
Preface

Finding proper values of physical parameters in mathematical models is often
quite a challenge. While many have gotten away with using just the math-
ematical symbols when doing science and engineering with pen and paper,
the modern world of numerical computing requires each physical parameter
to have a numerical value, otherwise one cannot get started with the com-
putations. For example, in the simplest possible transient heat conduction
simulation, a case relevant for a real physical material needs values for the
heat capacity, the density, and the heat conduction coefficient of the ma-
terial. In addition, relevant values must be chosen for initial and boundary
temperatures as well as the size of the material. With a dimensionless math-
ematical model, as explained in Chapter 3.2, no physical quantities need to
be assigned (!). Not only is this a simplification of great convenience, as one
simulation is valid for any type of material, but it also actually increases the
understanding of the physical problem.

Scaling of differential equations is basically a simple mathematical process,
consisting of the chain rule for differentiation and some algebra. The choice
of scales, however, is a non-trivial topic, which may cause confusion among
practitioners without extensive experience with scaling. How to choose scales
is unfortunately not well treated in the literature. Most of the times, authors
just state scales without proper motivation. The choice of scales is highly
problem-dependent and requires knowledge of the characteristic features of
the solution or the physics of the problem. The present notes aim at explaining
“all nuts and bolts” of the scaling technique, including choice of scales, the
algebra, the interpretation of dimensionless parameters in scaled models, and
how scaling impacts software for solving differential equations.

Traditionally, scaling was mainly used to identify small parameters in
mathematical models, such that perturbation methods based on series ex-
pansions in terms of the small parameters could be used as an approximate
solution method for differential equations. Nowadays, the greatest practical
benefit of scaling is related to running numerical simulations, since scaling
greatly simplifies the choice of values for the input data and makes the sim-
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ulations results more widely applicable. The number of parameters in scaled
models may be much less than the number of physical parameters in the
original model. The parameters in scaled models are also dimensionless and
express ratios of physical effects rather than levels of individual effects. Set-
ting meaningful values of a few dimensionless numbers is much easier than
determining physically relevant values for the original physical parameters.

Another great benefit of scaling is the physical insight that follows from
dimensionless parameters. Since physical effects enter the problem through a
few dimensionless groups, one can from these groups see how different effects
compete in their impact on the solution. Ideally, a good physical understand-
ing should provide the same insight, but it is not always easy to “think right”
and realize how spatial and temporal scales interact with physical parame-
ters. This interaction becomes clear through the dimensionless numbers, and
such numbers are therefore a great help, especially for students, in developing
a correct physical understanding.

Since we have a special focus on scaling related to numerical simulations,
the notes contain a lot of examples on how to program with dimensionless
differential equation models. Most numerical models feature quantities with
dimension, so we show in particular how to utilize such existing models to
solve the equations in the associated scaled model.

Scaling is not a universal mathematical technique as the details depend
on the problem at hand. We therefore present scaling in a range of specific
applications, starting with simple ODEs, progressing with basic PDEs, before
attacking more complicated models, especially from fluid mechanics.

Chapter 1 discusses units and how to make programs that can automat-
ically take care of unit conversion (the most frequent mathematical mistake
in industry and science?). Section 2.1 introduces the mathematics of scaling
and the thinking about scales in a simple ODE problem modeling expo-
nential decay. The ideas are generalized to nonlinear ODEs and to systems
of ODEs. Another ODE example, on mechanical vibrations, is treated in
Section 2.2, where we cover many different physical contexts and different
choices of scales. Scaling the standard, linear wave equation is the topic of
Chapter 3.1, with discussion of how boundary and initial conditions influence
the choice of scales. Another PDE example, the diffusion equation, appears
in Chapter 3.2. Here we progress from a simple linear diffusion equation in
1D to a study of how scales are influenced by an oscillatory boundary con-
dition. Nonlinear diffusion models, as well as convection-diffusion PDEs, are
elaborated on. The final Chapter is devoted to many famous PDEs arising
from continuum models: elasticity, viscous fluid flow, thermal convection, etc.

The mathematics is translated into complete computer codes for the ODE
and simpler PDE problems.

Experimental fluid mechanics is a field full of relations involving dimen-
sionless numbers such as the Grashof and Prandtl numbers, but none of the
textbooks the authors have seen explain how these numbers actually relate to
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dimensionless forms of the governing equations. Consequently, this non-trivial
topic is particularly highlighted in the fluid mechanics examples.

The mathematics in the first two chapters is very gentle and requires
no more background than basic one-variable calculus and preferably some
knowledge of differential equation models. The next chapter involves PDEs
and assumes familiarity with basic models for wave phenomena, diffusion,
and combined convection-diffusion. The final chapter is meant for readers
with knowledge of the physics and mathematics of continuum mechanical
models. The mathematical level of the text rises quickly after the first two
chapters.

In the first two chapters, much of the mathematics is accompanied by com-
plete (yet short) computer codes. The programming level requires familiarity
with procedural programming in Python. As the mathematical level rises,
the computer codes get much more comprehensive, and we refer to some files
for computational examples in chapter three.

The pedagogy is to saturate the reader with lots of detailed examples to
provide an understanding for the topic, primarily because the choice of scales
depends on the problem at hand. One can also view the notes as a reference
on how to scale many of the most important differential equation models in
physics. For the simpler differential equations in Chapters 2 and 3, we present
computer code for many computational examples, but the treatment of the
advanced models in Chapter 4 is more superficial to limit the size of that
chapter.

The exercises are named either Exercise or Problem. The latter is a stand-
alone exercise without reference to the rest of the text, while the former
typically extends a topic in the text or refers to sections or formulas in the
text.

What this booklet is and is not
Books containing material on scaling and non-dimensionalization very
often cover topics not treated in the present notes, e.g., the key topic
of dimensional analysis and the famous Buckingham Pi Theorem [1,
8], which we discuss only briefly in section 1.1.3. Similarly, analytical
solution methods like perturbation techniques and similarity solutions,
which represent classical methods closely related to scaling and non-
dimensionalization, are not addressed herein. There are numerous texts
on perturbation techniques, and these methods build on an already
scaled differential equations. Similarity solutions do not fit within the
present scope since these involve non-dimensional combinations of the
unscaled independent variables to derive new differential equations that
are easier to solve.

Our scope is to scale differential equations to simplify the setting of
parameters in numerical simulations, and at the same time understand
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more of the physics through interpretation of the dimensionless numbers
that automatically arise from the scaling procedure.

With these notes, we hope to demystify the thinking involved in scale
determination and encourage numerical simulations to be performed with
dimensionless differential equation models.

All program and data files referred to in this book are available from the
book’s primary web site: URL: http://hplgit.github.io/scaling-book/
doc/web/. This site also features a version of the book with exercises.
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