as performance of an ill-conceived
design cannot be improved through subsequent optimization.
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2.2.1.2 Car Door-to-Body Integration—Coupling in Large System

Thus far, we have illustrated the use of AD’s SISO criterion to accept or reject
various categories of design. These illustrations involve designs with small number
of FRs. We now apply SISO to designs with large number of FRs; specifically to a
car door-to-body integration. Figure 2.4 shows the car door integrated to the body
opening.

Problems in car door-to-body integration, e.g., poor fit of door with neighboring
panels; noisy ride and water leak; high opening and closing effort, are typical
system problems. They appear only after the system is assembled since only then
are couplings triggered. Fixing them is like playing a whack-a-mole game. As one
solves a problem in one area, new problems pop up in other areas. This is because

Drim

Clips

Dclip

(b)

(c)

(a)

(d)

Fig. 2.3 Attachment of hubcap to wheel rim, a Hubcap front, b Wheel rim, c Hubcap back,
d Cantilever clips
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attempt to fix one FR failure inadvertently triggers other FR failures due to cou-
pling. These types of system failures are not detectable by the traditional recursive
design/build/test of components since they cannot capture the inter-dependence of
FRs among subsystems and components.

AD takes a top-down approach. It starts with system-level FRs and decomposes
them down through the subsystems until they reach the levels where known,
implementable solutions exist. These levels reached are called leaf-level FRs, and
the corresponding solutions, leaf-level DPs. Along the way, AD examines the
interrelationships across the subsystems and components. In this way, functional
couplings are understood and captured.

The AD top-down approach is as follows. First we decompose the system-level
FRs down the design hierarchy to the leaf-level design parameters. From the
decomposition, we construct the DM that shows the relationship among the
leaf-level FR–DP pairs. We then successively remove those FR–DP pairs that are
not part of the coupling. What remains is a reduced DM that contains all the
couplings of the original DM. Retracing the leaf-level couplings up the design
hierarchy reveals the roots of the system-level functional interactions.

Fig. 2.4 Integration of car
door to body

58 H.L. Oh



Capturing Functional Couplings with the Design Matrix

Appendix A1 shows the FR decomposition and Appendix A2 the corresponding DP
decomposition of the car door–to–body system. The decomposition starts with three
subsystems: FR1: fit door to neighboring panels; FR2: keep interior quite and
intrusion free; and FR3: ensure door opens and closes properly. The subsystem FRs
are then decomposed down the hierarchy, zigzagging between FRs and DPs, i.e.,
between Appendices A1 and A2, until the leaf-level DPs marked by “+” are
reached. These leaf-level DPs, together with the corresponding FRs they satisfy, are
listed in Table 2.1. For succinct presentation, Table 2.1 uses serial notations 1–28
in place of hierarchical notations in Appendix A. For example, FR1 in Table 2.1
refers to FR1.1.1 in Appendix A1. Note that FR1 thru FR7 are leaf-level FRs that
flow from the first subsystem; FR8 thru FR18 are leaf-level FRs, from the second
subsystem and FR19 thru FR28, from the third subsystem.

Table 2.1 Leaf-level FR–DP of car door-to-body system

FR1 achieve uniform gap on both edges DP1 hinge tip in x–z plane

FR2 balance leading and trailing edge gaps DP2 fore/aft position of hinge axis

FR3 align feature lines DP3 vertical position of hinge datum

FR4 achieve flushness at leading edge DP4 in/out position of hinge axis

FR5 achieve flushness along both edges DP5 hinge tip in y–z plane

FR6 achieve flushness at trailing edge DP6 in/out position of striker

FR7 achieve flushness above beltline DP7 header over bent

FR8 maintain adequate seal margin DP8 position of door interior surface

FR9 maintain adequate seal height DP9 a system to maintain uniform seal height

FR10 maintain seal footprint DP10 contour of contacting surfaces

FR11 divert away water DP11 channel slope

FR12 detune seal from noise transmission. DP12 modal property of seal section

FR13 dissipate noise energy DP13 seal damping characteristic

FR14 eliminate seal itch DP14 lubricant, substrate loss modulus

FR15 prevent gap-induced turbulence DP15 gap filler

FR16 stop flushness-induced turbulence DP16 header stiffness

FR17 control leakage across seals DP17 sealing energy as barrier to intrusion

FR18 maintain mass flow rate of inlet air DP18 fan

FR19 ensure reaction force > gravity DP19 stiffness and preloads of check link spring

FR20 bar opening door swing thru stops DP20 site, depth and climb of check link valleys

FR21 let closing door swing thru stops DP21 site, depth and descent of check link valleys

FR22 eliminate resistance to swing DP22 hinge axes aligned with axis of rotation

FR23 lower KE to surmount latch misalign DP23 up-down adjustable striker

FR24 lower KE to compress seal DP24 area under weather strip CLD

FR25 lower KE to deflect header DP25 area under header load-deflection curve

FR26 lower KE to overcome air bind DP26 pressure relief valve

FR27 store spring energy from opening DP27 preloaded check link torsional spring

FR28 reduce effort to unlatch DP28 mechanism to relieve reaction at latch
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From Table 2.1, we construct the DM that captures the functional interdepen-
dencies among the 28 leaf-level FR–DP pairs, see Fig. 2.5. Row-wise are leaf-level
FRs; column-wise are associated leaf-level DPs. Leaf-level FR1 thru FR7 and their
associated DPs, which flow from the first subsystem, are labeled to the left and top
of the DM, not shaded.

The leaf-level FR8 thru FR18 and their associated DPs, which flow from the
second subsystem, are shown lightly shaded green. And FR19 thru FR28, which
flow from the third subsystem are heavily shaded blue. For each cell DM (j, k) of
the 28 × 28 cells, assessment is made whether the DPk has an effect on FRj. If it has
an effect (no effect), the cell is marked with an “X” (blank). While cell-by-cell
evaluation is tedious, it is crucial because functional inter-dependencies so obtained
among the leaf-level FR–DP decide how the design functions at the system level.

Reducing the Design Matrix to Uncover Functional Coupling

When a DM is sparse or small, we can check for coupling by inspection. When it is
large, the task becomes difficult. For DM with n × n = 28 × 28 and a total
off-diagonal elements of m = 88 as in Fig. 2.5, the number of possible couplings
equals 2m-n+1 − 1 = 2.306E18 [4]. It is prohibitive to check for couplings among this
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Fig. 2.5 Design matrix relating the leaf-level FR–DP
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large number of candidates. Thus, we reduce the dimension of DM by isolating the
submatrix that contains the couplings from the rest. We do this by successively
relocate rows (columns) whose row-wise (column-wise) entries are all zeros but the
diagonal element. For example in Fig. 2.5, we find five zero-rows: FR1, FR4, FR9,
FR13, and FR27; six zero-columns: DP14, DP15, DP17, DP21, DP22, and DP28 and four
combined (zero-rows, zero-columns): (FR11, DP11), (FR12, DP12), (FR18, DP18), and
(FR26, DP26). A zero-row corresponds to an FR that is not affected by other DPs; a
zero-column corresponds to a DP that does not affect any other FRs; and a combined
(zero-row, zero-column) corresponds to an FR–DP pair that does not affect nor be
affected by other FRs and DPs. All the three categories do not belong to any coupling
loop. They are thus moved from their original locations. Namely through row and
column interchange, all combined (zero-row, zero-column) are relocated to the upper
left corner of the DM; all zero-columns (zero-rows) and their associated rows (col-
umns) are relocated to the lower right (upper left) corner of the DM. What remains is
a 13 × 13 submatrix outlined in thick border as shown in Fig. 2.6.
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Fig. 2.6 Relocating zero-rows and zero-columns
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Further examination of the 13 × 13 submatrix reveals 3 more zero-rows: FR2, FR5

and FR23; and 3 more zero-columns: DP3, DP10 and DP20, as shown in Fig. 2.7a. We
repeat the successive relocation of these zero-rows and zero-columns and arrive at a
further reduced 7 × 7 submatrix outlined in thick border in Fig. 2.7b.

Continuing the search for zero-rows and zero-columns in the 7 × 7 reduced
matrix, we found 1 zero-row FR6 and 1 zero-column DP19 (see Fig. 2.8a). Upon
relocation of these two, we finally obtain a 5 × 5 matrix that containing neither
zero-row nor zero-column as outlined in thick border, Fig. 2.8b. All the couplings in
the original decomposed DM are now isolated and condensed into this 5 × 5 DM.

Implications from the Reduction of DM

Figure 2.9a shows DM as decomposed juxtaposed with Fig. 2.9b DM as con-
densed. The as-condensed DM shows three submatrices: a (4 × 4) uncoupled
submatrix in the upper left; a (24 × 24) decoupled submatrix in the lower right; and
a protruding (5 × 5) coupled submatrix within the decoupled submatrix. These
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Fig. 2.7 Further detection a and relocation b of zero-row and zero-column
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Fig. 2.8 Final detection a and relocation b of zero-row and zero-column
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results reflect the reduction algorithm: relocating the combined (zero-rows,
zero-columns) to DM upper left produces the uncoupled submatrix; relocating the
zero-rows to DM upper left plus the zero-columns to DM lower right produce the
decoupled submatrix. What remains is a protruding coupled submatrix within the
decoupled submatrix. As indicated on top of DM Fig. 2.9b, the algorithm also
produces a mingling of leaf-level DPs from the three subsystems. The implications
of these results are as follows.

The protruding (5 × 5) coupled submatrix is the source of the whack-a-mole
type of failures. The couplings need to be resolved first and foremost by effectively
identify and eliminate functional couplings following for example a graph
theory-based method described in [4].

Once couplings in the (5 × 5) coupled matrix are resolved, what remains is a
(24 × 24) lower triangular DM. The lower triangular DM serves as a road map and
provides a sequence to follow in satisfying ΔFRs: adjust ΔDPj, j = 1 to i, to
satisfy/fix ΔFRi. Without the road map, we will still be fighting the whack-a-mole
type of failure.

We must recognize which FR–DP pair falls unto the uncoupled submatrix and
take advantage of the information, as they are the easiest to fix and satisfy.

Engineers in a door group are typically tasked with specific leaf-level functions
of the door. As indicated in Fig. 2.9b, there is a mingling of the leaf-level DP that
forms the triangular DM. The engineers must be made aware of this interdepen-
dency, i.e., mingling, of functions since their tasks must conform to the sequence
dictated by the triangular DM.

The implications described above hold for any assembly of subsystems and
components that form a large system.
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Fig. 2.9 Design matrix, a as decomposed and b as condensed

2 Mathematical Exposition of the Design Axioms 63



2.2.2 |J| Criterion for Functional Independence

2.2.2.1 Derivation of |J| as a Criterion for Functional Dependence

Unlike AD’s SISO criterion for functional independence that is derived from
empirical observations, in this section we will derive the criterion based on the
formal mathematical definition of functional independence.

To illustrate, consider the car door-to-body integration example in Sect. 2.2.1.2.
We start with the system-level FRs and decompose them down the hierarchy
through the subsystems level to the leaf-level FRs. The FRs, which are conceptual
at the system level, get more specific and detailed as they are decomposed down the
hierarchy. When the leaf levels are reached, the FRs are realized by DPs that are
known, implementable physical solutions. Thus, the FRs can be expressed in terms
of the DPs through physics. For example, Table 2.1 relates 28-leaf-level FRs to
corresponding leaf-level DPs. We denote these relationships as follows:

FR1 ¼ f 1 DP1; . . .;DPmð Þ
..
.

FRn ¼ f n DP1; . . .;DPmð Þ

Or in vector notation,

FR ¼ fðDPÞ;

In the above and hereafter, a bolded quantity denotes a vector, a bracketed
quantity denotes a matrix, and f(•) denotes vector valued functions.

The vector equation above is Eq. (2.6) of Chap. 1, with f(DP) ≡ fa(DP). The
vector DP represents the physical quantities of the design, and the vector valued
function f(DP) represents the laws of physics relating FR to DP. Since f(DP) is
drawn from laws of physics, it may be assumed as continuous. So that we may
expand f(DP) in a Taylor series about a design point DP*:

f DPð Þ ¼ f DP�ð Þþ J½ � DP� DP�ð Þ þ o jjDP� DP�jjð Þ
� f DP�ð Þþ J½ � DP� DP�ð Þ

Thus: FR� FR� � J½ � DP� DP�ð Þ

where [J] is the Jacobian matrix whose element Jij = ∂FRi/∂DPj evaluated at the
design point DP* is a constant.

We recognize the Jacobian [J] above is in fact the design matrix [A] in AD,
Eq. (3.3) in [1]. Thus, we may rewrite the vector equation as follows:

DFR ¼ A½ �DDP: ð2:2Þ
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If FRs are linear functions of DP, the above differential vector equation reduces:

FR ¼ A½ �DP: ð2:2aÞ

Equation (2.2a) is known as a “design equation” and appears on page 55 of the
first axiomatic design text [1]. It has since been used extensively for conceptual
applications in the AD literature. However, it is important to recognize that in most
cases Eq. (2.2a) is only a notation to convey a relation between FR and DP. In
actuality, the equation to solve for is the differential form in Eq. (2.2).

Expanding the differential vector equation for the special case of i, j = 1, 2:

DFR1 ¼ A11DDP1 þA12DDP2; ð2:3Þ

DFR2 ¼ A21DDP1 þA22DDP2: ð2:4Þ

Equation (2.3) × A22 minus Eq. (2.4) × A12 to eliminate ΔDP2 gives:

A22DFR1 � A12DFR2 ¼ A22A11 � A12A21ð ÞDDP1 ð2:5Þ

Note that (A22 A11 − A12 A21) =
@FR2

@DP2

� �
@FR1

@DP1

� �
� @FR1

@DP2

� �
@FR2

@DP1

� �
is the

determinant |A| of the DM. It is known as |J|, the Jacobian determinant in vector
calculus.

jJj ¼
@FR1

@DP1

@FR1

@DP2
@FR2

@DP1

@FR2

@DP2

�������
�������:

Thus, if (A22 A11 − A12 A21) = |J| = 0 in Eq. (2.5), then ΔFR2 = A22ΔFR1/A12.
Or FR2 = FR2

* + A22 (FR1 − FR1
*)/A12. Namely, FR2 is dependent on FR1. Hence,

|J| = 0 implies functional dependence.

Proof A: jJj ¼ 0ð Þ ) functional dependence

We next prove the converse is true. Namely if FR2 is functionally dependent on
FR1, then |J| = 0. We start with the formal definition of functional dependency.
Namely, FR2 is dependent on FR1 if it is a function of FR1:

FR2 ¼ FR2 FR1ð Þ

Applying the chain rule for differentiation on above equation, we have

@FR2

@DP1
¼ @FR2

@FR1

@FR1

@DP1
@FR2

@DP2
¼ @FR2

@FR1

@FR1

@DP2
:
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In the above, multiply 1st equation by @FR1

@DP2
and the 2nd by @FR1

@DP1
: Subtract one

resulting equation from the other to eliminate @FR2

@FR1

� �
@FR1

@DP2

� �
@FR1

@DP1

� �
, we have:

@FR1

@DP2

� �
@FR2

@DP1

� �
� @FR1

@DP1

� �
@FR2

@DP2

� �
� jJj ¼ 0

Hence, functional dependence implies |J| = 0. This is the proof of the converse:

Proof B: Functional dependence ) ðjJj¼ 0Þ:

Combining both proofs A and B, we have

Functional dependence , ðjJj¼ 0Þ:

Namely, |J| = 0 is a necessary and sufficient condition for FR2 to be functionally
dependent on FR1. Likewise, FR2 is functionally independent of FR1 if and only if
(iff) |J| ≠ 0. Thus by formal definition of functional dependency, we have derived
the criterion: FRs are functionally independent iff |J| ≠ 0; dependent iff |J| = 0.

2.2.2.2 Implications of |J| as a Criterion for Functional Independence

The differential form of Eq. (2.2) may be rewritten as follows.

DFR ¼ ½J�DDP

So that the adjustments ΔDP necessary to bring FR to its target FR* is,

DDP ¼ ½J��1DFR

Note that if FRs of the design are functionally dependent, then |J| = 0 and its
inverse |J|−1 does not exist. In mathematical lingua, the design has a “singularity” in
its first derivative and is non-differentiable. Consequently, no adjustments in ΔDP
can bring the design to its target value FR*.

AD’s independence axiom declares that a good design must “maintain the
independence of the functional requirements (FR).” The |J| criterion corroborates
this declaration since |J| ≠ 0 implies independence of FR and it guarantees a design
solution. Therefore, the |J| criterion provides formidable theoretical evidence that a
violation of the independence axiom will impede the design from finding a final
value DP* that fulfills the design equation and meets all functional requirements
FR*. While the AD independence axiom was established through extensive
empirical study to yield “good” designs, the |J| criterion shows that these “good”
designs not only fulfill all their functional requirements but also can be found
through well established analytical and numerical methods.
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AD further proposes SISO as the criterion for independence. Since determinant
of a diagonal or triangular DM—a SISO design—is the product of all the diagonal
elements none of which is zero, their |J| ≠ 0. This validates SISO as a criterion for
functional independence. However, SISO criterion is only a sufficient condition.
Namely, SISO implies functional independence but functional independence does
not imply SISO:

SISO ) Functional independence;

Functional independence: ) SISO:

While SISO criterion is more conservative, it does not detract from its utility. It
remains as a sufficiency condition. Furthermore, during design synthesis it is rel-
atively easy to mentally keep track of a diagonal or lower triangular design matrix.
In comparison, calculating a Jacobian is significantly harder; especially at
high-level conceptual design synthesis whereat the mathematical form of the design
equations is not well known.

Nevertheless, there are cases where the SISO criterion is inadequate as there are
coupled, non-SISO designs with |J| ≠ 0. Such cases are functionally independent
thus admit design solutions but will be rejected per AD’s SISO criterion. For
example in robotics, the robot Jacobian that relates joint velocities to end-effector
velocities is used routinely to plan and execute robot paths and transform forces and
torques from the end effector to the manipulator. The robot Jacobian is in fact a
design matrix that relates output (end-effector velocities) to input (joint velocities).
In most cases, it is not SISO so that most robot designs would have been rejected
per the SISO criterion.

To recap, the Jacobian matrix [J] relates ΔFR to ΔDP of a conceived solution.
Its determinant |J| is a test for functional independence of FR: yes iff |J| ≠ 0; no iff |
J| = 0. Furthermore, iff |J| ≠ 0, then the conceived solution in term of DP can
satisfy the FR. Otherwise, it cannot. In short, |J| acts as a qualifier: accept a design
solution iff |J| ≠ 0.

We end this section with Table 2.2 which provides a contrast between SISO
criterion and |J| criterion derived per formal definition of functional dependency.

Table 2.2 Contrasting AD SISO criterion with |J| criterion

x o x
x x o
o x x

2
4

3
5 x o x

x x o
o x x

2
4

3
5 x o o

x x o
x x x

2
4

3
5 x o o

o x o
o o x

2
4

3
5

SISO criterion: Bad Bad Good Better

– Reject Reject Accept Accept

|J| criterion: Bad Good Better Best

– Reject Accept Accept Accept

– if |J| = 0 if |J| ≠ 0 since |J| ≠ 0 since |J| ≠ 0
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2.2.2.3 |J| for Various Categories of Design

Water Faucet

Both designs a and b have the same FRs

FR1 = control flow rate Q;
FR2 = control water temperature T.

Both designs have the same governing physics:

Mass conservation: Q ¼ Qh þQc; ð2:6aÞ

Energy conservation: QT ¼ QhTh þQcTc:

T ¼ QhTh þQcTc
Qh þQc

ð2:6bÞ

¼ Qh=Qcð ÞTh þ Tc
Qh=Qcð Þþ 1

ð2:6cÞ

For Faucet a, we choose the left knob controlling Qh as DP1; and the right knob
controlling Qc as DP2 (see Fig. 2.1a). Substituting into Eqs. (2.6a) and (2.6b):

FR1 ¼ DP1 þDP2; FR2 ¼ DP1Th þDP2Tc
DP1 þDP2

:

@FR1

@DP1
¼ 1;

@FR1

@DP2
¼ 1:

@FR2

@DP1
¼ Th � Tcð ÞDP2

DP1 þDP2ð Þ2 ;
@FR2

@DP2
¼ � Th � Tcð ÞDP1

DP1 þDP2ð Þ2

jJj ¼
1 1

Th�Tcð ÞDP2

DP1 þDP2ð Þ2 � Th�Tcð ÞDP1

DP1 þDP2ð Þ2
�����

����� ¼ � Th � Tc
DP1 þDP2

ð2:7Þ

Per AD’s SISO criterion, FRs in Faucet a are coupled and the design should be
rejected. However, according to formal definition of functional dependence, FRs of
the design are functionally independent since |J| ≠ 0. It is therefore acceptable.

For Faucet b, we choose as DP1, the up/down lever controlling total flow rate
(Qh + Qc), and as DP2, the left/right lever controlling ratio of the hot/cold water
flow rate (Qh/Qc) (see Fig. 2.1b). Substituting into Eqs. (2.6a) and (2.6c), we have
an uncoupled design as indicated by the design equation:

FR1 ¼ DP1; FR2 ¼ DP2Th þ Tc
DP2 þ 1

:

@FR1

@DP1
¼ 1;

@FR1

@DP2
¼ 0;

@FR2

@DP1
¼ 0;

@FR2

@DP2
¼ Th � Tcð Þ

DP2 þ 1ð Þ2 :
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jJj ¼
1 0
0 Th�Tcð Þ

DP2 þ 1ð Þ2
�����

����� ¼ Th � Tcð Þ
DP2 þ 1ð Þ2 ð2:8Þ

Note that as the water heater temperature Th is set closer to outside water tem-
perature Tc, the |J| value gets closer to zero so that the faucet becomes less capable of
providing the two independent functions. In short, the |J| criterion provides a
quantitative measure of independence which the AD SISO criterion cannot.

Note further that the physics governing both faucets are the same. Yet their [J ]
matrices in Eqs. (2.7) and (2.8) are different: one is coupled and the other is
uncoupled. This conveys a fundamental message in AD. Namely, it is the choice of
design solutions DPs, not the physics that determine the goodness of a design.

Projector Design

The two FRs of a projector are as follows:

FR1 ¼ magnify the image ¼ D
d
;

FR2 ¼ focus the image ¼ 1
D

þ 1
d
þ 1

f
¼ 0:

ð2:9Þ

In the above, D = DP1 is the distance of the lens from the screen aka the throw
of the projector; d = DP2 is the distance of the lens from the object and f = DP3 is
the focal length of the lens. Thus, we have a redundant design: 2 FRs and 3 DPs. If
we were to fix the extra DP to get an equal number of FRs and DPs, we would have
three (= 3C2) possible |J| solutions as follows:

@FR1

@D
¼ 1

d
;

@FR1

@d
¼ � D

d2
;

@FR1

@f
¼ 0:

@FR2

@D
¼ � 1

D2 ;
@FR2

@d
¼ � 1

d2
;

@FR2

@f
¼ � 1

f 2
:

D; dð Þ as DPs : jJj ¼
1
d � D

d2� 1
D2 � 1

d2

����
���� ¼ � 1

d2
1
D

þ 1
d

� �
; ð2:10aÞ

D; fð Þ as DPs : jJj ¼
1
d 0

� 1
D2 � 1

f 2

����
���� ¼ � 1

df 2
: ð2:10bÞ

d; fð Þ as DPs : jJj ¼ � D
d2 0

� 1
d2 � 1

f 2

�����
����� ¼ D

d2f 2
: ð2:10cÞ

All three candidate sets of DPs for the FRs do ensure functional independence of
FRs because their |J| ≠ 0. However, AD SISO criterion will reject solution (2.10a).
Nonetheless solution (2.10b), which is acceptable to both AD SISO and |J| criteria,

2 Mathematical Exposition of the Design Axioms 69



would be the preferred choice since it permits wider latitude of throw D for the
projector to accommodate various room sizes.

Disbursement Algorithm

The |J| values for the four possible DM solutions, Eqs. (2.1a) thru (2.1d), in
Sect. 2.2.1.1 are as follows:

jJj ¼
$20 $10 $5
1 1 1
2 0 �1

������
������ ¼ $0; ð2:11aÞ

jJj ¼
$20 $10 $1
1 1 1
2 0 �1

������
������ ¼ $8; ð2:11bÞ

jJj ¼
$20 $5 $1
1 1 1
2 0 �1

������
������ ¼ �$7; ð2:11cÞ

jJj ¼
$10 $5 $1
1 1 1
2 0 �1

������
������ ¼ $3: ð2:11dÞ

We showed in Sect. 2.2.1.1 that for design solution (2.1a), FR3 is dependent on
FR1 and FR2. This is confirmed in Eq. (2.11a) above which shows | J | = 0. This
example demonstrates that an improper choice of DPs can destroy functional in-
dependency as originally intended. This is why we need to continually check for it.

Design with Insufficient DPs

To show that | J | of a design with insufficient DPs is zero, i.e., the design FRs are
functionally dependent, consider a design with two (FR1, FR2) and one DP1 whose
effect on (FR1, FR2) are (A11, A21):

DFR1

DFR2

� �
¼ A11

A21

� �
DDP1½ �:

We conjure up a second DP2 identical to DP1 to make up for the insufficiency in
DP. This second DP2 has identical effects of (A11, A21) on (FR1, FR2):

DFR1

DFR2

� �
¼ A11 A11

A21 A21

� �
DDP1
DDP2

� �

The | J | of the above design equals A11A21 − A11A21 = 0. This confirms that FR1

and FR2 are functionally dependent when there are insufficient DPs.
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2.3 Mathematical Exposition of Information Axiom

The information axiom states that a good design solution must minimize its
information contents I, or equivalently maximize its probability of success, Ps.
Figure 2.10 illustrates the evaluation of Ps. In the presence of variability, an FRi

will exhibit a range of values called the system range or the spread. Cognizant of its
variability, a designer would accept the FRi if it falls within a specified range called
the design range. The overlap of the two ranges shown shaded in Fig. 2.10 is Ps, the
probability of success of the design. To consider Ps, we need to identify sources of
variation that are generating the variability in FRs; how the variability is magnified
by the design; and what are the countermeasures for them. We consider these in the
next several sections.

2.3.1 Recognition of Noise Variables

Since variability in FRs is a consequence of variation, we need to recognize and
identify the sources that are generating the variation. We denote these sources as
the noise variables, NVs. For example in the faucet design, the temperature Tc of
the cold water in Eqs. (2.6b) and (2.6c), Sect. 2.2.2.3, entering the faucet from
the outside is a NV since it fluctuates with the uncontrollable temperature out-
side. It is a NV induced by the environment. If the water heater in a building
does not have sufficient capacity to meet the demand of multiple faucets, hot
water pressure will fluctuate with the number of faucets turned on or off at a
given time. This will affect hot water flow Qh in Eqs. (2.6a), (2.6b), and (2.6c).
This is a NV induced by customer usage. If a projector is used for a variety of
room size, it will need a variety of throws to magnify the image. Hence, the
throw D in Eq. (2.9), Sect. 2.2.2.3 is a NV induced by customer usage. In the

FRi

Probability 
Density

System range

Design 
midrange

System 
midrange

Bias

Ps

Design 
range

Fig. 2.10 Evaluating the probability of success
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hubcap design, the NV is the interference caused by the manufacturing variation
in Drim and Dclip.

Let NV denotes the noise variables that cause variation in FR. A NV triggers a
random deviation in FR from its current value FR* given by the amount:

FR� FR� ¼ JNV
	 


NV� NV�ð Þ: ð2:12Þ

In Eq. (2.12), NV* is a reference value, e.g., the midrange of NV; [JNV] is the
Jacobian matrix of ∂FRi/∂NVj given by

JNV
	 
 ¼

@FR1

@NV1
� � � @FR1

@NVm

..

. . .
. ..

.

@FRn

@NV1
� � � @FRn

@NVm

2
66664

3
77775
n�m

The superscript NV is used to distinguish [JNV] from [J], the Jacobian matrix of
∂FRi/∂DPj which hereafter will be superscripted with “DP.” While [JDP] relates to
the functional independence of FR in a design, [JNV] relates to the sensitivity of FR
to noise NV. To illustrate, the [JNV] for some earlier designs are as follows.

For the faucet designs a and b:

FR1 ¼ Qh þQc; FR2 ¼ QhTh þQcTc
Qh þQc

:

NV1 ¼ Qh; NV2 ¼ Tc:

@FR1

@NV1
¼ 1;

@FR1

@NV2
¼ 0:

@FR2

@NV1
¼ Qc Th � Tcð Þ

Qh þQcð Þ2
@FR2

@NV2
¼ Qc

Qh þQc
:

JNV
	 
 ¼ 1 0

Qc Th�Tcð Þ
Qh þQcð Þ2

Qc
Qh þQc

" #

For the projector with fixed d equals to a constant, Eq. (2.9) gives:

FR1 ¼ D
d
; FR2 ¼ 1

D
þ 1

d
þ 1

f
:

NV ¼ D:

@FR1

@NV
¼ 1

d
;

@FR2

@NV
¼ � 1

D2 :

JNV
	 
 ¼ 1

d

� 1
D2

" #
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For the hubcap design,

FR ¼ kd;

NV ¼ d;

@FR
@NV

¼ k:

JNV
	 
 ¼ @FR

@NV

� �
¼ k

2.3.2 Countermeasures to Noise Variables

The countermeasures to noise sources are as follows: (1) to reduce if not eliminate
them, (2) to compensate for them, and (3) to desensitize the design against them. Action
(1) refers to the reduction if not elimination of (NV − NV*) in Eq. (2.12). This
involves tightening the design tolerances, identifying and eliminating process variables
that cause variation, and a host of other activities associated with fighting NV head-on.

2.3.2.1 Compensation as a Countermeasure

Compensation avoids fighting noise head-on. Instead, it provides a mechanism that
further adjust DP to nullify [JNV](NV − NV*):

FR� FR� ¼ JNV
	 


NV� NV�ð Þ � JDP
	 


DP� DP�ð Þ ¼ 0: ð2:13Þ

An example people most familiar with is tire balancing in which correction
weights (DP − DP*) are added to counteract the combined effect of the tire and
wheel unbalance. Other examples are water faucet and projector designs discussed
earlier. Per Eq. (2.13), the amount of compensation needed is as follows:

DP� DP� ¼ JDP
	 
�1

JNV
	 


NV� NV�ð Þ:

As revealed in above equation, a prerequisite to compensation is that the design
satisfies independent axiom, i.e., | JDP | ≠ 0. Otherwise, [JDP]−1 does not exist, and
compensation is not possible. The uncoupled design, e.g., the single-handle faucet,
is most easy to compensate since its [JDP] provides a one-to-one relationship
between DP and NV. The decoupled design, e.g., projector of Eq. (2.10b), is
equally easy to compensate if we follow the forward substitution scheme dictated
by [JDP] described in Sect. 2.2.1. The coupled design while possible is difficult to
compensate. In short, AD criterion for independence is most applicable in designing
for compensation. Per information axiom, information content in a compensated
design is zero since variation is completely nullified.
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2.3.2.2 Robust Design as a Countermeasure

Another countermeasure action (3) is to move activities to the design stage. Parameters
are designed into the design that reduce the sensitivity [JNV] in Eq. (2.13), thereby
reducing if not eliminating activities in countermeasures (1) and (2) altogether. For
example in hubcap design, in which retention force FR equals kδ, instead of fighting
variability in δ head-on, we use a less stiff cantilever spring k = [JNV] → small. So that
variability in δ is not amplified and transmitted to the retention force. The strategy not
to fight NV head-on but to reduce the sensitivity to NV is known as robust design.
Robust design has been the centerpiece of Design for Six Sigma (DFFS).

2.3.3 Implementing Countermeasures to Minimize
Information Content

Referring to Fig. 2.10, we minimize information content or equivalently maximize
Ps in two steps:

1. reduce bias (= system mid-range − design mid-range) to zero by compensation;
2. minimize the system range to within the design range through robust design.

To begin with, we take the expected value of the random variables FR and NV
on both sides of on Eq. (2.13) to arrive at the expression for bias:

Bias ¼ E FRð Þ � FR� ¼ JNV
	 


E NVð Þ � NV�f g � JDP
	 


DP� DP�ð Þ ð2:14Þ

It follows that adjustment in DP needed to reduce bias to zero by compensation
is as follows:

DP� DP�ð Þ ¼ JDP
	 
�1

JNV
	 


E NVð Þ � NV�f g ð2:15Þ

Note again that bias cannot be reduced to zero if FRs are functionally dependent
since | JDP | = 0 implies [JDP]−1 does not exist; thus, no solution is possible.

We next subtract Eq. (2.14) from Eq. (2.13) to obtain,

FR� E FRð Þ ¼ JNV
	 


NV� E NVð Þf g:

The variance–covariance of FR is then given as follows:

VFR
	 
 ¼ JNV

	 

VNV
	 


JNV
	 
T

n� n n� m m� m m� n

where [VFR] and [VNV] are the variance–covariance of FR and NV shown below.
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VFR	 
 ¼ E FR� E FRð Þf g FR� E FRð Þf gT� �
VNV	 
 ¼ E NV� E NVð Þf g NV� E NVð Þf gT� �

:

Assuming the NVs are probabilistically independent, the matrix [VNV] would be
diagonal. The variance of FRi is then the ith diagonal element of [VFR] given by

vFRii ¼
Xm
k¼1

jNVik vNVkk jNVik

The total variance of FR is the trace of [VFR]:

Variance of FR ¼
Xn
i¼1

vFRii ¼
Xn
i¼1

Xm
k¼1

jNVik vNVkk jNVik ð2:16Þ

To maximize Ps, we reduce bias to zero by compensation per Eq. (2.15) and
minimize system range, equals to squared root of variance of FR, to within the
design range of FR by robust design per Eq. (2.16).

Summarizing, the steps in AD in mathematical terms are as follows.

1. Define FR in a solution neutral environment, free of functional inter-dependence
among them.

2. Conceive solution DP that maintains the functional independence in FR so that
FR* can be achieved:

jJDPj 6¼ 0

3. Minimize the spread of FR with robust design. Namely, reduce [JNV]:

Xn
i¼1

Xm
k¼1

jNVik vNVkk jNVik ! minimum

4. Subject to constraint that the bias is zero:

DP� DP�ð Þ ¼ JDP
	 
�1

JNV
	 


E NVð Þ � NV�f g

Step 2 and 3 express, respectively, the independence axiom and information
axiom in mathematical terms. Step 4 states in mathematical term that independent
axiom takes precedence over information axiom. Namely, if FRs are not func-
tionally independent, then |JDP| = 0; [JDP]−1 does not exist; and the constraint that
bias = 0 cannot be satisfied. This point is missed in DFSS courses that do not
include AD. Common sense tells us that Robust Design optimization has to be
subsequent to requirement definition FR, and solution conception DP because
performance of a poorly defined and ill-conceived design cannot be improved via
subsequent optimization.
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Appendix A1: FR Decomposition of Door-to-Body System
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Appendix A2: DP Decomposition of Door-to-Body System
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