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Abstract. This paper presents our work on simulation of large-scale
reservoir models on IBM Blue Gene/Q and studying the scalability of
our parallel reservoir simulators. An in-house black oil simulator has been
implemented. It uses MPI for communication and is capable of simulating
reservoir models with hundreds of millions of grid cells. Benchmarks show
that our parallel simulators are thousands of times faster than sequential
simulators that are designed for workstations and personal computers,
and these simulators have excellent scalability.
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1 Introduction

Nowadays, large-scale reservoir simulations are becoming more and more popu-
lar in the oil and gas industry in order to simulate complex geological models.
However, when a model is large enough, a simulator may take days or even
weeks to finish one run using regular workstations and personal computers. This
problem can also be observed in black oil, compositional and thermal simula-
tions. Efficient computational methods and fast reservoir simulators should be
investigated.

Reservoir simulations have been studied for decades and various models and
methods have been developed. Coats studied black oil, compositional and ther-
mal models, and he also investigated numerical methods, linear solver, precondi-
tioner, grid effects and stability issues in his publications [1–3,8,11,17]. Kaarstad
et al. [6] implemented a parallel two-dimensional two-phase oil-water simula-
tor, which could solve problems with millions of grid cells. Rutledge et al. [4]
implemented a compositional simulator for parallel computers using the IMPES
(implicit pressure-explicit saturation) method. Shiralkar et al. [5] developed a
portable parallel production qualified simulator, which could run on a variety of
parallel systems.Killough et al. [7] studied locally refined grids in their parallel sim-
ulator.Dogru et al. [9] developedaparallel blackoil simulator,whichwashighly effi-
cient and was capable of simulating models with up to one billion cells. Zhang et al.
developed a scalable general-purpose platform to support adaptive finite element
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and adaptive finite volume methods, which was also applied to reservoir simula-
tions using Discontineous Galerkin method [10,12,23]. For many reservoir simula-
tions, most of the running time is spent on the solution of linear systems. We know
that the most important is to develop efficient preconditioners. Many precondi-
tioners have been proposed, such as constrained pressure residual (CPR) methods
[13,14], multi-stage methods [15], multiple level preconditioners [22] and fast aux-
iliary space preconditioners (FASP) [16,18]. Chen et al. studied parallel reservoir
simulations and developed a family of CPR-like preconditioners for black oil sim-
ulations and compositional simulations, including CPR-FP, CPR-FPF and CPR-
FFPF methods [20].

A black oil simulator has been developed based on our in-house parallel
platform. The black oil model has three mass conservation equations for three
components (water, gas and oil). The system is fully coupled nonlinear system,
which is solved by inexact Newton-Raphson methods, and structured grids and
finite difference methods are applied. The performance of the black oil simulator
is studied on IBM Blue Gene/Q system using large-scale reservoir models for
standard black oil model and two-phase oil-water model. Numerical experiments
show that our simulator is scalable and it is capable of simulating models with
hundreds of millions of grid cells.

2 Reservoir Simulation Models

The black oil model and its simplified model, two-phase oil-water model, are
briefly introduced here.

2.1 Black Oil Model

The black oil model has three phases (water, oil and gas), and three components.
The model assumes that there is no mass transfer between water phase and
the other two phases, and gas component can exist in gas and oil phases. Oil
component is also assumed that it can exist in oil phase only. The reservoir is
isothermal and no energy change is considered.

The Darcy’s law is applied for black oil model, which establishes a rela-
tionship between volumetric flow rates of three components and their pressure
changes in a reservoir, which is described as:

Q = −κAΔp

μL
, (1)

where κ is the absolute permeability of rock, A is a cross-section area, Δp is
the pressure difference, μ is viscosity of fluid, and L is the length of a porous
medium. In three-dimensional space, the differential form of Darcy’s law is:

q =
Q

A
= −κ

μ
∇p. (2)
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By combining Darcy’s law, black oil model has the following mass conserva-
tion equations for each component:
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(3)
where, for phase α (α = o, w, g), Φα is its potential, φ and K are porosity and
permeability of a resevoir, and sα, μα, pα, ρα, Krα and qα are its saturation,
phase viscosity, phase pressure, density, relative permeability and production
(injection) rate, respectively. ρo

o and ρg
o are density of the oil component in the

oil phase and the density of the solution gas in the oil phase, respectively. They
have the following relations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φα = pα + ραgz,

So + Sw + Sg = 1,

pw = po − pcow(Sw),
pg = po + pcog(Sg),

(4)

where z is reservoir depth, pcow is capillary pressure between water phase and
oil phase, pα is pressure of phase α, and pcog is capillary between gas phase and
oil phase.

The properties of fluids and rock are functions of pressure and saturation.
The pressures of water and gas phases are functions of oil phase pressure and
saturation; see Eq. (4). The density of water is a function of its pressure:

ρw = ρw(pw) = ρw(po, sw),

and the density of the oil phase is a function of its phase pressure and the bubble
point pressure:

ρo
o = ρo

o(po, pb),
where pb is bubble point pressure. The bubble point pressure is the pressure
at which infinitesimal gas appears. The water viscosity μw is assumed to be a
constant. The oil phase viscosity is a function of its pressure po and the bubble
point pressure pb:

μo = μo(po, pb).
The relative permeabilities Krw, Kro and Krg are functions of water and gas
saturations Sw and Sg: ⎧

⎪⎨

⎪⎩

Krw = Krw(Sw),
Krg = Krg(Sg),
Kro = Kro(Sw, Sg),

where Kro is calculated using the Stone II formula.
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For real simulations, the relative permeabilities are given by tables or analytic
formulas. Other properties, such as density, viscosity and capillary pressure, have
analytic formulas and they can be calculated by table input too. With proper
boundary conditions and initial conditions, a close system is given. Here no flow
boundary condition is assumed.

2.2 Two-Phase Flow Model

This model is a simplified model of the standard black oil model, which assumes
that the reservoir has two phases, oil and water, and they are immiscible. The
model is similar to black oil model, which is written as [19]:

⎧
⎪⎪⎨
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(5)

2.3 Well Modeling

Different well constraints can be set for each active well. One commonly-used
method is a sink-source model. For each perforation block m, its well rate (pro-
duction or injection) qα,m is calculated by:

qα,m = Wi
ραKrα

μα
(ph − pα − ρα℘(zh − z)), (6)

where ph is bottom hole pressure of a well, Wi is its well index, zh is reference
depth of bottom hole pressure, z is depth of the perforated grid block m, and
pα is phase pressure of the perforated grid block, such as oil, gas and water.
Wi can be calculated by several different models. In our simulator, a Peaceman
model [24] is chosen.

Many operation constraints and their combinations may be applied to each
well at different time stages, such as a fixed bottom hole pressure constraint, a
fixed oil rate constraint, a fixed water rate constraint, a fixed liquid rate con-
straint and a fixed gas rate constraint. When the fixed bottom hole pressure
condition is applied to some well, its bottom hole pressure, ph, is known and its
well rate qα,m is known if we have phase pressure of the perforated block. The
constraint equation for the well is

ph = c, (7)

where c is a constant set by the user input. No known exists for this constraint.
When a fixed rate constraint is applied to a well, its bottom hole pressure is

an unknown. For the fixed water rate constraint, the equation is
∑

m

qw,m = qw, (8)



Large-Scale Reservoir Simulations on IBM Blue Gene/Q 21

where qw is constant. For the fixed oil rate constraint, its equation is
∑

m

qo,m = qo, (9)

where qo is constant and known. A well may be applied different constraints at
different time period. A schedule can be set by input, in which users can set
operation changes for each well.

2.4 Numerical Methods

In this paper, conservative finite difference schemes are employed to discretize
these models. The inexact Newton method is employed to solve the nonlinear
equations. The time term is discretized by the backward Euler difference scheme.
If we let fn represent the value of a function f at any time step n, then its
derivative at time step (n + 1) is approximated by

(
∂f

∂t
)n+1 =

fn+1 − fn

Δt
. (10)

The space terms are discretized by cell-centered finite difference method [19].
Here if we assume d is a space direction and A is the area of the corresponding
face of a grid cell, the transmissibility term Tα,d can be written as:

Tα,d =
KKrα

μα
ρα

A

Δd
. (11)

Inexact Newton Method. The nonlinear system can be represented by

F (x) = 0, (12)

where x is unknown vector, including oil phase pressure, water saturation and
well bottom hole pressure. For black oil model, a gas saturation (or bubble
point pressure) is also included. After linearization, a linear system, Ax = b, is
obtained in each Newton iteration, where A is Jacobian matrix, x is unknown
to be determined, and b is right-hand side. The standard Newton method solves
the linear system accurately. However, it is computationally expensive and it is
not necessary sometimes. In our implementation, the inexact Newton method is
applied, whose algorithm is described in Algorithm 1.

The only difference between standard Newton method and inexact New-
ton method is how to choose θl. Usually the parameter, θl, for standard New-
ton method is fixed and small, such as 10−5. The parameter, θl, for inexact
Newton method is automatically adjusted. Three different choices are listed as
follows [23]:
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Algorithm 1. The inexact Newton Method
1: Give an initial guess x0 and stopping criterion ε, let l = 0, and assemble right-hand

side b.
2: while ‖b‖ ≥ ε do
3: Assemble the Jacobian matrix A.
4: Find θl and δx such that

‖b − Aδx‖ ≤ θl ‖b‖ , (13)
5: Let l = l + 1 and x = x + δx.
6: end while
7: x is the solution of the nonlinear system.

θl =

⎧
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)β
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(14)

where rl and bl are residual and right-hand side of l-th iteration, respectively.
The residual is defined as,

rl = bl − Aδx. (15)

Linear Solver. If a proper matrix ordering (numbering of unknowns) is applied,
the matrix A derived from each Newton iteration can be written as

A =

⎛

⎝
App Aps Apw

Asp Ass Asw

Awp Aws Aww

⎞

⎠ , (16)

where App is the matrix corresponding to oil phase pressure unknowns, Ass is
the matrix corresponding to other unknowns in each grid cell, such as water
saturation, gas saturation and bubble point pressure, and Aww is the matrix
coefficients corresponding to well bottom hole pressure unknowns, and other
matrices are coupled items.

The matrix A is hard to solve in large-scale reservoir simulations. Many
multi-stage preconditioners have been developed to overcome this problem, such
as CPR, FASP, CPR-FP and CPR-FPF methods. The key idea is to solve a
sub-problem (App) using algebraic multi-grid methods (AMG). In this paper,
the CPR-FPF method developed by Chen et al. [20] is applied. Matrix decou-
pling techniques are also employed, such as ABF decoupling and Quasi-IMPES
decoupling.
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3 Numerical Experiments

An Blue Gene/Q from IBM is employed to run reservoir simulations. The system,
Wat2Q, is located in the IBM Thomas J. Watson Research Center. Each node
has 32 computer cards (64-bit PowerPC A2 processor), which has 17 cores. One
of them is for the operation system and the other 16 cores for computation. The
system has 32,768 CPU cores for computation. The performance of each core
is really low compared with Intel processors. However, the system has strong
network relative to CPU performance, and the system is scalable.

3.1 Oil-Water Model

The SPE10 model is described on a regular Cartesian grid, whose dimensions
are 1, 200 × 2, 200 × 170 (ft) [21]. The model has 60 × 220 × 85 cells (1.122 × 106

cells). It has one injection well and four production wells. The original model
is designed for two-phase oil-water model and it has around 2.244 millions of
unknowns.

Fig. 1. Permeability in X Direction of the SPE10 benchmark

The model is highly heterogeneous. Its permeability is ranged from 6.65e−7
Darcy to 20 Darcy, and the x-direction permeability, Kx, is shown in Fig. 1.
Its porosity shown in Fig. 2, ranges from 0 to 0.5. Data sets for porosity and
permeability can be downloaded from SPE10’s official website. The relative per-
meability of water phase is calculated by

Krw(sw) =
(sw − swc)2

(1 − swc − sor)2
, (17)

and the relative permeability of oil phase is calculated by

Kro(sw) =
(1 − sor − sw)2

(1 − swc − sor)2
, (18)

where swc = sor = 0.2. Capillary pressure is ignored.
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Fig. 2. Porosity of the SPE10 benchmark

3.2 Numerical Examples

Example 1. The original SPE10 project is simulated. The termination tolerance
for inexact Newton method is 10−2 and its maximal Newton iterations are 20.
The linear solver BiCGSTAB is applied and its maximal inner iterations are 50.
The Quasi-IMPES decoupling strategy is used. Simulation period is 2,000 days
and maximal time step is 100 days. Summaries of numerical results are shown
in Table 1 [20], and its scalability is shown by Fig. 3.

Table 1. Summaries of Example 1

# Procs # Steps # Newton # Solver # Avg. solver Time (s) Avg. time (s)

8 50 298 7189 24.1 27525.6 92.3

16 50 297 7408 24.9 13791.8 46.4

32 51 322 7467 23.1 7044.1 21.8

64 50 294 7609 25.8 3445.8 11.7

Table 1 presents results for time steps, Newton iterations, total linear itera-
tions, average linear iterations per Newton iteration, overall running time and
average running time per Newton iteration. From this table, we can see each
case has similar time steps and Newton iterations. The linear solver and precon-
ditioner are robust, where each Newton iteration terminate in around 25 linear
iterations. The table and Fig. 3 show our simulator has excellent scalability.

Example 2. This example tests a refined SPE10 case, and each grid cell is refined
into 27 grid cells. It has around 30 millions of grid cells and around 60 millions
of unknowns. The stopping criterion for the inexact Newton method is 1e−3 and
its maximal Newton iterations are 20. The BiCGSTAB solver is applied and its
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Fig. 3. Scalability of preconditioners, Example 1

maximal iterations are 100. Potential reordering and Quasi-IMPES decoupling
strategy are applied. The simulation period is 10 days. Up to 128 computer
cards are used. The numerical summaries are shown in Table 2, and its speedup
(scalability) is shown in Fig. 4.

Table 2. Numerical summaries of Example 2

# Procs # Steps # Newton # Solver # Avg. solver Time (s) Avg. time (s)

128 40(1) 295 2470 8.3 43591.8 147.7

256 39 269 2386 8.8 20478.4 76.1

512 40 260 2664 10.2 10709.8 41.1

1024 39 259 2665 10.2 5578.7 21.5

The numerical summaries in Table 2 show the inexact Newton method is
robust, where around 40 time steps and around 260 N iterations are used for each
simulation with different MPI tasks except the case with 128 MPI tasks due to
one time step cut that contributes 20 N iterations. The linear solver BiCGSTAB
and the preconditioner show good convergence, where the average number of
linear iterations for each nonlinear iteration is between 8 and 11. The results
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Fig. 4. Scalability of Example 2

mean our linear solver and preconditioner are effective and robust. The overall
running time and average time for each Newton iteration show our simulator has
excellent scalability, which is almost ideal. The scalability is also demonstrated
by Fig. 4.

Example 3. This example also tests a refined SPE10 case, where each grid cell is
refined into 125 grid cells. It has around 140 millions of grid cells and around 280
millions of unknowns. The stopping criterion for inexact Newton method is 1e−2
and its maximal Newton iterations are 20. The BiCGSTAB solver is applied and
its maximal iterations are 100. The Quasi-IMPES decoupling strategy is applied.
The simulation period is 10 days. The numerical summaries are shown in Table 3,
and the speedup (scalability) curve is shown in Fig. 5.

Table 3. Numerical summaries of Example 3

# Procs # Steps # Newton # Solver # Avg. solver Time (s) Avg. time (s)

256 57 328 2942 8.9 168619.6 514.0

512 60 328 2236 6.8 72232.4 220.2

1024 62 341 3194 9.3 43206.5 126.7

2048 59 327 3123 9.5 22588.8 69.0
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Fig. 5. Scalability of Example 3

This case is difficult. However, results from Table 3 show our nonlinear and
linear methods are robust. Each Newton iteration terminate in less than 10 linear
iterations. Running time and Fig. 5 show our simulator has good scalability. For
the case with 512 MPI tasks, it has super-linear scalability.

Example 4. This case simulates a refined SPE1 model, which has 100 millions
of grid cells. The termination tolerance for inexact Newton method is 10−2 and
maximal Newton iterations is 15. The BICGSTAB linear solver is chosen and its
maximal iterations is 20. ABF decoupling strategy is enabled. The simulation
period is 10. Summaries of numerical results are shown in Table 4 and scalability
curve is shown by Fig. 6.

Table 4. Summaries of Example 4

# Procs # Steps # Newton # Solver # Avg. solver Time (s) Avg. time (s)

512 27 (1) 140 586 4.1 11827.9 84.4

1024 27 129 377 2.9 5328.4 41.3

2048 26 122 362 2.9 2708.5 22.2

4096 27 129 394 3.0 1474.2 11.4

The original SPE1 project is a small one with 300 grid cells (10 × 10 × 3)
and the project is refined to 100 millions of grid cells (1000 × 1000 × 100).
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Fig. 6. Scalability (speedup) of Example 4

It has a homogeneous geological model. Table 4 presents numerical summaries
for nonlinear method, linear solver and performance. All four simulations use
around 27 time steps. The simulation with 512 MPI tasks uses 140 N iterations,
which is more than other cases due to one time step cut. The linear solver and
preconditioner are robust, which can solve a linear system in a few iterations.
Again, running time and Fig. 6 show our simulator has excellent scalability.

4 Conclusion

Parallel reservoir simulations are studied in the paper, which are based on our in-
house parallel platform. The platform provides grids, data, linear solvers and pre-
conditioners for reservoir simulators. A black oil model is implemented. Numeri-
cal experiments show that our simulator has excellent scalability and simulations
can be sped up thousands of times faster. The paper also demonstrates that par-
allel computing techniques are powerful tools for large-scale reservoir simulations
and IBM Blue Gene/Q system is scalable.
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