Chapter 4
Plant Molecular Adaptations
and Strategies Under Drought Stress

Savio Pinho dos Reis, Deyvid Novaes Marques, Aline Medeiros Lima
and Claudia Regina Batista de Souza

4.1 Introduction

Growth and development of plants can be significantly influenced by several
environmental factors. Among them, drought is one of the main abiotic factors
limiting the productivity of crops. Furthermore, as an aggravate aspect, drought is
increasingly growing in dimension of severity in many regions of the world [1].
Thus, the development of crops tolerant to drought will be significantly advanta-
geous in regions where such stress frequently occurs.

Stress is an altered physiological condition caused by factors that tend to disrupt
the equilibrium of an organism. In plants, the water deficit caused by drought
reduces growth and development, arising from the reduction of water content,
diminished leaf water potential and turgor loss, closure of stomata, and decrease in
cell enlargement and growth (Fig. 4.1a) [2]. Other effects of drought that limit plant
growth and crop productivity include the reduction of photosynthesis, osmotic
stress-imposed constraints on plant processes, and interference with nutrient
availability as the soil dries [3].
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Fig. 4.1 Adaptation of plant to drought involves morphological, cellular, and molecular
alterations to prevent injury to the plant. a Some important causes of growth reduction in plants
under drought stress. b Molecular mechanisms that regulate the expression of stress-responsive
genes of plant under abiotic stress

As a response to stress caused by diverse environmental factors the higher plants
have evolved adaptive mechanisms at the physiological, cellular, and molecular
levels [4]. The response of a plant to abiotic stress, first involves the perception of
the extracellular stress signal by receptors of the cell, followed by many stress
regulatory networks, including signal transduction and transcriptional regulation of
stress-responsive gene expression that result in physiological response of tolerance
or resistance of the plant to stress [3]. Thus, as depicted in Fig. 4.1b, at the
molecular level the response of the plant to abiotic stress, such as drought, com-
prises the participation of signaling molecules such as hormones, transcription
factors, and stress-responsive genes coding for proteins with protective roles against
stress, including LEA proteins and peroxidases. Therefore, the elucidation of a
molecular pathway for plant response to stress is essential to understanding how
plants respond and adapt themselves to diverse abiotic stress.

Molecular knowledge of stress regulatory networks is likely to pave the way for
engineering plants that can withstand and give satisfactory economic yield under
drought stress. The specific importance to crop plants is not whether they survive
stress, but whether they show significant yields under stress conditions [1, 2].

Comprehensive research has been done on identification of many molecules
involved in regulatory networks of plant response to stress, such as signaling
molecules (hormones, phosphatases, and protein kinases), transcription factors
(bZIP, NAC, AP2/ERF, and MYB/MYC), and stress-responsive genes (LEA
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proteins, aquaporins, HSPs, catalases, SODs, peroxidases, and metallothioneins;
Fig. 4.1b) [5]. Furthermore, some key genes of these stress regulatory networks
have been important candidates for the development of transgenic plants tolerant to
drought [6].

4.2 Transcriptional Regulation of Gene Expression

According to the mechanism of plant response to stress, the stress signal is detected
by the cell and transduced by different transduction components resulting ultimately
in transcription of stress-responsive genes [3]. Therefore, as part of the molecular
adaptive mechanisms of plants to stress, the regulation of gene expression involves
changes in transcript levels of gene-coding proteins that can directly or indirectly
provide stress tolerance to the plant. Stress-responsive genes with potential for
engineering of plants tolerant to drought include genes coding for LEA proteins [7,
8] and aquaporins [9, 10]. The main roles of these proteins in providing drought
tolerance are presented in this chapter.

It is well known that the transcriptional regulation in eukaryotic organisms
involves the interaction of cis-acting regulatory elements that are conserved DNA
sequences found in the promoter gene with regulatory proteins, also known as
transcription factors. By interaction with cis-acting elements, these regulatory
proteins can activate and/or repress the transcription of the target gene, whose
product can play roles in various biological processes, including tolerance to abiotic
stresses. Thus, due to essential roles of certain transcription factors in regulating
downstream stress-responsive genes, their genes have also been useful in providing
stress tolerance in transgenic plants [6, 11, 12, 13, 14, 15].

In addition to the binding transcription factors, some cis-acting regulatory ele-
ments can also act as response elements for signaling molecules of stress regulatory
networks, such as hormones. An example is the ABA Response Element (ABRE), a
cis-acting element found in the promoter gene responsive to abscisic acid (ABA),
which is accumulated under osmotic stress conditions caused by drought, and has a
key role in stress responses and tolerance [14, 15]. Other signaling molecules of
stress regulatory networks comprise protein kinases that can regulate the activity of
transcription factors by mechanisms of phosphorylation [16, 17].

Within the intricate and complex stress regulatory networks, several signaling
molecules, transcription factors, and cis-acting elements found in drought regulons
have been identified in many plants. In the last decade, Arabidopsis thaliana, a
genetic model plant, has been extensively used for unraveling the molecular basis
of stress tolerance. Arabidopsis also proved to be extremely important for assessing
functions for individual stress-associated genes due to the availability of knockout
mutants and its amenability for genetic transformation [4, 5, 18].

Advances have been made in the development of drought-tolerant transgenic
plants, including rice, tomato, soybean, maize, barley, and Arabidopsis [6, 19, 20, 21],
among others. Such genetically engineered plants have generally been developed
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using gene-encoding proteins that control drought regulatory networks. Stress sig-
naling networks in drought responses are composed of intracellular signaling systems,
transcriptional regulatory complexes, and intercellular communication systems [22,
23]. These proteins include transcription factors, protein kinases, receptor-like
kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other
regulatory or functional proteins [6]. Major transcription factor families of plants,
such as bZIP, NAC, AP2/ERF, and MYC orchestrate regulatory networks underlying
drought stress tolerance [5].

4.2.1 Signaling Molecules

Acclimation of plants to changes in their environment requires a new state of
cellular homeostasis achieved by a delicate balance between multiple pathways.
Hormones, phosphatases, and protein kinases are crucial components within the
stress-induced signaling network that regulates a multitude of biochemical and
physiological processes [24].

The hormone ABA is a major molecule facilitating signal transduction during
drought stress response. This master ABA-responsive transcription factor regulates a
diverse array of genes that coordinate cellular responses to the drought stress. Such
cellular responses include stomatal closure, induction of stress proteins, and accu-
mulation of various metabolites for the protection of cells against water-deficit stress
[23, 25]. Kuromori et al. [25] have demonstrated that specific cells in vascular tissue
synthesize ABA and transport the molecule to target cells. Bauer et al. [26] have
proposed that ABA is autonomously synthesized in guard cells. Drought stress
signals can also be propagated through ABA-independent pathways [23]. Plant genes
responding to ABA contain the ABRE in their promoters. ABRE binding factors
(AREB/ABF) are basic leucine zipper (bZIP) transcription factors that bind to
ABRESs and regulate osmotic stress tolerance in an ABA-dependent manner [14, 15].

Other hormones, such as jasmonic acid (JA) and ethylene (ET), are also involved
in facilitating signal transduction during drought stress [27]. Major JA and ET
signaling hubs such as Jasmonate Zim (JAZ) proteins, Constitutive Triple
Responsel (CTR1), Mylocytomatosis Oncogene Homologue 2 (MYC2), Ethylene
Insensitive 2 (EIN2), EIN3, and several members of the APETALA 2-Ethylene
Response Factor (AP2/ERF) transcription factor gene family have complex regu-
latory roles during stress adaptation [6, 27, 28]. JA is implicated in promoting
stomatal closure. It was proposed that drought stress prevents the conversion of
precursor 12-oxo-phytodienoic acid (OPDA) to JA. OPDA then acts either inde-
pendently or together with ABA to promote stomatal closure, leading to increased
drought tolerance [27, 29]. In contrast, the ET has been implicated in both stomatal
opening and closure [30].

Drought stress signaling can be triggered by accumulation of calcium-dependent
protein kinase (CDPK). Often this process is a result of early osmotic stress-induced
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Ca”* spiking/oscillation, which leads to CDPK activation and drought-responsive
gene transcription. Additionally, they can be a consequence of stress-responsive
selective proteolysis or phospholipid hydrolysis [31]. A positive regulatory effect of
CDPKs in drought stress signaling may be explained by the enhanced expression of
ABA-responsive genes [32].

4.2.2 Transcription Factors

Genes induced during stress conditions not only protect cells from stress by the
production of important metabolic proteins (functional proteins), but also regulate
the genes for signal transduction in the stress response (regulatory proteins), such as
the transcription factors (TFs). TFs are sequence-specific DNA-binding proteins
able to activate and/or repress transcription. They are responsible for the selectivity
in gene regulation and are often expressed in tissue-specific, development-stage—
specific or via stimulus-dependent pathway. Overexpression of key TF genes has
been shown to impart stress-tolerant phenotypes in several studies [6, 13, 14, 15].

4.2.2.1 AP2/ERF

The APETALAZ2/ethylene responsive element (AP2/ERF) superfamily is a large
group of plant-specific transcription factors containing at least one DNA binding
domain, named the AP2 domain and divided into three separate families, namely
the ERF, AP2, and RAV families [33, 34]. This domain was first identified in the
Arabidopsis homeotic gene APETALA 2 [35], and a similar domain was found in
tobacco ethylene-responsive element binding proteins (EREBPs) [36].

The conserved DNA binding domain characteristic of the AP2/ERF superfamily
is composed of 60 amino acid residues that confer a typical three-dimensional
conformation organized into a layer of three antiparallel beta-sheets followed by a
parallel alpha helix. Following a general rule, AP2-containing TFs can be roughly
classified as activators or as repressors depending on whether they activate or
suppress transcription of specific target genes [33].

AP2/ERF genes were identified in tobacco [37], rice [38, 39], grape [40],
Arabidopsis [41], wheat [42], apple [43], and potato [44]. These genes resulted in
improved tolerance against pathogen attack and osmotic stress [37], drought, low
temperature, salinity [39], cold, and heat [41]. Due to their plasticity and specificity
of individual members of this family, AP2/ERF transcription factors represent
valuable targets for genetic engineering and breeding of crops [33].

Dehydration responsive element binding proteins (DREB2) proteins are mem-
bers of the AP2/ERF family of plant-specific transcription factors. Among the eight
DREB?2 genes in Arabidopsis, DREB2A and DREB2B are highly induced by
drought, high salinity, and heat stress, and function as transcriptional activators in
the ABA-independent pathway [6]. The yield of transgenic rice plants expressing
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DREBIA under drought stress conditions was increased in comparison to the
nontransgenic plants [38]. Likewise, in transgenic potato plants overexpressing
StDREBI and StDREB?2, the level of drought tolerance was significantly greater
than in the wild-type control plant.

The results suggest that the SIDREB1 and StDREB2 as AP2/ERF transcription
factors may play dual roles in response to drought stress in potato [44].

4.2.2.2 bZIP

The basic leucine zipper (bZIP) is an important group of transcription factors in
plants [45]. In plants, they are involved in important processes such as pathogen
defense, abiotic stress signaling, hormone signaling, and energy metabolism, as
well as development, including flowering, senescence, and seedling maturation [46,
47]. bZIP genes were identified in Arabidopsis [48], soybean [49], tomato [50],
sorghum [51], maize [47], and rice [46].

The name of the bZIP family is derived from the basic region/leucine zipper
domain found in all its members. This domain consists of an uninterrupted o-helix
comprising a basic region (BR) which is necessary and sufficient to bind the DNA,
followed by a C-terminal leucine zipper (LZ) motif responsible for the dimerization.
The bZIP family was subdivided according to sequence similarities and functional
features resulting in 10 groups. Although many bZIPs can form homodimers, bZIP
members classified in different groups can be combined through heterodimerization
to form specific bZIP pairs with distinct functionalities [47, 52].

About 75 members of the bZIP TFs family were identified in Arabidopsis, and
they were divided into more than 10 groups. Many of the well-studied group A
bZIP TFs play a central role in ABA signaling. The ABA-responsive element
binding protein (AREB) subfamily of bZIPs is upregulated by drought stress. For
example, the ABA responsive element (ABRE) binding proteins/factors
(AREBs/ABFs) AREBI/ABF2, AREB2/ABF4, ABFI, and ABF3 are mainly
expressed in vegetative tissues and all except ABFI are key regulators of ABA
signaling that respond to drought stress [53]. Overexpression of AREB2/ABF4 or
ABF3 in Arabidopsis conferred ABA hypersensitivity, reduced transpiration, and
enhanced drought tolerance [54], whereas overexpression of an activated form of
AREBI/ABF? also showed increased ABA sensitivity and drought tolerance [55].

bZIP regulators have been explored as potential candidates for application in the
improvement of drought tolerance in crops [53]. For example, the Group A TF
OsABF1 from rice [50] and SIAREB from tomato [56] both enhanced tolerance to
drought and salt stress. In maize, the expression level of ZmbZIP37 was increased
under drought stress, implying a possible regulatory role in response to such
stress [47].
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4223 MYB/MYC

The proteins of MYC/MYB families are found in both plants and animals playing
many varied functions. In plants, these families participate in the ABA-dependent
pathway of stress signaling for the upregulation of the abiotic stress responsive
genes. Many MYB and MYC genes have been studied for their involvement in the
regulation of abiotic stress response, such as drought stress [28, 57].

MYB TFs contain the MYB domain involved in DNA binding. A MYB domain
is usually composed of one to three imperfect repeats, each with about 52 amino
acid residues which form three a-helices; the second and the third ones are involved
in the formation of a helix—turn-helix (HTH) fold [58]. MYC TFs are members of
the basic helix—loop—helix (bHLH) domain that is a highly conserved amino acid
motif. This motif defines these groups of transcription factors. The bHLH domain
consists of 50-60 amino acids that form two distinct segments: a stretch of 10-15
predominantly basic amino acids (the basic region) and a section of roughly 40
amino acids predicted to form two amphipathic o-helices separated by a loop of
variable length (the helix—loop—helix region) [59].

MYC and MYB proteins play important roles in many physiological processes
under normal or stress conditions and both MYC/MYB TFs participate in the
ABA-dependent pathway of stress signaling for the upregulation of the abiotic
stress-responsive genes [28, 60, 61]. MYB is a large TF family in plants. There are
over 198 and 183 MYB genes in Arabidopsis and rice, respectively, where many of
them are regulated by drought [62, 63].

Katiyar et al. [62] reported that 65 % of MYB genes expressed in rice seedlings
were differentially regulated under drought stress. In Arabidopsis, 51 % of AtMYB
genes were upregulated by drought whereas 41 % are downregulated by such stress
[62, 64].

In Arabidopsis, many MYB genes are responsive to abiotic stress. For example,
AtMYB2 functions in the ABA-mediated drought stress response and AtMYBI102 is
a key regulatory component in responses of Arabidopsis to osmotic stress, salinity
stress, and ABA application [65]. In addition, AtMYB96 modulates ABA signaling
in response to abiotic stresses in Arabidopsis [66].

The rice OsMYB4 was reported to play a positive role in cold and drought
tolerance in transgenic plants of Arabidopsis, tomato, and apple [67-69]. OsMYB55
was shown to be involved in tolerance to high temperature through enhanced amino
acid metabolism [70]. In a recent study, molecular characteristic features of
OsMYB?2 have clearly been indicating its regulatory role in salt, cold, and dehy-
dration tolerance in rice [71].

Among MYC genes, MYC2 is an ABA- and drought-responsive gene and
therefore earlier studies have focused on the role of MYC2 in ABA signaling.
Indeed, MYC2 overexpressing plants and the myc2 mutant show increased and
reduced ABA sensitivity, respectively. Furthermore, transactivation assays show
that MYC2 is capable of activating the expression of the ABA response gene
Responsive to Dessication22 (RD22), showing that MYC2 is a positive regulator of
ABA signaling [72].
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Transgenic plants overexpressing both MYC2 and MYB2, a drought-inducible
MYB TF, showed reduced electrolyte leakage following mannitol treatment, sug-
gesting that MYC2 can contribute to stress tolerance [72]. In contrast, a recent study
found an increased drought tolerance in the myc2 mutant based on smaller relative
biomass reduction observed under drought conditions than in wild-type plants [73].
Therefore, the role of MYC2 in abiotic stress tolerance is not as conclusive as its
role in ABA signaling [28]

4224 NAC

The NAC family of plant-specific TFs is one of the largest in the plant genome [74].
The NAC transcription factor contains a highly conserved N-terminal DNA-binding
domain and a diversified C-terminal domain [75] and based on the motif distri-
bution, the NAC domain can be further divided into five subdomains (A-E) [76].
The NAC domain was originally characterized from consensus sequences from
petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2. Therefore, NAC was
derived from the names of the first three described TFs containing the NAC
domain, namely no apical meristem (NAM), ATAF1-2, and cup-shaped cotyledon
(cuce2) [77].

NAC family genes have been identified by genome-wide analysis from various
plant species, such as Arabidopsis [76], rice [78], poplar [79], and soybean [80].
NAC proteins play essential roles in diverse aspects of plant development, such as
pattern formation in embryos [81] and lateral root development [82]. The NAC TFs
function as important components in complex signaling progresses during
plant stress responses. Considering the relatively large number of NAC TFs from
different plants and their unknown and diverse roles under complex environmen-
tal stimuli, it remains a considerable challenge to uncover their roles in abiotic
stress [83].

There is increasing evidence demonstrating that NAC family transcription fac-
tors are involved in responses to various biotic and abiotic stresses, including
drought, salinity, cold, bacterial and fungal pathogens, and low-oxygen stress [83,
84]. The expression of three Arabidopsis NAC genes, ANAC019, ANACO05S5, and
ANACO072 (RD26), was induced by drought, high salinity, and ABA, respectively.
Overexpression of these three genes remarkably enhances tolerance to drought
stress [85].

Others Arabidopsis NAC genes, such as ATAFI (ANAC002) and ATAF2
(ANACO081), together with ANACI102 and ANACO32 were phylogenetically classi-
fied into a small subfamily (ATAF) [76, 86]. ATAF1 was initially reported to play a
negative role in response to drought stress by functional analysis of atafl null
mutants [87]. However, studies reported by [88] showed that the overexpression of
ATAFI conferred an enhanced drought tolerance, revealing a positive role of
ATAFI in plant drought response.

Understanding the complex mechanism of drought and salinity tolerance is
important for agriculture production. Many NAC genes have been shown to be
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involved in plant responses to drought and salinity stress. In transgenic rice, the
0s01g66120/0OsNAC2/6 and Os11g03300/OsNACI10 genes were found to enhance
drought and salt tolerance [16, 89], and Os03g60080/SNACI increased grain yield
(21-34 %) under drought stress [90].

Plant response to abiotic stresses is via both ABA-dependent and
ABA-independent signal transduction pathways, where ABA can act as a signaling
molecule of regulatory networks of plant response to stress. Arabidopsis overex-
pressing MINACS exhibited hypersensitivity to exogenous ABA and enhanced
tolerance to dehydration stress. A higher ABA sensitivity may stimulate stomatal
closure to retain water and increase drought tolerance in plants [91], as was found in
Arabidopsis and maize [88, 92].

Much progress in NAC TF functional research has been attained over the past
decade. However, most of these advances are related to the involvement of biotic
stress. Thus, the identification of NAC functions in biotic and abiotic stresses will
remain a substantial challenge in the coming years.

4.3 Drought-Responsive Genes

4.3.1 Late Embryogenesis Abundant Proteins

A class of proteins widely involved in plant response to drought is called late
embryogenesis abundant (LEA) proteins, first discovered in late stages of embryo
development in plant seeds [93]. Under dissection conditions, there is an improved
accumulation of mRNA molecules coding for LEA [94]. The increase of this
expression is correlated to an improvement in abscisic acid levels, whose induction
is associated with increased drought tolerance [95].

LEA proteins are members of a large group of glycine-rich proteins that act in
ion sequestration [96]. There are several groups of LEA proteins distributed through
different classifications based mainly on different motifs present in the amino acid
sequence of each protein [97, 98]. In Arabidopsis thaliana, 51 genes encoding LEA
proteins clustered into nine families [99].

LEA proteins are mainly low molecular weight (10-30 kDa) proteins and are
mainly composed of hydrophilic amino acids ordered in repeated sequence (e.g.,
Gly and Lys) in higher plants, forming hyperhydrophilic domains and allowing
thermal stability [100]. Most LEA proteins are randomly coiled in solution, cyto-
plasmic, and hydrophilic proteins [97], although some called atypical present a
preponderance of hydrophobic content. These proteins may also be included in the
group of intrinsically disordered proteins [101].

The differential expression of genes coding for LEA proteins in response to
drought has been reported in several species of plants [102—-104]. Furthermore,
studies have detected overexpression of the LEA protein contributes to the resis-
tance of E. coli cells against drought [105, 106].
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Changes in conformation of these proteins have been reported at the cellular
level, considering increased expression of LEA proteins under dehydrating condi-
tions [107, 108]. Other reports have assessed their role in water retention as
hydration buffers [109], as molecular chaperone [110], in the protection of cell
membrane [111, 112], and sequestration of reactive oxygen species [113]. The heat
tolerance is a common feature of all proteins of this family [105]. Several in vitro
studies have shown activity of the LEA proteins in protecting other enzymes against
dissecting-induced aggregation [114—116].

The role of LEA protein expression in generating drought-tolerant plants has
also been ratified. For instance, [8] verified the role of LEA protein in water-stress
protection by overexpression of the HVAI gene from barley into rice plants. In this
study, an increase of growth rate stability under conditions of water deficit was
detected in transgenic plants, as well as better recovery of growth, compared to
control plants. Also in rice, the OsLEA3-1 gene was overexpressed in lineages at
field conditions, which had higher grain yield than the wild-type under drought
stress [7]. A higher survival rate in transgenic Arabidopsis plants for BnLEA4-1
gene [117] was also observed, and the expression of the TaLEA gene improved cell
membrane protection in transgenic poplar [118].

Transgenic plants of Salvia miltiorrhiza overexpressing the SmLEA gene showed
reduction of water loss under dehydrating conditions [106]. Overexpression of the
SiLEA14 gene of foxtail millet improved resistance to osmotic stress, as well as
contributed to the increase of free proline and soluble sugar content, which are
metabolites related to defense against water stress in plants [119]. Under conditions
of drought stress, [120] observed that, compared to control plants, Arabidopsis
transgenic plants overexpressing the JcLEA gene had higher relative water content
and less damage to the cell membrane, as well as a higher increase in glucose
accumulation, which contributed to the stability of the internal milieu of the
plant cells.

These results demonstrate that the prospecting of genes coding for LEA proteins
is fundamental to better understanding of endogenous mechanisms of plant defense
against dehydration conditions and molecular breeding.

4.3.2 Agquaporins

The protein family called major intrinsic (MIP) includes aquaporins that constitute a
family of proteins that act to regulate the movement of water through intracellular
and plasma membranes of plants and animals. Aquaporins may also be referred to
as water channels and contribute to the translocation of water molecules [121, 122],
as well as solutes (urea, boric acid, and silicic acid) and gases (ammonia and carbon
dioxide) [123].

These proteins are expressed in nearly all plant tissues and their high expression
occurs in organ development and contributes to the maintenance of cell turgidity
[124]. The activity of aquaporins in membranes and the change of their abundance



4 Plant Molecular Adaptations and Strategies Under Drought Stress 101

can control the rate of water transport along the transcellular pathway, influencing
the movement of guard cells or cell expansion [125].

There are five existing subgroups for aquaporins, which vary according to cell
location: plasma membrane intrinsic proteins (PIP), vacuolar membrane (tonoplast)
intrinsic proteins (TIP) [126], nodulin-26-like intrinsic membrane proteins (NIPs),
small basic intrinsic proteins (SIPs) [127], and the X intrinsic proteins (XIPs) [128].

The aquaporins’ molecular weight ranges from 21 to 34 kDa, consisting of six
membrane-spanning o-helices connected by five loops (A to E) and N- and
C-termini facing the cytosol [129]. Several studies performed thus far have reported
the important role of aquaporins in response to drought in plants. For instance, Xu
et al. [130, 131] demonstrated that TaTIP2;2 acts as a negative regulator of salinity
and drought stress. Moreover, these authors observed the response of this protein is
independent of abscisic acid, in accordance with the expression of other TIP pro-
teins, whose expression is generally not induced by hormonal regulation.

According to Khan et al. [132], the overexpression of JcPIP2;7 might help in
faster water uptake through outer water channels, leading to faster imbibition thus
accelerating germination even under normal conditions. The JcTIP1;3 probably is
internally localized to the vacuolar membrane. Thus, as with other TIPS, such
protein functions more in maintaining cell turgidity and might interact intricately
with the cellular developmental and stress signaling machinery.

Li et al. [60, 61] observed through GoPIPI overexpression that the protein
GoPIP1 could modify the water movement, changing the stomatal aperture (faster
water loss through leaves). Therefore, its overexpression had a negative impact on
plant growth under drought stress, supporting the proposition that, under drought
stress, a general increase in water transport is harmful in most plant tissues and
cells, as observed for studies reporting overexpression of other aquaporins
[133, 134].

On the other hand, Lian et al. [9] detected that, compared to the wild-type plant,
the transgenic lowland rice (overexpressing the RWC3 aquaporin) exhibited higher
root osmotic hydraulic conductivity, leaf water potential, and relative cumulative
transpiration, improving drought tolerance and corroborating other studies reporting
aquaporins upregulate drought tolerance [135-137].

Zhou et al. [10] verified that TaAQP7 generates an increase in drought stress
tolerance in transgenic tobacco by improving the ability to retain water, reduce
reactive oxygen species accumulation and membrane damage, and enhance the
antioxidants’ activities. In Arabidopsis thaliana, [138] detected that MaPIP1;1
contributed to increased drought tolerance associated with decreased membrane
injury and improved osmotic adjustment (MaPIP1;1-overexpressing transgenic
plants have maintained higher levels of proline).

The information presented above confirms the importance of studies related to
aquaporins, which are essential for plant breeding focused in the maintenance of
water balance in plants.
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4.3.3 Heat Shock Proteins

Heat shock proteins (HSPs), also known as heat stress proteins, were identified
initially in response to high temperatures and are present in prokaryotes and
eukaryotes. The increased expression of HSPs is related to defense mechanisms
against injuries caused by dehydration, as the decrease in cellular volume that
promotes the crowding of cytoplasmic components. This crowding generates an
increase of molecular interactions that can cause protein denaturation and mem-
brane fusion [139].

The association of HSPs with membranes can contribute to drought-induced
changes in cellular architecture and help in the maintenance of normal
membrane-associated processes during drought stress [140, 141]. It is known that,
at the cellular level, these proteins respond to various stresses and act in normal
cells as molecular chaperones. This role was confirmed by means of heterologous
expression in E. coli and subsequent purification of recombinant protein,
[142—144]. Thus, HSPs contribute to reducing the impact of protein denaturing
conditions and contribute to the maintenance and/or restoration of protein structure
and its homeostasis [145].

According to the molecular weight (15-42 kDa), there are five major families of
HSPs: the Hsp70 (DnaK), chaperonins (GroEL and Hsp60), the Hsp90, the Hsp100
(Clp), and the small Hsp (sHSP) family [146]. Studies have shown differential
expression in response to drought for HSPs of different molecular weights [104,
123, 147]. There is a significant increase in induction of HSP expression when there
is a combination of different stresses, such as the combined effect of drought and
high temperature [148].

The regulation of genes encoding HSPs is strongly related to the heat stress
transcription factors (HSTF). The overexpression of genes coding for these tran-
scription factors have been reported to induce drought resistance in transformed
plants [11, 12]. These regulatory proteins are usually located in the cytoplasm,
where they are found inactivated. The activation takes place by means of stress
conditions and consequent oligomerization, as well as recompartmentation to the
nucleus. This enables the occurrence of binding to promoter sequences of genes
encoding HSPs [149].

Several studies have reported the widespread importance of HSP expression in
response to drought. Sun et al. [150] and Cho and Hong [151] verified that
AtHSP16.6A and NtHSP70-1, respectively, can participate in the regulation of
water flow during drought. Moreover, Sato and Yokoya [141] detected that rice
transgenic seedlings with higher expression levels of sHSP17.7 showed growth
recovery potential after submission to drought.

In addition, GHSP26 gene product might act as a factor in the signal trans-
duction pathway of a drought stress response from the nature of early induction
[140]. In Arabidopsis thaliana, Zhang et al. [136, 137] verified that ectopic
expression of cytosolic SHSP 17.1 generated more biomass and less water loss, as
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well as flowered earlier and recovered more quickly and robustly after being
rewatered.

Recently, it was found that in transgenic sugarcane plants overexpressing the
EaHSP70 protein there was a drastic increase (2000-fold or more) in the upregu-
lation of the HSP70 gene compared to the control plants. In this study, in addition to
increased tolerance to drought, the upregulation of abiotic stress-responsive genes
(DREB2, DNA helicase 45, LEA, RD29, ERD, ERF, Corl5, and BRICK) was
more than 100-fold in each transgenic event when compared to control plants.
Thus, the authors suggest that the expression of these genes might be one of the
reasons for its enhanced drought tolerance [152].

4.4 Molecules with Antioxidative Activity (Protection
Against ROS)

Drought stress drastically affects various physiological traits in plants. It is known
that the downregulation of photosynthesis due to drought stress is mainly the result
of a reduction in stomatal conductance, although the photosynthetic apparatus is not
significantly affected [153]. It is generally observed from the first stages of water
shortage due to limited CO, diffusion through stomata. The limitation of CO,
assimilation in water-stressed plants causes the overreduction of the photosynthetic
electron chain. Consequently, plants are exposed to an excess of light energy that
leaves cannot dissipate and which cannot be converted into biochemical energy.
Then there is a redirection of photon energy and that leads to the production of
reactive oxygen species (ROS) and finally to a substantial oxidative damage [154,
155]. This state is so-called oxidative stress.

ROS are partially reduced forms of atmospheric oxygen and under normal
conditions their production in plant cells is tightly controlled by the scavenging
system [156]. The main ROS are superoxide anion (O, ), hydrogen peroxide
(H»05,), hydroxyl radical (OH"), and singlet oxygen (O). They are present in all
plant cells because of aerobic lifestyle [157, 158].

In plant cells chloroplasts, mitochondria, and peroxisomes are important intra-
cellular generators of ROS. It is now widely accepted that the production of these
species at a higher level results in a loss of balance between the production ROS
and their removal [159, 160]. If not effectively and rapidly removed from plants,
excessive levels of ROS are responsible for various stress-induced damages to
macromolecules and cellular structure including RNA and DNA damage, enzyme
inhibition, protein oxidation, membrane lipid peroxidation, and ultimately cell
death. Then, their scavenging is necessary to protect the subcellular components
and for maintenance of normal growth and development [154, 157, 160, 161, 162].

Plants have evolved a complex system of antioxidant molecules to prevent
oxidative injury. The antioxidant defense mechanism plays an important role by
delaying or preventing the oxidation of cellular oxidable substrates. Antioxidants
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exert their effects by scavenging ROS, activating a battery of detoxifying proteins,
or preventing the generation of ROS [157]. This network is composed of over 150
genes encoding ROS-producing proteins, with enzymatic and nonenzymatic
molecules [163]. The well-known enzymatic antioxidants comprise superoxide
dismutase (SOD), catalase (CAT), and peroxidases (glutathione peroxidases, GPX;
ascorbate peroxidase, APX). These enzymes are present in practically all subcel-
lular compartments. Usually, an organelle has more than one enzyme able to
scavenge a single ROS [164]. Furthermore, they also possess numerous low
molecular weight antioxidant nonenzymatic compounds. Glutathione, flavonoids,
alkaloids, carotenoids, and polyamines are the main nonenzymatic components
[154, 155, 157, 160, 161, 165]. Together, all these molecules act as the main
defense against ROS produced in various parts of plant cells [162].

The extent of oxidative stress in a cell is determined by the amounts of super-
oxide, H,0,, and hydroxyl radicals. Therefore, the balance of SOD, APX, and CAT
activities will be crucial for suppressing toxic ROS levels in a cell. Changing the
balance of scavenging enzymes will induce compensatory mechanisms. For
example, when CAT activity was reduced in plants, scavenging enzymes such as
APX and GPX were upregulated. Unexpected effects can also occur. When com-
pared to plants with suppressed CAT, plants lacking both APX and CAT were less
sensitive to oxidative stress [158, 166].

However, it is known that ROS also act as signaling molecules that can trigger
cell responses. In this context, focus has been on H,O,, the most stable ROS.
H,O, generated in chloroplasts can function directly as a signaling agent. To act
in this function, HO, must be able to rise rapidly to a threshold concentration and
remain high enough for a sufficient time so that it can oxidize the molecules
involved in the cell-signaling events. Then enzymes that scavenge ROS must play
two roles: in an active state, they keep ROS concentrations at safe levels. In a
deactivated state, ROS concentrations reach critical levels for activation of sig-
naling components [167].

4.4.1 Enzymatic Molecules

4.4.1.1 Superoxide Dismutase

Superoxide dismutases belong to a family of metalloenzymes that protect cells from
the harmful effects of superoxide radical (O, ) by catalyzing its dismutation into
molecular oxygen and hydrogen peroxide (H,O,) [168, 169]. Depending on the
metal in their active site, SODs are classified into four groups: CuZnSODs,
NiSODs, FeSODs, and MnSODs. Each SOD group displays a distinct subcellular
distribution and structural features [170, 171].

They are important for early metabolic cellular defense, acting as the first line of
defense against ROS. The resultant H,O, can be detoxified to oxygen and water by
CAT or APX, which occur mainly in peroxisomes [130, 131, 153]. The balance
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between SODs and the different H,O,-scavenging enzymes in cells is considered to
be crucial in determining the steady-state level of O, and H,0,. This balance,
together with the sequestering of metal ions by ferritin and other metal-binding
proteins, prevents the formation of the highly toxic HO radical [165].

Recent studies have demonstrated the main role of different SODs under drought
conditions. In Pennisetum glaucum, different abiotic stresses were able to induce a
CuZnSOD. In addition, when expressed in bacteria, it conferred enhanced tolerance
to oxidative stress [172]. Under salinity stress, Arabidopsis increased the expression
of two FeSODs [173]. Sales et al. [174], studying sugarcane plants, observed that
SOD improves the metabolism of plants subjected to water deficit. In transgenic
plums with the overexpression of CuZnSOD, the tolerance to salt and drought stress
was enhanced [175].

Some studies reported to SODs a role against structural damages. The overex-
pression of CuZnSOD in transgenic tobacco improved tolerance against drought
stress, alleviating the cellular and tissue damages produced by water stress condi-
tions [176]. Shafi et al. [177] reported in Arabidopsis that the expression of
CuZnSOD genes positively regulates secondary cell wall biosynthesis and pro-
motes plant growth and yield under salt stress, showing the importance of SOD to
the development of plants under stress conditions. Ambiguous results were also
reported. Drought stress triggered in Arabidopsis a downregulation of CuZnSODs,
but an upregulation of FeSODs [171].

4.4.1.2 Catalases

Catalases (H,O, oxidoreductase; CAT) are tetrameric heme-containing enzymes,
mostly localized in peroxisomes that are bound by a single membrane and contain
hydrogen peroxide-generating oxidases. They are also localized in glyoxysomes
and mitochondria and are apparently absent in the chloroplast. They serve as effi-
cient scavengers of ROS, mainly in the removal of excessive H,O, generated
during developmental processes or by environmental stimuli into water and oxygen
in all aerobic organisms [162, 178]. Catalases play an important role in
biotic/abiotic stress, to avoid oxidative damage. Plant catalases are composed of a
multigene family and have been reported in many plant species [179]. Plant per-
oxisomal proteins including catalases require particular peroxisomal targeting sig-
nal (PTS) for import into peroxisomes. The catalase activity levels is inversely
correlated with the cellular H,O, amounts of plants [178].

There are two main routes for HO, metabolism in cells: its removal by per-
oxidases and by catalases. Peroxidases require a small reducing molecule to act as a
regenerating cofactor. On the other hand, catalases mainly catalyze a dismutation
reaction in which a first oxidizing molecule of H,0, is transformed to water and a
second reducing H,O, is then converted to O,. Thus, no additional reductant is
required. Catalases are encoded by three genes [172].

Considering the key role of CAT in photorespiration, many authors focused on
the role of the CAT catalysis pathway under both drought and salt stress. Indeed,



106 S.P. dos Reis et al.

the maintenance of CAT activity in leaves of drought-stressed plants likely allowed
the removal of photorespiratory H,O, produced when plants were subjected to the
water deficit of salinity [175].

Transgenic plants expressing CAT had increased tolerance against drought
stress. However, studies have reported that the expression of either SOD or CAT
alone led to no change in response to drought stress. These contradictory findings
may be due to the complex network of plant antioxidant defenses and raise the
possibility that a higher tolerance to oxidative stress might be achieved by pyra-
miding or stacking genes in a single genotype. The antioxidant effects of the two
enzymes are directly linked through their converting superoxide to H,O, and H,O,
to oxygen and water, sequentially [130, 131]. The combination of the two upreg-
ulated genes was reported as improving the drought stress responses. In cassava, the
removal of ROS was enhanced by overproduction of both CAT and CuZnSOD,
delaying the postharvest physiological deterioration of storage roots [130, 131].

In potato, the single overexpression of a catalase controlled the H>O, levels and
delayed the leaf senescence (related to oxidative damage) [178]. The catalase
induction can also be triggered by other abiotic stresses, such as heavy metal and
hyperosmotic stresses, as shown by [179].

On the other hand, low levels of catalases allow the accumulation of H,O, in
cells. Michelet et al. [167], working with knockdown mutants of Chlamydomonas
reinhardtii, downregulated catalase activity and reported high levels of H,O,. For
the authors, this concentration seems to be necessary to activate H,O,-dependent
signaling pathways stimulating the expression of H,O, responsive genes. However,
high levels of H,O, cannot be maintained for long periods, because the deficiency
in catalases can also promote cell death, as reported by [180] in Arabidopsis.

4.4.1.3 Peroxidases

Plant peroxidases can be grouped into three classes based on their structural and
catalytic properties. Class I peroxidases include intracellular enzymes, such as
microbial cytochrome C peroxidase, bacterial catalase-peroxidases, and APX in
plants, bacteria, and yeast. Class II peroxidases, including lignin peroxidase, are
extracellular fungal peroxidases. Class III peroxidases are secreted into the cell wall
or the surrounding medium and the vacuole [181].

In the complexity of the regulation network of plant antioxidant defenses, APX
is an antioxidant enzyme that plays a key role in drought stress responses and
following recovery from drought [175]. They are found in higher plants, chloro-
phytes, red algae, and members of the protist kingdom [164]. They have multiple
locations and are among the most important key enzymes that scavenge potentially
harmful H,O, from the chloroplasts and cytosol of plant cells [176]. There are two
main isoforms: APX1 and APX2. APX1 is constitutively expressed in roots, leaves,
stems, and other plant tissues, and its expression is significantly upregulated in
response to a large number of biotic and abiotic stresses [163]. APX2 is also
involved in the response of plants to abiotic stress. Expression of APX2 is almost
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undetected in many plant tissues and is significantly upregulated in roots in
response to wounding and oxidative stress and in roots and shoots in response to
salinity and osmotic stress [163]. The main hydrogen peroxide-detoxification sys-
tem in plant chloroplasts is the ascorbate—glutathione (ASC—GSH) cycle, in which
APX is a key enzyme. APX utilizes AsA as specific electron donor to reduce H,O,
to water [164].

The ROS-scavenging enzymes in plants have been widely studied and the results
have demonstrated that, in response to environmental stress, APX activity generally
increases along with other enzyme activities, such as CAT and SOD. In addition,
the balance of APX, GPX, and CAT activities, representing the main enzymatic
H,0, scavenging mechanism in plants, is crucial for the suppression of toxic H,O,
levels in a cell. As reported above, the enzymes APX, GPX, and CAT are able to
scavenge H,O, with different mechanisms. If the balance of scavenging enzymes
changes, compensatory mechanisms are induced (i.e., APX and GPX are upregu-
lated when CAT activity is reduced in plants) [162, 175]. Weisany et al. [162]
reported in soybean that abiotic stresses, such as salinity and drought, could
increase the production of both enzymes: CAT and peroxidases (APX and POD).

In transgenic plums with the overexpression of APX, the tolerance to salt and
drought stress was enhanced (Xing et al. 2015). Sales et al. [174], studying sug-
arcane plants, observed that APX improves the metabolism of plants subjected to
water deficit. In Arabidopsis, [163] showed that deficiency in APX2 resulted in a
decreased tolerance to light stress, which is related to drought stress. Also, these
plants produced more seeds under heat and drought stresses, suggesting the acti-
vation of protection mechanisms of reproductive tissues from heat and drought
damage. Some peroxidases are strongly induced by both abiotic and biotic stresses.
Choi and Hwang [181] reported it in Capsicum annuum: PO2 was induced by
drought, salt, cold, and infection by a fungal pathogen. Plants without PO2 were
more susceptible to these stresses. In Arabidopsis, when the peroxidase was
overexpressed, the plants were more tolerant to all stresses.

On the other hand, in wheat, different isoforms can be expressed in different
levels under abiotic stress (up- and downregulated), as well the same isoform can
also be differentially regulated in different wheat genotypes [182].

4.4.2 Nonenzymatic Molecules

4.4.2.1 Glutathione

Glutathione (y-glutamyl cysteinyl glycine) is an abundant, ubiquitous, and main
low molecular weight thiol in all aerobic organisms. The presence of cysteine
confers its biological properties mainly as antioxidant function through its
involvement in cell redox homeostasis [183, 184]. It is a tripeptide constituted of
glutamate (Glu), cysteine (Cys), and glycine (Gly), and is represented by the for-
mula g-Glu—Cys—Gly. GSH exists either in a reduced form (GSH) with a free thiol
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group or in an oxidized form (GSSG) with a disulfide between two identical
molecules. The presence of Cys in the chemical reactivity and high water solubility
of the thiol (-SH) group of GSH confer its biological properties and make it a
crucial metabolite to perform multiple functions including growth, development,
and plant responses to drought stress [185, 186]. GSHs also function with GSTs to
detoxify a range of herbicides by tagging electrophilic compounds for removal
during oxidative stress [178]. Among the nonenzymatic antioxidants, GSH is
considered the most important intracellular defense against ROS and/or their
reaction products-induced oxidative damage in plants [187].

It has long been recognized that GSH is oxidized by ROS as part of the
antioxidant barrier that prevents excessive oxidation of sensitive cellular compo-
nents. Unlike the oxidized forms of many other primary and secondary metabolites
that can also react with ROS, GSSG is rapidly recycled by the glutathione reduc-
tases (GRs) in key organelles and the cytosol. A main characteristic of glutathione
is its high concentration in relation to other cellular thiols. In general, glutathione
accumulates to millimolar concentrations, with tissue contents well in excess of free
cysteine. A second key characteristic of the glutathione is its high reduction state. In
the absence of abiotic stresses, tissues maintain measurable GSH [184].

Plants of Arabidopsis treated with GSH showed more tolerance to drought stress
[178]. On the other hand, when a GR gene (the GSH recycler) is not expressing,
plants increase their sensitivity to abiotic stress, as reported by Wu et al. [188].
Also, GSH has supplemental functions in plants. Ramirez et al. [189] showed its
protective role against iron deficiency in the same above-mentioned species.

4.4.2.2 Flavonoids

Flavonoids are a vast class of plant polyphenolic secondary metabolites encom-
passing more than 10,000 structures, showing a common three-ring chemical
structure (C6—C3-C6). The main classes of flavonoids are anthocyanins (red to
purple pigments), flavonols (colorless to pale yellow pigments), flavanols (colorless
pigments that become brown after oxidation), and proanthocyanidins (PAs) or
condensed tannins. These compounds are widely distributed in different amounts,
according to the plant species, organ, developmental stage, and growth conditions
[190]. The multiplicity of the functional roles of flavonoids in plant—environment
interactions is consistent with their presence in a wide array of cells and subcellular
compartments [191].

Flavonoids have the capacity to absorb the most energetic solar wavelengths
(i.e., UV-B and UV-A), inhibit the generation of ROS, and then quench them once
they are formed [192]. There is evidence corroborating the hypothesis that they
have antioxidant functions in higher plants that are challenged with a range of
environmental stresses, constituting a secondary ROS-scavenging system in plants
suffering from severe excess excitation energy to the photosynthetic apparatus [191,
193] and also preventing the generation of ROS [190].
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The biosynthesis of flavonoids is upregulated as a consequence of UV radiation
and in response to a wide range of other abiotic and biotic stresses, ranging from
nitrogen/phosphorus depletion to salinity/drought stress [194]. For instance, Agati
et al. [191] have reported that root-zone salinity stress had a very similar effect on
flavonoid metabolism to that exerted by UV radiation in Ligustrum vulgare. This
shows that flavonoid pathway genes (FLS-flavonol synthase and F3'H-flavonoid 3'-
hydroxylase) are also upregulated under salt/drought stress conditions.

The biosynthesis of antioxidant flavonoids increases more in stress-sensitive
species than in stress-tolerant species; stress-sensitive species present a less effec-
tive first line of defense against ROS under stressful conditions and are subse-
quently exposed to a more severe “oxidative stress” [191].

Some studies have shown the antioxidant function of flavonoids. It was reported
in wheat leaves that the expression of flavonoid biosynthesis genes and accumu-
lation of flavonoid in response to drought stress improve the stress tolerance [195].
In addition, flavonoids with radical scavenging activity mitigate against oxidative
and drought stress in Arabidopsis thaliana [196].

4.4.2.3 Carotenoids

Carotenoids are isoprenoids containing 40 carbon atoms and 3-13 conjugated
double bonds in their skeleton [197]. They are synthesized by photosynthetic
organisms and some nonphotosynthetic bacteria and fungi. In plants, they are
synthesized in plastids, where they play different functions [198]. Carotenoids such
as b-carotene, lycopene, and lutein are important in the food and oil industries
because of their powerful antioxidant activities [199].

They play a main dual role in photosynthetic organisms: first, they serve as
accessory pigments in the photosystems, increasing light absorption in the blue
spectral domain (420-500 nm). Carotenoids are synthesized in plastids and accu-
mulate as red, orange, and yellow pigments in flowers, fruit, and roots [197, 199].
Second, they protect the photosynthetic apparatus against toxic ROS produced by
plant abiotic stresses, especially singlet oxygen ('0,), being considered to be the
first line of defense of plants against O, toxicity. The second occurs either via a
physical mechanism involving thermal energy dissipation or via a chemical
mechanism involving direct oxidation of the carotenoid molecule. The latter
mechanism can produce a variety of products (aldehydes, ketones, endoperoxides,
and lactones) resulting from their direct oxidation by O,, all being potential
antioxidant candidates [197, 200].

One such molecule, the volatile B-carotene derivative [-cyclocitral, triggers
changes in the expression of 'O,-responsive genes and leads to an enhancement of
photo-oxidative stress tolerance [197]. Additional protective functions of car-
otenoids include stabilization of membrane lipid bilayers, scavenging of free radi-
cals and protection against membrane lipid peroxidation [201].
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In sweet potato, the expression of the Or gene, responsible for the accumulation
of carotenoids, increased in response to abiotic stress. Also, plants transformed with
this gene exhibited increased antioxidant activity, showing the possible role of
carotenoids in oxidative stress [199]. In Arabidopsis, oxidative stress induces the
oxidation of carotenoids, and its products change the expression of many respon-
sive genes to this kind of stress, increasing the tolerance of these plants [197].

Ruiz-Sola et al. [198], studying Arabidopsis, reported that the presence of high
concentrations of salt in the growth medium rapidly triggers a root-specific acti-
vation of the carotenoid pathway. It shows the probable participation of carotenoid
molecules in salt/drought stress. Finally, in Brassica rapa and Brassica oleracea,
enzymes involved in carotenoid oxygenase (a key enzyme involved in the meta-
bolism of carotenoids) pathways may be activated as multifunctional stress sig-
naling factors under abiotic stress treatment conditions [199].

4.4.2.4 Polyamines

Polyamines (PAs) are essential solute compounds for cell survival. They are small,
flexible, organic polycationic compounds of low molecular weight that are present
in almost all cells and most living organisms, except some archaeal methanogens
and halophiles [202]. PAs are present in all compartments of the plant cell,
including the nucleus. The main PAs are: diamine putrescine (Put), triamine
spermidine (Spd), tetramines spermine (Spm), and its isomer thermosspermine
(tSpm). They can all be found in free and conjugated forms [203].

PAs have key roles in a variety of regulatory and cellular processes such as cell
division and elongation, root growth, flower and fruit development, replication,
transcription, translation, membrane and cell wall stabilization, chromatin organi-
zation, ribosome biogenesis, and programmed cell death [204]. Current evidence
points to the occurrence of intricate crosstalk between polyamines, stress hormones,
and other metabolic pathways required for their function. The identification of
molecular mechanisms suggests that some PAs conjugate to hydroxycinnamic
acids, and the products of PA oxidation (hydrogen peroxide and y-aminobutyric
acid) are required for different processes in plant development pathways during the
lifespan of plants and participate in abiotic and biotic stress responses [205].

Among the different classes of compatible solutes, polyamines stand as one of
the most effective against extreme environmental stresses, which include drought,
salinity, low temperature, oxidative stress, and metal toxicity. In tobacco, the
response to heat/drought stress involved a transient increase in the levels of free and
conjugated Put and in the levels of free Sp, norspermidine (N-Spd) and Spm [206].

PAs partially reversed the NaCl-induced phenotypic and physiological distur-
bances in Citrus aurantium. The expression of PA biosynthesis and catabolism
genes was systematically upregulated by PAs. In addition, PAs altered the oxidative
status in salt-stressed plants as inferred by changes in ROS production and redox
status accompanied by regulation of transcript expression and activities of various
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antioxidant enzymes [207]. In Arabidopsis, the polyamine spm protects from heat
stress-induced damage by increasing expression of heat shock-related genes [203].

4.5 Conclusions and Future Perspectives

The understanding about cellular and molecular mechanisms of plant response to
stress is essential to development of genetically engineered plants focused on
acquisition or increasing of tolerance against abiotic stresses such as drought,
allowing better insights into the high complexity of molecular strategies used by
plants to their adaptations under adverse conditions. These adaptations contribute to
a considerable reduction of productivity losses of plants with agronomical impor-
tance. Thus, this chapter presented efforts of scientific research to unveil the par-
ticipation of several genetic components (such as signaling molecules, transcription
factors, stress-responsive genes, and enzymatic and nonenzymatic molecules with
antioxidative activity) in the drought stress response and its relationship with
endogenous defense mechanisms of plants.

How the manipulation of gene expression, mainly by the overexpression of
certain genes, can contribute to reach the plant tolerance to drought was also
discussed. There is great importance in the achievement of more scientific studies
for further identification of new components involved in the drought response. Such
studies will promote a better understanding about the role of different genes and
proteins whose contribution to tolerance is already well described, especially
knowledge about the combined effect of several gene products related to this
response, culminating in the generation of tolerant plants at the field level with
high-yield production.
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