Chapter 2
Evolving a Plan: Design and Planning
with Complexity

Michael Batty

Abstract Producing physical plans that manipulate urban form and function to
generate optimal designs with respect to an affected community is a many-stage
process of resolving inherent conflicts between those who represent the interests of
the community. Here we introduce a class of decision models that involve resolving
conflicts between a series of opinions that differ from one another and are associated
with a set of agents who act as designers. These opinions are expressed as differing
interest and control in factors that influence the design and these are articulated as
spatial plans based on the suitability or desirability of different map locations for
physical development. We define a set of agents who motivate the process and
whose interactions which involve resolving their conflicting opinions, are used to
pool opinions where, at each stage, some degree of resolution takes place.
Ultimately because every opinion relates to every other through the network of
relations that bind agents together, a consensus is reached that can be interpreted as
a process of weighted averaging whose formal properties mirror the operation of a
first-order Markov chain. The elaboration of this process that we invoke here is
based on a process of exchange due to Coleman (Foundations of Social Theory.
Belknap Press, Cambridge, MA, 1994) in which we characterise the problem as one
of resolving conflicts between agents which we call the primal or differences
between factors in terms of opinions which we call the dual. We define several
variants of this process and then demonstrate this for a semi-real ‘toy’ problem of
land development in the heart of London where a small set of stakeholder agents
have different degrees of interest and control in a small set of land and building sites
(parcels). In terms of the model, we show how the problem is already in equilibrium
if interest and control are the same and this provides a benchmark for differences
between interest and control which characterise the actual problem. We conclude
with proposals for making the model more realistic and extending it to deal with
problems where conflicts are only partially resolved or not resolved at all.
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2.1 The Complexity of Design: Evolving Plans Through
Opinion Pooling

Design which we consider here as the arrangement of physical forms that satisfy
some functions in an optimal or best way, is seldom accomplished immediately in
one step. Some argue that good design can be traced to moments of instant inspi-
ration and insight but these are rare and in any case when we are dealing with forms
whose function is to enable others to meet their needs, design is usually accom-
plished in some iterative manner, whether the designer be a lone individual or as is
more likely, several individuals, a collectivity, a team, any group working together.
In our context where we are focussed on physical forms that range from buildings to
landscapes, urban morphologies, and regions, design is very much a communal
activity which involves resolving different viewpoints about what constitutes a best
solution. In this sense, design is sequential, perhaps even based on a process of
argumentation, and this is particularly so where the forms being designed have wide
and powerful interests and control involving many stakeholders whose context is
often political. In fact, in urban planning, the language of design is often based on
defining solutions as plans or policies and although they usually have physical and
spatial implications, there are many non- or a-spatial features that bring the process
directly into the political and social arena. In this sense, design is inherently complex
and the processes that characterise complex systems provide useful analogies.

In this chapter, we will introduce a model of design as a process of evolution,
where the aim is to generate design solutions that resolve conflict between stake-
holders. Models for this kind of conflict resolution go back 60 years or more
(French 1956; Harary 1959) and involve the notion that different opinions about the
best design associated with the stakeholders, need to be resolved in some way,
leading to a compromise or consensus. The process we will present has often been
compared to Markov averaging which produces a solution as a weighted average of
the initial opinions as to the best design. This process has quite tractable and rather
simple statistical properties (de Groot 1974; Kelly 1981) but more recently, a new
wave of interest in this model has characterised it as ‘opinion pooling’ where the
focus is much more on generating equilibria using various forms of computation
such as flocking (Blondel et al. 2005; Motsch and Tadmor 2014). There are also
social network interpretations which link these ideas to network science (Jackson
2011) and the model is also being explored in the study of opinion dynamics (Jia
et al. 2013; d’Errico et al. 2014).

We will develop these ideas of opinion pooling on the basis of predicting the
form of the networks that tie together various elements of the problem that different
opinions are associated with. These networks can be generated from correlations
between the opinions of the actors, agents or stakeholders—terms we will use
interchangeably—with higher correlations in general being associated with stronger
ties between actors. In an equivalent way, we can consider correlations between the
elements making up an opinion across the agents and in this way consider that
networks can be formed by concatenating these bipartite relations between agents



2 Evolving a Plan: Design and Planning with Complexity 23

and the elements forming their opinions. In this way, we will draw on ideas from
exchange theory specifically introducing Coleman’s (1994) model of collective
action which represents an unpacking of the more aggregate French-Harary opinion
pooling models noted above.

We will thus articulate the problem of choosing a plan in terms of how a group
of agents relate to a series of factors in which the agents have varying opinions
reflecting the degrees of interest in and control they have over the factors they
consider important to the best plan. The factors imply something about the plan
which is defined in terms of spatial locations. It might, for example, be defined in
terms of the relative weights that agents ascribe to factors relevant to the plan or to
different plans themselves that agents consider define their interest and control. In
our subsequent exposition, we will present different conceptions of the problem
defined in terms of different agents and different factors. In this sense, our problem
is conceived in terms of the relationships between the social system defined through
the agents and the spatial system defined through the factors. We might even
consider the rules that define how agents behave socially as the ‘genotype’ of the
problem and the spatial factors as the ‘phenotype’ but there the analogy ends. It
only serves to show that the system can be thought of as a social collective based on
relations between agents defined through spatial factors or as a system of relations
defined across spatial factors with respect to social agents.

To summarise, agents relate to plans with respect to factors that affect the plan. If
we define these consistently, then we can measure the relationships between agents
—as a kind of social network—through their varying interest and control over
factors. This defines the primal problem for which there is a natural dual based on
the relations between spatial factors—a kind of spatial network but not in locational
terms—through the relative coincidence of interest and control by agents over
factors. In the sequel, we will elaborate this conception in several different ways
first by introducing a generic framework based on social exchange, namely
Coleman’s (1994) theory of collective action. We use this framework to define
many different variants of the plan-design problem and once we have elaborated its
implications, we will produce a key simplification of the structure which pertains to
thinking of factors as partial solutions to the planning problem—different plans—
which in turn are defined as physical maps. In this way, the framework connects up
to plan-design problems which lie at the basis of geo-design. These in turn build on
older ideas about map overlay analysis which is a cornerstone of GIS (McHarg
1969; Steinitz et al. 1976; Steinitz 2012) and we will trace these links to spatial
averaging in the sequel.

2.2 Social Exchange: A Theory of Collective Action

We first define a set of n agents who each have a degree of interest X as well as a
degree of control C in a set of m factors. An agent may have a very low degree of
interest in a factor but a high degree of control over it and vice versa, and these
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differences between interest and control define the relative interaction between
agents with respect to factors as well as the relative interaction between factors with
respect to agents. The first conception we refer to as the ‘primal problem’ and the
second the ‘dual’. This is equivalent to thinking of the primal as being soluble
through interactions between agents over factors and the dual as interactions
between factors with respect to agents. To give this some formal meaning, we first
consider the interest which each agent i has in a factor j as an n X m matrix
X which we define as

Xu X Xz oo Xim
Xo1 Xn Xz ... Xow m
X = X31 X32 X33 X3m 5 ZXU: 1, Vi= 1,2,3,...,11. (21)
. . . . Jj=1
an Xn2 XnS .. Xnm

The matrix of interests is structured in probability form as a stochastic matrix
where each element X;; is the proportion of interest that an agent 7 has in a particular
factor j. An analogous stochastic matrix can be defined for the degree of control
which is an m X n matrix C which we define as

Ch Cnp Cj ... Cy
C=|Cy Cu Cu ... Cyul, > Cp=1, Vk=123,..m,
) ) . . k=1
le Cm2 Cm3 R Cmn

(2.2)

where Cj is the degree of control over a factor which each agent exercises. Note
that the two matrices are defined as being the transpose of one another with respect
to agents and factors so that we can relate them directly in the manner used below.

We define the primal problem as one where the interaction between agents is
formed by correlating the degree of interest with respect to the degree of control
between any two agents. We thence define the probability of interaction between
any two agents i and k as the n X n stochastic matrix P defined as

P=[Pul=> XjCi,» Pu=> > XiCi=» X3 Cp=1, (23
J k k J J k

and this is the key set of relative interactions that define the primal problem. The
dual problem is defined in analogous terms as the pattern of interactions between
the factors formed as the correspondence between the degree of control and interest
across the profile of the agents. We define the probability of interaction between
any two factors j and ¢ as the m x m stochastic matrix Q defined as
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Q=1[0y = Z CiXye, Z O = Z Z CiXie = Z Cik ZXM =1. (24)
T 7 T % X 7

These interactions compose a dual problem which is easily seen as being entirely
consistent in formal terms with the primal. If we define processes of consistently
resolving conflicts between interest and control with respect to the agents or the
factors—on the primal or the dual—then we will be able to generate a consistent set
of power relations that are reflected in the solutions generated from (2.3) and (2.4).

Essentially the plan-design problem can be thought of as a process of resolving
the differences between interests and control with respect to the agents or with
respect to the factors. In this sense we can define a process of conflict resolution on
the primal or dual problems with one following from the other. Let us illustrate this
for the primal problem. Imagine that we begin with an arbitrary distribution of
resources across the agents which is the 1 x n vector r(0) which we can normalise
as Y _.r;(0) = 1. Now if we assume that the agents examine the resources that other
agents have and thus rationally pool them first according to their collective interest
and then their control, the agents produce new allocations of resources called r(1).
In terms of the interaction matrix between agents which relates to the relative
importance of communications based on their interest and control, this can be
written as rx(1) = >, r;(0)Py which in matrix terms is r(1) = r(0)P.

Now this is a Markov process with very well defined properties. The resources
vector will converge to a unique equilibrium where the relative pooling of resources
will stabilise as a function of the interaction matrix (which reflects interests and
control). In the steady state, it is easy to show that the resources vector r(r+ 1) — r
as t+ 1 — oo; formally this equilibrium is
r(t+1) =r()P =r(0)P } (2.5)
r=rP* —-r=rP ' '

An exactly analogous process occurs if we begin the resources pooling with a
vector of the values of the factors that will ultimately compose the plan. Start with a
normalised arbitrary 1 x m vector v(0) where ), v;(0) = 1. Then we produce
new values for each factor v(1) which in terms of the interaction matrix between
factors is written as v¢(1) = -, v;(0)Qj or in matrix terms v(1) = v(0)Q. This has
a steady state equivalent to that in (2.5) reflecting the convergence of values of each
factor and giving the importance of each in the final solution where v(z 4+ 1) — v as
t+1 — oo; formally this is

e = v =) 2.6
v=vQ* — v=vQ ' ’

Equations (2.5) and (2.6) are interconnected in an entirely consistent way but

before we sketch the relationships of these interlinked Markov processes, we need
to present a much more intuitive way of illustrating the meaning of these processes
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that make crystal clear what these processes of social exchange and their equilib-
rium imply.

It is relatively straightforward to directly connect the two Markov processes. If
we multiply the steady state equations for agents r = rP = rXC by the interest
matrix X, we can write this as rX = rPX = rXCX = rXQ. However the vector
v in the steady state equation v = vQ is unique and therefore it is clear that
v =rX = vCX = vQ. In an analogous way, we can multiply by the control matrix
C and from this it is clear that v€C = vQC = vCXC = vCP, from which the unique
steady state vector r = vC. Collecting these two results, we can state the equilib-
rium relations as

v=rX
r—vC } (2.7)

From this it is clear that there is a much more intuitive explanation of the process of
social exchange, of social interaction, which leads to the steady state. We can now
iterate on (2.7) by first forming an arbitrary distribution of resources r(0) or, if we are
able to define this, an observed distribution and this generates a distribution of values
v(0), in short, v(0) = r(0)X. This essentially means that we take the resources of each
agent and we distribute them to each factor in proportion to how much interest they
have in that factor; that is the distribution of resources r;(0) is mapped into the interest
in a factor Xj; and then this component of the resource r;(0)X;; is summed over all the
agents to find the value that is invested in the factor as v;(0) = >_.r;(0)X;. Now we
have the investment in the factor and we have to consider how much control we have
over that factor. This involves us in working out the component of the value in that
factor which is controlled by an agent, that is v;(0)C;,. We then add up the value that is
controlled by each agent in each factor to the total value controlled by the agent in all
factors and this gives the amount of resource that is now assigned to the agent, that is
re(1) = >, vj(0)Cyr. If 7 (1) # r(0) which will always be the case in the initial
rounds of iteration, we need to repeat the process, each time indulging our interest and
modifying it by exercising our control until the system moves to the unique equi-
librium defined above in (2.5)—(2.7).

2.3 Complementary Exchange: Averaging Processes
from Markov Chains

Another way of thinking about the processes of moving to an equilibrium distri-
bution of agent resources and factor values is to consider an agent or a factor as
changing their opinions or values of their attributes successively in proportion to
their resources or values in the following way. For an agent, the initial distribution
of resources r(0) (which is a probability vector) can be interpreted as reflecting the
probability that an agent takes on a particular opinion about the problem in
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question. If we assume a set of agents continually hopping from one state to
another, we might even think of the distribution of resources as being the proba-
bility that an agent is in a particular state, or rather as the problem is based on
agents, the probability of each agent in question having a particular resource. This is
continually changing as the agents compare their resources but if we think of agents
as states of the system, then the probability of the system being in a particular state
is the resource vector r(z) at any time 7. As the pooling of resources moves towards
equilibrium, then the steady state vector r reflects the probability of any agent being
in the state associated with that agent. The same process can be considered in terms
of the factors and their values which reflect the state of the system that any factor
find itself in. This is perhaps a little tortuous but it is the conventional form of a
Markov probability process which provides a more traditional interpretation.

At the other extreme, however, we have two complementary processes pertaining
to the primal and dual which can be interpreted as the averaging of initial differences
within the set of agents, and the set of factors, and these follow the same equilibrium
relations that we defined around (2.5)—(2.7). Imagine now that each agent holds a
certain attitude about a plan defined as a number in the vector a(0) = [a;(0)] which is
the value that they start with. Each factor also has a value that we can define equiv-
alently as £(0) = [f;(0)]. Now consider first the primal process where the agents pool
their values on the basis of how they interact with one another which is given by the
matrix P. A new set of values at the second iteration of the process is defined from
a(1) = P a(0) and if we iterate in the normal fashion, it is clear that the set of attitudes
will converge toa = lim + — oo [a(t+1) =P "' a(0)] anda = P a. Now as Pis a
stochastic matrix, and sums to 1 over its rows, then each agent will move to the same
numerical value and this represents a weighted average which is reflected in the
structure of P. This is a little easier to see if we note that the steady state matrix
lim ¢ — oo P'™! = R where each row is the steady state vector r. Thus a = R a(0)
ora=a, =), Rya;(0) =3, ra;(0), Vk. Each agent thus has the same attitude at
equilibrium and it might be said that a consensus has been reached. This is the classic
process of Markov averaging first introduced by French (1956), formalised by Harary
(1959) and further explored by many others, in particular de Groot (1974) and Kelly
(1981) and more recently by Jia et al. (2013) amongst others.

An exactly analogous process pertains to the averaging of factors. If we start
with a vector of factor values f(0), we form f(1) = Q £(0) and then through iter-
ation, factor values will converge to f = lim # — oo [f(r+ 1) = Q'™ £(0)]. As
limr— oo Q! =8, then f=S§8 f(0), and the final factor value
f=F=220Sufe(0) =3, vifi(0), VL. Now let us write the equilibrium relations
for both these averages as
a=Pa=XCa
f = Qf = CXf } (2:8)

which can be considerably simplified by noting that as a = [¢;] = a, Vi and
f = [a;] = f, Vj, then the relations Ca and Xf are degenerate in that ), Cyar =
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a ;G =a, Vjand > . Xyfi =f> . X; =f, Vi. Relations equivalent to (2.7) do
not hold for the averaging processes. We will explore this convergence in more
detail when we use it below to examine how social agents can define solutions to
spatial problems through the notion of factors being equivalent to map layers. A full
statement of the model is presented by the author (Batty 2013) where there are
various additional interpretations of the convergence to a steady state. We assume
that the matrices X and C are defined so that P and Q are strongly connected which
is a basic requirement of articulating the problem in the first place. This implies that
every agent is linked to every other agent and every factor to every other factor,
directly or indirectly though the networks associated with P and Q.

2.4 Maps as Factors: Using the Model to Simulate
the Map Overlay Problem

We will now focus on the averaging problem where we define the agents as social
entities that have an interest and control over a planning solution which they articulate
as a set of maps. We will define the series of maps in the n x m. matrix M(0) as

M“(O) MIQ(O) M13(0) . Mlm(o)

M1 (0) Mpn(0) Mx(0) ... My, (0)
M(0) = | M3(0) Mx(0) Ms3(0) ... Ms,(0) ], (2.9)

M1 (0) Mp(0) M;(0) ... M,,(0)
where each agent i,i = 1,2,3,...,n expresses an initial value that they ascribe to
each map cell or location at time ¢ = 0 as M;;(0),j = 1,2,3,...,m. In fact the map

associated with agent 7 is strung out as a 1 X m vector whose values define the
relative importance that the agents ascribe to the problem. To fix ideas, we might
consider each map at this stage to represent the development potential that an agent
i ascribes to the location or cell j of the map, with the differences between each map
vector in terms of these values as pertaining to differences between agents which
need to be resolved as a solution to the problem. The differences between the
column map vectors then describe the differences in potential between the agents
with respect to a particular map cell or location. In short the process of averaging or
compromising is one that irons out these differences according the balance of
interest and control that first, the agents have in factors which are now assumed to
be individual maps, and second, locations or map cells associated with agents
which are location profiles across all agents. These define the primal and dual
respectively.

We can now use all the results we have derived to illustrate what happens if the
agents resolve conflicts between their different maps through averaging. We will
now consider each set of maps M(0) defined as a row of cells for each agent and its
transpose M’ (0) as a column of cells for each agent. The averaging across agents is
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based on the process defined as M(z + 1) = P'*'M(0) and this converges to M =
PM while the averaging across cells is M (4 1) = Q' "'M”(0) and this con-
verges to M? = QM. We can write these equilibrium averages explicitly as

> PaMy; = M;,vj
x

> QMg = My, Yk (° (2.10)
7

where M;; is the transpose of Mj; and vice versa. When we write these transposes
explicitly, we simply interchange the rows and columns which are always defined
with respect to agents as i and k and maps (factors) as j and ¢. In fact we can
compute these averages directly from knowledge of the steady state resources and
values from (2.5) and (2.6) and these are M; = >, r;M;; and M; = Zj viMj.

Now there is a dramatic simplification of this process when we define the interest
agents have in maps and the control they have over maps in terms of the same
values they ascribe to the map. That is, we will define the two matrices X and
C directly from M(0) and M’ (0). Then

_ My(0)  M;(0) _
X; = zMiZ(O)_ Ok Ej X;j =1,and (2.11)
 Mi(0)  My(0) Z B
G = YiMu(0)  M;(0) 7 4 =1 212)

Note that M;(0) is the sum of the rows or the total interest that an agent has in all
the maps, that is in matrix terms M(0)1” where 1 is the relevant unit column vector,
and M;(0) is the sum of the columns or the total control that all agents vest in a cell
of the map, in matrix terms M’ (0)1. If we now write these sums in their appropriate
diagonal matrix, we can write the matrix equations for interest and control as

[M71(0) O 0 ... 0 17Xn X2 X3 -.. Xim
0 M5'(0) © ... 0 Xo1 X X3 ... Xom
X=DM= |0 0 M7Y0) ... 0 Xs1 X3 X33 ... Xam
K 0 0 cor MTYO) | | Xt X2 X3 oo Xam
'Mfl(O) 0 0 ... 0 ] -C“ Cp Ciz ... Cp
0 MZ_I(O) 0 0 Cy Cxn Cxn ... Cy
C=M"= |0 0 M;I(O) 0 C3; Cxp Cizz ... Cyy
L0 0 0 MJI(O)_ LCmt Gz Gz ... Gy
(2.13)

Note that the inverses M;"! and Mj‘l in D and 8 respectively are inverses of the

row and column sums of the original map matrix M(0). We can now simplify the
equilibrium relations directly by substituting these expanded representations of the
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interest and control matrices into any of (2.5)—(2.7). In fact using (2.7), we can
write these as

v =rX = rDM(0) } (2.14)

r=vC =vdM’(0)

If we set r; = M;(0) and v; = M;(0), then rD = 1 and vé = 1 and (2.14) become
v = 1M(0) and r = 1M’ (0). In short the equilibrium vectors—the relative values
of each map and the resources for each agent—are the values invested in each cell
of the map by all the agents, and the values invested by each agent in all the maps.
This is a very interesting result. It means that if the basic map matrix determines
both the interest and control, the system is already in equilibrium, that is, interest
and control align exactly. In fact this also implies what is obvious from this
exposition, that is, that the differences between interest and control determine the
need to compromise. In this sense, we might consider the difference between the
final resource and value vectors from a situation where interest and control differ
and these simplified vectors a measure of how far from equilibrium a system of
interaction such as this one is. In short, the differences v — 1M(0) and r — 1M’ (0)
determine how far from equilibrium the system is.

There is one last variant of this process that does not rely on defining probability
relationships between agents and factor maps through interest and control but
simply takes the agent-map matrices and forms social networks based on the rel-
ative similarity between agents in the primal problems and map factors in the dual.
This is much more akin to the traditional averaging networks first introduced by
French (1956) and Harary (1959). Comparing the values that agents ascribe to maps
with respect to how similar agents are to one another, we can form the interaction
matrix P = M(0)M”(0). This is a symmetric matrix that gives the strength of
connections between pairs of agents and this defines our primal problem. This is in
one sense an un-normalised version of the map matrix for the normalised interest
and control matrices in (2.11) and (2.12) above. The dual symmetric interactions
between map factors which is a comparison of the similarity between any two maps
over all agents is given in an analogous way as Q = M’ (0)M(0). From these
matrices, we can form stochastic matrices P and Q which form the essence of the
two probability and averaging processes which define the equilibrium relations
associated with the primal and the dual. As above, these can be written in diagonal
and map matrix form as

MM,
Py =g IR 2 MMy = DM(0 ZP,k_l and (2.15)
ZZMUMJZ
j oz

D MMy (0
Q]k—m—sM ZQﬂ/—l (216)
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with the equilibrium relations now defined as

r = rP = rDM(0)M’ (0) } (2.17)

v =vQ = vd M’ (0)M(0)

If we assume that the resource and value equilibrium vectors are defined from
the normalisation factors in each of the diagonal matrices as

ri & ZZMUZWJZ
Z

/ 2.18
Vi o 320 MMy, (2.18)
k z
The matrix equations in (2.17) then simplify to
r = 1IM(0)M’ (0)
. 2.1
v — IM7(0)M(0) (2.19)

As these matrices M(0)M7 (0) and M” (0)M(0) are symmetric, it is easy to show
that the column sums are the same as the row sums for each relation thus proving
(2.18). In fact this is the result that is presented by the author (Batty 2013) for the
French-Harary model, the first in the development of this kind of conflict resolution.

At this stage we have presented the essential logic of opinion pooling as it might
be dimensioned to a problem where agents have different interests and control in
locations specified by a spatial system represented by a map. We have also intro-
duced a set of variants of the collective action model and in the remaining part of
the chapter, we will demonstrate how these models might be applied to a semi-real
problem of land use allocation in the heart of world city. The model of course can
be generalised to any system where there are two sets of characteristics and in fact,
most opinion pooling models are non-spatial. But the logic of developing the model
in this context is strikingly similar to that used in map overlay analysis in GIS and
urban design and this is the focus we will exploit and demonstrate here.

2.5 Applications of the Approach: Competition for Land
Use in a World City

To demonstrate how we determine a solution equivalent to evolving a plan from the
differing plans of the relevant agents or stakeholders, we have chosen a problem of
reconciling different interests in land development in the heart of a world city,
London. The area we have chosen is some 5 hectares in size, immediately north of
St. Paul’s cathedral in an area that for the last 200 years (until quite recently) has
been the location of the General Post Office and is now largely occupied by
financial services, medical-hospital uses, and private apartments. It is in an area that
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is undergoing rapid change of use and redevelopment as investors and developers
attempt to realise ever more profits from its location in the ‘square mile’, the
financial quarter of London and the borough which is called the ‘City’. The pres-
sures on development are huge while the control over what happens is severely
constrained by the City Corporation. All this conflicts with the massive amounts of
capital that are tied up in the buildings which house some of the world’s most
prominent financial services.

This application is a caricature of the development process and in this sense, it is
a ‘toy’ example simply to illustrate the nature of the solution process rather than to
provide any realistic resolution of conflicts in the area. We will define a limited
number of key agents—but only 6 in all—who dominate the scene. In reality,
however, there are many more, including groups whose interest originates from
issues beyond the area in question. In terms of the way we define the map, we deal
simply with the location of 8 land parcels, most containing buildings and we do not
consider the streets between the buildings as uses that would change in any way. In
fact the land parcels and streets are not assumed to change their configuration in the
plan, and this is consistent with the relatively inert structure of land parcels in this
part of London, notwithstanding considerable change in the usage of land and in the
way it is developed and occupied. We list the agents and the sites that compose the
map in Table 2.1 which gives an immediate sense of the nature of the problem.

The area is shown in Fig. 2.1 where the buildings are defined by the numbers in
Table 2.1, and some sense of the character of the area is given by the thumbnail
pictures showing individual viewsheds in the area which are shown in Fig. 2.2. We
will say something about each of the sites or land parcels in the order shown in
Table 2.1. Site 1, the Aldersgate Complex, is a large postmodern ziggurat-type
building adjacent to the Museum of London at the western end of London Wall (the
original Roman wall of the city). The site was redeveloped in the early 1990s and it
is unlikely to be changed physically in the next decade although it has recently been
reconfigured after the financial crisis and now contains a number of financial ser-
vices companies in contrast to its previous tenant which was a large law firm. South
of this is the building complex that bounds site 5, Postman’s Park. On the southern
side of the Park is site 3, the 1880 General Post Office building which is now owned

Table 2.1 Agents and sites-land parcels-buildings

Property Speculators Postman’s Park

n==6 Agents =8 Sites-land parcels-buildings
1 City Corporation Aldersgate Complex

2 Residents St. Botolph’s Church

3 Hospital NHS Nomura House

4 Developers Milton House

5

6

Investment Banks Bank of America

Barts New Building
Barts Old Building

o | o |u|slwv|—]3
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Fig. 2.2 The problem context: The Little Britain—St. Bartholomew’s Hospital Site
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by Nomura Bank. On the east of the Park is site 2, St. Botolph’s Georgian Church,
while the street that bounds the Aldersgate Complex running along Postman’s Park
is Little Britain, the place of John Wesley’s conversion in 1738 which established
Methodism a year later. At the western end of this street is site 4, residential
apartments called Milton House built around the same time as the Aldersgate
complex in the early 1990s. King Edward Street divides these buildings in the
north-south direction with site 7, the St. Bartholomew’s Hospital Old Building on
its north (currently being redeveloped as apartments), site 8, the new St
Bartholomew’s Hospital building south of the Old Building on the east, and south
of this, site 6, the old Post Office Extension. This is now owned by Bank of
America (acquired Merrill Lynch in the financial crash in 2009) who in turn had
bought it from the Post Office in 2004.

This area does not have any particular symbolic imagery as it is of mixed use and
much influenced by the eastward expansion of the city from the Bank of England area
to St. Paul’s due to the change in the location of the London Stock Exchange which is
just south of the Bank of America on High Holborn. As Fig. 2.2 reveals, the area is
quite attractive, particularly the complex of buildings around Postman’s Park which is
a classic New York City style pocket park. What is clear is that the area is subject to
continual pressures relating to the fact that financial services now dominate the city
and this is an area that is subject to the volatility of the financial economy, continual
acquisitions and mergers that define these firms, and the extreme competition for
office space that dominates different areas of the city and its extension westwards
towards Bloomsbury and eastwards into the London Docklands.

We have defined 6 agents or actors who are the key stakeholders with both
interest and control over the various sites. In fact we could define many more than 6
for each of the groups we identify could be broken down into different types but we
need to keep the ‘toy’ problem manageable to illustrate the method. The first group
is the City Corporation which is the arbiter of all that happens in the square mile. It
controls most of the land which it owns and is leased to the many businesses and
residents who make up the economic and social activity in the city. In fact its main
control is over development and it tends to operate a pro-business policy but at the
same time exercising considerable control over the type and visual appearance of
development. The next group 2 are Residents who currently live in the complex
centred on site 4 Milton House and the northern side of Little Britain which is
attached to the Aldersgate Complex. This group is not particularly well-organised
but as there is more apartment building planned for the area and as the streets are
being reconfigured for cyclists, the residents’ group is potentially a greater power
broker than it has been so far. The third group is the St. Bartholomew’s Hospital run
by the National Health Service (NHS) who are a powerful public agency but who
tend not to be interested in property except insofar as they have been selling off
parts of the old Hospital buildings to private developers for apartments. The
massive redevelopment of their own buildings which is almost complete now has
been financed by external public finance initiatives. Group 4 are Developers who
have a predatory interest in all buildings except those that they know they can never
control such as churches, parks etc. The fifth group are the Property Speculators.
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These are not the same as Developers as they tend not to be interested in the
eventual usage or building form except insofar as they are interested in capital and
finance. Last but not least there are the Investment Banks who have more ad hoc
interests in property insofar as they are concerned with their international profile
and nearness to other financial institutions.

We will define four different variants of the group decision problem beginning
with the last that we specified, the French-Harary model. Here interest and control
are not specified separately and the interactions between agents in the primal
problem and map sites in the dual problem are determined as in (2.15) and (2.16).
We then use the map matrix for both interest and control in the standard problem
which is based on Coleman’s model as we specified in (2.11) and (2.12) and this
constitutes what we called the ‘baseline’ model that we can use to compare with any
other. We then move to two variants of the full model where interest and control are
specified quite separately. The first is where we simply assign random values to the
X and C matrices and the second (and last) one is based on a full specification of
what we regard as appropriate interest and control matrices that differ in plausible
ways from one another. We can then make comparisons between the four different
applications in terms of their equilibrium resource and value vectors and draw
conclusions as to the sensitivity of the model, and the size of actual applications that
are needed to implement this way of thinking in contrast to our ‘toy’ application.
We then speculate on ways in which the model might be taken further to explore
how planning problems of this type do not lead to consensus or solution, which
some would argue is the recurrent condition in such contexts.

As a starting point we will define the map matrix which we use to define
aggregate interactions and also use in the baseline model. We can write this matrix as

(2.20)

—_——_0 O O O
SO = O O OO
e e
SO = O O OO
SO = O OO
—_— = = O
SO = O OO
O = = = =

where Fig. 2.3 annotates this with respect to the agents and the sites. It is worth
going through the elements of this matrix to focus on the rationale for associating an
agent with a site for this is the essence of both their interest and control. To an
extent, we might think of this as simply the interest that the agent has in change of
use for the site which determines the agent interactions while the dual is simply the
overall common interest that all agents have with respect to any two sites. Starting
with the City Corporation, it has a strong interest in the two banks which have
changed use frequently during the boom which preceded the financial crisis and its
aftermath and although Bank of America now looks stable, Nomura are seeking
new tenants. The Corporation also have an interest in the Barts Old Building, the
new apartment complex as do the Residents whose interest is in the enhancement of
the residential quality of the area. When we say that an agent or group has no
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1 Aldersgate Complex

2 St Botolph's mm

[%5]
! EJ 3 Nomura House
o % 4 Milton House =l L
- P % 5 Postmans’ Park T/
H_L - 6 Bank of America [ |
< 7 Barts New Building
Agents 8 Barts Old Building
1 City Corporation FO 1001 0—1
2 Residents 00000001
3 Hospital NHS 00000101
4 Developers 00101111 = MO
5 Property Spec 11110101
6 Banks 10100100

Fig. 2.3 The n X m map matrix based on relating agents to sites and buildings

interest, this is as much likely to mean that the agent has an interest in keeping a site
in the same use and in this sense, all the agents apart from Developers and Property
Speculators have a strong conservative outlook on what happens in this area.

The Hospital NHS Trust (St. Bartholomew’s) is a state-of-the-art cancer hospital
with a very old foundation which has recently been extensively redeveloped, hence
the selling off of its Old Building for residential development. They have little
interest in anything other than adjacent buildings but in this sense, do have a mild
interest in Bank of America. Were the funds to be available for purchase of sur-
rounding buildings, the NHS Trust would probably have a stronger interest but it is
unlikely that this would ever be possible for the organisation of the hospital is based
on much wider considerations that pertain to the Trust that runs it, and the some-
what parlous state of the NHS in Britain. Developers are much more predatory and
have an interest in everything in the area with the exception of the residential
development, the church and the Aldersgate Complex which are all protected or
unlikely to be changed in any form in the immediate future. Arguably the Park is
protected and unlikely to change but it could be developed more actively. Property
Speculators have the widest interest but with little interest in Postman’s Park or the
Barts New Building. There is a mild interest in the church but only for its use value.
Finally the Banks have an interest in their own use of their two sites as well as in the
Aldersgate Complex which is still has space for let and which contains several
financial companies that service banks in the wider city.
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2.5.1 Solutions and Comparisons

Our first model is now very easy to construct as we form P by multiplying M(0) by
its transpose M (0) and its dual Q by multiplying the transpose M’ (0) by the basic
map matrix M’ (0). We can write these out explicitly as

000011 ]
312332  [00100101 | | 000010
111110 00000001 | | 100111
. 212221 00000101 | | 000010 ,
P= = = M(0)M’(0)
312532 00101111 | | 000100
312363 11110101 | | 101111
201233 | | 10100100 | | 000100
111110
_ - _L . (2.21)
21210201 000011
11110101 000010 | [ 00100101 ]
21411413 100111 | | 00000001
R 11110101 000010 | | 00000101 ,
Q= = = M"(0)M(0)
00101111 000100 | | 00101111
21411514 101111 | | 11110101
00101111 000100 | | 10100100 |
| 11311415 | | 111110 |

We form the probability matrices in the usual fashion as P and Q and we can
picture the stochastic interactions in these two social networks as in Fig. 2.4. Note
that we will do this for each of the models in this section but our graph program
does not produce directional interactions and thus what we see is the maximum
interaction between agents and between sites. In fact in this first model, the ultimate
steady state weights can be read off directly from the interaction matrices P and Q.
Equations (2.18) and (2.19) above can be written explicitly as

rp X Zi)ik = EMljlek
k j

o (2.22)
Vi o< > Q=Y MMy
7 %

which from (2.21) can be written out directly as
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Agent Interactions P Interactions Between Sites Q

Bank

City Corporation l’mllv'\;n%
3 ;
/
7
\ ;

Milton House Saint Botodph's

Hospital Residents

Nomurg House

Fig. 2.4 The French-Harary interaction networks

r=[14 5 10 16 18 I1] 17]} (2.23)

v=[9 6 17 6 5 19 5
The French-Harary model is in fact another kind of baseline, and we show these
values in (2.23) scaled to sum to 100 in Table 2.2, where, henceforth, for the three

other variants of the model we will use the same scaling. What this implies for the

Table 2.2 The steady state weighting vectors for the four models

Models |1 2 3 4 Differences

Agents | French-Harary | Coleman | Coleman |Coleman |(2)-(1) |[(2)-3) |(2)-(4)
Baseline | Random | Real

1 19 (3) 15 (3=) 16 (5) 34 (1) —4 -1 -19

2 7 (6) 5(6) 18 (1) 12 (5) -2 -13 -7

3 13 (5) 10 (5) 15 (6) 9 (6) -3 -5 1

4 22 (2) 25 (2) 17 2=) 15 2=) 3 8 10

5 24 (1) 30 (1) 17 (2=) 15 (2=) 6 13 15

6 15 (4) 15 (3=) 17 (2=) 15 (2=) 0 -2 0

Sites

1 11 @ 10 (4) 11 (6=) 16 (4=) -1 -1 -6

2 7 (5=) 5(5=) 13 (4) 38 -2 -8 2

3 20 (2=) 20 (3) 14 (3) 16 (4=) 0 6 4

4 7 (5=) 5 (=) 9 (8) 50 -2 —4 0

5 6 (7=) 5(5=) 15 (1=) 17 (3) -1 -10 -12

6 23 (1) 25 (1=) 11 (6=) 19 (1) 2 14 6

7 6 (7=) 5(5=) 12 (5) 6 (6) -1 =7 -1

8 20 (2=) 25 (1=) 15 (1=) 18 (2) 5 10 7

The weights sum to 100 and can thus be interpreted as percentages; the numbers in brackets are
their rank
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agents is that the most influential (for these values pertain to their weight in any
ultimate consensus) are the Developers and the Speculators. The Residents have
very little influence while the City Corporation is almost as powerful as the land and
property interests, and although the Corporation wields great power, it is a little less
interested in the sites in this area than Developers and Speculators. This makes
good sense. The NHS in fact has modest power but only in relation to its adjacent
sites. When we examine the sites, the most important are the banks—Nomura and
the Bank of America with the new redevelopment site of Barts Old Building also
having some significance. The existing residential sites, the church and the park are
less important as these are shielded from an interest in further development.

Our second model uses the same data as the first but this time we have articu-
lated it using specific interest and control as defined from the maps in (2.11) and
(2.12). This is the simplification of Coleman’s model where the final equilibrium
vectors are simply the sum of the rows and columns of the map matrix, that is
v o< IM(0) and r o< 1M (0) which we can write out explicitly as

31 25 6 3]
[21411515]}‘ (2:24)

In fact these values in (2.24) are quite similar but much less sharpened versions
of those generated by the French-Harary model in (2.23). This is clear from
Table 2.2 where we scale them to sum to 100 and also use (2.24) as the baseline to
make comparisons for all the other three models that we test. The only significant
difference from the previous model is that the Barts Old Building is of top
importance while the city corporation is of equal importance to the banks. It is not
worth speculating on these differences for it is clear that this kind of analysis only
comes into its own when the problem is scaled up with many more agents and sites
and this is for future applications.

Our third model is yet another kind of baseline where we simply set each element of
interest and control to random values, that is Xj; ~ random(1) and Cy ~ random(1)
where these values are then scaled to sum to 1 so that the two matrices are stochastic.
We show the equilibrium values for a run of this model in Table 2.2 where the
predictions of resources r and value v are truly random and have no meaning in terms
of our set of agents and sites. Our fourth and last model is where we define interest and
control in much more realistic ways. For example, the Residents may have a lot of
interest in Postman’s Park but no real control over doing anything about their interest.
In fact this is not quite the case for as residents they can petition their local aldermen to
act on their behalf but in general it is those who own sites and those who have capital to
acquire them and change their use that have greater control. We have defined two
matrices of interest and control that differ in these terms. The City Corporation have
interest in the use of the larger buildings but no interest in the residential apartments or
church or new hospital buildings because these are not going to change in the future.
The Residents have an interest in the other residential building and planned apart-
ments and the park while the hospital trust simply has an interest in its own buildings.

r
A\
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The Developers and Speculators have pretty similar interests in the usage of the larger
buildings and banks while the Banks themselves have an interest in the buildings they
themselves own. In terms of control, the Corporation has pretty much control over the
entire area while the residents and the Hospital Trust’s control matches their interest.
Developers and Speculators control the large buildings and the banks are controlled by
those who own them. The correlation between interest and control is low but positive
with the percent of variance explained between X and C as 35 and thus there is a
sufficient measure of difference between interest and control to ensure that some
compromise is required.

In terms of the equilibrium distribution of resources and value, then it is the City
Corporation that is by far the most powerful with the Developers, Speculators and
Banks having a more or less equal control of resources. The sites that are most valuable
are the largest bank buildings but the new apartments and the Aldersgate Complex are
also highly valued in terms of change of use. The park is highly valued but the church
is not because there is no likelihood of it being developed. The configurations of
resources and values are given in Table 2.2 where it is clear that there are substantial
differences between these measures and the baseline and where the biggest office
building sites are the most valued. The real strength of this model is of course in
sensitivity testing—to pose the question ‘how can the resources of a particular agent
be increased or the value of a site increased by manipulating the networks of interest
and control?” And ‘how easy or difficult this would be to accomplish?’

To conclude this analysis, it is worth exploring a little further the data in terms of
the social networks that are implied by this application. We have already shown the

The Baseline Model The Random Model The Real Model

Fig. 2.5 The three variants of Coleman’s model
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network associated with the French-Harary model in Fig. 2.1 but in terms of
Coleman’s model, we will show the primal and dual networks for P and for Q for
each of the three problems — the baseline where the map matrix determines both
interest and control from M(0) associated with model 2 in Table 2.2, the X and
C random matrices associated with P = XC and Q = CX in model 3, and the
realistic matrices of interest and control associated with model 4. We show these
networks in Fig. 2.5, where the key differences between interactions between
agents and between sites are clearly illustrated by the amounts of interaction
associated with the primal and dual probability matrices.

2.6 Conclusions and Next Steps

The models introduced here are all variants of an averaging process that assumes
that networks of agents and their interest and control over development/building
sites are sufficiently connected to ensure that their communication with respect to
resolving differences between themselves is functional. Moreover we have assumed
that rational compromise takes place, but in reality we know that this is invariably
not the case. In fact, it is quite likely that in many problems of this kind, networks
are not strongly connected and agents do not communicate leading to all kinds of
log-jams and conflicts that often can only be resolved at a much higher level. In this
sense, conflict resolution may ultimately take place but outside of the limits of the
kind of problem posed here. The City of London it is likely that conflict would be
resolved because the City Corporation is so powerful that it can bring massive
resources in that it is the prime land owner in all development transactions.

It is quite easy to modify the model to illustrate how conflict can be resolved in
such a way that the equilibrium weightings implied by these variants are distorted
or modified by additional factors. For example, it is possible to build in inexorable
and constant pressures where exogenous resources are continually introduced to
pressure the conflict resolution towards certain directions. As the models have a
linear structure, it is possible to add additional inputs in the manner sketched by
Friedkin (1998) and illustrate how different exogenous weights can influence the
ultimate balance of resources and values. It is also possible to add generic trends to
the outcomes in the manner introduced by Blondel et al. (2005) where flocking and
following are used to converge solutions that have their own dynamic. To explore
these however, we need to move to much bigger problems and to problems where
observational data pertaining to the actual processes of conflict resolution is to the
fore. This involves grappling with group dynamics and engaging with the long
stream of work on how decisions are actually reached in empirical contexts, while
at the same time ensuring that the notion of design as optimisation remains to the
fore.
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