
Chapter 2

Curve Fitting

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Two-dimensional curve fitting starts with experimental xy-error data (points in

diagram below) which consist of data triples (xi,yi,σi) with an argument value xi, a

corresponding dependent value yi and the (not illustrated) statistical error σi of the

yi value (again note that xy-error data are generated by experimental setups which

specify a xi value and measure a corresponding yi value for that fixed xi value where

the errors of all xi values are not taken into account, i.e. all xi values are considered

to be error-free since their errors propagate to corresponding bigger errors σi of the

dependent yi values):

pureModelFunction=Function[x,1.0+1.0*x+0.4*xˆ2-0.1*xˆ3];

argumentRange={-2.0,5.0};

numberOfData=100;

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureModelFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

© Springer International Publishing Switzerland 2016
A. Zielesny, From Curve Fitting to Machine Learning, Intelligent Systems
Reference Library 109, DOI 10.1007/978-3-319-32545-3_2

61

62 2 Curve Fitting

Curve fitting tries to adjust a smooth and balancing model function f (x) (solid

line in diagram below)

modelFunction=a1+a2*x+a3*xˆ2-a4*xˆ3;

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,modelFunction,

argumentOfModelFunction,parametersOfModelFunction];

labels={"x","y","Curve fitting"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

that describes the data adequately (all details will be outlined in a minute). In

more mathematical terms curve fitting is a data analysis procedure which tries to

construct a linear or non-linear model function

y = f (x)

2 Curve Fitting 63

from experimental xy-error data. Besides the rare case that the model function

f (x) is completely known (then there is nothing to be fitted: The quantity of interest

may be directly calculated in this holy grail situation) three different scenarios may

be distinguished:

• Scenario 1: The structural form of the model function f (x) is theoretically or

empirically known but not the values of its parameters, e.g. the structural form

is known to be a straight line but the values of its parameters (i.e. of slope and

intercept) are unknown.

• Scenario 2: The structural form of the model function f (x) is unknown but it

may be somehow guessed.

• Scenario 3: The structural form of the model function f (x) is unknown and there

is no idea what it is about.

Scenario 1 demands a how-to procedure to estimate the unknown parameters of

the structurally known model function in an optimum way whereas scenario 2 needs

a construction strategy that combines trial and error as well as good guesses in ad-

dition (in two dimensions a good guess is quite often feasible in contrast to higher

dimensional machine learning problems). For scenario 3 at least some criteria may

be derived that allow the construction of something that is smooth and balancing.

For scenario 1 (and scenario 2 after the good guess) the estimation of optimum val-

ues for the unknown parameters of the model function is the essential step to achieve

a good fit. If the statistical distribution of the experimental xy-error data is known

this may be performed on a solely statistical ground which then defines the criterion

of optimization (see [Hamilton 1964], [Barlow 1989], [Bevington 2002] or [Brandt

2002]). For all further discussions a Gaussian (normal) distribution of experimental

errors is always assumed which is the most common case in practice (thanks to the

central limit theorem). In addition each data triple (xi,yi,σi) of the xy-error data is

assumed to be statistically independent of each other, i.e. the values of a data triple

are by no means influenced by the values of other data triples (which leads to a so

called maximum likelihood estimation). Note that this latter assumption is a seri-

ous and hard to achieve precondition since a lot of natural (and social) phenomena

are subtly correlated to each other. So special care has to be taken for experimental

setups to achieve true independence.

If the model function could be successfully fitted to the data it may be used

twofold: For interpolation purposes to calculate function values within the experi-

mental argument range [xmin, xmax] as well as for extrapolation purposes to calculate

function values outside this argument range. The latter is possible since the struc-

tural form of the model function is a priori known. This is a clear difference to

mere data smoothing or machine learning methods that have no initial idea about

the model function: Their constructed model functions can not be used for extrapo-

lation purposes in principle (multiple linear regression will be an exception but this

method is usually not accounted to fall into the machine learning reign).

When a model function is to be guessed (scenario 2) some general considerations

should be taken into account. First the number of parameters should be considerably

smaller than the number of data (of course this should apply to scenario 1 too): Oth-

64 2 Curve Fitting

erwise a simple look-up table would be easier to create. The number of parameters

should be as small as possible or in other words: The model function with fewer

parameters that describes the data satisfactorily is preferred to the model function

with more parameters. This is a well-known utilization of Occam’s razor - one of

the philosophical principles of scientific practice that states that the explanation of

any phenomenon should make as few assumptions as possible.

In the case that there is no idea of the functional form of a model function (sce-

nario 3) a convincing data smoothing procedure is outlined that uses smoothing

cubic splines. It should be clear that this smoothing model function can not be used

for extrapolation purposes as mentioned before.

Chapter 2 starts with an outline of necessary basics: The criteria and quantities

for curve fitting and data smoothing are intuitively derived with arguments of plau-

sibility only (section 2.1). To tackle scenario 1 quantities and diagrams to assess the

goodness of fit are illustrated by means of a perfect straight line fit to simulated data

(section 2.2). The empirical construction of a model function for real experimental

data on the basis of trial and error in combination with educated guesses is outlined

to illustrate scenario 2 as a next step. The extrapolation problem is addressed in

particular (section 2.3). Problems and pitfalls of curve fitting tasks are discussed in

detail afterwards: They are at heart of this chapter since they are often the hurdle

that prevents practitioners from successful data analysis. Fitting non-linear model

functions requires adequate start values for all parameters that allow the fitting pro-

cedure to succeed: Problems and search strategies are sketched. The extraction of a

model function from experimental data may be challenging up to ambiguous which

is discussed for difficult curve fitting problems. Model functions themselves may

be inappropriately constructed that may lead to fatal pitfalls. A more subtle kind of

inappropriateness of a model function is exemplified by an effort to extract infor-

mation from data that they simply do not contain (section 2.4). The estimation of

parameters’ errors, possible corrections and the influence of confidence levels are

demonstrated afterwards. Parameters’ errors are influenced by the precision of data

as well as their number: An iterative method for the estimation of the necessary

number of data to achieve a desired parameters’ precision is suggested. Experimen-

tal data of relatively low precision may lead to large parameter errors for specific

model functions: This prevents support or rejection of underlying theoretical con-

siderations. In this context there is a strong temptation for educated cheating which

means putting up unjustified statements that seem to be advised by the data analy-

sis procedure - an illustrative example is shown. The discussion of the influence of

experimental errors on the fitted optimum parameters’ values and the related possi-

ble problems of data transformations complement this topic (section 2.5). It is often

necessary to enhance theoretical model functions by empirical parameters to suc-

cessfully describe experimental data. An example is discussed that also makes use

of the dangerous removal of outliers (section 2.6). Mere data smoothing without any

knowledge of a model function (scenario 3) is demonstrated to create a smooth and

balancing description of data (section 2.7). Finally the whole chapter is summarized

with a few cookbook recipes for successful curve fitting and data smoothing (section

2.8).

2.1 Basics 65

2.1 Basics

A curve fitting procedure may be derived with mathematical statistics (see [Hamil-

ton 1964], [Barlow 1989], [Bevington 2002], [Brandt 2002] and [Press 2007])

whereas this section follows an intuitive approach that only uses arguments of plau-

sibility - but of course comes to the same results: How is a model function to be fit?

How may data satisfactorily be smoothed?

2.1.1 Fitting data

At first sight it is obvious that a good fit should minimize the so called residuals, i.e.

the deviations between experimental values yi and their corresponding calculated

function values f (xi):

yi − f (xi) −→ minimize!

Since positive and negative residuals should be treated equally they may be

squared to get rid of the sign:

(yi − f (xi))
2 −→ minimize!

The absolute value or a higher even power of the residuals could be taken as

well with respect to plausibility but this would lead to other statistics so the square

is taken for statistically independent and normally distributed deviations (behind

the scenes: The square stems from the square in the exponential term of a normal

distribution where the minimum postulation leads to maximum likelihood). The sum

of squared residuals of all K xy-error data triples

∑K
i=1 (yi − f (xi))

2 −→ minimize!

may be calculated as a quantity to be minimized for a good fit. But so far the

errors σi of the experimental values yi are neglected. The smaller a single error σi

the more precise its corresponding experimental value yi. If each residual is divided

by its corresponding error an individual weight is attributed: The resulting fraction

yi− f (xi)
σi

is the bigger the smaller the error σi is. With the weighted sum of squares

∑K
i=1

(
yi− f (xi)

σi

)
2 −→ minimize!

66 2 Curve Fitting

a plausible minimization quantity is finally achieved: It becomes smaller the

smaller the residuals are, i.e. the better the model function f (x) describes the data.

Each single residual is weighted with its error σi: The smaller an error σi the more

the corresponding residual (yi − f (xi)) is taken into account (i.e. the more it con-

tributes to the sum). This minimization process is known in statistics as the method

of least squares and the weighted sum of squares is called χ2 ("chi-square"):

χ2 = ∑K
i=1

(
yi− f (xi)

σi

)
2

If the L parameters a1 to aL of the model function f are explicitly written

χ2 (a1, ...,aL) = ∑K
i=1

(
yi− f (xi,a1,...,aL)

σi

)
2

it becomes obvious that the quantity χ2 is a function of these parameters: The

parameters a1 to aL of the model function f are the variables of the quantity χ2

which is to be minimized. Thus minimization of χ2 (a1, ...,aL) means finding values

for the parameters a1 to aL so that the value of χ2 (a1, ...,aL) becomes a global

minimum in parameters’ value regions that have scientific meaning. The values of

the parameters a1 to aL at the global minimum of χ2 (a1, ...,aL) are then called the

optimum estimates for the true parameter values in a statistical sense. Note that

the functional form of f is assumed to be true as a precondition of all statistical

procedures: Only parameter values can be estimated but not the structural form of

the function f itself.

In summary a linear or non-linear curve fitting procedure is a mere global min-

imization of the quantity χ2 (a1, ...,aL). The global minimum may be calculated

analytically in the case that the model function f is linear in its parameters: Then

χ2 (a1, ...,aL) is a parabolic hyper surface and possesses exactly one minimum. But

it may only be approximated with an iterative search strategy in the case that f is

non-linear in its parameters (compare chapter 1 and [FitModelFunction] in the ref-

erences). In the latter case the quantity χ2 (a1, ...,aL) may contain multiple minima

and the minimization procedure may fail (e.g. get stuck in a local minimum, exceed

the defined maximum number of iterations etc.). Failure will be explicitly explored

and discussed in subsequent sections.

2.1.2 Useful quantities

There are a number of related statistical quantities that will prove to be useful for

further discussions. If the model function describes the data well the residuals (yi −
f (xi)) should be comparable in size to the errors σi on average (otherwise the errors

σi would not be true errors but systematically too large or too small on average).

This means that the fractions

2.1 Basics 67

yi− f (xi)
σi

≈ 1

should be close to 1 on average. So the sum of squares evaluates approximately

to

χ2 = ∑K
i=1

(
yi− f (xi)

σi

)
2 ≈ ∑K

i=1(1)
2 = ∑K

i=1 1 = 1+ 1+ ...+ 1 = K

With this result in mind a statistical quantity named χ2
red ("reduced chi-square")

can be defined as

χ2
red (a1, ...,aL) =

χ2(a1,...,aL)
K−L

= 1
K−L ∑K

i=1

(
yi− f (xi ,a1,...,aL)

σi

)
2 ≈ 1 for K � L

which evaluates to a value close to 1 for a good fit since the number of data K

should be considerably larger than the number of parameters of the model function

L, i.e. K � L. The denominator (K − L) is called degrees of freedom since the

parameter values are deduced from the data. The residuals of a fit may be condensed

into the single statistical quantity σfit called the standard deviation of the fit. If all

errors σi are identical (i.e. equal to σ) the standard deviation of the fit is defined as

σfit =
√

1
K−L ∑K

i=1 (yi − f (xi,a1, ...,aL))2 for σi = σ ; i = 1, ...,K

In general with individual errors σi the standard deviation of the fit is expressed

as

σfit =

√
1

K−L ∑K
i=1

(
yi− f (xi,a1,...,aL)

σi

)
2/
√

1
K ∑K

i=1
1

σ 2
i

where the latter equation reduces to the previous one in the case of equal σi. The

statistical standard deviation of the fit is similar to a purely empirical quantity called

the rrroot mmmean sssquared eeerror (RMSE). In this context the RMSE of a fit is simply

defined as

RMSE =
√

1
K ∑K

i=1 (yi − f (xi))2

A RMSE may readily be generalized to machine learning applications for prob-

lems in multiple dimensions. The quantities χ2
red (a1, ...,aL), σfit and RMSE respec-

tively may be used to assess the goodness of a fit. As far as the data’s errors are

concerned a situation quite often encountered in practice is the following: The pre-

cise statistical errors σi of the yi values are unknown, but weights wi for the yi values

are available. The relation of the weights wi and their corresponding statistical errors

σi can be written as

68 2 Curve Fitting

σi =
α
wi

where the factor α is used to calculate a statistical error from its corresponding

weight. Weights are defined to be the heavier the bigger they are: Statistical errors

lead to higher weights the smaller they are. Therefore weights and errors are in-

versely proportional by the constant factor α . If only weights are known the factor

α is unknown. But a reasonable estimate of α may be obtained from the χ2
red value

(which should be close to 1 as mentioned before):

χ2
red (a1, ...,aL) =

χ2(a1,...,aL)
K−L

= 1
K−L ∑K

i=1

(
yi− f (xi ,a1,...,aL)

σi

)
2 ≈ 1

1
K−L ∑K

i=1

(
yi− f (xi,a1,...,aL)

α
wi

)
2 = 1

α2(K−L) ∑K
i=1 w2

i (yi − f (xi,a1, ...,aL))
2 ≈ 1

α ≈
√

1
(K−L) ∑K

i=1 w2
i (yi − f (xi,a1, ...,aL))2

In practice it is common to correct the errors σi of the xy-error data with this

method: The original errors σoriginal,i of the xy-error data are assumed to be weights

only

wi =
1

σoriginal,i

and are transformed after the fit into the corrected errors σcorrected,i:

σcorrected,i =
α
wi

= α
1

σoriginal,i

= ασoriginal,i

These corrected errors σcorrected,i are then used for the derivation of further sta-

tistical quantities related to the fit - above all the estimation of errors σa1
, ...,σaL

of

the model function’s parameters a1, ...,aL.

2.1.3 Smoothing data

When it comes to mere data smoothing statistics is no longer helpful. As already

pointed out statistics is not able to guess a model function in principal - it may only

estimate optimum values of a structurally known model function’s parameters and

related quantities with a bunch of statistical preconditions (like independent and nor-

mally distributed data). Therefore data smoothing comprises a set of techniques that

somehow construct a smooth and balancing interpolating model function from ex-

perimental xy-error data (extrapolation is of course not possible). There is no objec-

tive way to smooth data so there is nothing like the best smoothing technique. With

data smoothing we are back to the jungle where everything is allowed that leads to

a satisfactory result. Among the numerous techniques for smoothing experimental

2.1 Basics 69

xy-error data the smoothing cubic splines method is sketched in the following (see

[Reinsch 1967] and [Reinsch 1971]). This method seems to produce satisfactory

results accepted by experimental scientists in general - but this technique is by no

means better or superior to others. Data smoothing with cubic splines, i.e. cubic

polynomials

y = f (x) = a1 + a2x+ a3x2 + a4x3,

uses the already sketched χ2
red value

χ2
red =

χ2

K
= 1

K ∑K
i=1

(
yi− f (xi)

σi

)
2

as a reasonable first control parameter: Good data smoothing should lead to a

smoothing model function with

χ2
red ≈ 1

For convenience the same notation is used for data smoothing as for statistically

fitting model functions. But data smoothing is not statistically based. Quantities like

χ2
red have no longer any statistical meaning but are simply used as helpful quantities

for the smoothing task. Therefore χ2
red is set to

χ2

K
since there are no statistical de-

grees of freedom for data smoothing. The same applies to quantities like σfit: They

also use the number of data K instead of the degrees of freedom within this con-

text. The cubic splines are constructed from data point to data point, i.e. for K data

points (K − 1) cubic splines have to be used. These cubic splines must be adjusted

to achieve the initially defined χ2
red value together with the constraint of a criterion

of smoothness: The resulting smoothing model function (composed of the piece-

wise cubic splines) should posses the smallest overall curvature possible to achieve

the predefined χ2
red value. Since the curvature is measured by the second derivative

f ”(x) of the model function the integral of the square of the second derivative over

the argument interval [x1, xL] is to be minimized

∫ xL
x1

(
d2 f (x)

dx2

)2

dx −→ minimize!

where the xy-error data are assumed to be sorted ascending according to their

argument values xi. The square of the second derivative is used for equal treatment of

positive and negative curvature. Both criteria are of course contradicting each other:

The smaller the χ2
red value the larger the curvature integral value and vice versa.

With this mutual interplay a satisfactory smooth and balancing model function may

be constructed.

70 2 Curve Fitting

2.2 Evaluating the goodness of fit

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

A simple example is used to demonstrate the curve fitting procedure and the

evaluation of the goodness of fit. One thousand (xi,yi,σi) data triples

numberOfData=1000;

are simulated around the straight line y = f (x) = 1+ 2x

pureOriginalFunction=Function[x,1.0+2.0*x];

in the argument range [2, 5]

argumentRange={2.0,5.0};

with a relative error of 5% of the function value (since the straight line is con-

stantly increasing a minimum argument value of 2.0 leads to a minimum function

value of 5.0: A relative error of 5% for 5.0 is an absolute value of 0.25. A maximum

argument value of 5.0 corresponds to a function value of 11.0 with a 5% relative

error of 0.55)

errorType="Relative";

standardDeviationRange={0.05,0.05};

using the CIP CalculatedData package. All data are normally distributed around

their function values, the relative error denotes the standard deviation of the normal

distribution used for the data generation (i.e. for a y value of 5 a standard deviation

of 0.25 is used, for a y value of 11 a standard deviation of 0.55 respectively):

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType];

Here is a plot of the mere simulated data:

labels={"x","y","Simulated data"};

pointSize=0.01;

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels,

GraphicsOptionPointSize -> pointSize]

2.2 Evaluating the goodness of fit 71

Curve fitting procedures are performed with the CIP CurveFit package. For a fit

the model function itself, the argument and the parameters of the model function

must be defined

modelFunction=a1+a2*x;

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

and submitted together with the xy-error data to the FitModelFunction method to

produce a result captured in a curveFitInfo data structure (see [FitModelFunction]

for algorithmic details):

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

If no error messages are thrown the fit procedure was successful and results can

be inspected. The function plot with the fitted straight line and the simulated data

painted above provides a first impression:

labels={"x","y","Simulated data and model function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,

GraphicsOptionPointSize -> pointSize,

CurveFitOptionLabels -> labels];

72 2 Curve Fitting

The fit looks perfect which is also affirmed by inspection of the residuals, i.e.

the deviations between the data and the model function: The residuals plot for the

relative residuals

CIP‘CurveFit‘ShowFitResult[{"RelativeResidualsPlot"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

exhibits statistically distributed residuals predominantly in the expected value

range of ± 5% without any systematic deviation patterns. Residuals plots are prob-

ably the most important goodness-of-fit visualizations: If they look good the fit in

general is good (but compare comments on educated cheating below). Note that the

index of an residual corresponds to the x value of its data triple: Residual with in-

dex 1 corresponds to the data triple with the smallest x-value, the residual with the

highest index to the data triple with the maximum x-value. The standard deviation

of the fit σfit

2.2 Evaluating the goodness of fit 73

CIP‘CurveFit‘ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 3.699×10-1

lies well within the range of (absolute) simulated errors from 0.25 to 0.55. The

value of χ2
red

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 9.955×10-1

is close to 1 as expected. The fitted model function is:

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

1.01901+1.98941x

Note that the estimated optimum parameter values are not identical to the true pa-

rameter value of 1.0 and 2.0 used for the data generation. The errors of the simulated

data are propagated to corresponding errors of the estimated optimum parameter’s

values so the latter are also not exact but biased by errors:

CIP‘CurveFit‘ShowFitResult[{"ParameterErrors"},xyErrorData,

curveFitInfo];

Value Standard error Confidence region

Parameter a1 = 1.01901 0.0454137 {0.973574, 1.06445}
Parameter a2 = 1.98941 0.014094 {1.9753, 2.00351}

The estimated optimum value of parameter a1 is 1.02, its standard error is 0.05:

So the parameter value lies with a standard statistical probability of 68.3% in the

confidence region 1.02 ± 0.05, i.e. interval [0.97, 1.07]. Within linear statistics an

awful lot of additional statistical quantities could be deduced. Within the scope of

this book the discussion is restricted to basic quantities that play the most important

role for evaluation and analysis purposes and those quantities and diagrams that may

readily be generalized to machine learning applications for problems with more

dimensions. The empirical root mean squared error RMSE should also lie within

the range of (absolute) simulated errors from 0.25 to 0.55

CIP‘CurveFit‘ShowFitResult[{"RMSE"},xyErrorData,curveFitInfo];

74 2 Curve Fitting

Root mean squared error (RMSE) = 4.044×10-1

and is similar to σfit as expected. The mean, median, standard deviation and max-

imum values of the (absolute) relative residuals do correspond perfectly to the sim-

ulated errors:

CIP‘CurveFit‘ShowFitResult[{"RelativeResidualsStatistics"},

xyErrorData,curveFitInfo];

Definition of ’Residual (percent)’: 100*(Data - Model)/Data

Out 1 : Residual (percent): Mean/Median/Maximum Value = 4.01 / 3.28 / 2.27×101

Out 1 means output component 1: In two-dimensional curve fitting there is only

one output component whereas machine learning problems with more dimensions

may contain several output components. Another frequently used diagram is the

model-versus-data plot: The output (function value) of the model function is plotted

against the corresponding data value:

CIP‘CurveFit‘ShowFitResult[{"ModelVsDataPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

GraphicsOptionPointSize -> pointSize];

Out 1 : Correlation coefficient = 0.973565

A statistical (Pearson) correlation coefficient was calculated in addition that con-

denses the agreement between data and output values into a single quantity (where

a value closer to one means a desired high correlation between both quantities and a

value closer to zero an unwanted low correlation which thus motivates a closer look

2.2 Evaluating the goodness of fit 75

at the used model function with respect to its appropriateness). In an alternative dia-

gram all model function values are sorted in ascending order and are jointly plotted

with the corresponding data values above:

CIP‘CurveFit‘ShowFitResult[{"SortedModelVsDataPlot"},xyErrorData,

curveFitInfo];

The data line above should statistically/randomly crawl around the model line

below (the model function outputs) as shown in this perfect example. If the statis-

tical distribution of relative residuals is approximated by the frequency of relative

residuals within a number of interval bins (default: 20 bins) that cover the whole

range of relative residual values a normal distribution around zero is approximated

as expected

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo];

76 2 Curve Fitting

since a normal distribution was used to generate the data. The width of the ap-

proximated Gaussian bell curve corresponds perfectly to the 5% value of the stan-

dard deviation used for the data generation above. All plots reveal an excellent and

very convincing model function fit. In the next section it is shown how the sketched

quantities and diagrams may be utilized to construct a model function for real ex-

perimental data.

2.3 How to guess a model function

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

As a practical example a model function for the temperature dependence of the

viscosity of water is to be constructed. The viscosity of a liquid is a dynamic prop-

erty which is the result of the specific molecular interactions describable in the reign

of quantum theory. But the dynamics of these interactions is too complex to be cal-

culated ab-initio on the grounds of today’s science. Moreover water is not a simple

liquid in chemical terms although it is so well-known from everyday life: The water

molecules form specific dynamic supramolecular structures due to their ability to

create hydrogen bonds - specific weak quantum-mechanical interactions that also

hold our DNA strands together. The experimental data are provided by the CIP Ex-

perimentalData package (see Appendix A for reference):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

They describe the temperature dependence of the viscosity η of water in the

temperature range from 293.15 to 323.15 K (20 to 50 degree Celsius) with a very

2.3 How to guess a model function 77

small estimated experimental error of 0.0001
(
10−4

)
cP (centi-Poise is the scientific

unit of viscosity) as is illustrated by the mere data plot:

labels={"T [K]","\[Eta] [cP]","Viscosity of water"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

The dependence of the viscosity on the temperature is distinct but not dramati-

cally non-linear as may be shown by an initial straight-line fit:

η = f (T) = a1 + a2T

modelFunction=a1+a2*T;

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"T [K]","\[Eta] [cP]","Data above model function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

78 2 Curve Fitting

But the residuals (i.e. the deviations between data and linear model) are orders of

magnitude larger than the experimental errors and they reveal a distinct systematic

deviation pattern:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.991451

Thus a linear straight line is only a poor model for the data. Note that the popular

correlation coefficient is very close to 1 which indicates a high correlation between

data and machine output: This is often cited by practitioners as a convincing good-

ness of fit criterion but it is a number which has to be judged with caution (see

discussion below). An improvement may be attempted by introduction of a third

parameter to build a (non-linear) quadratic parabola

η = f (T) = a1 + a2T + a3T 2

2.3 How to guess a model function 79

as a model function:

modelFunction=a1+a2*T+a3*Tˆ2;

parametersOfModelFunction={a1,a2,a3};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

The function plot looks better and the residuals are reduced by an order of mag-

nitude but are still beyond acceptability:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999888

80 2 Curve Fitting

In principal the degree of the fit polynomial could be raised with additional pa-

rameters to improve the fit but this strategy is generally a poor one: The high-order

polynomials tend to oscillate and may not be predictive for extrapolation or even

interpolation purposes (also compare below). Since the viscosity is decreasing with

increasing temperature a two-parameter inversely proportional approach seems to

be a plausible alternative trial:

η = f (T) = a1 +
a2
T

modelFunction=a1+a2/T;

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

Unfortunately there is no real improvement but it might be a good idea to shift

the data along the T axis with a third parameter in addition:

η = f (T) = a1 +
a2

a3−T

modelFunction=a1+a2/(a3-T);

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.0},{a2,-10.0},{a3,250.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

Note that start parameters had to be introduced to perform a successful fit: This necessity is addressed in the

next sections to ease the current discussion.

2.3 How to guess a model function 81

For the first time the function plot seems to be convincing. The residuals plot

shows a dramatic improvement

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999998

with residuals in the order of the experimental error. But an unlovely systematic

deviation pattern can still be detected: This indicates that the true functional form is

still missed. As another alternative a two-parameter decaying exponential function

may be tried

η = f (T) = a1 exp{a2T}

modelFunction=a1*Exp[a2*T];

parametersOfModelFunction={a1,a2};

82 2 Curve Fitting

startParameters={{a1,0.1},{a2,-0.001}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

again with a poor result

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.998755

so the use of an inverse argument in the exponential may be a choice

2.3 How to guess a model function 83

η = f (T) = a1 exp
{

a2
T

}

modelFunction=a1*Exp[a2/T];

parametersOfModelFunction={a1,a2};

startParameters={{a1,0.1},{a2,1000.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

that actually offers a better outcome:

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 0.999704

84 2 Curve Fitting

The introduction of the exponential function with a reciprocal argument pro-

duced the best two-parameter fit so far (this is also a historical result obtained by

Andrade, see [Andrade 1934]: Note that the fitted model function can be linearized

by a logarithmic transformation - the only feasible solution for non-linear problems

in the precomputing era). Since shifting along the T axis with a third parameter was

successful earlier it is tried again with the new functional form:

η = f (T) = a1 exp
{

a2
a3−T

}

modelFunction=a1*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

From visual inspection the fit looks perfect and the residuals plot

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

2.3 How to guess a model function 85

Out 1 : Correlation coefficient = 1.

reveals residuals that satisfactorily correspond to the experimental error of 0.0001

cP (this model function was historically found by Vogel after laborious linearization

work, see [Vogel 1921]). Since a systematic pattern of deviations is still obvious

two nearby improvements are finally tested which do not increase the number of

parameters. First the initial factor is divided by T to try a combination with the

inversely proportional approach tested earlier

η = f (T) = a1
T

exp
{

a2
a3−T

}

modelFunction=a1/T*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

86 2 Curve Fitting

Out 1 : Correlation coefficient = 1.

ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 3.321×10-5

and in addition the shift along the T axis is generalized:

η = f (T) = a1
a3−T

exp
{

a2
a3−T

}

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"AbsoluteResidualsPlot",

"CorrelationCoefficient"},xyErrorData,curveFitInfo];

Out 1 : Correlation coefficient = 1.

CIP‘CurveFit‘ShowFitResult[{"SDFit"},xyErrorData,curveFitInfo];

Standard deviation of fit = 2.937×10-5

The latter model function produces an absolutely convincing result: Systematic

deviation patterns are vanished and the residuals are even below the estimated ex-

perimental error. This is also revealed by the χ2
red value of

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare"},xyErrorData,

curveFitInfo];

2.3 How to guess a model function 87

Reduced chi-square of fit = 8.625×10-2

which is considerably below 1 (this finding will be discussed in a subsequent

chapter in combination with parameter errors). The optimum description of the data

achieved by empirical construction may now be stated:

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

− 19.3098e
− 200.831

179.802−T

179.802−T

For a satisfactory description of the data a three-parameter model function is

necessary compared to the two-parameter results (this view is also supported by the

historical trend from Andrade to Vogel, see above). The final model function may

be used for interpolation and extrapolation purposes. If the correlation coefficient

is again inspected for the sketched trial and error model generation procedure its

relative value corresponds to the true goodness of fit of each model (the better the

model the closer is the correlation coefficient to one). But note that its absolute

value is always very near to 1 so care has to be taken if a guessed model function

is only cited with its correlation coefficient without any further information (which

quite often occurs in practice) since this does not necessarily mean a good fit. For

the water-viscosity data it is finally possible to precisely show what is meant by

reasonable extrapolation with the following plot:

pureFunction=Function[x,CIP‘CurveFit‘CalculateFunctionValue[x,

curveFitInfo]];

argumentRange={263.0,383.0};

plotRange={0.0,3.0};

plotStyle={{Thickness[0.005],Black}};

labels={"T [K]","\[Eta] [cP]","Extrapolation problems"};

extrapolationGraphics=

CIP‘Graphics‘PlotXyErrorDataAboveFunctions[xyErrorData,

{pureFunction},argumentRange,plotRange,plotStyle,labels];

intervalGraphics=Graphics[{RGBColor[0,1,0,0.2],

Rectangle[{273.15,0.0},{373.15,3.0}]}];

Show[extrapolationGraphics,intervalGraphics]

88 2 Curve Fitting

The model function does not know that liquid water undergoes phase transitions

if the temperature is lowered or raised beyond the illustrated background region in

the diagram: Below 273.15 K water is solid matter (ice) with a practically infinite

viscosity, above 373.15 K water is gaseous (vapor) with a dramatically reduced

viscosity. To calculate a viscosity at 260 K is possible

argument=260;

CIP‘CurveFit‘CalculateFunctionValue[argument,curveFitInfo]

2.94556

but this value is not of this world. Whereas extrapolations around the data argu-

ment range may be helpful and sufficiently precise any large-scale extrapolations

should always be regarded with suspicion. In summary it should be noted that the

outlined construction strategy is very common for an educated guess of a model

function. A combination of experience with mere trial and error is very often suc-

cessful in two-dimensional curve fitting.

2.4 Problems and pitfalls

Linear as well as non-linear curve fitting was shown to be an optimization task

(again note that the terms linear and non-linear denote the linearity or non-linearity

of the model function with regard to its parameters a1 to aL, not the linear or non-

linear dependence of the function value y on the argument value x): The global

minimum of the χ2 (a1, ...,aL) surface is to be found. As discussed in chapter 1

minimization procedures may fail. Failure leads to wrong estimates for the parame-

ters’ values and the parameters’ errors or even a crash (i.e. an internal termination)

of the whole fitting procedure.

Linear curve fitting implies the minimization of a parabolic χ2 (a1, ...,aL) hyper

surface that contains only one global minimum which can be calculated directly

2.4 Problems and pitfalls 89

by analytical means (see [Hamilton 1964], [Bevington 2002] or [Brandt 2002] for

details). But this calculation involves a matrix inversion which can be a numer-

ically ill-conditioned operation, i.e. problems may occur because computers can

only calculate with a finite number of digits. These numerical problems can be tack-

led with state-of-the-art algorithms so failure usually happens in consequence of

the implementation of deficient algorithms with missing safeguards against numeri-

cal instabilities. Since CIP is based on Mathematica which provides state-of-the-art

algorithms linear curve fitting almost always works without problems. But there

should be some awareness if alternative software applications are used as black

boxes for linear curve fitting to avoid unnoticed pitfalls: There is a lot of dangerous

stuff around - may it be commercial or free.

The situation with non-linear curve fitting is fundamentally different: Since

χ2 (a1, ...,aL) may be an arbitrarily difficult and complex curved hyper surface for a

non-linear model function it may possess a plethora of minima. There is no way

to directly calculate the global minimum by analytical means in principle. The

χ2 (a1, ...,aL) hyper surface can only be searched by iterative local minimization

procedures that start at user-defined parameters’ values and explore their surround-

ings (compare chapter 1 and [FitModelFunction] in the references). In addition to

these principal issues the numerical problems sketched for linear curve fitting may

be encountered as well or even in a more serious manner. So in practice there may be

an evil mixture of problems - some that can be avoided by state-of-the-art software

and others that can only be attributed to the nature of the fitting problem and may

be tackled by specific strategies. Some practical problems together with possible

solution strategies are outlined in the following.

2.4.1 Parameters’ start values

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

The necessity of adequate parameters’ start values may be illustrated by an ex-

ample. Fifty xy-error data triples

numberOfData=50;

are simulated around the non-linear Gaussian-peak shaped function

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}

90 2 Curve Fitting

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

in the argument range [1.0, 7.0]

argumentRange={1.0,7.0};

with an absolute standard deviation of 0.5

standardDeviationRange={0.5,0.5};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

and finally plotted for visual inspection:

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

If the data are fitted with the corresponding model function with three parameters

and the CIP default settings

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 91

Fitted model function:

5.53945e−(−25.4806+x)2 +0.681816x

the achieved result is simply wrong. What happened? Internally the FitModel-

Function method generates random parameters’ start values for the local minimiza-

tion procedure - and these start values are simply inadequate in this case (but they

may work perfectly in other fitting procedures). So start values for the parameters

must be provided by hand. Since the true parameter values are 0.5, 3.0 and 4.0 (see

above) everything works fine if parameters’ start values are specified near the solu-

tion:

startParameters={{a1,0.4},{a2,3.1},{a3,3.9}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

92 2 Curve Fitting

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

A perfect fit is the result. It is well-known to practitioners that fitting Gaussian-

peak shaped model functions requires a good guess for the parameter value in the

exponential term: This start value may be deduced from the mere data in this case:

The maximum is around x = 4 so use a value around 4 as a start value for parameter

a3.

The worst case occurs if a3 is chosen to be very unfavorable: Then the whole

fitting procedure may crash (i.e. may internally be terminated) as shown in the fol-

lowing example:

startParameters={{a1,0.4},{a2,3.1},{a3,-3.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

Underflow occurred in computation.

A value was calculated during the minimization process that was smaller than the

smallest allowed value of the Mathematica system and therefore an underflow error

message (and subsequent error messages) were generated. Note that this behavior

can not simply be traced to a bad algorithm: The default Levenberg-Marquardt al-

gorithm used by FitModelFunction for two-dimensional non-linear curve fitting is

a state-of-the-art algorithm for this purpose. But it may fail in principle: It can not

safeguard every possible calculation. It might be a good idea to simply change the

minimization algorithm: An alternative minimization algorithm will usually gener-

ate a different outcome. That is why a library of algorithms is most often a severe ad-

vantage. But not in this case: If the algorithm is changed from Levenberg-Marquardt

to Conjugate-Gradient

method={"ConjugateGradient"};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionMethod -> method];

The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the norm of the residual.

a similar problem as before occurs in the line search subroutine of this algorithm.

Another switch to the mere Gradient algorithm

method={"Gradient"};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionMethod -> method];

2.4 Problems and pitfalls 93

CIP‘CurveFit‘ShowFitResult[{"ModelFunction"},xyErrorData,

curveFitInfo];

Fitted model function:

13.0817e−(1.36437+x)2 +0.681692x

does not help either: The minimization procedure seems to have converged (since

there are no error messages) but it stopped somewhere over the rainbow: The result

is simply wrong. So the only practical solution is to provide good parameters’ start

values by hand, i.e. by ...

• ... knowledge: Parameters may be known to lie within defined intervals by ex-

perience or they may have a scientific meaning (i.e. they are theoretically well-

defined) so that their values are approximately known in advance. In some cases a

start value for a parameter may be deduced by visual inspection as in the example

above for parameter a3 in the exponential term.

• ... trial and error: Not a promising strategy but often the only practical pos-

sibility: It may be very exhaustive and disappointing but science is often more

devoted to mere trial and error than scientists like to tell.

In the next section the trial and error case is tackled with more strategic ap-

proaches but these also can not solve the problem in principle.

2.4.2 How to search for parameters’ start values

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

To get good parameters’ start values a global search of the parameter space is

necessary: A huge task! In chapter 1 different strategies for a global search were

discussed like a grid or a random search. CIP implements a purely random search

strategy as an option for the GetStartParameters method of the CIP CurveFit pack-

age with search type "Random":

searchType="Random";

For the curve fitting task outlined of the last subsection

numberOfData=50;

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

standardDeviationRange={0.5,0.5};

94 2 Curve Fitting

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

a parameters’ search space is defined by the individual intervals of each parame-

ter

parameterIntervals={{0.0,10.0},{0.0,10.0},{0.0,10.0}};

with a 100 random trial points:

numberOfTrialPoints=100;

If the GetStartParameters method is called with these settings

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,CurveFitOptionSearchType -> searchType,

CurveFitOptionNumberOfTrialPoints -> numberOfTrialPoints]

{{a1,0.670859},{a2,7.48994},{a3,8.29601}}

the resulting parameters’ start values correspond to the smallest value of χ2 (a1,a2,a3)
that was detected by random. These start values are now used as an input for the

model function fit by setting the CurveFitOptionStartParameters option with the re-

sult:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 95

Fitted model function:

97.9599e−(−17.502+x)2 +0.681816x

The result is still not correct: 100 trial points do not lead to sufficiently precise

parameters’ start values since the random grid is too coarsely meshed. Therefore

their number is increased tenfold to 1000 and the search is repeated:

numberOfTrialPoints=1000;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,CurveFitOptionSearchType -> searchType,

CurveFitOptionNumberOfTrialPoints -> numberOfTrialPoints]

{{a1,0.679172},{a2,1.7166},{a3,4.48335}}

With the new start values

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

96 2 Curve Fitting

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

a successful fit is finally obtained: The determined start values were precise

enough for the local minimization algorithm to converge to the global minimum

of χ2 (a1,a2,a3). Although this may seem promising it again should be noticed that

a random search is a rather limited option in general: Since the parameter space be-

comes really large with an increasing number of parameters a random search within

tolerable periods of time will be likely to fail. The glimmer of hope of chapter 1 in

this desperate situation were evolutionary algorithms. Method GetStartParameters

uses the differential-evolution algorithm via Mathematica’s NMinimize command

as its default global search strategy (see [NMinimize/NMaximize] in the references)

which also proofs to be successful for the current task:

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.460666},{a2,3.67567},{a3,4.12436}}

A fit with the obtained start parameters

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 97

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

shows that the evolutionary search was able to determine start values in the prox-

imity of the global minimum of χ2 (a1,a2,a3) which were close enough for a suc-

cessful local refinement.

2.4.3 More difficult curve fitting problems

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Extracting the correct model function from experimental data may be arbitrarily

difficult up to impossible due to the nature of the curve fitting problem. To demon-

strate an example fifty xy-error data triples

numberOfData=50;

with a very high precision (absolute standard deviation of 0.001)

standardDeviationRange={0.001,0.001};

are generated in an argument range [1, 8]

argumentRange={1.0,8.0};

98 2 Curve Fitting

around a model function with two Gaussian peaks in close proximity (around

x = 4 and x = 5.5)

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}
+ 2exp

{
−(x− 5.5)2

}

pureOriginalFunction=

Function[x, 0.5*x+3.0*Exp[-(x-4.0)ˆ2]+2.0*Exp[-(x-5.5)ˆ2]];

where the smaller one around x = 5.5 appears to be the shoulder of the other:

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

With the previous discussions in mind it should be obvious that a successful

curve fitting procedure needs very good start values for the parameters in this case.

Again at least start values for the parameters in the exponentials could be obtained

by mere visual inspection of the generated data (peaks around x = 4 and x = 5.5)

but a more general strategy is explored that uses the advised start-parameter search

on the basis of an evolutionary algorithm with the GetStartParameters method of the

CIP CurveFit package. With the 5-parameter model function

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2]+a4*Exp[-(x-a5)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4,a5};

and a well defined parameters’ search space

2.4 Problems and pitfalls 99

parameterIntervals=

{{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0}};

the proposed parameters’ start values for the fit procedure are:

maximumNumberOfIterations=10;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.443407},{a2,4.81041},{a3,4.83269},{a4,0.0454534},{a5,4.45465}}

A fit with these parameters’ start values

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

Fitted model function:

−0.173247e−(−42.6798+x)2 +3.33414e−(−4.38782+x)2 +0.584755x

leads to an unsatisfying result. Obviously the parameters’ start values search was

not successful - remember that there is no guarantee for an evolutionary strategy

to succeed. This failure might be attributed to the applied setting of the internal

number of iterations (i.e. the number of generations for evolution) to only 10. In

this particular case the parameter space should be explored more thoroughly with

an increased number of iterations (note that this number must always be restricted

to balance between accuracy and speed):

100 2 Curve Fitting

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.535511},{a2,1.39872},{a3,5.55438},{a4,2.80221},{a5,4.13868}}

With the improved parameters’ start values the curve fitting procedure

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction"},

xyErrorData,curveFitInfo];

Fitted model function:

2.00039e−(−5.49993+x)2 +2.99947e−(−4.00006+x)2 +0.5x

is successful: A perfect fit is obtained. The sketched curve fitting problem will

certainly become more difficult if the two Gaussian peaks are moved together, e.g.

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}
+ 2exp

{
−(x− 4.5)2

}

pureOriginalFunction=

Function[x, 0.5*x+3.0*Exp[-(x-4.0)ˆ2]+2.0*Exp[-(x-4.5)ˆ2]];

where the two peaks now are closely neighbored around x = 4 and x = 4.5. After

xy-error data generation as before a visual inspection shows

2.4 Problems and pitfalls 101

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above Original Function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

that the shoulder becomes invisible and only one merged peak appears. Note that

without an a priori knowledge about the two existing peaks (the data are artificial)

only one peak would be anticipated. If again the parameters’ start value search is

used with an insufficient number of iterations

maximumNumberOfIterations=20;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.554496},{a2,4.20733},{a3,4.10765},{a4,3.44001},{a5,9.99968}}

the results are dubious, i.e. values are too close to the search boundaries. A fit

with these start values give evidence for this assessment:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction",

"AbsoluteResidualsPlot"},xyErrorData,curveFitInfo];

102 2 Curve Fitting

Fitted model function:

158.045e−(−58.0059+x)2 +4.8003e−(−4.19422+x)2 +0.508776x

The second Gaussian peak is sent to infinity. This leads to a systematic devia-

tion pattern of the residuals which is a clear indication that something is missed. A

further refinement of the parameters’ space exploration becomes necessary with an

additional increase of the number of iterations:

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.505924},{a2,4.76675},{a3,4.18593},{a4,0.125418},{a5,5.46316}}

The following fit

2.4 Problems and pitfalls 103

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","ModelFunction",

"AbsoluteResidualsPlot"},xyErrorData,curveFitInfo];

Fitted model function:

2.00853e−(−4.49914+x)2 +2.99136e−(−3.99927+x)2 +0.500001x

now leads to a satisfactory result. This successful outcome was invoked by a con-

tinuously intensified brute-force strategy that led to an enhanced thoroughness of

parameters’ space exploration. In summary it is a remarkable fact that data analysis

is able to reveal invisible peaks that would not be assumed by mere visual inspec-

tion but only if they are known to be there. On the other hand subtle interpretation

problems will emerge if things become slightly more difficult in the case of less pre-

cise data. For an illustration low-precision data are generated with a high absolute

standard deviation of 0.6 around the last example function:

104 2 Curve Fitting

standardDeviationRange={0.6,0.6};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

The thorough parameters’ start value search with again a large number of evolu-

tionary steps

maximumNumberOfIterations=100;

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals,

CurveFitOptionMaximumIterations -> maximumNumberOfIterations]

{{a1,0.512016},{a2,4.55652},{a3,4.28594},{a4,0.302777},{a5,3.01461}}

and a following fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"SDFit","ModelFunction"},xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 105

Standard deviation of fit = 5.478×10-1

Fitted model function:

4.25758e−(−4.37855+x)2 +0.725734e−(−3.3966+x)2 +0.49908x

lead to a result of good quality with effectively two different peaks. But the pre-

cision of peak detection is no longer satisfying. Moreover this result is no longer

convincing if alternatives are taken into consideration. This can be shown with an

alternative fit of the corresponding model function with one Gaussian peak which

would be assumed by mere visual inspection:

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

With adequate start values

parameterIntervals={{0.0,10.0},{0.0,10.0},{0.0,10.0}};

106 2 Curve Fitting

startParameters=CIP‘CurveFit‘GetStartParameters[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.523746},{a2,5.85935},{a3,4.12508}}

the alternative one-peak fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"SDFit","ModelFunction"},xyErrorData,curveFitInfo];

Standard deviation of fit = 5.527×10-1

Fitted model function:

2.4 Problems and pitfalls 107

4.65303e−(−4.27207+x)2 +0.511526x

leads to a result of comparable quality (the standard deviations of the fits are

nearly identical and the residuals patterns are equally good): The latter model func-

tion should be preferred according to Occam’s razor since it contains less parameters

(unless the existence of two peaks is certainly known in advance). Depending on the

precision of the data and the nature of the fitting problem severe ambiguities can ap-

pear in data analysis. In the last case peaks may be found or may be argued for

that can not be supported by the mere data in the light of alternative models. So all

data analysis procedures are prone to be misused for the sake of a scientist’s mere

opinion and not the truth (where the scientist is always assumed to pursue the most

noble intentions). As a rule of thumb an adequate distrust is indicated for statements

like it is clearly shown by thorough data analysis that .. Curve fitting should always

be data driven and it should not be tried to get more out of them than possible. The

old and latent tendency to overstretch data analysis once led to the famous sentence

by John von Neumann: With four parameters I can fit an elephant, and with five I

can make him wiggle his trunk ([Dyson 2004]).

2.4.4 Inappropriate model functions

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Model functions may be unfavorable up to simply wrong. An example of the

latter is demonstrated as follows: Fifty fairly precise data

numberOfData=50;

with an absolute standard deviation of 0.01

standardDeviationRange={0.01,0.01};

are generated in the argument range [1, 5]

argumentRange={1.0,5.0};

around function

y = f (x) = 2exp{−1.5x}

108 2 Curve Fitting

pureOriginalFunction=Function[x,2.0*Exp[-0.75*x]];

to give

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

For the fit we use an empirical model function constructed without to much med-

itation:

y = f (x) = a1 exp{−a2x+ a3}

modelFunction=a1*Exp[-a2*x+a3];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

The result

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ModelFunction"},xyErrorData,curveFitInfo];

2.4 Problems and pitfalls 109

Fitted model function:

1.91781e0.0463659−0.752542x

appears to be a perfect fit. So what is wrong with the model function? The answer

is that it contains redundant parameters since parameters a1 and a3 essentially mean

the same: They are both mere prefactors to the exponential term

y = f (x) = a1 exp{−a2x+ a3}= a1 exp{a3}exp{−a2x}

and therefore they are arbitrary. Only their product is the true prefactor used to

generate the data. All infinite other combinations of values resulting to the same

prefactor would be valid as well. Although redundant parameters can always be

avoided by proper inspection of the model function they do occur easily if non-

mathematicians (i.e. the overwhelming majority of scientists) construct difficult em-

pirical models. Usually the fitting algorithms simply crash if redundant parameters

are defined in a model function. It is only due to Mathematica’s algorithmic safe-

guards that lead to an arbitrary but correct result. A more subtle problem occurs if

the model function is correct but simply inappropriate to the data since it tries to

110 2 Curve Fitting

extract information which is simply not there. This may be shown with fifty fairly

precise data with an absolute standard deviation of 0.1

standardDeviationRange={0.1,0.1};

in the argument range [1, 7]

argumentRange={1.0,7.0};

around one Gaussian peak:

y = f (x) = 1
2
x+ 3exp

{
−(x− 4)2

}

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

A model function with two Gaussian peaks is prepared

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2]+a4*Exp[-(x-a5)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3,a4,a5};

which inevitably tries to extract two Gaussian peaks from the data which just

contain one peak. After an successful search for parameters’ start values

2.4 Problems and pitfalls 111

parameterIntervals=

{{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0},{0.0,10.0}};

startParameters=GetStartParameters[xyErrorData,modelFunction,

argumentOfModelFunction,parametersOfModelFunction,

parameterIntervals]

{{a1,0.533351},{a2,0.764096},{a3,4.36781},{a4,2.40032},{a5,3.9497}}

the following fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ModelFunction"},xyErrorData,curveFitInfo];

Fitted model function:

112 2 Curve Fitting

2.50893e−(−4.01878+x)2 +0.489941e−(−4.01878+x)2 +0.499246x

shows what happened: The same peak was found twice with arbitrary prefactors

that only have meaning as a sum. Again note: If alternative software to CIP/Mathe-

matica is used the fitting algorithms usually crash if a model function is inappropri-

ate as outlined in the latter example.

2.5 Parameters’ errors

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘CurveFit‘

The second most important information that may be extracted from a successful

curve fitting procedure in accordance with the optimum estimates of the parameters’

values are estimates of the parameters’ errors.

2.5.1 Correction of parameters’ errors

Since the xy-error data are biased by errors these errors propagate to the errors

of the estimated parameters’ values: The parameters’ errors therefore are deduced

from the data’s errors. This is certainly the best procedure if the data’s errors are

true experimentally obtained errors, e.g. each y value is measured multiple times

and then reported as the statistical mean yi with the statistical standard deviation of

the mean σi for an argument value xi. But often the reported errors σi can only be

regarded as rough estimates of the true errors. Moreover these estimates are usually

overestimated since scientists tend to be cautious: A bigger error is the better error

if the error is not known precisely. Then of course the resulting parameters’ errors

of a model function fit are also overestimated. As an example the water-viscosity

data are inspected again (compare above):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

2.5 Parameters’ errors 113

Value Standard error Confidence region

Parameter a1 = -19.3098 0.108964 {-19.4208, -19.1989}
Parameter a2 = -200.831 1.86845 {-202.734, -198.929}
Parameter a3 = 179.802 0.445257 {179.348, 180.255}

The χ2
red value of 0.086 indicates that the fitted residuals are fair below the cor-

responding errors σi of the yi values since χ2
red should be close to 1 for a good fit

with good data’s errors. Consequently the data’s errors should be decreased for a re-

sulting χ2
red value near 1. A correction for the data’s errors may be calculated when

they are assumed to be only weights of the yi values and not their true statistical

errors (see above). The FitModelFunction method can be told to estimate param-

eters’ errors with the corrected and not the original errors by changing the option

CurveFitOptionVarianceEstimator from its default value to "ReducedChiSquare":

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

Value Standard error Confidence region

Parameter a1 = -19.3098 0.0320015 {-19.3424, -19.2772}
Parameter a2 = -200.831 0.548743 {-201.39, -200.272}
Parameter a3 = 179.802 0.130767 {179.669, 179.935}

The parameters’ standard errors and their confidence regions are reduced by more

than a factor of 3 in comparison to the result before. The outlined error correction is

often used as a standard procedure for curve fitting. But in practice it simply depends

on the problem and the scientist’s mood to use the cautious (higher) error estimates

for all subsequent derivations as well.

2.5.2 Confidence levels of parameters’ errors

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘CurveFit‘

Another important option that may be modified for the estimation of parameters’

errors is their level of confidence which affects the width of their confidence regions.

With the default setting of 68.3% the parameters’ confidence regions correspond to

the standard errors, i.e. a confidence region spans the interval [ai −σai
, ai +σai

]

where σai
is the standard error of parameter ai. In many cases a higher confidence

114 2 Curve Fitting

level of e.g. 95% or 99% is required. This may be specified with option CurveFi-

tOptionConfidenceLevel of method FitModelFunction. Here a confidence level of

99.9%

confidenceLevelOfParameterErrors=0.999;

is used for the water-viscosity fit for with the corrected errors (see previous sec-

tion):

xyErrorData=CIP‘ExperimentalData‘GetWaterViscosityXyErrorData[];

modelFunction=a1/(a3-T)*Exp[a2/(a3-T)];

argumentOfModelFunction=T;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.1},{a2,-500.0},{a3,150.0}};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator,

CurveFitOptionConfidenceLevel -> confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"ReducedChiSquare","ParameterErrors"},

xyErrorData,curveFitInfo];

Reduced chi-square of fit = 8.625×10-2

Value Standard error Confidence region

Parameter a1 = -19.3098 0.0320015 {-19.4274, -19.1922}
Parameter a2 = -200.831 0.548743 {-202.847, -198.815}
Parameter a3 = 179.802 0.130767 {179.321, 180.282}

Note that the standard errors are not affected since they are related to the standard

confidence level of 68.3% but the confidence regions increased considerably: Now

it can be assured with a probability of 99.9% that the parameters’ values are within

the denoted regions.

2.5.3 Estimating the necessary number of data

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

An practically important issue related to the parameters’ errors is the following:

A theoretical model function with well-defined parameters is known. A specific

measurement process with its intrinsic measurement errors is available. How many

experimental data in a defined argument range must be measured to get a reasonable

statement about a parameters’ value with a specific level of confidence? To get an

2.5 Parameters’ errors 115

impression the Gaussian-peak shaped model function is taken again as an example.

If a measurement process imposes an absolute error of 0.5 on each measurement the

following parameters’ errors and confidence regions are obtained for fifty (xi,yi,σi)
data triples in the argument range [1.0, 7.0] with a confidence level of 68.3%:

numberOfData=50;

standardDeviationRange={0.5,0.5};

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above original function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

modelFunction=a1*x+a2*Exp[-(x-a3)ˆ2];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,2.9},{a3,4.1}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

3.01029e−(−4.09318+x)2 +0.495279x

Reduced chi-square of fit = 8.17×10-1

Value Standard error Confidence region

Parameter a1 = 0.495279 0.0205374 {0.474521, 0.516038}
Parameter a2 = 3.01029 0.196361 {2.81182, 3.20877}
Parameter a3 = 4.09318 0.0528048 {4.0398, 4.14655}

116 2 Curve Fitting

If the number of data is increased the parameters’ values will become more pre-

cise and the parameters’ errors and their related confidence regions are reduced:

numberOfData=1500;

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

pointSize=0.01;

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels,GraphicsOptionPointSize -> pointSize]

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

2.97527e−(−3.99917+x)2 +0.502659x

Reduced chi-square of fit = 9.819×10-1

Value Standard error Confidence region

Parameter a1 = 0.502659 0.00374083 {0.498917, 0.506401}
Parameter a2 = 2.97527 0.0352989 {2.93996, 3.01058}
Parameter a3 = 3.99917 0.00966191 {3.9895, 4.00883}

As a second alternative another measurement process may be available with a de-

creased intrinsic error that it imposes on the data (here the absolute error is reduced

by a factor of 10 from 0.5 to 0.05):

numberOfData=50;

standardDeviationRange={0.05,0.05};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

2.5 Parameters’ errors 117

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData,

pureOriginalFunction,labels]

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters];

CIP‘CurveFit‘ShowFitResult[{"ModelFunction","ReducedChiSquare",

"ParameterErrors"},xyErrorData,curveFitInfo];

Fitted model function:

2.99923e−(−4.00939+x)2 +0.499635x

Reduced chi-square of fit = 8.163×10-1

Value Standard error Confidence region

Parameter a1 = 0.499635 0.0020301 {0.497583, 0.501687}
Parameter a2 = 2.99923 0.01941 {2.97961, 3.01885}
Parameter a3 = 4.00939 0.00529798 {4.00403, 4.01474}

Improved estimates of the parameters’ values as well as decreased parameters’

errors and smaller confidence regions are the result. Unfortunately the latter possi-

bility of an alternative measurement process with increased precision is only rarely

encountered in practice. So the only method of choice is usually to increase the

number of data which means more time and more money. To estimate this crit-

ical quantity in advance the simulation of the necessary number of experimental

data is always helpful and indicated. The CIP CurveFit package provides the Get-

NumberOfData method to fulfill this task: This method tries to detect the necessary

number of data necessary to achieve a desired width of the confidence region of

a specified parameter for a specified confidence level by an iterative process. If a

width of the confidence region of 0.01 for parameter a3 is desired

118 2 Curve Fitting

desiredWidthOfConfidenceRegion=0.01;

indexOfParameter=3;

the necessary number of data for the latter example would be

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters]

57

For a halved confidence region of 0.005

desiredWidthOfConfidenceRegion=0.005;

the number of data must be increased to about 221:

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters]

221

Note that there is a strong non-linear relation between the necessary number of

data and the width of a confidence region: To half the width of a confidence region

in value there is a considerable increase of the number of data necessary in general.

2.5.4 Large parameters’ errors and educated cheating

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘CurveFit‘

For specific model functions very precise experimental data are necessary to es-

timate its parameters’ values with a sufficient precision. A good example are power

laws that play an important role in different areas of science like critical phenomena

or the analysis of biological (scale-free) networks. A power law of the form

y = f (x) = a1|x− a2|
−a3

2.5 Parameters’ errors 119

that diverges at x = a2 with a so called critical exponent a3 will be discussed in

the following. Power law fits are often used to prove or reject a specific theoretical

prediction whereupon the critical exponent a3 enjoys the highest attention: There-

fore this parameter is to be estimated with an utmost precision. For a power law fit

a search for parameters’ start values is not necessary in most cases since all param-

eters are approximately known in advance from theory or visual inspection of the

data: The critical exponent a3 comes from theory, the location of the divergence a2

may be directly deduced from the data so only the prefactor a1 is in question. As an

example fifty high precision normally distributed data

numberOfData=50;

will be generated around the power law

y = f (x) = 2
∣∣x− 10|−0.63

pureOriginalFunction=Function[x,2.0*Abs[x-10.0]ˆ(-0.63)];

in the argument range [8.0, 9.9]

argumentRange={8.0,9.9};

with a relative standard deviation of 0.1%:

errorType="Relative";

standardDeviationRange={0.001,0.001};

The arguments will be spaced by a logarithmic scale to push more data into the

divergence region (as is usually performed by a proper design of experiment):

argumentDistance="LogLargeToSmall";

The xy-error data are generated with method GetXyErrorData of the CIP Calcu-

latedData package:

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

The model function to fit is set in accordance

120 2 Curve Fitting

modelFunction=a1*Abs[x-a2]ˆ(-a3);

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

The necessary start parameters are chosen to be near the true parameters:

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

A high confidence level of 99.9% is advised for the confidence region of the

parameters:

confidenceLevelOfParameterErrors=0.999;

For these simulated data a perfect fit results:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

2.5 Parameters’ errors 121

Standard deviation of fit = 1.78×10-3

Reduced chi-square of fit = 8.514×10-1

Value Standard error Confidence region

Parameter a1 = 2.0006 0.000557139 {1.99864, 2.00255}
Parameter a2 = 10.0004 0.000295439 {9.99932, 10.0014}
Parameter a3 = 0.630468 0.000458764 {0.628857, 0.632078}

The critical exponent a3 is found to be in a small confined interval [0.629, 0.632]

around 0.63 with a high probability of 99.9%. If a theoretical model would predict

the value of 0.63 this fit would rightly be regarded as a strong experimental evidence

(by cautious scientists) up to a convincing experimental proof (by more enthusiastic

ones). Unfortunately experimental data for power law fits are often far less precise.

This has a dramatic influence on the confidence region of the critical exponent a3 as

shown in the next example. The relative error of the data is increased by a factor of

100 to 10%:

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

The corresponding fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

122 2 Curve Fitting

Standard deviation of fit = 1.779×10-1

Reduced chi-square of fit = 8.512×10-1

Value Standard error Confidence region

Parameter a1 = 2.0764 0.0830715 {1.78482, 2.36797}
Parameter a2 = 10.0444 0.043694 {9.89101, 10.1977}
Parameter a3 = 0.68482 0.0580304 {0.481139, 0.888501}

again looks perfect but the confidence region of the critical exponent a3 is found

to be nearly as large (0.89−0.48= 0.41) as the absolute value of the parameter itself

(0.68): So its evidence for support or rejection of a specific theoretical prediction

almost vanished. The bitter truth is that simply nothing can be deduced from the

data - a result that most principal investigators hate since it means wasted time

and money. And that’s where the educated cheating starts. Let’s say the theoretical

prediction of the critical exponent a3 is 0.73 (remember that the data were generated

with a true value of 0.63): Simply fix parameter a3 to 0.73

modelFunction=a1*Abs[x-a2]ˆ(-0.73);

parametersOfModelFunction={a1,a2};

2.5 Parameters’ errors 123

startParameters={{a1,1.9},{a2,9.99}};

and fit parameters a1 and a2 only:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

Standard deviation of fit = 1.772×10-1

Reduced chi-square of fit = 8.445×10-1

Value Standard error Confidence region

Parameter a1 = 2.13617 0.0487269 {1.96538, 2.30696}
Parameter a2 = 10.0775 0.017931 {10.0146, 10.1403}

124 2 Curve Fitting

A very good looking fit is the result with a very convincing residuals plot which

may easily be published to be in perfect agreement with the theoretical prediction

of 0.73. But with about the same evidence it could be argued for a critical exponent

a3 of value 0.53:

modelFunction=a1*Abs[x-a2]ˆ(-0.53);

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo];

Standard deviation of fit = 2.008×10-1

Reduced chi-square of fit = 1.083

2.5 Parameters’ errors 125

Value Standard error Confidence region

Parameter a1 = 1.95121 0.0335399 {1.83365, 2.06877}
Parameter a2 = 9.95776 0.00900621 {9.92619, 9.98933}

The fit again is convincing and in perfect agreement with ... The situation be-

comes only somewhat better if the number of data is increased. For a fivefold data

boost

numberOfData=250;

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

and a fit with the complete 3-parameter model function

modelFunction=a1*Abs[x-a2]ˆ(-a3);

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

pointSize=0.01;

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

126 2 Curve Fitting

Standard deviation of fit = 1.92×10-1

Reduced chi-square of fit = 9.885×10-1

Value Standard error Confidence region

Parameter a1 = 1.96714 0.0222953 {1.89289, 2.0414}
Parameter a2 = 9.97971 0.0120999 {9.93941, 10.02}
Parameter a3 = 0.602932 0.0193802 {0.538389, 0.667475}

numberOfIntervals=10;

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

the estimated value of the critical exponent a3 improves and its confidence region

inevitably shrinks. The distribution of the residuals looks like a distorted bell curve.

But the evidence for both false theoretical predictions with values 0.73 and 0.53

would still be convincing: Theoretical prediction 0.73

2.5 Parameters’ errors 127

modelFunction=a1*Abs[x-a2]ˆ(-0.73);

parametersOfModelFunction={a1,a2};

startParameters={{a1,1.9},{a2,9.99}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

Standard deviation of fit = 2.028×10-1

Reduced chi-square of fit = 1.103

Value Standard error Confidence region

Parameter a1 = 2.10871 0.0216214 {2.03671, 2.18072}
Parameter a2 = 10.067 0.00791856 {10.0406, 10.0934}

128 2 Curve Fitting

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

looks approximately as good as the 3-parameter-fit and theoretical prediction

0.53:

modelFunction=a1*Abs[x-a2]ˆ(-0.53);

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

2.5 Parameters’ errors 129

Standard deviation of fit = 1.991×10-1

Reduced chi-square of fit = 1.063

Value Standard error Confidence region

Parameter a1 = 1.92718 0.0147138 {1.87818, 1.97618}
Parameter a2 = 9.94512 0.00372884 {9.93271, 9.95754}

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

So a lot more experimental data would be needed to really make clear decisions.

With the aid of the GetNumberOfData method of the CIP CurveFit package the

necessary number of data for a desired width of a parameters’ confidence region

may be estimated (see the previous section). For a desired confidence region width

of 0.04 for parameter a3

130 2 Curve Fitting

desiredWidthOfConfidenceRegion=0.04;

indexOfParameter=3;

the number of data must be increased to

modelFunction=a1*Abs[x-a2]ˆ(-a3);

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,1.9},{a2,9.99},{a3,-0.6}};

numberOfData=CIP‘CurveFit‘GetNumberOfData[

desiredWidthOfConfidenceRegion,indexOfParameter,

pureOriginalFunction,argumentRange,standardDeviationRange,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance]

3344

The corresponding fit with this estimated number of data

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType,

CalculatedDataOptionDistance -> argumentDistance];

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionConfidenceLevel ->

confidenceLevelOfParameterErrors];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","RelativeResidualsPlot",

"SDFit","ReducedChiSquare","ParameterErrors"},xyErrorData,

curveFitInfo,GraphicsOptionPointSize -> pointSize];

2.5 Parameters’ errors 131

Standard deviation of fit = 1.912×10-1

Reduced chi-square of fit = 9.798×10-1

Value Standard error Confidence region

Parameter a1 = 1.99724 0.00747252 {1.97263, 2.02185}
Parameter a2 = 9.99805 0.00417287 {9.98431, 10.0118}
Parameter a3 = 0.628188 0.00604781 {0.60827, 0.648106}

numberOfIntervals=30;

CIP‘CurveFit‘ShowFitResult[

{"RelativeResidualsDistribution"},xyErrorData,

curveFitInfo,NumberOfIntervalsOption -> numberOfIntervals];

finally allows estimates within the required precision. For many experimental se-

tups however the necessary increase of data would be completely out of reach due

to restrictions in time and money. Therefore the sketched kind of educated cheat-

ing is unfortunately more widespread than it ought to be (and even worse is often

132 2 Curve Fitting

combined with an elimination of outliers after the fit: A "very successful strategy"

to tune the data). In most cases experimentalists do not even have a bad conscience

since the final plots look good. Therefore a clear trend can be detected for experi-

mental data analysis to follow theoretical predictions (this can be superbly shown in

the field of critical phenomena where the theoretical predictions changed over the

decades and the experimental data analysis with them in close accordance). But it

should not be forgotten that cheating simply has nothing to do with science - and in

the end someone will detect it regardless how educated it was hidden.

2.5.5 Experimental errors and data transformation

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘CurveFit‘

The errors σi of the yi values do not only influence the errors of the parameters

of the fitted model function but they also influence the parameters’ values them-

selves. This is often ignored but obvious if it is remembered that curve fitting means

minimization of χ2 (a1, ...,aL):

χ2 (a1, ...,aL) = ∑K
i=1

(
yi− f (xi,a1,...,aL)

σi

)
2 −→ minimize!

Since the errors σi are part of the sum of squares they contribute to the determi-

nation of the minimum location of χ2 (a1, ...,aL). Only in the special case that all

errors σi are equal

σi = σ

they are a mere factor σ that can be factored out of the sum and therefore does

not influence the minimum. The influence of the errors σi can be illustrated with the

following (artificial) example of twenty simulated data

numberOfData=20;

around the function

y = f (x) = 2e−
1
x

pureOriginalFunction=Function[x,2.0*Exp[-1.0/x]];

2.5 Parameters’ errors 133

in the argument range [1.0, 8.0]

argumentRange={1.0,8.0};

with a relative standard deviation of 5%

standardDeviationRange={0.05,0.05};

errorType="Relative";

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange,

CalculatedDataOptionErrorType -> errorType];

that are fitted with corrected estimates of parameters’ errors for comparison pur-

poses:

modelFunction=a1*Exp[-a2/x];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","SDFit",

"ReducedChiSquare","ParameterErrors"},xyErrorData,curveFitInfo];

Standard deviation of fit = 7.272×10-2

Reduced chi-square of fit = 1.122

Value Standard error Confidence region

Parameter a1 = 1.93972 0.0396424 {1.89894, 1.98049}
Parameter a2 = 0.92742 0.051963 {0.873972, 0.980868}

If the errors σi are asymmetrically enlarged by different factors from 10.0 (ten-

fold increase) to 1.0 (no change)

134 2 Curve Fitting

minFactor=1.0;

maxFactor=10.0;

errorTransformationFactors=Table[i,{i,maxFactor,minFactor,

-(maxFactor-minFactor)/(Length[xyErrorData]-1)}];

newXyErrorData=Table[{xyErrorData[[i,1]],xyErrorData[[i,2]],

xyErrorData[[i,3]]*errorTransformationFactors[[i]]},

{i,Length[xyErrorData]}];

the estimated optimum values of the parameters become clearly different:

curveFitInfo=CIP‘CurveFit‘FitModelFunction[newXyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","SDFit",

"ReducedChiSquare","ParameterErrors"},xyErrorData,curveFitInfo];

Standard deviation of fit = 8.842×10-2

Reduced chi-square of fit = 1.659

Value Standard error Confidence region

Parameter a1 = 1.83037 0.0368555 {1.79246, 1.86828}
Parameter a2 = 0.787937 0.107727 {0.67713, 0.898743}

The parameter estimates changed by around 5-10% of their absolute values al-

though the xi and yi values were not changed at all. Also the values of corrected

parameters’ errors increased due to the increase of the data’s errors.

As far as the popular data transformations are considered the outlined context

may play a more or less pronounced role. It is still common in lab data analysis

to linearize model functions to a straight line if possible (despite the existence of

non-linear curve fitting software). For the model function above linearization may

be easily performed by simple application of the natural logarithm

y = f (x) = a1e−
a2
x

2.6 Empirical enhancement of theoretical model functions 135

ln(y) = ln
(

a1e−
a2
x

)
= lna1 − a2

1
x

which results in a straight line

y = f (x) = a1 + a2x

with the necessary non-linear data transformations:

xi →
1
xi

; yi → ln(yi)

If data are transformed it is often forgotten that the errors σi must be transformed

too according to standard error propagation:

σi →

√(
∂ ln(yi)

∂yi

)
2σ2

i =
(

∂ ln(yi)
∂yi

)
σi =

σi

yi

Note that the neglect of this error transformation is perhaps the second most

frequent mistake in lab data analysis. (The most frequent mistake is the lab journal’s

report of a mean in combination with the standard deviation of a single measurement

and not the correct standard deviation of the mean.) In summary each data triple of

the xy-error data must be transformed as follows:

(xi,yi,σi)→
(

1
xi
, ln(yi) ,

σi
yi

)

Standard error propagation assumes vanishingly small errors since it belongs to

linear statistics (with Taylor series expansions up to the first derivative only). There-

fore the transformed errors and the original errors do only correspond in an approx-

imate manner. This may have more or less influence on the estimated values of the

parameters after linearization depending on the specific fit problem.

2.6 Empirical enhancement of theoretical model functions

Clear["Global‘*"];

<<CIP‘ExperimentalData‘

<<CIP‘DataTransformation‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

Suppose there is a well-defined theoretical model function but the x and y quanti-

ties it associates can not be measured directly. Preprocessing steps are necessary to

construct the data in question which may introduce systematic errors. An example

136 2 Curve Fitting

is outlined in Appendix A that shows the extraction of kinetics data for a chem-

ical reaction (in this case the hydrolysis of acetanhydride) from time dependent

infrared (IR) spectra: There are two different methods advised to extract the data:

One straight forward method denoted 1 and one more elaborate method denoted 2.

The results are provided by the CIP ExperimentalData package. The data produced

by method 1 are as follows:

xyData=

CIP‘ExperimentalData‘GetAcetanhydrideKineticsData1[

];

errorValue=1.0;

xyErrorData=CIP‘DataTransformation‘AddErrorToXYData[xyData,

errorValue];

labels={"Time [min]","Absorption",

"Kinetics of hydrolysis of acetanhydride 1"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

Note that a standard weight of 1.0 was added as an error to the xy data to ob-

tain xy-error data since the preprocessing method did not yield any error estimate.

All estimates for parameters’ errors thus need a correction deduced from χ2
red (see

previous sections).

The hydrolysis of acetanhydride in water is a reaction of (pseudo) first-order

which is theoretically described by a simple exponential decay:

y = f (x) = a1e−a2x

But a direct fit of this model function

modelFunction=a1*Exp[-a2*x];

argumentOfModelFunction=x;

parametersOfModelFunction={a1,a2};

varianceEstimator="ReducedChiSquare";

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

2.6 Empirical enhancement of theoretical model functions 137

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 1 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot"},xyErrorData,

curveFitInfo,CurveFitOptionLabels -> labels];

fails completely. Due to preprocessing method 1 the data do not direct to a zero

absorption with increasing time (acetanhydride vanishes with reaction progress) but

to a constant value above zero (a so called background caused by the extraction

process, see Appendix A). Therefore the theoretical model function must be en-

hanced by (at least) an empirical constant background parameter a3 that takes this

deficiency into account:

y = f (x) = a1e−a2x + a3

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

The enhanced fit

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

138 2 Curve Fitting

Value Standard error Confidence region

Parameter a1 = 0.378912 0.00979157 {0.368856, 0.388968}
Parameter a2 = 0.112982 0.00687499 {0.105921, 0.120043}
Parameter a3 = 0.168445 0.0051983 {0.163106, 0.173783}

leads to an improved description of the data but reveals a strong systematic devi-

ation pattern of the residuals. In contrast to method 1 the more elaborate preprocess-

ing method 2 tries to estimate the background contribution in advance (see details

in Appendix A):

xyData=

CIP‘ExperimentalData‘GetAcetanhydrideKineticsData2[

];

errorValue=1.0;

xyErrorData=CIP‘DataTransformation‘AddErrorToXYData[xyData,

errorValue];

labels={"Time [min]","Absorption",

"Kinetics of Hydrolysis of Acetanhydride 2"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

2.6 Empirical enhancement of theoretical model functions 139

Now the absorption values seem to direct to zero. But a direct fit of the pure

theoretical model

modelFunction=a1*Exp[-a2*x];

parametersOfModelFunction={a1,a2};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 2 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

140 2 Curve Fitting

Value Standard error Confidence region

Parameter a1 = 0.377157 0.0104281 {0.366413, 0.387901}
Parameter a2 = 0.121256 0.00534371 {0.11575, 0.126761}

still suggests the use of an additional constant background parameter a3

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

2.6 Empirical enhancement of theoretical model functions 141

Value Standard error Confidence region

Parameter a1 = 0.38797 0.00863007 {0.379061, 0.396878}
Parameter a2 = 0.106077 0.00623914 {0.0996363, 0.112517}
Parameter a3 = -0.0174831 0.00606562 {-0.0237445, -0.0112218}

which results in a estimated value for a3 that is at least close to zero (so the

background correction of the more elaborate preprocessing method was not in vain).

The visual inspection of the data also suggests to treat the first two points as outliers:

If they are removed from the xy-error data

xyErrorData=Drop[xyErrorData,2];

labels={"Time [min]","Absorption",

"Kinetics of Hydrolysis of Acetanhydride 2"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

the remaining data do not only look better but lead to an improved fit

modelFunction=a1*Exp[-a2*x]+a3;

parametersOfModelFunction={a1,a2,a3};

142 2 Curve Fitting

startParameters={{a1,0.4},{a2,0.1},{a3,0.2}};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction,

CurveFitOptionStartParameters -> startParameters,

CurveFitOptionVarianceEstimator -> varianceEstimator];

labels={"Time [min]","Absorption","Data 2 above Model Function"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ParameterErrors"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

Value Standard error Confidence region

Parameter a1 = 0.453659 0.00879298 {0.444541, 0.462778}
Parameter a2 = 0.134134 0.00371886 {0.130277, 0.13799}
Parameter a3 = -0.00662982 0.00180625 {-0.00850296, -0.00475667}

with significantly smaller residuals and a further decreased background param-

eter a3. There is still a clear systematic deviation pattern of the residuals but this

is probably the best we can get. Always keep in mind that the introduction of new

empirical parameters and the removal of apparent outliers are dangerous procedures

that are an ideal basis for educated cheating: In the end you can obtain (nearly) any

2.7 Data smoothing with cubic splines 143

result you like to get and this is not the objective of science which claims to describe

the real world out there. But careful and considerate use of these procedures may

extract information from data that would otherwise be lost.

2.7 Data smoothing with cubic splines

Clear["Global‘*"];

<<CIP‘CalculatedData‘

<<CIP‘Graphics‘

<<CIP‘CurveFit‘

<<CIP‘ExperimentalData‘

<<FunctionApproximations‘

Data smoothing with cubic splines is controlled by the specified χ2
red value (see

above). Depending on the χ2
red value there are two smoothing extremes: A small

χ2
red value enforces small residuals and restricts the smoothing function to close

proximity of the data points whereas a high χ2
red value allows for larger residuals but

forces the curvature of the smoothing function to minimize towards a straight line.

This may be demonstrated with fifty simulated xy-error data around the Gaussian-

peak shaped function:

numberOfData=50;

pureOriginalFunction=Function[x,0.5*x+3.0*Exp[-(x-4.0)ˆ2]];

argumentRange={1.0,7.0};

standardDeviationRange={0.1,0.1};

xyErrorData=CIP‘CalculatedData‘GetXyErrorData[pureOriginalFunction,

argumentRange,numberOfData,standardDeviationRange];

labels={"x","y","Data above Original Function"};

CIP‘Graphics‘PlotXyErrorDataAboveFunction[xyErrorData

,pureOriginalFunction,labels]

144 2 Curve Fitting

A small χ2
red value of 0.01

reducedChiSquare=0.01;

leads to mere interpolation between the data without smoothing

curveFitInfo=

CIP‘CurveFit‘FitCubicSplines[xyErrorData,reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.×10-2

Out 1 : Correlation coefficient = 0.999973

and small residuals. Note that the correlation coefficient that indicates the agree-

ment of data and machine output is (almost) one which means a perfect correlation:

2.7 Data smoothing with cubic splines 145

Since the data are erroneous this outcome indicates a so called overfitting of the data

(which is to be avoided for convincing smoothing). A high χ2
red value of 100

reducedChiSquare=100.0;

leads to a straight line

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.×102

Out 1 : Correlation coefficient = 0.683152

146 2 Curve Fitting

without adequate data description and a small correlation coefficient (which is as

unfavorable as a perfect correlation for erroneous data). In practice a χ2
red value is

initially chosen that is around 1 to produce a smooth and balancing model function

with a convincing residuals plot

reducedChiSquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 1.001

Out 1 : Correlation coefficient = 0.997407

and a reasonable high correlation coefficient. Since the smoothing cubic splines

procedure tries to minimize the overall curvature over the whole argument range

2.7 Data smoothing with cubic splines 147

the curved peak region of the current example is comparatively poorly described:

A systematic deviation pattern of positive residuals is visible in this middle region

of the residuals plot. In this case the χ2
red value should be lowered which enforces

smaller residuals to describe the peak region more precisely:

reducedChiSquare=0.6;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","CorrelationCoefficient"},xyErrorData,

curveFitInfo];

Reduced chi-square of fit = 6.×10-1

Out 1 : Correlation coefficient = 0.998401

This results in an overall acceptable fit. Note that the correlation coefficient is

not too valuable for a goodness-of-smoothing discussion since a higher value does

148 2 Curve Fitting

not imply better smoothing due to the increased tendency towards overfitting. The

smoothing model function may be finally compared (overlayed) with the original

Gaussian-peak shaped function that was used for the simulated data generation

pureSmoothingFunction=Function[x,CalculateFunctionValue[x,

curveFitInfo]];

pureFunctions={pureOriginalFunction,pureSmoothingFunction};

plotRange={0.0,5.0};

plotStyle={{Thickness[0.005],Black},{Thickness[0.005],Blue}};

labels={"x","y","Original + smoothing cubic splines"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

to demonstrate their close proximity and thus a successful model approxima-

tion by mere data smoothing. The cubic splines based smoothing model function

may be used for interpolating calculations of function values and derivatives. Cal-

culations outside the data’s argument range are possible but useless since the cubic

splines may have an arbitrary value there: As already mentioned reasonable extrap-

olations are in principle out of reach if the structural form of the model function

is not known. For publishing purposes the internal representation of the smoothing

model function is somewhat lengthy: For each (xi,yi,σi) data triple of the xy-error

data a cubic polynomial with 4 parameters is constructed so that the 50 data triples

require 200 parameters for the cubic splines. To achieve a more condensed repre-

sentation the smoothing function may be approximated by a rational function which

is constructed by mere trial and error (in this case with a numerator of order 8 and a

denominator of order 4):

rationalFunction=FunctionApproximations‘RationalInterpolation[

CalculateFunctionValue[x,curveFitInfo],{x,8,4},

{x,argumentRange[[1]],argumentRange[[2]]}]

2.7 Data smoothing with cubic splines 149

0.492884−0.61194x+0.646898x2−0.467755x3+0.204442x4−0.0524233x5+0.00768635x6−0.000597131x7+0.0000192755x8

1−0.866354x+0.295339x2−0.0462791x3+0.0028032x4

This condensed representation

pureRationalFunction=Function[argument,

rationalFunction/.x -> argument];

pureFunctions={pureOriginalFunction,pureSmoothingFunction,

pureRationalFunction};

plotStyle={{Thickness[0.005],Black},{Thickness[0.005],Blue},

{Thickness[0.005],Red}};

labels={"x","y","Original + splines + rational function"};

CIP‘Graphics‘Plot2dFunctions[pureFunctions,argumentRange,plotRange,

plotStyle,labels]

is of sufficient precision as shown by the final overlay. Another application of

data smoothing is the representation of calculated data. This sounds absurd since

calculated data can be calculated so there seems to be no need for data smooth-

ing. But data calculation may be computationally very expensive in many cases. For

example ab-initio quantum-chemical calculations for molecular properties are very

time-consuming and therefore require a considerable percentage of the world’s over-

all available computational power. If for example the potential energy surface (PES)

of the diatomic molecule hydrogen fluoride is to be described the Schroedinger

equation has to be solved for every desired distance between hydrogen and fluoride:

Every single calculation may take from seconds up to minutes or hours depending

on the level of approximation. The CIP ExperimentalData package contains a set of

high precision single point calculations for hydrogen fluoride (see Appendix A):

xyErrorData=CIP‘ExperimentalData‘GetHydrogenFluoridePESXyErrorData[];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of hydrogen fluoride (HF)"};

CIP‘Graphics‘PlotXyErrorData[xyErrorData,labels]

150 2 Curve Fitting

The data are reported with a very small absolute error of 10−6. So a very pre-

cise model function that is very near a pure interpolating function is in need. The

standard approach with high-degree polynomials

modelFunction=

A0+A1*R+A2*Rˆ2+A3*Rˆ3+A4*Rˆ4+A5*Rˆ5+A6*Rˆ6+A7*Rˆ7+A8*Rˆ8+A9*Rˆ9;

argumentOfModelFunction=R;

parametersOfModelFunction={A0,A1,A2,A3,A4,A5,A6,A7,A8,A9};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Polynom fit"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

2.7 Data smoothing with cubic splines 151

Reduced chi-square of fit = 3.262×104

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.4×10-4 / 1.35×10-4 / 5.97×10-4

Out 1 : Correlation coefficient = 0.999998

leads to the well-known systematic oscillations (compare above) around the data

that are beyond the required precision. A rational function fit is a little better

modelFunction=

A0+A1*Rˆ-1+A2*Rˆ-2+A3*Rˆ-3+A4*Rˆ-4+A5*Rˆ-5+A6*Rˆ-6+A7*Rˆ-7+

A8*Rˆ-8+A9*Rˆ-9;

argumentOfModelFunction=R;

parametersOfModelFunction={A0,A1,A2,A3,A4,A5,A6,A7,A8,A9};

curveFitInfo=CIP‘CurveFit‘FitModelFunction[xyErrorData,

modelFunction,argumentOfModelFunction,parametersOfModelFunction];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Rational function fit"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

152 2 Curve Fitting

Reduced chi-square of fit = 5.16×103

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 5.69×10-5 / 5.55×10-5 / 2.35×10-4

Out 1 : Correlation coefficient = 1.

but also beyond acceptability. Data smoothing with cubic splines and a χ2
red value

of 1 however

reducedChiSquare=1.0;

curveFitInfo=CIP‘CurveFit‘FitCubicSplines[xyErrorData,

reducedChiSquare];

labels={"H-F Distance [Angstrom]","Energy [Hartree]",

"PES of HF: Smoothing cubic splines"};

CIP‘CurveFit‘ShowFitResult[{"FunctionPlot","AbsoluteResidualsPlot",

"ReducedChiSquare","AbsoluteResidualsStatistics",

"CorrelationCoefficient"},xyErrorData,curveFitInfo,

CurveFitOptionLabels -> labels];

2.7 Data smoothing with cubic splines 153

Reduced chi-square of fit = 1.

Definition of ’Residual (absolute)’: Data - Model

Out 1 : Residual (absolute): Mean/Median/Maximum Value = 1.92×10-7 / 1.99×10-8 / 7.57×10-6

Out 1 : Correlation coefficient = 1.

achieves an acceptable interpolation with residuals well within the required order

of magnitude: Deviations are only more pronounced in the divergence region at

small interatomic distances. Also note that a correlation coefficient of effectively

one does not indicate overfitting in this situation since the data errors are very small.

A check of the smoothing model function is a calculation of the minimum energy

distance between hydrogen and fluoride that is known to be 0.917 Angstrom:

argumentRange={0.65,1.3};

functionValueRange={-100.35,-100.2};

CIP‘Graphics‘Plot2dFunction[Function[arg,CalculateFunctionValue[arg,

curveFitInfo]],argumentRange,functionValueRange,labels]

154 2 Curve Fitting

FindMinimum[CIP‘CurveFit‘CalculateFunctionValue[x,curveFitInfo],

{x,0.5,1.5}]

{−100.343,{x → 0.917413}}

This correct result together with a vanishing derivative value at the minimum

(which ought to be 0)

CIP‘CurveFit‘CalculateDerivativeValue[1,0.917,curveFitInfo]

−0.000933712

assures an overall satisfactory model function that may be successfully used for

interpolation purposes.

2.8 Cookbook recipes for curve fitting

As demonstrated in the previous sections curve fitting can be a challenging task. In

this last section some cookbook recipes for curve fitting and data smoothing sum-

marize different aspects outlined above.

• The data: Start with a thorough (visual) inspection of the data to avoid the GIGO

(garbage-in/garbage-out) effect. Data analysis is not magic, it can not extract in-

formation out of nothing. Are the data reasonably scaled and distributed? Are the

reported errors convincing? If no errors are available apply the standard weight

1.0 and correct errors with χ2
red. There are additional subtle problems with data

that contain outliers, i.e. single data points with extraordinarily large errors. Out-

liers usually indicate experimental failure. If outliers can be easily detected they

should always be removed from the data since they tend to mask themselves in a

fitting procedure (they draw the model towards them to become invisible). Data

which are known to be prone to contain outliers may deserve a completely dif-

ferent statistical treatment like the so called robust estimation which is beyond

this introduction (see [Hampel 1986] or [Rousseeuw 2003] for further reading).

• The model function: Is a well-defined model function available? Does the num-

ber of data well exceed the number of parameters? Then go on. If no model

function is known it might be worth to try to construct one by educated trial and

error: This is quite often successful. Avoid model functions with redundant or

highly similar parameters. If an educated guess seems to be unfeasible try data

smoothing.

• Linear or non-linear model function: Is the model function linear in its param-

eters? Then the fit will work without further considerations. If not: Are param-

eters’ start values approximately known in advance? Then try these values for

local minimization. Otherwise an extensive start values search may be advised.

2.8 Cookbook recipes for curve fitting 155

Don’t give up too early if things are difficult. The parameters’ start values are

often the most difficult part of the game.

• Problems with the fitting procedure: If the fitting procedure crashes try to use

an alternative minimization algorithm. If nothing helps there seems to be a se-

vere problem with the model function or the parameters’ start values. Do you

use professional curve fitting software? A lot of programs do use (too) simple

algorithms without appropriate safeguards that fail needlessly.

• Goodness of fit: Are the fitted parameters’ values reasonable? Otherwise the

minimization procedure sent you somewhere over the rainbow. Is the data plot

above the fitted model function convincing, i.e. smooth and balancing? If not the

fit failed. Is the residuals plot well within experimental errors and free of system-

atic deviation patterns? Then probably everything worked well. Other goodness

of fit quantities may be used to support your assessment.

• Parameter errors: Is the χ2
red value close to 1? If not the reported experimental

errors are poor and should be corrected. Do you need high confidence? Then ad-

just the parameters’ confidence level in accordance. Are the parameters’ errors

too large to make any decisions? Try to avoid strategies of educated cheating

unless your career or PhD is in danger (then you should at least provide a con-

vincing residuals plot because this is what most reviewers believe in).

• Data transformation for linearization: If possible simply avoid it and use non-

linear curve fitting software. Final diagrams may then be linearized for your au-

dience.

• Data smoothing: Adjust the set screws until you like the result with a convincing

residuals plot. Then apply the smoothing model for interpolation (but never for

extrapolation) purposes.

This chapter sketched general curve fitting issues with a broad range of applica-

tions. For many specific curve fitting tasks elaborate specific solutions already exist

that avoid problems outlined in the previous sections. Thus the scientific literature

should always be consulted in advance (which is of course a mandatory and sensible

advice for all scientific endeavours to avoid a reinvention of the wheel).

http://www.springer.com/978-3-319-32544-6

	2
Curve Fitting
	2.1 Basics
	2.1.1 Fitting data
	2.1.2 Useful quantities
	2.1.3 Smoothing data

	2.2 Evaluating the goodness of fit
	2.3 How to guess a model function
	2.4 Problems and pitfalls
	2.4.1 Parameters’ start values
	2.4.2 How to search for parameters’ start values
	2.4.3 More difficult curve fitting problems
	2.4.4 Inappropriate model functions

	2.5 Parameters’ errors
	2.5.1 Correction of parameters’ errors
	2.5.2 Confidence levels of parameters’ errors
	2.5.3 Estimating the necessary number of data
	2.5.4 Large parameters’ errors and educated cheating
	2.5.5 Experimental errors and data transformation

	2.6 Empirical enhancement of theoretical model functions
	2.7 Data smoothing with cubic splines
	2.8 Cookbook recipes for curve fitting

