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Abstract This paper proposes an efficient numerical algorithm to obtain an approx-
imate solution of first-order periodic boundary value problems. This new algorithm
is based on a reproducing kernel Hilbert space method. Its exact solution is
calculated in the form of series in reproducing kernel space with easily computable
components. In addition, convergence analysis for this method is discussed. In
this sense, some numerical examples are given to show the effectiveness and
performance of the proposed method. The results reveal that the method is quite
accurate, simple, straightforward, and convenient to handle a various range of
differential equations.
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1 Introduction

Boundary value problems (BVPs) with periodic boundary conditions have become a
focus of research in many fields of physics, engineering, and mathematics, including
molecular dynamics, mechanical systems, computer simulations, and composite
materials with a periodic microstructure and so on. When such problems are solved
numerically, the periodicity condition is often imposed strongly; in other words, the
values on periodic edges are required to match exactly. For typical examples, see
[18, 19].

The purpose of this paper is to extend the application of the reproducing kernel
Hilbert space method (RKHM) to provide approximate solution of a class of first-
order periodic BVPs of the following form:

w(x) + gux) =f(xu@x); 0=x=<1, (1)
subject to the periodic boundary condition
u(0) —u(1) =0, (2)

where g(x) is continuous function, f (x,u) € W3 [0,1], u = u(x) € W3[0,1]
is an unknown function to be determined, ||f (x,u(x)) —f (x, u(x))||W21 <
M||u(x) — u(x)||W21 for x € [0,1], M € R, f(x,u) is linear or nonlinear function of

u depending on the problem discussed, and W%[O, 1] and W}[0, 1] are reproducing
kernel spaces defined in the next section. Throughout this paper, we assume that the
BVP models (1) and (2) have a unique smooth solution on the given interval [0, 1].

The numerical solvability of BVPs with periodic boundary conditions of different
orders has been pursued in literature. To mention a few, Peng [22] has discussed the
existence and multiplicity of the positive solutions for first-order periodic BVPs.
Al-Smadi et al. [4] have developed an iterative method for systems of first-order
periodic BVPs based on the RKHM. Lia [20] has presented the existence of
positive solution for fourth-order periodic BVPs. On the other hand, this method has
been implemented in several operator, differential, integral, and integrodifferential
equations side by side with their theories for instance, singular BVPs [12], sin-
gularly perturbed multipantograph delay equations (Geng and Qian, 2014), partial
differential equations [17], Fredholm-Volterra integrodifferential equation [2, 5, 6],
Fredholm integrodifferential equation ([1, 3, 14]), Volterra integrodifferential equa-
tion [7, 8], Fredholm-Volterra integral equation [11], operator equations [21], Fuzzy
differential equations [9], and others [10, 15, 16]. The basic motivation of this paper
is to apply the RKHM to develop an approach for obtaining the representation of
exact and approximate solutions for a class of periodic BVPs (1) and (2), whereas
the condition for determining solutions can be imposed in reproducing kernel space.
However, this approach is simple, needs less effort to achieve the results, and is
effective.
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The paper is organized as follows. In Sect. 2, reproducing kernel spaces are
presented in order to construct their reproducing kernel functions. In Sect. 3,
representations of exact solution for BVPs (1) and (2) together with some essential
results are introduced. Meanwhile, an iterative method for solving first-order
periodic BVPs is described based on these reproducing kernel spaces. Subsequently,
the analysis of the method is discussed in Sect. 4. In Sect. 5, numerical examples
are simulated to show the reasonableness of our theory and to demonstrate the high
performance of the proposed method. Finally, some conclusions are summarized in
the last section.

2 Preliminaries and Materials

In this section, we utilize the reproducing kernel concept to construct the space
W% [0, 1] in which every function satisfies the periodic boundary condition (2) and
formulate its reproducing kernel function. Besides, we present some basic results
and remarks in the reproducing kernel theory and its applications.

Definition 1. Let E be a nonempty abstract set. A function K : E X E — Risa
reproducing kernel of the Hilbert space .77 if:

1. Foreachx € E,K (-, x) € JZ.
2. Foreachx € Eand ¢ € 57, (¢, K (-,x)) = ¢(x).

The last condition is called the reproducing property: the value of the function ¢
at the point x is reproducing by the inner product of ¢ with K (-, x).

Remark 1. A Hilbert space .77 of functions on a set E is called a reproducing kernel
Hilbert space (RKHS) if there exists a reproducing kernel K of .77. That is, a Hilbert
space which possesses a reproducing kernel is called the RKHS.

Definition 2. The Hilbert space W}'[0,1], m € N, is called a reproducing
kernel if for each fixed x in [0, 1], there exist K (x,y) € W}'[0,1] such that
(u(y), K (x, y))len = u(x) for any u(y) € W3[0, 1] and y € [0, 1].

Definition 3. The reproducing kernel space W3[0, 1] defined as W3 [0, 1] = {u(x) :
u’(x) is absolutely continuous real-valued function, u’*(x) € L?[0, 1], and u(0) =

u(l)}. The inner product and norm in W%[O, 1] are given, respectively, by

1
(u(x), v(x))W% = u(0)v(0) + w’(0)v’(0) + /Ou”(t)v”(t)dt, 3)

and |lu| = (u, u)%, where u, v € W3 [0, 1].
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Remark 2. The space W%[O, 1] is a complete reproducing kernel space, and its
reproducing kernel function K(x, y) can be written as

4
Y ety y<x,
k(e,y) =1 7' 4)
Zdi(x)yi_l, y > x,

i=1

where ¢;(x) and d;(x), i = 1,2, 3, 4 will be given by the following assumptions:
Let's assume that K (x,y) € W3[0, 1] satisfies the generalized differential
equations

Bk(xy)_S(y ),ak(Xl)—Ok(XO)+ak(X0)+C_0

5)
ak(x 0) _ Pkx,0) _ a*k(x 1) _ (
oy o = 0, +c; =0.

where § is the Dirac delta function.

On the other hand, for x # y, K(x,y) is the solution of the constant differential
o+ /5(;2 Y _
istic equation is given by A* = 0 and the eigenvalues are A = 0 with multiplicity 4.
Hence, the general solution can be written as in Eq. (4).

In addition, assume that K(x, y) satisfies the equations

equation = 0, subject to the boundary conditions (5). That is, the character-

El k(a/;:;ﬁ-H)) — ad kgl)nc 0) for
m=0,1,2,and 33k(g}’f§+0) - 3'”"%’;’,’,,‘_0) = —1. Through the last descriptions together
with the boundary conditions (5), the unknown coefficients c;(x) and d;(x), i =
1,2, 3, 4 are uniquely obtained.

However, the representation of the reproducing kernel function K(x,y) in

W3[0, 1], using Mathematica software package, is provided by

K (x.y) = 45 [Py (643y—y?) +3x2y (—6=3y+)?) +6xy (24+y+)?) =8 (—6+y°) | .y < x,
Y 45 [48+6xy (2—3y-+y?) +3x%y (2—3y+y?) —x* (8—6y—3y>+y°) | .y>x.
(6)

Here, it should be noted that the kernel function K(x,y) is unique, symmetric,
and nonnegative for any fixed x € [0, 1]. For detailed method for obtaining the
reproducing kernel function, we refer to [12].

Theorem 1. An arbitrary bounded set of WZ[O 1] is a compact set of C[0, 1].
Proof Let {u,(x)}o2, be a bounded set of W2[0 1] such that |lu,(x)|| < M,

where M is positive constant. From representation of K(x,y), we have |u(i) (x)i =
(100, 91K (5,3} | = HNK )2 0G0 yz- Sinee 9K (5,) i = 1,2, is
uniformly bounded about x and y, we have |u(x)| < M;||u(x)|lyz. Accordingly,
[u)l. = M.
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Now, we need to prove that {u,(x)}-—, is a compact set of C[0, 1], that is,
{un(x)} 2, are equicontinuous functions. From the property of K(x, y), we have

lun (x1) —uan (x2)|= |(u (), K (x1,y) =K (2, ) 2

= Nz 1K (1,9 =K (20 s =M | K (e1,3) =K (2. )z

By “mean-value theorem of differentials” and the symmetry of K(x, y), it follows
that

d
IK (x2,y) =K (x1, )| = |K (v, x2) =K (v, x1)| :’de 0.0 P —xi| =N lo—x].

X=1

Thus, if y < |x; — x| < then one can get |u, (x1) — u, (x2)| < €.

NM>
Definition 4. The reproducing kernel space W}[0, 1] defined as W) [0, 1] = {u(x) :

w’(x) is absolutely continuous real-valued function, u’(x) € L?[0,1] } The inner

product and norm in W3[0, 1] are given, respectively, by

1

(u(x), v(x))W21 = u(0)v(0) + /Ou’(t)v’(t)dt, @)

and [Jul = (u.u)?, where u, v € W1 [0, 1].

In 2006, Lin and Cui have proved that the space W1[0,1] is a complete
reproducing kernel and its reproducing kernel is given by

(1+y).y=<nx

(14+x),y>nx ®)

wa={

3 Adaptation of Reproducing Kernel Algorithm

In this section, the formulation of a linear differential operator and the imple-
mentation method are presented in W%[O, 1]. After a while, the construction of
orthogonal function systems is introduced based on the use of the Gram-Schmidt
orthogonalization process in order to obtain exact and approximate solutions of
periodic BVPs (1) and (2). To do this, we define a differential operator L :
W2 [0, 1] — W, [0, 1] such that Lu(x) = u’(x) + g(x)u(x). Thus, the periodic BVPs
(1) and (2) can be converted into the form



14 A. Al e’damat et al.

Lu(x) =f (x,u(x)), 0 <x <1,

u(0) —u(l) =0, ©)

where u(x) € W2[0,1] and f (x.y) € W1 [0.1] as y = y(x)) e W2[0.1].y €
(—00,00),x €[0,1].

Corollary 1 The operator L: W22 [0, 1] = W, [0, 1] is a bounded linear operator.

Proof 1Itis so easy to see that L is a linear operator. Thus, it is enough to show that
L is a bounded operator. From Definition 4, we have

1
Lty = L Labyy = [0 OF + [ (@ P

By reproducing property of K(x,y), we have
u(x) = (u(y), K(x.y)y2
(L)) = (1, LK x0)))

(Lu) (x) = (u LK (x, y))’>W§.

By Schwarz inequality, we get

L)) = |{w LK (e9)) | = ILK @)z el = Ml

w3

and

L0 ] = [{u (LK (.9 )z

< LK @) gz lllyg = Mallulys.
where M, M, > 0 are positive constants.
1
Thus [(Lu) ()1 <M} [lull 3. [(Lu)’ ()] <M3 [ and / [(Lu) @)Pdx=<Mj ull5s.
0
That is,

1
@) )y = (L) O)F + / L0 @Pdx < (M3 +M3) Nullyz = Milullyz.

where M = M? + M3 > 0.
Now, we construct an orthogonal system of functions {y;(x)}, of W3[0, 1] by
setting ®;(x) = G (x,x;) and ¥;(x) = L*®;(x), where {x;}=, is dense on [0, 1]
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and L* is the conjugate operator of L. Consequently, in terms of the properties of
G(x,y), one obtains (u(x), lI/,-(x))Wg = (u(x),L*CIJi(x))W§ = (Lu(x), qD,-(x))Wzl =
Lu(x),i=1,2,...

Lemma 1 The fact ¥;(x) = [jiK(x, Y) ly=x, i =1,2,... holds.
Proof From reproducing property of, we can obtain that ¥;(x) = (¥;(y), K (x, y))sz =
(L*®i(x). K (x.7)) 2 = (®i(0), LK (2, 3))y1 = LK (x.21) = 4K (6.) |y=x;-

Lemma 2 If {x;}{2, is dense on [0, 1]; then {¥;(x)}2, is a complete system of
W3[0, 1].

Proof For each fixed u(x) € W2[0,1], let (u(x),llli(x))wzz = 0. That is,
W) U@y = (W) L*Bi(0)yz = (Lu(). Sy = Lux) = 0, i =
1, 2,.... Therefore, Lu(x) = 0 from the density of {x;};=, on [0,1], as well as
u(x) = 0 from the existence of L™! and the continuity of u(x).

The orthonormal system functions {llli(x) }21 of W%[O, 1] can be derived from
Gram-Schmidt orthogonalization process of {¥;(x)}2, as follows:

Wix) =Y Bali(x), (10)
k=1
where B are orthogonalization coefficients 8; > 0, i = 1,2,.. .,n) that are
given by
8 1 f P
ij = s or 1=j]=1,
Tl
1 ..
Bij = for i=j#1, and

\/ 1l =30 ()

i—1
—Zj=k(l1’i, Yz B
Bij = for i>j.

N S (X2}

Theorem 2. For each u(x) in W3[0, 1], the series Z": (u(x), Wi (x)) ¥i(x) is
convergent in the sense of the norm ||~||sz. On the other hand, if {x;};2, is dense

on [0, 1] and u(x) € sz [0, 1] is the solution of problem model (9), then u(x) satisfy
the following form:
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u(x) = Y Buf (o u () Wil), (1)

i=1k=1

and the approximate solution can be obtained by

() = Y " Buf (i 1 () i), (12)
i=1k=1
where ug(x) € W3[0, 1] (uo fixed).
Proof Since u(x) € Wf [0, 1], u(x) can be expanded in the form of Fourier series
about {llf,-(x)}?:l as u(x) = Z:l (u(x), ¥i(x))¥i(x), and since the space W3[0, 1]

is the Hilbert space, then the series u(x) = Zojl (u(x). ¥i(x)) ¥;(x) is convergent
in the norm ||.||W§. From the Fourier series expansion and by Eq. (7), u(x) can be
written as

i=1 i=1 k=1

u() = Y (), i)y Wilx) = ) <u(x), Zﬂikwk(x)> Wi(x)
W

- ZZ,B,k u(x), V() y2 Wi (x) = ZZ,BL,( (u(x), L* D(x))  ¥ilx)

i=1 k=1 zlkl

=Y > (Bulux), D) Wilx) = Z Z BixLu (xi) Wi(x)

2

i=1 k=1 w) =1 k=1
Y B G ) 0,
i=1 k=1

Therefore, the form in Eq. (11) is the exact solution of Eq. (9). By truncating the
series in Eq. (11), we obtain the th-truncated series approximate solution as in Eq.
(12). So, the proof of the theorem is complete.

Lemma 3. If u(x) € W3[0, 1], then there exists a positive constant M such that
Hu(’)(x) H < M||u(x)||Wz, i = 0,1, where |u(x)||, = maxo<x<i [(x)].

Proof For any x1,x, € [0,1], we have u® (x1) = (u(x2), 0, K (x1,%2) )00 =
2
0, 1. By the expression form of K(x,y), it follows that || 8;1{ (x,y) ||W2 < M;i =
2
(u(x2), le(xhxz))sz < ||3LK(X1,X2)||W2;||M(X2)||W§

~Millu(@)lyz.i = 0.1. Hence, |u®@)], < max {Mi}||u(x)||W§,i — 0,1. The

i

0, 1. Thus,

IA

proof is complete.
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Corollary 2. The approximate solution u,(x) and its derivative u’,(x) are con-
verging uniformly to the exact solution u(x) and its derivative u’ (x) as n — 0o,
respectively.

Proof Form Lemma 3, for any x € [0, 1], it easy to see that ul! ) —u?(x)| =

(u,,(x)—u(x), K (x, x))Wg 5” K (x,x) H w2 ||u,,(x)—u(x)||W% §M,~||un(x)—u(x)||wg,
=0, 1.

Hence, if ||u, (x) — u(x) ||W§ — 0 as n — oo, then the approximate solution u,(x)
and its derivative u’,(x) are converging uniformly to the exact solution u(x) and its
derivative u’ (x) as n — oo, respectively. So, the proof of the theorem is complete.

Remark 3. In order to solve Eq. (1) numerically using the RKHS technique, we
have the following two cases:

Case 1: If Eq. (1) is linear, then the exact and approximate solutions can be obtained
directly from Eqs. (11) and (12), respectively.

Case 2: If Eq. (1) is nonlinear, then in this case the exact and approximate solutions
can be obtained by using the following algorithm:

Algorithm 1 According to Eq. (11), the representation of the solution of problem
(1) can be denoted by

u(x) =y Biwi(x), (13)
i=1

where B; = Z;_lﬂikf(xk,uk_l (x). In fact, Bi,i = 1,2,..., in Eq. (13) are
unknown, so we will approximate them using the known A; as follows: For a
numerical computations, let the initial function uy (x;) = 0, set up (x;) = u(x1),
and define the n-term approximation to ys(x) by

Un(x¥) = Y AWi(), (14)
i=1

where the coefficients A; of ¥;(x),i = 1,2,...,n, are given by
Ay = Buf (x1,uo (x1)) , ur (x) = A1 (x),

Ay = Zi:lﬁzkf (o1, =1 (W) s ua () = Zf:lAiwi(x)’ (15)
n—1 Z"
un—l(x) = E i:lAilI/i(x),An = k=lankf (.X],I/lk—l (Xk)) :

Consequently, the unknown coefficients B;,i = 1,2,..., in Eq. (13) will be
approximate using the known coefficients A;,i = 1,2,..., given in Eq. (14).
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However, in the iterative process of the series (14), we can guarantee that the
approximation u,(x) satisfies the periodic boundary condition (2).

4 Convergence Analysis of the Method

In this section, we will prove that the iterative formula (14) is convergent to the
exact solution of Eq. (9) in the sense of the norm of W%[O, 1]. In fact, this result is
fundamental in the RKHS theory and its applications. The remaining lemmas are
collected in order to prove the pre-recent theorem.

Lemma 4 If |ju,(x) — u(x)||W% — 0, x, =y, (n —> o0), and f(x, z) is continuous
in [0, 1] with respect to x, z forx € [0, 1], z € (—o0, 00), then the following are held
in the sense of the norm of W% [0,1]:

(@) uy—1 (xy) = u(y) asn — <.

(b) f(xnv Up—1 (xn)) _)f(yv M(Y)) ,asn — oQ.

Proof For part (a), note that
|un—1 (xn) - “(y)l = |un—l (xn) - “n—l(y) + un—l(y) - u(y)|
< [un—1 (%) — 1 )| + -1 (y) — u(y)].
By reproducing property of K(x, y), we have u,—; (x,) = (u,—1(x), K (xp, x))w§ and
Up—1(y) = (uy—1(x), K (y,x))sz. Thus,
[un—1 (xn) — n—1 (V)| = [{ttn—1(x), K (X0, x) — K(}’ax))wg

< a1 ) [lw2 1K Gn, X) = K (3, 0) [ 2

From the symmetry of K(x,y), it follows that H K (x,,x) — K(y,x) w2

—0asx, —
y, n — oo. Hence, |u,—1 (x,,) — u,—1(y)| = 0 as soon as x,, — y, (n — 00) . On the
other hand, for any x € [0, 1], by using Corollary 2, it holds that |u,—; (y) — u(y)| —
0 as n — oo. Therefore, u,—; (x,) — u(y) in the sense of ||-||W§ as x, — y and
n — oo. Thus, for part (b), by means of the continuation of f (-), it is obtained that
f ny ty—1 (%)) = f O, u(y)) asx, — y and n — oo.

Lemma 5 For the approximate solution u,(x) in iterative formula (14), the follow-
ing relations hold:

(@) Luy (x3) = f (. 41 (7)) .j < n,
(b) Luy () = Lu (x;) .j < n.

Proof For part (a), the proof will be obtained by mathematical induction. Forj < n,
we have
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Lu, (x)) ZA LW (x) = ZA (LYi(). &)y, = ZA Vi), L (1)),

i=1

=D AV, ¥(0)ys

i=1

That is,
Luy (5) = D A1), %)y (16)

Multiplying both sides of Eq (15) by Bj;, summing for / from 1 to j, and using the
orthogonality of {¥;(x) } _, yields that

Z,szLun () = ZA <w ), Zﬁ,zwz(x)> = DAY, W)y,

=1 i=1 W% i=1
j
=4 = Z,szf (1, wp—1 (x1)) -
=1
If j = 1, then Lu,(x;) = f(xi.uo(x;)). Besides, if j = 2, then
BarLu, (x1) + BoLu, (x2) = Barf (x1,u0 (x1)) + Baof (x2,u1 (x2)), that is,

Luy, (x2) = f (x2, u; (x2)). Thus Lu, (xj) =f (xj, Ui (xj)) forj < n.

For part (b), from Corollary 2 as well as by taking limits in Eq. (14), we

o0

have u(x) = Z,_lAilII,-(x). Thus, u,(x) = P,u(x), where P, is an orthogonal
projector from the space W%[O, 1] to Span{¥, ¥, ..., ¥,}. Therefore, Lu, (xj) =
(Lun(x)v cI)j(-x)>W1 = (u,,(x) L*qJ(X))W% = (P,,u(x), llll(x))w% = (M(.X), Pnlp](-x)>wg =
(u(x), lI/j(x))Wz = (u(x) L*®,; (x))W22 = (Lu(x), CDj(x))Wzl =Lu (xj) . So, the proof of
the lemma is complete.

Lemma 6 The sequence {u,(x)}°c, in the iterative formula (14) is monotone
increasing in the sense of ||~||sz.

Theorem 3. Suppose that {x;};=, is dense on a compact interval [0,1] and
|24, () ||W22 is bounded in formula (14), then the n-term approximate solution ,(x)
in the iterative formula (14) is convergent to the exact solution u(x) of Eq. (9) in

the space W%[O, 1] and u(x) = ZflAilII,-(x), where A;,i = 1,2, ... are given by
Eq. (14).
Proof First of all, we will prove the convergence of u,(x). From iterative formula

(14), we infer that u,+1(x) = u,(x) + Ap+1¥,+1(x). By the orthogonality of
o0 .
{w(x) }2,. it follows that ||un+1||‘2V% = ||un||3vzz + (A1)’ = ||un_1||‘2,,% + (A,)°
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n+1
+ App)? = -0 = ||u0||$v22 + Zi:l (A;)*. From Lemma 6, the sequence
uy|lw2 is monotone increasing, and from the boundedness of ||u,| 2, we have
w2 g w3
o0
2:'_1(Ai)2 < oo, thatis, {A;}2, € 2(i=1,2,...). Hence, ||I/ln||W% is convergent
as 1 — 0o.

Let m > n; for (uy, — um—1) L (up—1 — um—2) L -+ L (up4+1 — uy), it follows
that

e ) = 0 ()12 = N1t () = i1 () + st (6) = =+ + 1 (6) = 0 () 2

< Nt () =ttt (2 + o+ Nt 1 () = a2

=Y (A) —>0. (1> o0).

i=n+1

Considering the completeness of W%[O, 1], there exists u(x) € W22 [0, 1] such that
u,(x) = u(x) as n — oo in sense of ||.||W22.

Secondly, we will prove that u(x) is the solution of Eq. (9). Since {x;}~, is dense
on compact interval [0, 1], thus for any x € [0, 1], there exists subsequence {xnj}
such that Xp; —> X, @8] —> 00. From Lemma 5, Lu, (xnj) =f (xnj, uj— (xn_/.)). Hence,
let j — oo; we have Lu(x) = f (x,u(x)). That is, u(x) is solution of Eq. (9). The
proof is complete.

Theorem 4. Assume that u,(x) € W3 [0, 1] is the solution of BVP (9) and r,(x) =
[lee(x) — up(x) ||W% is an error function, where u,(x) is the approximate solution that

is given by iterative formula (14). Then the sequence of number {r,} is monotone
decreasing in the sense of ||.||W§ and r, —> 0 as n — oo.

Proof Based on the previous results, it is obvious that

o) i 2
a2 =10 = ) = D D B (o it (1) Tty () Wi(x)
i=n+1k=1 w2
2
o0 2 o0
= Y Aw®| =) @’
i=n+1 w2 o i=ntl

2 o0 2
and ||rn_1(x)||W% = Zi=n(Ai) . Thus, ||rn(x)||W22 < |lra=1 (x)||W22. Consequently,
the error r, is monotone decreasing in the sense of |. || w2 The proof is complete.



Analytical-Numerical Solutions for First-Order Periodic Boundary Value. . . 21
5 Applications and Test Problems

In this section, some numerical examples are studied to demonstrate the per-
formance, accuracy, and applicability of the present method for both linear and
nonlinear problems. Results obtained are compared with the exact solution of each
example and are found to be in good agreement with each other. In the process
of computation, all the symbolic and numerical computations performed by using
Mathematica software package.

Example 1 Consider the following linear equation

u’(x)+u(x)=x2+x—l,0§x§1, (17)

subject to periodic boundary condition
u(0) —u(l) =0 (18)

The exact solution is u(x) = x(x — 1).
Using RKHS method, taking x; = r";ll, i=1,2,...,n. The numerical results at

some selected grid points for n = 51 are given in Table 1.

To show the accuracy of the present method for our tested problems, we report
two types of error. The first one is the absolute error, Abs,(x), and the second
one is the relative error, Rel,(x), which are defined, respectively, by Abs,(x) =
|u(x) — u,(x)], Rel, (x) = A‘Z?ST), where x € [0, 1], u,(x) is the n-term approximation

of u(x) obtained by the RKHS method, and u(x) € Wf [0, 1] is the exact solution.

Example 2 Consider the following nonlinear equation

2x—1+ln(x2—x+l)

W (x) + u(x)e ™ = ,0=x=1, (19)
—x+1
subject to periodic boundary condition
u(0) —u(l) =0 (20)

Table 1 Numerical results for Example 1
X; u(x) us; (x) Abss; (x) Rels; (x)
0.16 —0.1344 —0.13440010447668405 1.04477 x 1077 7.77356 x 10~’
032 —02176 —0.21760010031925470 1.00319 x 10~7  4.61026 x 10’
048 —0.2496 —0.24960009873547984 9.87355 x 10™%  3.95575 x 10~
0.64 —0.2304 —0.23040009968473152 9.96847 x 10™%  3.95575 x 10~
0.80 —0.1600 —0.16000010319136138 1.03191 X 10~7  6.44946 x 10~/
0.96 —0.0384 —0.03840010934533122 1.09345 x 10~7 2.84753 x 10~°
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Table 2 Numerical results for Example 2

A. Al e’damat et al.

X u(x) us1(x) Abss(x) Rels; (x)

0.16 —0.1443323708899199 —0.1443322995528097 7.13371 x 10™%  4.94256 x 10~
0.32  —0.2453891602615295 —0.2453890219359414 1.38326 x 10~ 5.63699 x 10~
048 —0.2871488812901222 —0.2871487102608685 1.71029 x 10~ 5.95612 x 10~
0.64 —0.2618843796306403 —0.2618842287680727 1.50863 x 10~  5.76066 x 10~
0.80 —0.1743533871447777 —0.1743532975615985 8.95832 x 10™° 5.13802 x 10~/
0.96 —0.0391567152011939 —0.0391566982754902 1.69257 x 10~  4.32255 x 10~/

The exact solution is u(x) = In (x> —x + 1)

Using RKHS method, taking x; = r’l:ll ,i=1,2,...,n. The numerical results at

some selected grid points for n = 51 are given in Table 2.

6 Conclusion

The main concern of this work has been to propose an efficient algorithm for the
solutions of first-order periodic BVPs. The goal has been achieved by introducing
the RKHS method to solve this class of differential equations. We can conclude
that the RKHS method is a powerful and efficient technique in finding approximate
solution u,(x) for linear and nonlinear problems. In the proposed algorithm, the
solution u(x) and the approximate solution u,(x) are represented in the form of
series in W3[0, 1]. Moreover, the approximate solution and its derivative converge
uniformly to the exact solution and its derivative, respectively.
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