A basic idea in time series analysis is to construct more complex processes from
simple ones. In the previous chapter we showed how the averaging of a white
noise process leads to a process with first order autocorrelation. In this chapter we
generalize this idea and consider processes which are solutions of linear stochastic
difference equations. These so-called ARMA processes constitute the most widely
used class of models for stationary processes.

Definition 2.1 (ARMA Models). A stochastic process {X;} with t € Z. is called
an autoregressive moving-average process (ARMA process) of order (p, q), denoted
by ARMA(p, q) process, if the process is stationary and satisfies a linear stochastic
difference equation of the form

Xi—pi X1 —...— X p =27, + OZi—y + ...+ QqZ;_q 2.1)

with Z, ~ WN(0,02) and ¢,0, # 0. {X,} is called an ARMA(p, q) process with
mean W if {X, — p} is an ARMA(p, q) process.

The importance of ARMA processes is due to the fact that every stationary
process can be approximated arbitrarily well by an ARMA process. In particular,
it can be shown that for any given autocovariance function y with the property
lim;— o y(h) = 0 and any positive integer k there exists an autoregressive moving-
average process (ARMA process) {X;} such that yx(h) = y(h),h=10,1,... k.

For an ARMA process with mean p one often adds a constant c¢ to the right hand
side of the difference equation:

Xi—1 X—1— ... — (pr,_p =c+Z,+60Z1+...+ OqZ,_q.

The mean of X; is then: u = m The mean is therefore only well-defined if
=

¢1+ ...+ ¢, # 1. The case ¢; + ...+ ¢, = 1 can, however, be excluded because

there exists no stationary solution in this case (see Remark 2.2) and thus no ARMA

process.
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2.1 The Lag Operator

In times series analysis it is customary to rewrite the above difference equation more
compactly in terms of the lag operator L. This is, however, not only a compact
notation, but will open the way to analyze the inner structure of ARMA processes.
The lag or back-shift operator L moves the time index one period back:

LiX:} = {Xi—1}-

For ease of notation we write: LX; = X,_;. The lag operator is a linear operator with
the following calculation rules:

(i) L applied to the process {X, = ¢} where c is an arbitrary constant gives:
Le =c.
(i) Applying L n times:

L...LX,=L"X, = X,—,.

n times

(ii1) The inverse of the lag operator is the lead or forward operator. This operator
shifts the time index one period into the future.! We can write L™

L7'X, = X,41.
(iv) For any integers m and n we have:
L"L"X, = L"""X, = Xi—p—n.
(v) As L7'LX, = X, we have that
L'=1

(vi) For any real numbers a and b, any integers m and n, and arbitrary stochastic
processes {X,} and {Y,} we have:

(aLm + bLn) (Xt + Yt) == aXt_m + bXt—n + aYt_m + bYt—n

In this way it is possible to define lag polynomials: A(L) = ay+aL+aL> + ...+
a,1” where ag,ay,...,a, are any real numbers. For these polynomials the usual

!One technical advantage of using the double-infinite index set Z is that the lag operators form a
group.
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calculation rules apply. Let, for example, A(L) = 1 — 0.5L and B(L) = 1 + 4L.2
then C(L) = A(L)B(L) = 1 — 0.5L 4 4L% — 213,

Applied to the stochastic difference equation, we define the autoregressive and
the moving-average polynomial as follows:

dL)=1—¢L—...—¢,L"
OL)=1+6L+...+06,L

The stochastic difference equation defining the ARMA process can then be written
compactly as

qJ(L)Xt == ®(L)Z[.
Thus, the use of lag polynomials provides a compact notation for ARMA processes.
Moreover and most importantly, ®(z) and ©(z), viewed as polynomials of the

complex number z, also reveal much of their inherent structural properties as will
become clear in Sect. 2.3.

2.2 Some Important Special Cases

Before we deal with the general theory of ARMA processes, we will analyze some
important special cases first:

g = 0: autoregressive process of order p, AR(p) process
p = 0: moving-average process of order ¢, MA(g) process

2.2.1 The Moving-Average Process of Order g (MA(g) Process)
The MA(q) process is defined by the following stochastic difference equation:
X, =0L)Z =6Z +0Z1+ ...+ 0,Z, with 6y =1land 6, #0
and Z, ~ WN(0, 62). Obviously,
EX, =EZ +0,EZ_ + ...+ 0,EZ_, =0,

because Z, ~ WN(O0, 02). As can be easily verified using the properties of {Z,}, the
autocovariance function of the MA(g) processes are:

yx(h) = cov(Xy4n, Xy) = E(X;+1X;)
=EZitn + O Zipn—1 + ...+ 04Zi1n—g) (Lt + 01Zi—1 + ... + 04Z—y)
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realization
4 T T T T

4 ; ; ; ;

0 20 40 60 80 100

~@— estimated ACF

= = = upper bound for confidence interval
= = = lower bound for confidence interval

=
2
% 05 ................... —%— theoretical ACF
3 e e e e e e - ————————
5 0 : _____________________________ b
E _05 ..................................................................................
[}
=
8 —1 i i i

0 5 10 15 20

order

Fig. 2.1 Realization and estimated ACF of a MA(1) process: X; = Z, — 0.8Z,—; with Z, ~
IIDN(0, 1)

—Ih
_Jo? o 60 n)s 1Al < ¢
0, |h] > q.

This implies the following autocorrelation function:

—|h
L ZL(I) ! iy 11 < @

q 2
i=0 91’

0, |h| > g.

px(h) = corr(Xy4n, X) =

Every MA(gq) process is therefore stationary irrespective of its parameters

60,01, ....,0,. Because the correlation between X, and X is equal to zero if the

two time points ¢ and s are more than g periods apart, such processes are sometimes

called processes with short memory or processes with short range dependence.
Figure 2.1 displays an MA(1) process and its autocorrelation function.
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2.2.2 TheFirst Order Autoregressive Process (AR(1) Process)

The AR(p) process requires a more thorough analysis as will already become
clear from the AR(1) process. This process is defined by the following stochastic
difference equation:

X, = ¢pXim1 + 7, Z; ~ WN(0,02) and ¢ # 0. (2.2)

The above stochastic difference equation has in general several solutions. Given a
sequence {Z,} and an arbitrary distribution for Xy, it determines all random variables
X,, t € Z\ {0}, by applying the above recursion. The solutions are, however, not
necessarily stationary. But, according to the Definition 2.1, only stationary processes
qualify for ARMA processes. As we will demonstrate, depending on the value of ¢,
there may exist no or just one solution.

Consider first the case of |¢| < 1. Inserting into the difference equation several
times leads to:

X, =¢X, 1+ 2 = ¢2Xt—2 +¢Z 1 + 7,

=2+ ¢Ziy + ¢ Zis + ...+ S Z + 9T X
If {X;} is a stationary solution, VX,_;_; remains constant independently of k. Thus

k
VIX — ZQVZ,,j = ¢2k+2VX,,k,1 — 0 for k — oo.
Jj=0

This shows that ZJI;O @'Z,—; converges in the mean square sense, and thus also in
probability, to X; for k — oo (see Theorem C.8 in Appendix C). This suggests to
take

o0
X, =Zi+¢Zir+ ¢ Zia+...= Y ¢7 (2.3)
j=0
as the solution to the stochastic difference equation. As Zf:o |¢/| = ﬁ < oo this

solution is well-defined according to Theorem 6.4 and has the following properties:

o0
EX, =Y ¢/EZ,; =0,
Jj=0
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k

k
Yx(h) = cov(X;1p, X1) = kliglo E 2 & Zinj 2 &7,
J= J=

© . ghl
=o' "¢¥ = g o,  hel,
j=0

px(h) = "

Thus the solution X; = Zf'io ¢>7Z,_j is stationary and fulfills the difference equation
as can be easily verified. It is also the only stationary solution which is compatible
with the difference equation. Assume that there is second solution {X,} with these

properties. Inserting into the difference equation yields again

k

VX - Z Yz | = ¢*TVX .
=0

This variance converges to zero for k going to infinity because |¢| < 1 and because
{X,} is stationary. The two processes {X,} and {X,} with X, = Zf:o &Z,—; are
therefore identical in the mean square sense and thus with probability one.

Finally, note that the recursion (2.2) will only generate a stationary process if it
is initialized with X, having the stationary distribution, i.e. if EX, = 0 and VX, =
02/(1 — ¢?). If the recursion is initiated with an arbitrary variance of Xy, 0 < Og <

o0, Eq. (2.2) implies the following difference equation for the variance of X;, o/
0y = 203_1 + o2
The solution of this difference equation is
o =0y = (05 — 03)(¢”)

where 02 = 02 /(1 — ¢?) denotes the variance of the stationary distribution. If o3 #
02, o2 is not constant implying that the process {X,} is not stationary. However,
as |¢| < 1, the variance of X;, o, will converge to the variance of the stationary
distribution.?

Figure 2.2 shows a realization of such a process and its estimated autocorrelation
function.

In the case |¢| > 1 the solution (2.3) does not converge. It is, however, possible
to iterate the difference equation forward in time to obtain:

2Phillips and Sul (2007) provide an application and an in depth discussion of the hypothesis of
economic growth convergence.
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Fig. 2.2 Realization and estimated ACF of an AR(1) process: X, = 0.8X,—; + Z, with Z, ~
TIN(O, 1)

X, =¢ ' Xep1 — ¢ Zipa

=¢ " X1 =07 Z1 — 0 Zr— . — 0 Zn

This suggests to take
o0
X =— Z ¢_sz+j
j=1

as the solution. Going through similar arguments as before it is possible to show that
this is indeed the only stationary solution. This solution is, however, viewed to be
inadequate because X; depends on future shocks Z,;,j = 1,2, ... Note, however,
that there exists an AR(1) process with |¢| < 1 which is observationally equivalent,
in the sense that it generates the same autocorrelation function, but with a new shock
or forcing variable {Z,} (see next section).

In the case |[¢| = 1 there exists no stationary solution (see Sect. 1.4.4) and
therefore, according to our definition, no ARMA process. Processes with this
property are called random walks, unit root processes or integrated processes. They
play an important role in economics and are treated separately in Chap. 7.
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2.3  Causality and Invertibility

If we interpret {X,} as the state variable and {Z,;} as an impulse or shock, we can
ask whether it is possible to represent today’s state X, as the outcome of current
and past shocks Z,,Z,_1,Z,—», ... In this case we can view X, as being caused by
past shocks and call this a causal representation. Thus, shocks to current Z, will not
only influence current X;, but will propagate to affect also future X;’s. This notion of
causality rest on the assumption that the past can cause the future but that the future
cannot cause the past. See Sect. 15.1 for an elaboration of the concept of causality
and its generalization to the multivariate context.

In the case that {X;} is a moving-average process of order ¢, X, is given as
a weighted sum of current and past shocks Z;,Z,_y,...,Z,_,. Thus, the moving-
average representation is already the causal representation. In the case of an
AR(1) process, we have seen that this is not always feasible. For |¢p| < 1, the
solution (2.3) represents X; as a weighted sum of current and past shocks and is
thus the corresponding causal representation. For |¢| > 1, no such representation is
possible. The following Definition 2.2 makes the notion of a causal representation
precise and Theorem 2.1 gives a general condition for its existence.

Definition 2.2 (Causality). An ARMA(p, q) process {X;} with ®(L)X, = O(L)Z, is
called causal with respect to {Z} if there exists a sequence {{;} with the property
Y20 || < oo such that

J

o0
X, =Zi+VZi +VoZia+ ... =Y _YiZoy =V()Z withyo = 1.
j=0
where W(L) = 1 +y L+ ypl2+... = ;20 W;LJ. The above equation is referred

to as the causal representation of {X,} with respect to {Z,}.

The coefficients {;} are of great importance because they determine how an
impulse or a shock in period ¢ propagates to affect current and future X, ;, j =
0,1,2... In particular, consider an impulse e;, at time %y, i.e. a time series which is
equal to zero except for the time 7y, where it takes on the values e,,. Then, {{,— e, }
traces out the time history of this impulse. For this reason, the coefficients v; with
j=t—1t,t = tyto+ 1,50 + 2,..., are called the impulse response function.
If e;,, = 1, it is called a unit impulse. Alternatively, e, is sometimes taken to be
equal to o, the standard deviation of Z,. It is customary to plot ¥; as a function of j,
j=0,1,2...

Note that the notion of causality is not an attribute of {X,}, but is defined relative
to another process {Z,}. It is therefore possible that a stationary process is causal
with respect to one process, but not with respect to another process. In order to make
this point more concrete, consider again the AR(1) process defined by the equation
X, = ¢X,—1 +Z, with |p| > 1. As we have seen, the only stationary solution is given

by X; = — Zj'i | ¢ 7Z,1; which is clearly not causal with respect {Z,}. Consider as
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an alternative the process

~ 1 il
Zi=Xi= X =472+ @7 - D) Y 7. 2.4)
j=1

This new process is white noise with variance 62 = ¢~202.3 Because {X,} fulfills
the difference equation
1

X = axt—l + sz

{X,} is causal with respect to {Z}. This remark shows that there is no loss of
generality involved if we concentrate on causal ARMA processes.

Theorem 2.1. Let {X,} be an ARMA(p, q) process with ®(L)X, = O(L)Z, and
assume that the polynomials ®(z) and ©(z) have no common root. {X,} is causal
with respect to {Z,} if and only if ®(z) # 0 for |z| < 1, i.e. all roots of the equation
®(z) = 0 are outside the unit circle. The coefficients {\y;} are then uniquely defined
by identity :

e NIt
U(z) = 7= —=.
@) FXij/f,zf 0

Proof. Given that ®(z) is a finite order polynomial with ®(z) # 0 for |z| < 1, there
exits € > 0 such that ®(z) # 0 for |z| < 1 + €. This implies that 1/®(z) is an
analytic function on the circle with radius 1 4 € and therefore possesses a power
series expansion:

1

J=0

This implies that &;(14€/2) goes to zero for j to infinity. Thus there exists a positive
and finite constant C such that

& < C(1 +€/2)7, forallj=0,1,2,...

This in turn implies that Y~ &/ < oo and that E(z)®(z) = 1 for |z] < I.
Applying E (L) on both sides of ®(L)X; = O(L)Z,, gives:

X, = E2(L)®(L)X, = E(L)O(L)Z.

3The reader is invited to verify this.
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Theorem 6.4 implies that the right hand side is well-defined. Thus ¥(L) =
E(L)O(L) is the sought polynomial. Its coefficients are determined by the relation
V(2) = 6(2)/ P(2).

Assume now that there exists a causal representation X; = Z;:O YiZ,—; with
Z]ﬁo |¥j| < oo. Therefore

O(L)Z = ®(L)X, = D(L)¥(L)Z.

Take 1(z) = PV (z) = Zfio i@, |z] < 1. Multiplying the above equation by
Z,— and taking expectations shows that 9y = 6, k = 0,1,2,...,¢q,and that n; = 0
for k > g. Thus we get O(z) = n(z) = P(2)¥(z) for |z] < 1. As O(z) and D(z)
have no common roots and because |¥(z)| < oo for |z] < 1, ®(z) cannot be equal

to zero for |z] < 1. ]

Remark 2.1. 1f the AR and the MA polynomial have common roots, there are two
possibilities:

* No common roots lies on the unit circle. In this situation there exists a unique
stationary solution which can be obtained by canceling the common factors of
the polynomials.

e If at least one common root lies on the unit circle then more than one stationary
solution may exist (see the last example below).

Some Examples

We concretize the above Theorem and Remark by investigating some examples
starting from the ARMA model ®(L)X, = ©(L)Z, with Z, ~ WN(0, 62).

®(L) =1—-0.05L —0.6L2 and ©(L) = 1:  The roots of the polynomial ®(z) are
71 = —4/3 and zp = 5/4. Because both roots are absolutely greater than one,
there exists a causal representation with respect to {Z,}.

®(@L) =1+2L+5/4L2and O(L) = 1: In this case the roots are conjugate
complex and equal to z; = —4/5 + 2/51 and z = —4/5 — 2/51. The modulus
or absolute value of z; and z, equals |z;| = |z2| = 4/20/25. This number is
smaller than one. Therefore there exists a stationary solution, but this solution is
not causal with respect to {Z,}.

®(L) =1-0.05L—0.6L2and (L) = 1 +0.75L: ®(z) and O(z) have the
common root 7 = —4/3 # 1. Thus one can cancel both (L) and ®(L) by
1+ %L to obtain the polynomials ®(L) = 1 — 0.8L and O(L) = 1. Because the
root of ®(z) equals 5/4 which is greater than one, there exists a unique stationary
and causal representation with respect to {Z,}.

®(@L) =1+ 1.2L—1.6L?> and ©(L) = 1 +2L:  The roots of ®(z) are z; = 5/4
and z; = —0.5. Thus one root is outside the unit circle whereas one is inside.
This would suggest that there is no causal solution. However, the root —0.5 # 1 s
shared by ®(z) and ©(z) and can therefore be canceled to obtain (L) = 1—0.8L
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and O(L) = 1. Because the root of ®(z) equals 5/4 > 1, there exists a unique
stationary and causal solution with respect to {Z,}.

PdL)=1+Land ®(L)=1+L: P(z) and O(z) have the common root —1
which lies on the unit circle. As before one might cancel both polynomials by
1 + L to obtain the trivial stationary and causal solution {X,} = {Z;}. This
is, however, not the only solution. Additional solutions are given by {Y;} =
{Z; + A(—1)"} where A is an arbitrary random variable with mean zero and finite
variance o3 which is independent from both {X,} and {Z,}. The process {Y¥;} has
a mean of zero and an autocovariance function yy(h) which is equal to

2402, h=0;
ey =% T
(~Dto?, h=+£1,%2,...

Thus this new process is therefore stationary and fulfills the difference equation.

Remark 2.2. 1f the AR and the MA polynomial in the stochastic difference equation
®(L)X, = ©(L)Z, have no common root, but ®(z) = 0 for some z on the unit circle,
there exists no stationary solution. In this sense the stochastic difference equation
does no longer define an ARMA model. Models with this property are said to have
a unit root and are treated in Chap. 7. If ®(z) has no root on the unit circle, there
exists a unique stationary solution.

As explained in the previous Theorem, the coefficients {y;} of the causal
representation are uniquely determined by the relation W(z)®(z) = O(z). If {X,} is
a MA process, ®(z) = 1 and the coefficients {1} just correspond to the coefficients
of the MA polynomial, i.e. ; = 0; for 0 < j < g and y; = 0 for j > g. Thus
in this case no additional computations are necessary. In general this is not the
case. In principle there are two ways to find the coefficients {i;}. The first one
uses polynomial division or partial fractions, the second one uses the method of
undetermined coefficients. This book relies on the second method because it is more
intuitive and presents some additional insides. For this purpose let us write out the
defining relation W(z)®(z) = O(z):

(Wo+¢1z+1/f2Z2+...)(l—¢1Z—¢2Z2—...¢pzp)
=1401z+ 62 + ...+ 0,7

Multiplying out the left hand side one gets:
Yo — Vod12 — Yoot — Yohsz — -+ — Yodpd

Y1z — Y112 — Yigoz — - — Yidp !
+ VY2 = Ypi — = Yy
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=1+0iz4+ 6+ 627+ 4 627

Equating the coefficients of the powers of z, 7, j = 0,1,2,..., one obtains the
following equations:

2 Vo =1,
2 V1= 01+ 1o =01 + ¢1,
2 V2 = 0y + $atio + d1Y1 = 0 + da + ¢161 + 7,

As can be seen, it is possible to solve recursively for the unknown coefficients {1/;}.
This is convenient when it comes to numerical computations, but in some cases one
wants an analytical solution. Such a solution can be obtained by observing that, for
Jj = max{p, g + 1}, the recursion leads to the following difference equation of order

p:

P
v = Z¢k‘ﬁj—k =¢1Vi1+ oY+ ..+ GV, J=max{p, g+ 1}

k=1

This is a linear homogeneous difference equation with constant coefficients. The
solution of such an equation is of the form (see Eq. (B.1) in Appendix B):

Vi=cz +...+ ez, j=max{p,.g+ 1} —p, (2.5)

where zi,...,z, denote the roots of ®(z) = 1 — g1z — ... — $2 = 0.* Note
that the roots are exactly those which have been computed to assess the existence
of a causal representation. The coefficients cy, ..., c, can be obtained using the p
boundary conditions obtained from ¥; = >, <k<j PVj—k = b, max{p,q+ 1} —p <
J < max{p, g + 1}. Finally, the values for ¥;, 0 < j < max{p,q + 1} — p, must be
computed from the first max{p, ¢ + 1} — p iterations (see the example in Sect. 2.4).

As mentioned previously, the coefficients {i;} are of great importance as
they quantify the effect of a shock to Z,_; on X;, respectively of Z; on X,;. In
macroeconomics they are sometimes called dynamic multipliers of a transitory or
temporary shock. Because the underlying ARMA process is stationary and causal,
the infinite sum Z,ﬁo |;| converges. This implies that the effect v/; converges to

“In the case of multiple roots one has to modify the formula according to Eq. (B.2).
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zero as j — oo. Thus the effect of a shock dies out eventually?:

X4

oz, =1y; — 0forj— oo.

As can be seen from Eq. (2.5), the coefficients {1/;} even converge to zero exponen-
tially fast to zero because each term c,-z;’ ,i=1,...,p, goes to zero exponentially
fast as the roots z; are greater than one in absolute value. Viewing {;} as a function
of j one gets the so-called impulse response function which is usually displayed
graphically.

The effect of a permanent shock in period t on X,y; is defined as the cumulative
effect of a transitory shock. Thus, the effect of a permanent shock to X, is given by
Y i—o Wi Because Y i ¥ < Do Wil < Y720 [¥il < oo, the cumulative effect
remains finite.

In time series analysis we view the observations as realizations of {X;} and treat
the realizations of {Z,} as unobserved. It is therefore of interest to know whether it is
possible to recover the unobserved shocks from the observations on {X;}. This idea
leads to the concept of invertibility.

Definition 2.3 (Invertibility). An ARMA(p,q) process for {X;} satisfying ®(L)X;
O(L)Z; is called invertible with respect to {Z,} if and only if there exists a
sequence {;} with the property Zjoio |7tj| < oo such that

oo
Zt == Z ﬂth_j.
=0

Note that like causality, invertibility is not an attribute of {X,}, but is defined only
relative to another process {Z;}. In the literature, one often refers to invertibility as
the strict miniphase property.°

Theorem 2.2. Let {X,} be an ARMA(p,q) process with ®(L)X, = ®O(L)Z, such
that polynomials ®(z) and ©(z) have no common roots. Then {X;} is invertible with
respect to {Z;} if and only if ©(z) # 0 for |z| < 1. The coefficients {r;} are then
uniquely determined through the relation:

SThe use of the partial derivative sign actually represents an abuse of notation. It is inspired by an

. . . aB.x,
alternative definition of the impulse responses: ¥; = :, H where P, denotes the optimal (in the

mean squared error sense) linear predictor of X,4; given a realization back to infinite remote past
{x:, xi—1,X—>, ... } (see Sect. 3.1.3). Thus, y; represents the sensitivity of the forecast of X;; with
respect to the observation x;. The equivalence of alternative definitions in the linear and especially
nonlinear context is discussed in Potter (2000).

SWithout the qualification strict, the miniphase property allows for roots of ®(z) on the unit circle.
The terminology is, however, not uniform in the literature.
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I(z) = Zn]z:’ - giz;

Proof. The proof follows from Theorem 2.1 with X; and Z, interchanged. O

The discussion in Sect. 1.3 showed that there are in general two MA(1) processes
compatible with the same autocorrelation function p(h) given by p(0) = 1, p(1) =
p with |p| < 2, and p(h) = 0 for h > 2. However, only one of these solutions
is invertible because the two solutions for 6 are inverses of each other. As it is
important to be able to recover Z; from current and past X;, one prefers the invertible
solution. Section 3.2 further elucidates this issue.

Remark 2.3. If {X;} is a stationary solution to the stochastic difference equation
®(L)X, = O(L)Z, with Z, ~ WN(0, ) and if ®(z)©O(z) # O for |z| < 1 then

o0

X, = Z Wth—j,
j=0
o0

Z, = Z 7 Xi—j,
Jj=0

where the coefficients {1;} and {x;} are determined for |z| < 1 by ¥(z) = ‘PE ; nd
I(z) = ( ) , respectively. In this case {X;} is causal and invertible with respect

o)’
to {Z;}.

Remark 2.4. If {X,} is an ARMA process with ®(L)X, = ©O(L)Z such that
®(z) # 0 for |z] = 1 then there exists polynomials ®(z) and ©(z) and a white
noise process {Z,} such that {X,} fulfills the stochastic difference equation ®(L)X, =
@(L)Z, and is causal with respect to {Z}. If in addition ©(z) # 0 for |z| = 1 then
O(L) can be chosen such that {X,} is also invertible with respect to {Z} (see the
discussion of the AR(1) process after the definition of causality and Brockwell and
Davis (1991, p. 88)). Thus, without loss of generality, we can restrict the analysis to
causal and invertible ARMA processes.

24  Computation of the Autocovariance Function
of an ARMA Process

Whereas the autocovariance function summarizes the external and directly observ-
able properties of a time series, the coefficients of the ARMA process give
information of its internal structure. Although there exists for each ARMA model
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a corresponding autocovariance function, the converse is not true as we have seen
in Sect. 1.3 where we showed that two MA(1) processes are compatible with the
same autocovariance function. This brings up a fundamental identification problem.
In order to shed some light on the relation between autocovariance function and
ARMA models it is necessary to be able to compute the autocovariance function for
a given ARMA model. In the following, we will discuss three such procedures.
Each procedure relies on the assumption that the ARMA process (L)X, =
O(L)Z; with Z, ~ WN(0,0?) is causal with respect to {Z}. Thus there exists a
representation of X; as a weighted sum of current and past Z,’s: X, = Zj’io YiZi—j

with Zf:o |I//j| < Q.
2.4.1 First Procedure

Starting from the causal representation of {X;}, it is easy to calculate its autoco-
variance function given that {Z;} is white noise. The exact formula is proved in
Theorem (6.4).

y(h) = o* Z ViVt inl

j=0
where
N C169)
Y(z) = = —= f <1.
=3 v =5g forkls

The first step consists in determining the coefficients v; by the method of undeter-
mined coefficients. This leads to the following system of equations:

Vi~ Z Yk = ), 0 <j < max{p,q + 1},
0<k<j

Vi — Z &Yj—k = 0, J = max{p,q + 1}.
0<k<p

This equation system can be solved recursively (see Sect. 2.3):
Yo =t =1,
Vi =01 + Yop1 = 01 + ¢1,
V2 = 0y + Yods + Vi = Or + d2 + ¢101 + H7,
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Alternatively one may view the second part of the equation system as a linear
homogeneous difference equation with constant coefficients (see Sect. 2.3). Its
solution is given by Eq. (2.5). The first part of the equation system delivers the
necessary initial conditions to determine the coefficients cy, ¢z, ..., ¢,. Finally one
can insert the 1’s in the above formula for the autocovariance function.

A Numerical Example
Consider the ARMA(2,1) process with ®(L) = 1 — 1.3L + 0.4L? and O(L) =
1 + 0.4L. Writing out the defining equation for W(z), ¥(z)®(z) = O(z), gives:
L+ Y12+ 90 + 932 + ...
—1.3z—1.3y12% — 1.3y’ — ...
+ 0422 + 0.4y, + ...
=1+ 0.4z

Equating the coefficients of the powers of z leads to the following equation system:

2 Yo =1,

7 Y1 —1.3=0.4,

2 Vo — 13y, +0.4 =0,
s V3 — 1.3y, + 0.4y = 0,

’WJ — ]31/[1—1 + O4wj_2 = 0, forj > 2.

The last equation represents a linear difference equation of order two. Its solution is
given by

U=z + ez’ jEmax{p.g+1}—p=0,

whereby z; and z are the two distinct roots of the characteristic polynomial

®(z) = 1 — 1.3z 4+ 0.4z> = 0 (see Eq. (2.5)) and where the coefficients ¢; and

¢, are determined from the initial conditions. The two roots are W =

5/4 = 1.25 and 2. The general solution to the homogeneous equation therefore is
Y= ¢10.8 4+ ¢,0.5. The constants ¢; and ¢, are determined by the equations:

j=0: Yo=1 =¢08" 405" =c; +c
j=1: Y =17=c08"40.5" =0.8¢; + 0.5¢,.
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Solving this equation system in the two unknowns c¢; and c, gives: ¢; = 4 and
¢, = —3. Thus the solution to the difference equation is given by:

v = 4(0.8) —3(0.5).

Inserting this solution for /; into the above formula for y (%) one obtains after using
the formula for the geometric sum:

o0
y(h) =0) (4x0.8 —3x0.5) (4x 08" —3x05%)

=0

o0
o) (16 x 0.8 —12x 0.5 x 0.8/*"

Jj=0
—12x0.8 x 0.5 +9x0.5%h)
, 0.8 , 0.8 , 05" , 0.5
=160"— — 120 — 120 + 90
1—0.64 1-0.4 1-0.4 1-0.25
220

702(0.8)” —802(0.5)".

Dividing y (k) by y(0), one gets the autocorrelation function:

=@—§XO.8j—l—8x0.5j

P =20) = 37 37

which is represented in Fig. 2.3.

2.4.2 Second Procedure

Instead of determining the v; coefficients first, it is possible to compute the
autocovariance function directly from the ARMA model. To see this multiply the
ARMA equation successively by X;—;,h = 0,1,... and apply the expectations
operator:

]EXtXt—h - ¢1EX1—1Xt—h -t ¢pEXt—pXt—h
=EZX, »+ GIEZt—lxt—h + -+ eq]EZt—th—h-

This leads to an equation system for the autocovariances y(h), h = 0,1,2,...:

y(h) = dry(h=1)—...=gpy(h—p) =06> Y Oy, h<maxip.q+ 1}

h<j=q

y(h) —gry(h—=1)—...—¢py(h—p) =0, h > max{p,q + 1}.
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Fig. 2.3 Autocorrelation function of the ARMA(2,1) process: (I — 1.3L + 0.4L2)X, = (1 +
0.4L)Z,

The second part of the equation system consists again of a linear homogeneous
difference equation in y (h) whereas the first part can be used to determine the initial
conditions. Note that the initial conditions depend v, ..., ¥, which have to be
determined before hand. The general solution of the difference equation is:

y() =cizi" + .+ ez (2.6)

where zj, ..., z, are the distinct roots of the polynomial ®(z) = 1 —¢1z—... —
¢ = 0.7 The constants cy, ... ,¢p can be computed from the first p initial
conditions after the v/, ... ¥, have been calculated like in the first procedure. The
form of the solution shows that the autocovariance and hence the autocorrelation
function converges to zero exponentially fast.

A Numerical Example

We consider the same example as before. The second part of the above equation
system delivers a difference equation for y(h): y(h) = ¢1y(h— 1) + ¢y (h—2) =
1.3y(h—1) — 0.4y(h — 2), h > 2. The general solution of this difference equation
is (see Appendix B):

y(h) = ¢1(0.8)" 4 ¢5(0.5)", h>2

7In case of multiple roots the formula has to be adapted accordingly. See Eq. (B.2) in the Appendix.
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where 0.8 and 0.5 are the inverses of the roots computed from the same polynomial
®(z) =1-137-0.472 = 0.

The first part of the system delivers the initial conditions which determine the
constants ¢; and c¢;:

y(0) — 1.3y(—=1) + 0.4y(=2) = 6*(1 + 0.4 x 1.7)
y(1) — 1.3y(0) + 0.4y(—1) = 620.4

where the numbers on the right hand side are taken from the first procedure.
Inserting the general solution in this equation system and bearing in mind that
y(h) = y(—h) leads to:

0.216¢; + 0.450c; = 1.680°
—0.180¢; — 0.600c, = 0.400>

Solving this equation system in the unknowns c¢; and ¢, one gets finally gets: ¢; =
(220/9)0? and ¢, = —80>.

2.4.3 Third Procedure

Whereas the first two procedures produce an analytical solution which relies on
the solution of a linear difference equation, the third procedure is more suited for
numerical computation using a computer. It rests on the same equation system as in
the second procedure. The first step determines the values y(0), y(1), ..., y(p) from
the first part of the equation system. The following y(k), h > p are then computed
recursively using the second part of the equation system.

A Numerical Example
Using again the same example as before, the first of the equation delivers y(2), y(1)
and y(0) from the equation system:

y(0) — 1.3y(—=1) + 0.4y(=2) = 0*(1 + 0.4 x 1.7)
y(1) — 1.3y(0) + 0.4y(—1) = 6°0.4
y(2) —1.3y(1) +0.4y(0) =0
Bearing in mind that y(h) = y(—h), this system has three equations in three
unknowns y(0), (1) and y(2). The solution is: y(0) = (148/9)c?, y(1) =
(140/9)02, y(2) = (614/45)52. This corresponds, of course, to the same numerical

values as before. The subsequent values for y(h), h > 2 are then determined
recursively from the difference equationy (k) = 1.3y(h — 1) — 0.4y (h —2).
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2.5 Exercises

Exercise 2.5.1. Consider the AR(1) process X, = 0.8X,_, + Z, with Z; ~
WN(0, 0%). Compute the variance of (X; + X, + X3 + X4) /4.

Exercise 2.5.2. Check whether the following stochastic difference equations pos-

sess a stationary solution. If yes, is the solution causal and/or invertible with respect
to Z, ~ WN(0, 5?)?

(i) X, =2,+27,
Gi) X, = 13X, + Z
(i) X, = 1.3X,—; — 0.4X,» + Z,
(v) X, = 13X, — 0.4X,, + Z, — 0.3Z,_,
(v) X, = 0.2X,_; + 0.8X,» + Z,
(vi) X, =02X,_, + 08X, + Z, — 1.5Z,_; + 0.5Z,,

Exercise 2.5.3. Compute the causal representation with respect to Z, ~ WN(0, 0%)
for the following ARMA processes:

1) X, =13X,1 —04X,, + Z,
) X, = 13X, — 0.4X,—, + Z, — 0.2Z,_;
(iii) X; = ¢Xi—1 + Z; + 0Z,—y with |¢] < 1

Exercise 2.5.4. Compute the autocovariance function of the ARMA processes:

(i) X, = 0.5X,—, + 0.36X,_» + Z,
(i) X, = 0.5X,_; + 0.36X,—> + Z + 0.5Z,_,

Thereby Z, ~ WN(0, ?).

Exercise 2.5.5. Verify that the process {Z} defined in Eq. (2.4) is white noise with
Z, ~ WN(0, 6202).
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