Chapter 2
Homomorphic Public Key Encryption
Techniques

In order to attain privacy-preserving data aggregation in smart grid communications,
we need to first understand the homomorphic public key encryption (HPKE)
techniques [1-7]. Different from the general public key encryption algorithms
[8, 9], HPKE further holds an additional “homomorphic” property, which makes
the privacy-preserving data aggregation possible. As shown in Fig.2.1, when we

[IPeL]

directly operate over two encrypted data E(x) and E(y) with some operation “e”,

[TPRL]

we can gain E(x oy) = E(x) e E(y). In most HPKE cases, the operations “e” and
“o” are respectively referred to the common multiplication “x” and addition “+”
operations. Because most of privacy-enhancing aggregation techniques illustrated
in this monograph are based on Paillier public key encryption [2] and Boneh-Goh-
Nissim (BGN) public key encryption [6], in this chapter, we first take a close look at
these two popular homomorphic encryption techniques. Note that, both of them are
randomized encryption algorithms [1], i.e., in addition to the plaintext as the input

of encryption, a random number is also input for achieving semantic security.

2.1 Paillier Public Key Encryption

Paillier Public Key Encryption (PKE) was first proposed in 1999 [2]. Because of its
nice “homomorphic” property, Paillier PKE has received considerable attention and
has been widely applied in various privacy-preserving computations. In this section,
we will briefly recall the famous homomorphic encryption technique. Before that,
we first introduce some basic mathematical backgrounds briefly, which may help
the reader digest the Paillier PKE better.
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Plaintext Ciphertext Plaintext

x — Encryption —>E(x) Decryption |— x

Public Key pk E(x)e E(y) '—»E(x °y) Decryption |— xoy

T Private Key | sk
y — Encryptlon — E(y) Decryption |——> ¥y

Fig. 2.1 Diagram of homomorphic public key encryption

2.1.1 Mathematical Background

Letp = 2p’ + 1 and ¢ = 24’ + 1 be two safe primes, where p’ and ¢’ are also two
primes. Compute n = pg, we need to prove the following two results:

1. for any x € Z,, we have (1 + n)* = 1 4+ x - n mod n?
2. let A = lem(p — 1,q — 1) = 2p’q’ be the least common multiple of p — 1 and
g —1.Forany x € Z;"z, we have x"* = 1 mod n?.

For the first result, we use the following theorem to prove it.
Theorem 2.1. For any x € Z,, we have (1 + n)* = 1 + x - n mod n>.

Proof. When x = 0, the result obviously holds. When 0 < x < n, we have

(1 +n*= Z (j) 1" n' mod n?

i=0

2\, AL, @1
=l4+n-x+ 2n+---+ n* mod n
X

=1+ n-xmod n?

As a result, the theorem is correct. |
For the second result, we should use some lemmas and theorem as below.

Definition 2.1 (Euler Totient Function). Let P = [, p/ with p; pairwise different
primes and /; > 0. Then, Euler Totient Function is defined as

o) =p-[Ja-—) 22)

Lemma2.l. ¢(p) = p— L.¢(q) = g—1.¢(n) = (p — 1)(g— 1), ¢(p*) =
pp(p). ¢ (%) = qd(q). p(n*) = ng(n).
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Proof. From the definition of the Euler Totient Function, this lemma can be easily
proved. |

According to the Euler Theorem, for any x € Z*,, we have K0 = ) —

X"2* = 1 mod n2, but we still cannot determine whether ¥* = 1 mod 2. In order

to obtain ¥ = 1 mod n?, we need to use the result of the Chinese Remainder
Theorem [10].

Theorem 2.2 (Chinese Remainder Theorem). Suppose that my, my, ---, my are
pairwise relatively prime positive integers, and let aj, a», -+, ai be integers. Then,
the system of congruences, x = a; mod m; for 1 < i < k, has a unique solution
modulo M = m; X my X -+ X my, which is given by

x = aiMyy) + axMry> + - -+ + agMyy, mod M

where M; = % and y; = 1
1

= 5y mod m; for 1 <i <k

Letx e ZZ‘Z, from the Euler Theorem, we have

) = 0D = % = | mod p? = W99 =197 mod p> = ™ = 1 mod p?
@) = 31D = 420 = | mod ¢ = xP720'd" = 177" mod ¢* = ¥"* = 1 mod ¢

(2.3)

Because ged(p?,¢*) = 1, we can apply the Extended Euclidean Algorithm to find
two integers s, ¢ such that s - p> +t-¢*> = 1. Let m; = p*, my = ¢*, then M =
mmy = n?>, My = ¢*>, M, = p>,yi = t, and y, = 5. Based on the Chinese
Remainder Theorem, where a; = a, = 1, we have

O = aiMyy, +aMoy, mod M = 1-¢>-t+1-p>-smod n’> = 1 mod n>  (2.4)

Theorem 2.3. Forany x € Z:z, we have x™ = 1 mod n’.

Definition 2.2 (n-th Residues Modulo #?). A number y € Z:z is said to be an n-th
residues modulo 7 if there exists a number x € Z:z such that y = x" mod n?.

Let NR be the set of n-th residues modulo #2. It has been proved that the size
of NR is exactly ¢(n), i.e., INR| = ¢(n). In addition, it has also been proved
that “given y € 7%, decide whether or not y is n-th residue modulo n*” is a
hard problem, i.e., there does not exist an algorithm that solves the problem in a
polynomial time [10].

Let¥ = {u € Z%|ord(u) = kn,1 < k < A}. A special case g = (1+n)* mod n?
with ord(g) = n for some random integer a > 1 belongs to ¢, because g" = (1 +
n)™ = 1 mod n’. Define a function f(m, r) = ¢"r" mod n* over Z, x Zy — L%,
we can show that it is a bijective function. First, because |Z,| = n, |Z}| = ¢(n),
and |Z%| = ¢(n*) = n¢(n), we have |Z, x Zy| = |Z%], and thus Z, x Z —
Z}, is injective. On the other hand, if for some (mo, r0), (m1,71) € Zy, x Z, with
f(mo, ro) = f(my, r1), we have
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g"r" = g"r" mod n* = g™ ™ ry" = r;" mod n’
(2.5)
= gmo=mAp mh — p ™ mod p? = g% = 1 mod n?

which means ord(g)|(mo—m;)A. By choosing g = (14n)¢ mod n? with ord(g) = n,

we have n|(my — m;)A. Because gcd(n, A) = 1, we have my —m; = 0 mod n. As
a result, we have my = m; modn = mg = m;. Once we have my = my, we
can further obtain ry" = r;" mod n? from g™ ry" = r;" mod n?. It has been

easily proved that f(x) = x" mod n* over Z* — NR is bijective. Therefore, given
ro" = r1" mod n?, we have ro = r. With this nice bijective function f(m,r) =

m._.n

g"r" mod n?, the Paillier PKE was proposed [2]. In the following, we describe the
details of Paillier PKE.

2.1.2 Description of Paillier PKE

The Paillier PKE can achieve the homomorphic properties, which is mainly
comprised of three algorithms: key generation, encryption and decryption.

* Key Generation: Given the security parameter «, two large prime numbers p =
2p" + 1, = 2¢’ + 1 are first chosen, where |p| = |g| = « and p’, ¢’ are also
both primes. Then, the RSA modulus n = pgand A = lem(p — 1,q — 1) =
2p'q’ are computed. Define a function L(u) = %, after choosing a generator
g = (1+n) €Z%, pn = (Lg" mod n*)~" mod n is further calculated. Then,
the public key is pk = (n, g), and the corresponding private key is sk = (4, u).

* Encryption: Given a message m € Z,, choose a random number r € Z, and the
ciphertext can be calculated as ¢ = E(m, r) = g" - " mod n?.

e Decryption: Given the ciphertext ¢ € Z;z, the corresponding message can be

recovered as m = D(c) = L(c* mod n?) - & mod n.

Correctness.

L(c* mod n?)
L(g* mod n?)
L((g" - ¥")* mod n?) L(g™ - ¥ mod n?)
= mod n = mod n
L(g* mod n?) L(g* mod n?)
L(g"* mod n?) o L((1 + n)™ mod n?)
= —-——- n =
L(g* mod n?) L((1 + n)* mod n?)
_ L(1 +mAn mod n?)
" L(1 + An mod n?)

m = D(c) = L(¢* mod n?) - ;x mod n = mod n

(2.6)

mod n

mA
modn=—modn=mmodn =m
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Security. The Paillier PKE is provably secure against chosen plaintext attack, the
detailed security analysis can be referred to [2].

Homomorphic Properties.

1. Addition. E(m, ry) - E(my, r2) = E(my + ma, r1r2)

E(my,r1)-E(my. 1) = g™ -r/" mod n - g™ - r," mod n> = g" " . (rr,)" mod n* = E(my + my., r1r2)
2. Multiplication. E(m, r1)"™ = E(m; - my, r{*)
E(my,r)™ = (g™ - r1™)™ mod n*> = g"" - 1, mod n* = E(mima, r?)
3. Self-Blinding. E(m, ry) - ¥ mod n* = E(my, rirp)
E(my, r) - 5 mod n = g™ - rry" mod n = E(my,rrp)

Source Code. The sample java source code of Paillier PKE is available in
Appendix 1 in this chapter.

2.2 Boneh-Goh-Nissim (BGN) Public Key Encryption

Paillier PKE is a very popular homomorphic encryption technique, but it does not
support the homomorphic multiplication directly over two ciphertexts, which may
limit its applications in some scenarios. In order to obtain homomorphic multi-
plication over two ciphertexts, we recall another famous homomorphic encryption
technique - Boneh-Goh-Nissim (BGN) PKE [6] in this section. Before delving into
the details, we first recall the bilinear pairing techniques, which serve as the basis of
BGN PKE.

2.2.1 Bilinear Pairing Techniques
2.2.1.1 Bilinear Groups of Prime Order

Bilinear pairing is an important cryptographic primitive and has been widely
adopted in many positive applications in cryptography [11, 12]. Let G be a cyclic
additive group and Gr be a cyclic multiplicative group of the same prime order g.
We assume that the discrete logarithm problems in both G and Gy are hard.
A bilinear pairing is a mapping ¢ : G x G — Gy which satisfies the following
properties:
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1. Bilinearity: for any P, Q € G and a, b € Z*, we have e(aP, bQ) = e(P, Q).

2. Non-degeneracy: there exists P € G and Q € G such that e(P, Q) # lg,.

3. Computability: there exists an efficient algorithm to compute e(P, Q) for all
P,0 e G.

From Reference [11], we note that such a bilinear pairing may be realized using
the modified Weil pairing associated with supersingular elliptic curve.

Definition 2.3 (Bilinear Generator). A bilinear parameter generator “en is a
probability algorithm that takes a security parameter « as input and outputs a 5-
tuple (¢, P, G, Gr, e), where ¢ is a «-bit prime number, (G, +) and (Gr, x) are two
groups with the same order ¢, P € G is a generator, and ¢ : G x G — Gy is an
admissible bilinear map.

In the following, we define the quantitative notion of the complexity assump-
tions, including Computational Diffie-Hellman (CDH) Problem, Decisional Diffie-
Hellman (DDH) Problem, and Bilinear Diffie-Hellman (BDH) Problem.

Definition 2.4 (Computational Diffie-Hellman (CDH) Problem). The Compu-
tational Diffie-Hellman (CDH) problem in G is defined as follows: Given P, aP,
bP € G for unknown a, b € Z;‘, compute abP € G.

Definition 2.5 (CDH Assumption). Let ./ be an adversary that takes an input of
(P, aP, bP) € G for unknown a, b € Z;‘, and returns abP. We consider the following
random experiment.

Experiment Expg;)H

a,b <5 Zg, o0 < o/ (P,aP,bP)
if o = abP, thenf < 1,elseff < 0
return f§

We define the corresponding success probability of <7 in solving the CDH problem
via

SuccM = Pr[Exp" = 1]

Let 7 € N and € € [0, 1]. We say that the CDH is (z, €)-secure if no polynomial

algorithm .7 running in time t has success SuccS}DH > €.

Definition 2.6 (Decisional Diffie-Hellman (DDH) Problem). For a,b,c € Z;‘,
given P, aP, bP, cP € G, decide whether ¢ = ab € Z,. The DDH problem
is easy in G, since we can compute e(aP,bP) = e(P,P)® and decide whether
e(P, P)*=e(P, P)° [11].

Definition 2.7 (Bilinear Diffie-Hellman (BDH) Problem). The Bilinear Diffie-
Hellman (BDH) problem in G is as follows: Given P, aP, bP, cP € G for unknown
a,b,c e Z;‘, compute e(P, P)*¢ € Gr.
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Definition 2.8 (BDH Assumption). Let </ be an adversary that takes an input of
(P, aP, bP, cP) € G for unknown a, b, ¢ € Z*, and returns e(P, P)“*°. We consider
the following random experiment.

Experi ment ExpCDH

a,b,c <— Zg, o <= o7 (P,aP,bP, cP)
ifa =e(P,P)" thenf < lelsef <0
return f

We define the corresponding success probability of .7 in solving the BDH problem
via

Succ®!' = Pr[Exp®/t = 1]

Let 7 € N and € € [0, 1]. We say that the BDH is (z, €)-secure if no polynomial
algorithm o7 running in time t has success SuccBDH > €.

Definition 2.9 (Decisional Diffie-Hellman (DBDH) Problem). The Decisional
Bilinear Diffie-Hellman (DBDH) problem in G is as follows: Given an element P
of G, a tuple (aP, bP, cP, T) for unknown a, b, c € Z; and T € Gy, decide whether

T = e(P, P)®** or a random element R drawn from Gr.
Definition 2.10 (DBDH Assumption). Let ./ be an adversary that takes an input

of (aP, bP, cP, T) for unknown a, b, c € Z; and T € Gy, and returns a bit §/ €
{0, 1}. We consider the following random experiments.

Experiment ExpDBDH

a,b,c & Z4:R & Gr

B <101}

1fﬁ =0, then T = e(P, P)*<; else 1fﬁ =1thenT =R
B’ < of (aP,bP,cP,T)

return1if B/ = B, 0 otherwise

We then define the advantage of </ via
AdvPBPH — )Pr [EXpDBDH =118 = o]
—Pr [ExprDH — 11 = 1]’ > e

Lett € Nand € € [0, 1]. We say that the DBDH is (z, €)-secure if no adversary .«
running in time t has an advantage AdvDBDH > €.
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2.2.1.2 Bilinear Groups of Composite Order

Let p, g be two distinct large primes, and n = pq. Groups (G, Gr) of composite
order n are called bilinear map groups of composite order if there is a mapping
e : G x G — Gy with the following properties [6, 13]:

1. Bilinearity: e(g%, h) = e(g, h)® for any (g, h) € G*> and a. b € Z,.

2. Non-degeneracy: there exists g € G such that e(g, g) has order n in G7. In other
words, e(g, g) is a generator of Gy , whereas g generates G.

3. Computability: there exists an efficient algorithm to compute e(g, h) € Gy for all
(g.h) €G.

Note that 1) we use the multiplicative group to represent the group G, which,
however, can be instantiated by the elliptic curve addition group, i.e., the modified
Weil pairing or Tate pairing [6, 13]; 2) the vast majority of cryptosystems based on
pairings assume for simplicity that bilinear groups have prime order g. In composite
order case, it is important that the pairing is defined over a group G containing
|G| = n elements, where n = pq has a (ostensibly hidden) factorization in two
large primes, p # ¢; 3) those complexity assumptions above in bilinear group of
prime order also hold in bilinear group of composite order.

Definition 2.11 (Composite Bilinear Generator). A composite bilinear parame-
ter generator ¥’Yen is a probabilistic algorithm that takes a security parameter &
as input, and outputs a 5-tuple (n, g, G, Gr, e), where n = pqg and p, g are two k-
bit prime numbers, G, Gy are two groups with order n, g € G is a generator, and
¢ : G x G — Gy is a non-degenerated and efficiently computable bilinear map.

Let g be a generator of G, then ¢ = g? € G can generate the subgroup G, =
,g',-++,g" "} of order p, and g = g” € G can generate the subgroup G, =
(g, g, ---, g7} of order ¢ in G. In the following, we define the quantitative
notion of the complexity of the SubGroup Decision (SGD) Problem [6].

Definition 2.12 (SubGroup Decision (SGD) Problem). The SubGroup Decision
(SGD) problem in G is as follows: Given a tuple (e, G, G, n, h), where the element
h is randomly drawn from either G or subgroup G, decide whether or not i € G,,.

Definition 2.13 (SGD Assumption). Let <7 be an adversary that takes an input of
h drawn from either G or subgroup G,, and returns a bit b’ € {0, 1}. We consider
the following random experiments.

Experiment ExpSoP

b« {0,1}

ifb =0, then h < Gy else if b = 1 then h < G
b <« o (e.G,Gr,n, h)

return 1 if b’ = b, 0 otherwise
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We then define the advantage of </ via

Let t € Nand € € [0, 1]. We say that the SGD is (z, €)-secure if no adversary .o/

running in time t has an advantage Advs;/GD > €.

2.2.2 Description of BGN PKE

BGN PKE [6] can achieve one more homomorphic property in comparison to the
Paillier PKE, which mainly consists of three algorithms: key generation, encryption,
and decryption.

* Key Generation: Given the security parameter k, composite bilinear parameters
(n, g, G,Gr, e) are generated by ¥Yen(k), where n = pg and p, q are two k-
bit prime numbers, and g € G is a generator of order n. Set & = g%, then & is
a random generator of the subgroup of G of order p. The public key is pk =
(n,G, Gr, e, g, h), and the corresponding private key is sk = p.

e Encryption: We assume the message space consists of integers in the set
{0,1,--- ,T} with T < g. To encrypt a message m, we choose a random number
r € Zy, and compute the ciphertext c = E(m,r) = g"h" € G.

e Decryption: Given the ciphertext ¢ = E(m,r) = g"h" € G, the corresponding
message can be recovered by the private key p. Observe that ¢ = (g"h")P =
(g")™. Let g = gP. To recover m, it suffices to compute the discrete log of ¢”
base g. Since 0 < m < T, the expected time is around O(+/T) when using the
Pollard’s lambda method [14](p. 128).

Security. BGN PKE is provably secure against chosen plaintext attack based on the
subgroup decision assumption, the detailed security analysis can be referred to [6].

Homomorphic Properties.

1. Addition. E(my, 1) - E(ma, r2) = E(my 4+ ma, 11 + 12)
E(my,r) - E(my, ry) = "W - g™ 0™ = g"*" 2 = E(my + my, i + 1)
2. Multiplication. E(my, r|)™ = E(m; - my, ry - my)
E(my, )™ = (g™ - W)™ = g"M"™ . i = E(mymy, rim;)
3. Self-Blinding. E(m;, r|) - W' = E(m;,r| + rp)

E(mi,r)-h? =g" W' = E(my, ri + 1)
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4. Multiplication-IL. e(E(my, r1), E(ma, r2)) = E'(my - my, myry + rimy + qrira)

C = e(E(m1,r1). E(ma,12)) = e(g" W™ ") = e(g, g)"™"™ - e(g, py™ "> Frimatanr

= E'(my - ma, myry + rimy + qrira)

Observe that C? = (e(g, g)"'"™ - e(g, hy™2Tmtanmyy — (g(g, g)P)™mm,
Let g = e(g, g)?. To recover mymy, it suffices to compute the discrete log of
C? base g by using the Pollard’s lambda method [14](p. 128). Note that the
homomorphic multiplication can be taken only once upon two ciphertexts in G,
and then the result will be in Gy, but it still supports additive homomorphism.
Also note that, if we do not expect the Multiplication-II homomorphic property
in some scenarios, we do not need to use bilinear groups of composite order, and
can simply build the BGN PKE over the general group (G, x) with composite
order n = pq.

Source Code. The sample java source code of BGN PKE is available in Appendix 2
in this chapter.

2.3 Summary

In this chapter, we have discussed two popular homomorphic encryption techniques
Paillier PKE [2] and BGN PKE [6], which will be used in the design of most
privacy-preserving aggregation schemes in this monograph. Note that, the fully
homomorphic encryption techniques [15-21] can also be applied in privacy-
preserving data aggregation in smart grid communications [22]. However, the
efficiency needs to be extensively exploited in practical scenarios. Therefore, in
this monograph, the fully homomorphic encryption techniques are not our focuses,
interested readers can refer to [15-21] for more details.

Appendix 1: A Sample Java Source Code of Paillier PKE

import java.math.BigInteger;
import java.security.SecureRandom;

/x*
* @ClassName: Paillier
* @Description: This is a sample java source code of Paillier

(continued)
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