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Abstract In this research, we propose cognitive spectrum decision model com-
prised of spectrum adaptation (via Raptor codes) and spectrum handoff (via transfer
learning) in Cognitive Radio Networks(CRN), in order to enhance the spectrum ef-
ficiency in multimedia communications. Raptor code enables the Secondary User
(SU) to adapt to the dynamic channel conditions and maintain the Quality of Service
(QoS) by prioritizing the data packets and learning the distribution of symbols trans-
mission strategy called decoding-CDF through the history of symbol transmissions.
Our scheme optimizes the acknowledgement (ACK) reception strategy in multime-
dia communications, and eventually increases the spectrum decision accuracy and
allows the SUs to adapt to the channel variations. Moreover, to enhance spectrum
decision in a long term process, we use Transfer Actor Critic Learning (TACT)model
to allow the newly joined SU in a network to learn the spectrum decision strategies
from historical spectrum decisions of the existing ‘expert’ SUs. Experimental results
show that our proposedmodel works better than themyopic spectrum decisionwhich
chooses the spectrum decision actions based on just short-termmaximum immediate
reward.

Keywords Cognitive Radio Network (CRN) · Cognitive Spectrum Decision
(CSD) · Raptor codes · Machine learning · Transfer Actor-Critic Learning (TACT)

1 Introduction

As per the Federal Communication Commission (FCC) the current frequency spec-
trum is under-utilized [1]. To utilize the vacant spectrum called as Back-hauls, the
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concept of Cognitive Radio Networks (CRNs) has been brought up in which the
unlicensed Secondary Users (SUs) use the idle spectrum when the licensed Primary
Users (PUs) are not using it. But due to the random arrival of PUs, the SUs cannot
utilize the idle spectrum efficiently.

In this research we target spectrum decision (SD) problem, which is to manage
the SU transmission behaviors in order to adopt to the dynamic CRN spectrum
conditions. Especially we focus on two sub-issues in SD (see Fig. 1): The first one
is spectrum adaptation, that is, how a SU adjusts its transmission behaviors (such as
packet sending pace) under highly dynamic channel conditions. The second one is
spectrum handoff, which requires a SU switches to a new channel if the PU comes
back.

On the issue of spectrum adaptation, it is difficult to adjust the sending rates based
on the immediate observation of the channel conditions that could change so quickly.
To overcome such an issue, we will use raptor codes [2] to control the sending pace.
The raptor code is a rateless and regret free, i.e. the lost packet can be recovered
using the earlier symbols received, and it makes use of all the symbols received for
packet recovery (i.e., no symbols arewasted). To further improve spectrumefficiency,
we employ decoding-CDF called as ratemore protocol [3] to transmit the sufficient
amount of symbols in a dynamic and time varying channel. Without decoding CDF,
the sender may send many redundant symbols when the channel condition is good
which consumes more bandwidth unnecessarily or the symbols sent may not be
enough to decode the packet successfully in a poor channel condition.

For spectrum handoff, we propose to use machine learning algorithms to manage
the channel switching under dynamic channel conditions. Especially we adopt node-
to-node transfer learning for spectrum handoff control, (i.e., a node learns from
another node on how to switch to a new channel), instead of using self-learning, (i.e.,
a node learns the channel switching control by itself). A new joined SU can learn
from a neighboring SU (called "expert") that has similar radio conditions as itself.
A benefit of using node-to-node knowledge transfer is that we can reduce the time
taken to converge to optimal value in a global optimization algorithm. Particularly,
we employ Transfer Actor Critic Learning (TACT) [4] to allow a "student" SU to
make correct spectrum decision by learning from an "expert" SU, which shares the
optimal policy acquired from its historical spectrum decision with the learning SU.
One more advantage of TACT is that, as the learning progresses, the student SU
can start adapting to the CRN environment by its own. This is beneficial since each
SU may experience different, dynamic channel conditions due to the independent
and random mobility of each SU. Figure 1 shows our cognitive spectrum decision
model.

The rest of this paper is organized as follows: Section 2 briefly summarizes the
related work. Section 3 then details our CDF and TACT based spectrum decision
model. The simulation results are given in Section 4, and Section 5 concludes this
paper.
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Fig. 1 The concept of Cognitive Spectrum
Decision

Fig. 2 Prioritized Raptor codes.

2 Related Work

Teaching Based Spectrum Decision Enhancement: Teaching based machine
learning algorithms for wireless protocol design have been proposed in Appren-
ticeship learning (AL) [5] and Docitive learning models [6]. Docitive learning [6]
have been used for interference management in femtocells. But those models cannot
provide the explicit channel selection parameters. They also do not describe how
to search an expert node. Besides, in AL model [5], a student node learns from the
expert node all the time, and the student node should encounter exactly the same
channel conditions as the expert node does during the entire learning process. In our
TACT-based approach, a SU learns from expert at the initial stage of transmission
and later learns on its own.

Rateless Codes with Decoding CDF for Enhanced Wireless Transmission: Rate-
less codes enable to decode the packets with low Packet error rate in wireless trans-
missions. Rateless codes in CRN have been proposed in [7] in which SUs act as
relay nodes to forward PUs data packets. Whereas in our approach we employ rate-
less codes with decoding CDF to optimize symbol transmission strategy adjust to
the time varying channel condition adaptively.

3 Cognitive Spectrum Decision

3.1 Spectrum Adaptation Based on CDF-Enhanced
Raptor Codes

Each SU selects a channel for communication by considering various parameters
such as channel holding time, channel sensing accuracy, Packet dropping rate, etc.
The reason of considering all those parameters is due to the dynamic nature of the
CRNchannels that exhibit time-varying link quality. Poor link quality can induce high
packet loss rate. To reduce the packet loss rate the sender needs to adjust the packet
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transmission rate based on channel conditions. As an example, in 802.11 links, the
sender determines the sending rate bymeasuring link signal-to-noise (SNR) ratio and
uses it to estimate the constellation points associated with the respective modulation
modes. It is hard to achieve smooth rate adaption since we typically have only a few
pre-determined rates available in the system. Therefore, it is challenging to design
a dynamic spectrum adaptation scheme in CRNs since channel conditions vary so
quickly, even within the very short individual packet transmission time.

Rateless codes are also called as regret-free codes, which treat all transmitted
symbols equally and no symbol is discarded since any symbol can be used to decode
the later received symbols. Rateless codes have shown promising performance in
multimedia over CRNs. In addition, in the sender side, each packet is disintegrated
into symbols with added small redundancy. This enables the receiver to decode the
symbols successfully as long as it has enough symbols to decode. Moreover, the
sender does not need to make changes in its modulation and encoding schemes. In
other words, it is "rateless" since the sending rates do not need to be micro-adjusted
based on the channel conditions. The sender simply keeps sending symbols until the
receiver is able to decode all the packets, and then the sender sends the next window
of packets. For a well-designed rateless codes, the number of symbols transmitted
closely tracks the variation in channel conditions.

Raptor codes assign different priorities to different packets, and the packets with
higher priority are given more redundancy of symbols. From Fig. 2 we can see that,
initially the packet is decomposed into pieces (group of symbols). Those pieces first
pass through outer encoder called as LDPC codes, and they then pass through inner
encoder called as LT codes. Hence, encoding can be characterized by (K , C, θ(x)),
here K means the number of message blocks (pieces),C is the outer code result (with
block size L). Thus we have L intermediate symbols after passing outer encoder.
The last L − K symbols are redundant symbols. θ(x) is the degree distribution of LT
codes. The L intermediate symbols are encoded with LT code to generate N encoded
symbols. In total N symbols are transmitted over the lossy wireless channel. Even
some packets are received with errors, it can be successfully decoded by using the
previously received symbols. Let Nr be the number of received encoded symbols.
The decoding failure probability, Pe(ξr ), is very low. Here ξr = Nr − K is the
encoding overhead (i.e., redundancy level) of Raptor codes. Then we have:

Pe(ξr ) = 0.85 × 0.567ξr (1)

The average communication overhead, induced due to the extra added symbols
among the source symbols is:

ρ = 1

K

∞∑

i=0

(i.(Pe(i − 1) − Pe(i))) ≈ 2

K
(2)
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According to (2), we can see that we just need to transmit approximately 2 extra
symbols to decode the transmitted packet successfully because extra added symbols
(in average) should be: K × ρ = 2. In addition, we can generate more symbols
for high priority packets so that the receiver can have ample amount of symbols to
decode the high priority packets successfully. Let L1 denote the highest priority, L2

the second highest, and so on. Andwe have Ki source symbols with priority Li . Also
ξr (K i) denotes the number of extra symbols for the priority Li . Then the minimum
coding overhead induced is ρ(Ki ), and the percentage of additional symbols among
the total source symbols for priority Li , should be:

ρ(Ki ) = Ki × P E R + ξr (Ki )

(1 − P E R) × Ki
(3)

Here PER is the packer error rate. Conventional raptor codes treat all packets equally.
Hence, ourUnequal Error Protection (UEP) basedRaptor codes can adaptively adjust
the overhead of raptor codes based on PER for data with different priority levels.

Decoding CDF for Enhanced Raptor Codes: Achieving higher throughput in
wireless networks is an important goal. In rateless codes, without careful scheduling
and estimation the sender will send the data, meaning that in ratless codes the amount
of symbols sent may be too redundant when the channel quality is good or the sent
symbols may not be sufficient to decode the packet successfully in a lossy channel.
Sending too many redundant symbols consumes bandwidth unnecessarily and the
bandwidth cannot be used efficiently. On the otherhand, when packets are not being
decoded successfully the QoE detoriates. Hence, both will not help to attain the
required QoS and QoE. Hence a link layer protocol called Ratemore, is used to
obtain the cumulative distribution for the probability of successful decoding of a sent
packet. Using such a distribution (called as decoding CDF) the sender can estimate
the number of symbols to be in the present channel condition. Using Ratemore
protocol [3] we can design a proper spectrum adaptation strategy to estimate how
many symbols can be transmitted before pausing for the feedback. In addition, the
proper pausing intervals can also be determined to maintains the good QoS without
introducing much communication overhead.

F(x) =
∫ x

0

1

σ
√
2π

e− (x−μ)2

2σ2 dx (4)

Where, x, μ and σ are the Number of samples(NS) , mean and variance estimated
out of the symbols transmission history respectively.

The decoding CDF [3] can be learnt online using the history of transmitted sym-
bols. The Gaussian approximationmodel can be used for CDF learning.We just need
to estimate the parameters includingGaussianmean,μ, and variance, σ 2. Both can be
estimated in exponentially weighted accumulator fashion. Equation (4) shows CDF
learning principle by using Gaussian approximation with learning rate α ∈ [0, 1].
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Fig. 3 (left) No CDF ; (right) With CDF.

Figure 3 shows the benefit of using CDF. The receiver cannot send the ACK unless
there are ample amount of symbols to decode the G#1 packets successfully (see left
figure); but when it has sufficient symbols to decode the packet (see right figure), the
receiver sends the feedback. By using those received symbols, the receiver can draw
a distribution of packet decoding.

3.2 Spectrum Handoff Control Based on TACT Model

The spectrum decision can be modeled as a Markov Decision process (MDP). It can
be represented by a tuple as (S, A, T, R), where S depicts the set of system states,
A is the set of system actions at each state. T represents the transition probability,
where T = P(s, a, s ′) is the probability of transition from state s to s′ when the
action a is taken, and R : S × A �→ R is the reward or cost function, which depicts
the reward for taking an action a ∈ A in state s ∈ S. In MDP we intend to find the
optimal policy π∗(s) ∈ A, i.e. a series of actions {a1, a2, a3, ...} for state s, in order
to maximize the total discount reward function.

States, S : For SU-i, the network state at ( j + 1)th channel assignment stage is
si j = {χ(k)

i j , ξ
(k)
i j , ρ

(k)
i j , φ

(k)
i j }. Where k is the channel being used. χ

(k)
i j is the idle

or busy status of the channel. ξ
(k)
i j is the channel quality determined using Packet

Error Rate(PER). ρ
(k)
i j is the channel traffic load condition determined using non-

preemptive M/G/1 queueing model[5][4] and φ
(k)
i j denotes priority.

Actions, A : Three actions are considered for iSM scheme: 1. stay-and-await:stay
in the same channel and hold the traffic until the channel condition is above a pre-
set threshold; 2. stay-and-adjust (transmit more or less symbols) until the stable
reward,Mean Opinion Score(MOS) value is met using decoding-CDF , and 3. spec-
trum handoff: switch to a new channel; We denote ai j = {β(k)

i j } ∈ A as the candidate

of actions for SUi on state si j after the assignment of ( j + 1)th channel. β(k)
i j repre-

sents the probability of choosing action ai j . A particular action is selected based on
softmax policy as below,

π(k)(s(k), a) = exp( Q(s,a)

τ
)

∑
a′∈A exp( Q(s,a′)

τ
)

(5)

Where τ is called temperature. The high temperature indicates the exploration of the
unknown state-action pairs.
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Reward : We adopt Mean opinion score (MOS) as the reward function using the
following equation:

M O S = a1 + a2F R + a3ln(SB R)

1 + a4P E R + a5(P E R)2
(6)

Where FR is frame rate, SBR is Sender Bit Rate, and TPER is Total Packet Error
Rate. Here a1, a2, a3, a4, and a5 are coefficients estimated using regression analysis.

Self-Learning via Q-Learning: When the new SU (denoted as SU-i) joins the
network and if there is no expert SU that has similar QoS requirement to itself,
then it can learn spectrum decision actions by itself via Q-learning algorithm, as
shown in Fig. 4. Q-learning aims to find the optimal action to maximize the MOS
at the current policy π∗(si, j , ai, j ) in the process of ( j + 1)th channel assignment to
SU-i. The fairness of the action, ai , taken in state si given policy π , can be found by
action-value function, Qπ (s, a), which is given by

Q∗(s, a) = E(Ri, j+1) + γ
∑

s′
Ps,s′(a)max

a′∈A
Q∗(s, a), γ ∈ (0, 1) (7)

Fig. 4 Q-learning based CSH Fig. 5 TACT based CSH.

TACT-Based Spectrum Decision: Q-learning could take a long time to converge
to an optimal solution due to the difficulty of selecting suitable state and initial
parameters in the Markov model. To increase the efficiency of spectrum decision,
the learning process has to be made fast. We thus propose to use Transfer Actor
Critic Learning (TACT) to enhance the learning process. In TACT, the newly joined
SU finds an expert SU which has similar QoS requirement as itself. For example, a
SU with video transmission could find an expert SU with video applications instead
of a SU with data transmission tasks. The expert SU exchanges the optimal policy
learnt during its previous spectrum decisions with the student SU. Moreover, if the
SU cannot learn from the expert anymore due to radio condition mismatch, the SU
can learn from its own historical spectrum decision records.

TACT comprises of three components: actor, critic, and environment. For a given
state, the actor selects and executes an action using softmax policy. This causes a



20 A.M. Koushik et al.

transition from one state to another with certain reward that is fed back to actor. Then
the critic calculates the time di f f erence (TD error) to evaluate the action taken and
updates the value function. After receiving the feedback from the critic, the actor
updates the policy. Figure 5 depicts the TACT principle.

1. Transferring the Knowledge: Both the policy and value function are updated sep-
arately. This makes the transfer of policy knowledge easier than Q-learning model.
i. Action Selection: Initially at state si j the node is using channel k, and SU − i
chooses an action using eqn(6) to find an optimal policy in a current channel.
ii. TD error calculation and State-value function update: TD time difference can
be calculated as,

δ(s, a) = Rs,a + γ
∑

s ′∈S

P(s ′|s, a)V (s ′) − V (s) = Rs,a + γ V (s ′) − V (s)

Where, R(.) is the reward, and V(.) is the state value function. Subsequently, the
state-value function can be updated as

V (s ′) = V (s) + α(ν1(s, m))δ(s, a) (8)

Where ν1(s, m) indicates the occurrence time of the state s in these m stages. α(.) is
a positive step-size parameter that affects the convergence rate.
iii. Policy Update:The policy is updated using the feedback from the critic as follows,

p(s, a) = p(s, a)−β(ν2(s, a, m))δ(s, a) (9)

Where ν2(s, a, m) denotes the occurrence time of action, a at state s in these m
stages. β(.) denotes the positive step size parameter.

2. Overall Policy Update: The overall spectrum decision policy compares the policy
of the expert with that of the student SU, as shown in (10). The overall policy is
determined by the combination of the native policy pn and an exotic policy (expert
policy) pe . Assume at channel k, the state is s(k) and the chosen action is a(k).
Accordingly, the overall policy can be updated as [4]

p(k+1)
o (s, a) = [(1 − ω(ν2(s, a))p(k+1)

n (s, a) + ω(ν2(s, a))p(k+1)
e (s, a)]pt−pt

(10)

Where [x]n
m with n > m, indicates the Euclidean distance of interval [m, n], i.e.

[x]n
m = mif x < m; [x]n

m = n if x < n; and [x]n
m = x if m ≤ x ≤ n. In this scenario,

m = −pt and n = pt . p(m+1)
0 (s, a) = p(m)

0 (s, a), ∀a ∈ A but a �= ai j . Apart from
that, pn(s, a) also updates itself according to (10). Interestingly, at the beginning of
the process, the exotic policy pe(s, a) dominates the overall learning policy, i.e., the
learning SU-i takes the action which is optimal for expert SU; and as the learning
progresses, the effect of exotic policy starts decreasing with parameter ω ∈ (0, 1).
The transfer rate follows ω �→ 0 as the number of iterations goes to ∞. This makes
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student SU-i get rid of negative guidelines from expert SU and can learn by itself
according to new channel conditions.

4 Simulation Results

In our simulation, we assume that the selected channel has high idle duration, channel
condition is generally good (i.e., low packet error rate),and the network conges-
tion(Packet dropping rate) is not serious. In addition, we assume the video transmis-
sion has highest priority and its waiting time in queue is very low.

4.1 Spectrum Adaptation Based on Decoding CDF

In this section, we evaluate the decoding CDF distribution and learning performance
after utilizing raptor codes. Figure 6 shows the decoding CDF learning result using
Algorithm 1 with learning rate specified in Table 1 for different SRN values. i.e.,
from -5 dB to 25 dB. The graph clearly depicts that, with high SNR (say 25 dB),
less symbols ( 100 from Fig. 6) have to be transmitted in order to decode the packet
successfully; whereas at low SNR (-5 dB) large number of symbols (>2300) decode
the transmitted packet successfully.

Fig. 6 decoding CDF
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In Fig. 7, we estimate the throughput that can be achieved using the decoding
CDF strategy and pausing intervals in raptor codes over a Rayleigh fading channel
in the duration of 100ms. In addition, it is assumed that the SU is moving at a speed
of 10m/s with average link SNR=15dB. The raptor code has the throughput almost
half the Shannon capacity due to the fact that it needs to transmit some empty packets
(no payload) in order to meet the latency requirements.

4.2 TACT Enhanced Spectrum Decision

In this section we examine the performance of our TACT based spectrum decision
with theQ-learning andMyopic spectrumdecisions.We assume that the peak sending
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rate of each SU is 3Mbps. Assume that all SUs adopt rateless codes, and the expert
SU teaches a learning SU about its spectrum decision policy as determined in sec-
tion III-B. We examine 3 cases. 1). Fast moving SU, 2). Learning without decoding
CDF, and 3) learning with decoding CDF. Myopic spectrum decision considers only
the immediate maximum reward without considering the long-term effect. Whereas
Q-learning scheme is a self-learning scheme which learns about the spectrum deci-
sion from the scratch. It eventually takes longer time to converge than TACT-based
scheme. TACT learns from the expert SU to reduce the learning time and to get
adapted to the dynamic channel conditions quickly in order to enhance the spectrum
efficiency. We consider MOS as the reward since at the receiver it is hard to measure
the video PSNR (peak SNR). Our scheme has been verified in Fig. 8, in which the re-
ward,MOS (from (8)) achieved in TACT is high compared toQ-learning andmyopic.
TACT learns from the expert SUs policy. Thus it takes less time to achieve optimal-
ity. Q-learning takes the action with the best performance in the future but takes
initial time to converge, whereas myopic scheme takes the action only considering
the immediate reward.

Figure 9 depicts the learning performance when the SU is moving fast and does
not use Ratemore protocol. The SU experiences variation in channel conditions
frequently due to channel fading, signal attenuation and small coherence time, etc.
Those factors eventually affect the reward value as shown in Fig. 9. If the Ratemore
protocol (decodingCDF) is not employed, the SUcannot recover from the low reward
and it continues with the same lower value. If the decoding CDF is employed, the SU
can pause properly for the feedback from the receiver, and it eventually learns and
executes the strategy, i.e., transmitting enough symbols for the receiver to decode the
packet successfully. This conclusion is shown in the Fig. 10 in which the SU is able
to recover its optimal value with the aid of the strategy learnt from decoding CDF.
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Figure 11 shows the variation of PSNR with respect to different SNRs for the
video frames shown in Fig. 12. Compared to general myopic scheme (without using
learning model), our method improves the PSNR all the times. Figure 12 shows the
video resolution comparisons between our scheme and myopic spectrum decision.
We can see our scheme outperforms the myopic one.
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Fig. 12 Video effect comparisons of learning-based and myopic spectrum decision schemes.

5 Conclusions

In this paper we have demonstrated our cognitive spectrum decision scheme using
rateless codes, decoding CDF, and machine learning algorithm called TACT. It is
observed that the rateless codes along with decoding CDF canmaintain the QoS over
dynamic channel conditions and optimize the feedback and symbol transmission
strategies. TACT-based learning algorithm enhances the process of adaptation to
the channel conditions. This increases the throughput and spectrum utilization. Our
cognitive spectrum decision can be applied in multimedia communications over
CRNs.
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