
Chapter 2
Some Aspects on Global Analysis of Discrete
Time Dynamical Systems

Anastasiia Panchuk

Abstract Dynamical systems theory distinguishes two types of bifurcations: those
which can be studied in a small neighborhood of an invariant set (local) and those
which cannot (global). In contrast to local bifurcations, global ones cannot be investi-
gated by a Taylor expansion, neither they are detected by purely performing stability
analysis of periodic points. Global bifurcations often occur when larger invariant sets
of the system collide with each other or with other fixed points/cycles. This chapter
focuses on several aspects of global bifurcation analysis of discrete time dynamical
systems, covering homoclinic bifurcations as well as inner and boundary crises of
attracting sets.

2.1 Introduction

Dynamical systems theory is mainly interested in asymptotic behavior of orbits
depending on the initial state and how this behaviormay changewhen varying system
parameters. The important phenomenon is a bifurcation when the changes occurring
in the state space cannot be obtained via a smooth transformations (the orbits before
and after the bifurcation are not topologically conjugated). Two types of structural
changes are distinguished: local and global ones. Local bifurcations are those which
can be examined locally via an approximation of the map in a small neighborhood of
some fixed point or cycle. Global bifurcations often occur when larger invariant sets
of the system collide with each other or with other fixed points/cycles. Such a global
bifurcation cannot be investigated by a Taylor expansion and cannot be detected by
purely performing stability analysis of a periodic point. To understand what happens
with orbits of the system in this case, one has to take into account global properties
of the map (see [17, 27, 34] to cite a few).
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Among common examples of global phenomena, one may list contact bifurca-
tions, homoclinic bifurcations, and crises. Contact bifurcations are characterized by
structural changes of basin and its boundary (for example, when a connected basin
transforms to a nonconnected one or basin boundary becomes fractal). These bifur-
cations are only possible in noninvertible maps and occur due to tangencies between
basin boundaries and critical curves (for more detail see, e.g., [5, 12, 25] and refer-
ences therein).

Homoclinic bifurcations entail changing shape of invariant sets and are associated
with appearance of homoclinic points (and, consequently, orbits) when the stable and
unstable sets of a periodic point have a contact (see, for instance, [6, 8, 10]). This
often allows to show strictly existence of an invariant set on which dynamics is
chaotic. It can also happen, that the stable set of one periodic point intersects with
the unstable set of another periodic point in which case the intersection point (and
its orbit) is called heteroclinic. Homoclinic/heteroclinic orbits may also appear in
a sequence of bifurcations leading to creation of closed invariant curves (see, e.g.,
[1, 2]).

Bifurcations called crises are related to sudden transformations of chaotic attrac-
tors and encountered in both invertible and noninvertible maps alike homoclinic
bifurcations. Such swift changes occur due to a contact between a chaotic attractor
and an unstable periodic orbit (or, equivalently, its stable set). Starting from [16],
three types of crisis are usually distinguished: a boundary crisis at which the attrac-
tor is destroyed, an interior crisis accompanied with abrupt increase in size of the
attractor, and merging crisis where several chaotic attractors collide simultaneously
with an orbit on the separating basin boundary.

In the current chapter we point out several aspects related to global analysis of
discrete time dynamical systems, covering homoclinic bifurcations as well as interior
and boundary crises.

2.2 Preliminaries

In this section we introduce general concepts and notations used throughout the
chapter.

Let us consider a smooth (or piecewise smooth) function T : X → X , X ⊆ R
n ,

T = (T1, . . . , Tn), which can be invertible or noninvertible. Here n ∈ Z
+ with Z

+
denoting the set of all positive integer numbers. Recall that:

• For an arbitrary point x ∈ X the value T (x) is called a rank-1 image of x or simply
an image of x.

• From definition of T it follows that T (x) ∈ X . Hence, we may define T (T (x)),
T (T (T (x))), and so on. For shortness, the composition of t consecutive applica-
tions of the function T to the vector x is abbreviated as T t (x), i.e.,

T (T (. . . T
︸ ︷︷ ︸

t

(x) . . .)) ≡ T ◦ T . . . ◦ T
︸ ︷︷ ︸

t

(x)
de f= T t (x).
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• For any x ∈ X the value T t (x), t ∈ Z
+, is called a rank-t image of x.

• For an arbitrary x ∈ X the value y ∈ X such that T t (y) = x, t ∈ Z
+, is called a

rank-t preimage of x. The set of all rank-t preimages is denoted as T−t (x). For
shortness, we refer to a rank-1 preimage of x simply as a preimage of x.

It is important to mention, that for an arbitrary x ∈ X its rank-t image, t ∈ Z
+, exists

and is unique. This is not necessarily true for preimages of x that may be multiple
(T−t (x) has more than one element) or missing (T−t (x) = ∅), in case where T is
noninvertible.

For avoiding confusion we emphasize that whenever the symbol T−1(x) is used,
it is meant to denote the set of all preimages of a certain point x. However, writing
simply T−1 (without x) we have in mind an inverse function of T . In case where T
is a bijection (a one-to-one and onto), each x ∈ X has exactly one (rank-1) preimage
(the set T−1(x) consists of a single point). Then, the function T is called invertible
and the inverse function T−1 can be uniquely defined. On the other hand, if T is
not bijective, then it is noninvertible and the set T−1(x) may consist of more than
one value or be empty depending on x (hence, the inverse function T−1 is either not
defined uniquely or not defined for some x ∈ X ).

Example 2.1 Consider the function Tμ = μ
√
x , 0 < μ ≤ 1, with X = [0, 1]. It is

clear that Tμ(X) = [0, μ]. Consequently, for μ < 1 the points x̄ > μ do not have
preimages, that is, T−1

μ (x̄) = ∅ and the inverse function T−1
μ is only defined for

x ∈ [0, μ]. Nevertheless, the dynamical system related to Tμ do not produce complex
behavior since Tμ is monotonically increasing.

Example 2.2 Consider the function T = 4x(1 − x)with X = [0, 1]. The image of X
is T (X) = [0, 1] = X , but every x ∈ X , except for x̄ = 1, has two preimages yL <

0.5 and yR > 0.5. The inverse function T−1 can not be uniquely defined, though one
may define two distinct inverse functions of T . That is, T−1

L : [0, 1] → [0, 0.5] and
T−1
R : [0, 1] → [0.5, 1] with obvious equality T−1

L (1) = T−1
R (1) = 0.5.

Let us consider now a discrete (or discrete time) dynamical system (DDS for
short) represented by the iterative relation

xt+1 = T (xt ) t ∈ Z
∗, (2.1)

where Z
∗ = Z

+ ∪ {0} is a set of all non-negative integers, or, in equivalent notation,

x′ = T (x), (2.1′)

where x′ denotes the next iterate under T (image of x). Having in mind the evo-
lutionary process (2.1) the function T is often referred to as a map or a map-
ping. The set X then serves as the state space, while an n-dimensional real vector
x = (x1, . . . , xn) ∈ X is the state variable.
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For every initial state x0 ∈ X of the system (2.1) or (2.1′) at the time t = 0, the
sequence of successive images of x0 constitutes a discrete trajectory or an orbit:

O(x0) = {

T t (x0)
}∞
t=0 = {x0, x1, . . . , xt , . . .}. (2.2)

Here T 0 denotes the identity function (map), namely, T 0(x) = x for any x ∈ X .
Themain task in studying a dynamical system (2.1) is to understand the asymptotic

behavior of its orbits depending on the initial condition x0 and how this develops
with changing parameters. For instance, an orbit can “stuck” at some invariant set
or diverge to infinity, and this behavior may be different depending on x0. It may
also happen that an orbit diverges from some invariant set, but then comes back to it
again due to existence of a homoclinic orbit.

Recall that a set A ⊂ X is called invariant under T or T -invariant if it is mapped
onto itself T (A) = A. The two simplest kinds of invariant sets (and, hence, the
simplest asymptotic behavior of orbits of (2.1)) are

• a fixed point x∗ such that T (x∗) = x∗, and
• a k-cycle, Ck = {x∗

1, . . . , x
∗
k } such that x∗

i+1 = T (x∗
i ), x

∗
1 = T (x∗

k ).

However, the structure of an invariant set A may be much more complex than just a
point or a finite set of points, and this fact led to introducing such terms as strange
attractor [15, 29] and chaotic attractor [9, 21]. There exist many possible definitions
of chaos in dynamical systems theory, some of them being stronger than the others.
Here we follow the definition given by Devaney [7].

Definition 2.1 Consider a map T : X → X and let a set A ⊂ X be invariant under
T . The restriction T |A : A → A is called chaotic on A if

(i) there exist infinitely many periodic orbits dense in A,
(ii) T |A is topologically transitive, that is, for any pair of open setsU, V ⊂ A there

exists t ∈ Z
+ such that T t (U ) ∩ V �= ∅.

The set A is also often said to be chaotic.

To be precise, in his definition Devaney also includes the third property that T |A has
sensitive dependence on initial conditions,1 although this property can be derived
from the other two (see, e.g., [4]). The chaos of the described type is also called
topological chaos, that is having positive topological entropy.

It is worth to mention that condition (ii) is often replaced by

(ii′) there exists an aperiodic orbit dense in A.

Conditions (ii′) and (ii) are not connected in general, though under additional require-
ments on A they become equivalent. Namely, if A has no isolated points then (ii′)

1The map T : X → X is said to have sensitive dependence on initial conditions if there exists
δ > 0 such that for any x ∈ X and any neighborhoodU (x) there exist y ∈ U (x) and t ≥ 0 such that
|T t (x) − T t (y)| > δ.
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implies (ii). The opposite is true if A contains a countable dense subset and is of
second category2 (see, e.g., [32]).

One might expect that chaotic behavior is more natural for DDS with dimension
n ≥ 2, however, already one-dimensional noninvertiblemaps can show non-regular
dynamics of this kind. One of the most known examples is a family of quadratic
maps such as logistic map [31] or conjugated to it Myrberg map [26].

In the next sections we describe a couple of phenomena due to which a chaotic
attractor may appear or be reshaped. For that we first introduce such important
concepts as stable and unstable sets of a fixed point or a cycle.

2.3 Stable and Unstable Sets

The stable and the unstable set of a fixed point or a cycle are important concepts for
studying behavior of a dynamical system globally. They are related to boundaries of
basins of attraction, saddle-connections and birth of closed invariant curves, homo-
clinic tangles, appearance and modification of chaotic attractors. Classically, these
notions are defined for maps of dimension greater than one, which are characterized
by possibility of both expansion and contraction in the same invariant set. However,
an extension of the idea to a class of one-dimensional noninvertible maps was given
already in 1969 by Sharkovsky [30] and then developed in [22, 25] among the others.

2.3.1 Stable Manifold Theorem

Let consider a DDS (2.1) and denote

DT (x) =

⎛

⎜

⎜

⎜

⎝

∂T1(x)
∂x1

. . .
∂T1(x)
∂xn

. . . . . . . . .
∂Tn(x)
∂x1

. . .
∂Tn(x)
∂xn

⎞

⎟

⎟

⎟

⎠

the Jacobian matrix of the map T at the point x. And let λi = λi (x), 1 ≤ i ≤ n, be
the eigenvalues of DT (x).

Definition 2.2 A fixed point x∗ of the map T is called hyperbolic if DT (x∗) has no
eigenvalues on the unit circle, that is, |λi (x∗)| �= 1, 1 ≤ i ≤ n.

For sake of shortness, we drop the symbol (x∗) in notation of eigenvalues whenever
it is clear which point is meant. If all λi , 1 ≤ i ≤ n, of DT (x∗) are inside the unit

2A subset A of a topological space X is said to be of second category in X if A cannot be written
as the countable union of subsets which are nowhere dense in X .
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circle (|λi | < 1), then x∗ is attracting (more precisely, asymptotically stable), while
in case when all |λi | > 1, the point x∗ is called expanding. In the intermediate case,
when some of eigenvalues of x∗ are inside the unit circle and others are outside it,
the point x∗ is referred to as saddle or unstable.3 Clearly, for a one-dimensional map
the concepts of expanding and unstable fixed points are equivalent.

Let rearrange the eigenvalues of DT (x∗) so that |λi | < 1 for 1 ≤ i ≤ i0 and |λi | >

1 for i0 < i ≤ n and consider the sets of related eigenvectors. Let Es(x∗) denote a
subspace of dimension i0 spanned on the eigenvectors {v1, . . . , vi0} corresponding to
eigenvalues being inside the unit circle. Then Es(x∗) is called a stable eigenspace of
x∗. Similarly, the eigenvectors {vi0+1, . . . , vn} corresponding to eigenvalues outside
the unit circle define an unstable eigenspace Eu(x∗) (whose dimension is clearly
n − i0).

Example 2.3 Let consider a linear mapping Tlin : R
2 → R

2,

Tlin :
{

x ′
1 = 2x1 + x2,
x ′
2 = x1 + x2.

It obviously has a fixed point x∗ = (0, 0) with Jacobian

DTlin(0, 0) =
(

2 1
1 1

)

. (2.3)

The eigenvalues of DTlin(0, 0) are λ1 = (3 − √
5)/2, λ2 = (3 + √

5)/2 with the
corresponding eigenvectors vi = (1/(λi − 2), 1), i = 1, 2. Since λ1 < 1, the stable
eigenspace is

Es(0, 0) = {αv1 | α ∈ R}, (2.4)

that is, the line defined by the vector v1. Similarly, the vector v2 gives the unstable
eigenspace

Eu(0, 0) = {αv2 | α ∈ R}, (2.5)

being the line orthogonal to Es(0, 0) (see Fig. 2.1).

Now, we directly come to introducing the notions of stable and unstable sets. First,
the classical case is considered where the mapping T is a diffeomorphism, that is,
a smooth bijective function. Then, modified versions of the definitions are given so
that to cover the case of noninvertible and/or piecewise smooth maps.

3Some authors use also the term repelling in this case, though it might be confusing since there is
more strict definition of a repelling set.
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Fig. 2.1 Stable Es and
unstable Eu eigenspaces of
the saddle fixed point x∗

2.3.1.1 Diffeomorphsms: Stable and Unstable Manifolds

Definition 2.3 Let the mapping T be a diffeomorphism, and let x∗ be a hyperbolic
fixed point of the system (2.1). The sets

Ws(x∗) = {

y ∈ X : limt→∞ T t (y) = x∗} , (2.6)

Wu(x∗) = {

y ∈ X : limt→∞ T−t (y) = x∗} (2.7)

are called the stable and the unstable set of x∗, respectively.

Note that if x∗ is an expanding fixed point, then its stable set is empty, while its
unstable set is some n-dimensional area (the shape of this area depends on presence
of other invariant sets of the system). On the contrary, if x∗ is an asymptotically
stable fixed point, then its unstable set is empty, while its stable set is just its basin
of attraction.

The Stable Manifold Theorem (see, e.g., [3, 34]) guarantees that Ws(x∗) and
Wu(x∗) exist and are manifolds of the same smoothness as T .

Theorem 2.1 (Stable Manifold Theorem) Let T be a diffeomorphism and x∗ be a
hyperbolic fixed point of the DDS (2.1). Then Ws(x∗) is as smooth as T manifold
and the stable eigenspace Es(x∗) is tangent to Ws(x∗) at the point x∗.

Applying Theorem 2.1 to the inverse T−1, the same can be stated about the unstable
set Wu(x∗), that is, Wu(x∗) is as smooth as T manifold and Eu(x∗) is its tangent
space at x∗. For sake of shortness, we drop the symbol (x∗) in notation of eigenspaces
and stable/unstable manifolds whenever it is clear which point is meant.

Example 2.4 In case of linear mapping T (such as the one in Example 2.3), the
stable/unstable manifold Ws /Wu of the fixed point x∗ = (0, 0) coincides with the
stable/unstable eigenspace Es /Eu . We demonstrate this for the stable manifold,
and the unstable one is treated likewise. First, we show that Es is invariant under



168 A. Panchuk

T . Let x ∈ Es which means that x = αv1 with a certain α ∈ R. Then T (x) =
T (αv1) = αλ1v1 and, hence, T (x) ∈ Es . And vice verse: consider T (x) ∈ Es , that
is, T (x) = αv1, which is equivalent to T (λ1x/α) = λ1v1. The latter clearly implies
x = αv1/λ1 ∈ Es .

It remains to verify that for any y ∈ Es there holds limt→∞ T t (y) = x∗. Indeed,
T t (y) = αλt

1v1, α ∈ R. Obviously, limt→∞ ‖T t (y)‖ = 0 since |λ1| < 1.

2.3.1.2 Noninvertible Maps: Stable and Unstable Sets

Now, we consider the more general case where T is not a diffeomorphism, namely,
T may be noninvertible and/or piecewise smooth. The definition (2.6) for the stable
set Ws(x∗) remains unchanged, but the expression (2.7) for the unstable set Wu(x∗)
has to be modified with taking into account that the points can have more than one
preimage.

Definition 2.4 Let T be a continuous piecewise smooth map and consider a hyper-
bolic fixed point x∗ of the DDS (2.1). The locus of points having a sequence of
preimages that tends towards x∗, that is,

Wu(x∗) =
{

y ∈ X : ∃ {zt }∞t=0, z0 = y, T (zt+1) = zt such that lim
t→∞ zt = x∗

}

,

(2.8)

is called the unstable set of x∗.

Note that in this definition not all preimages of y tend towards x∗, but there exists
an infinite sequence of preimages of y having x∗ as a limit point. Moreover, in case
of a noninvertible T , the stable set of an expanding fixed point may be nonempty (in
contrast to invertible maps). More precisely, it consists of all preimages of this fixed
point. Similarly, the unstable set of an asymptotically stable fixed point x∗ may be
nonempty.

Clearly, in case of noninvertible or non-smooth T , the Stable Manifold Theorem
(Theorem 2.1) cannot be applied directly.We additionally require that (i) the point x∗
is not degenerate, that is, det DT (x∗) �= 0 (the Jacobian have no zero eigenvalues),
and (ii) T is smooth at x∗. If these two conditions are satisfied there exists a neighbor-
hood U (x∗) such that T |U (x∗) is a diffeomorphism. Hence, Theorem 2.1 guarantees
existence of local stable Ws

loc(x
∗) ⊂ U (x∗) and local unstable Wu

loc(x
∗) ⊂ U (x∗)

manifolds, which are tangent at x∗ to the stable and unstable eigenspaces Es(x∗)
and Eu(x∗), respectively. Then the global stable and global unstable sets can be
alternatively defined as

Ws(x∗) = ∪∞
t=0T

−t (Ws
loc(x

∗)), (2.9)

Wu(x∗) = ∪∞
t=0T

t (Wu
loc(x

∗)). (2.10)
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Example 2.5 Let consider a nonlinear function Tnlin : R
2 → R

2,

Tnlin :
{

x ′
1 = 2x1 + x2,
x ′
2 = x1 − x21 + x2,

which is clearly noninvertible. It has a fixed point x∗ = (0, 0) with the same
Jacobian (2.3) as in Example 2.3. Consequently, the stable Es and unstable Eu

eigenspaces of x∗ are given by (2.4) and (2.5), respectively. The stable Ws and
unstable Wu sets of x∗ cannot be derived in analytic form, but one may approximate
them numerically. In Fig. 2.2 the setsWs andWu together with Es and Eu are shown.

In general, stable and unstable sets of a fixed point x∗ have the following properties
(see, e.g., [25]):

1. Ws is backward invariant, but not necessarily (forward) invariant (mapped only
into itself), that is,

T−1(Ws) = Ws,

T (Ws) ⊆ Ws .

2. Wu is invariant, but not necessarily backward invariant:

T (Wu) = Wu,

T−1(Wu) ⊇ Wu .

3. Both Ws and Wu are not necessarily manifolds and may have self intersections.
4. When T is continuous, the setWu is connected, whileWs may consist of disjoint

connected components.

The notions of stable and unstable sets can be generalized for a k-cycle Ck =
{x∗

1, . . . , x
∗
k } by considering T k , for which every point x∗

i is a fixed point. Then under

Fig. 2.2 Stable Ws and
unstable Wu sets of the
saddle fixed point x∗ together
with related eigenspaces
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the stable (unstable) set ofCk one mean the union of all stable (unstable) setsWs(x∗
i )

(Wu(x∗
i )).

As one can see, the stable and unstable sets are not defined only in a neighborhood
of a fixed point (or a cycle), but in the larger area of the state space and may even
extend to infinity. Due to this reason, they often play an important role when studying
global properties of the map T . In particular,

1. stable sets of saddle points or cyclesmay define boundaries of basins of attraction;
2. stable sets of saddle cycles may establish saddle-connections (homoclinic/hete-

roclinic loops) inducing creation of closed invariant curves.
3. stable and unstable sets may attain a very complex configuration generating a

homoclinic tangle, which causes then appearance of an invariant chaotic set;
4. contact of the stable set of a saddle periodic point with another invariant set may

lead to a crisis bifurcation.

The situation (1) is briefly explained immediately below by using a simple exam-
ple. The phenomenon (3) is described in detail in Sect. 2.4. Interior and boundary
crises (4) are considered in Sect. 2.5. The item (2) is beyond the scopes of the current
chapter, and the reader is referred to [1, 2] and references therein.

2.3.2 Stable Sets of Saddle Points and Basins

Let us consider a two-parametric family Ha,b : R
2 → R

2 such that

Ha,b :
(

x
y

)

→
(

a − by − x2

x

)

. (2.11)

The map (2.11) is called Hénon map4 (see, e.g., [7, 18]). Note that Ha,b has only
one nonlinear term, so that, it is indeed one of the simplest nonlinear maps in higher
dimensions.

It is easy to calculate the Jacobi matrix of Ha,b:

DHa,b =
(−2x −b

1 0

)

,

whose determinant is det DHa,b = b. Clearly, if b �= 0, then the mapping (2.11) is
invertible, and its inverse is given as

H−1
a,b :

(

x
y

)

→
⎛

⎝

x

−a

b
− y

b
+ x2

b

⎞

⎠ . (2.12)

4In the original paper of M. Hénon this map is written in slightly different form, namely,
˜Ha,b: (x, y) → (1 + y − ax2, bx), but topological conjugacy between ˜Ha,b and Ha,b can be easily
shown.
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Fig. 2.3 Phase space of the
Hénon map Ha,b with a = 1,
b = 0.3. The basin of the
attracting fixed point p+ is
confined by the stable set of
the saddle p+ (namely, it is
the area between the two
parabola-shaped curves).
Orbits starting in the
dark-gray region diverge to
infinity

It can be shown that for any a ∈ R, b ∈ R\{0} themap Ha,b is topologically conjugate
to H−1

A,B with A = −a/b2, B = −1/b. Hence, it is enough to consider |b| ≤ 1.
Note that in caseb = 0, the function Ha,0 is noninvertible andmaps the entire plane

onto a parabola P = {(x, y) : x = a − y2}, which implies topological conjugacy
between the restriction Ha,0|P and the Myrberg map [26].

We set a = 1, b = 0.3, for which H1,0.3 has two fixed points: a saddle p− =
(x−, x−) and a sink p+ = (x+, x+). In Fig. 2.3 a part of the phase space is shown.
The basin of attraction B(p+) of the sink p+ is confined by the stable set Ws(p−)

(a part of this stable set appears in Fig. 2.3 as two parabola-shaped curves). The orbits
starting ‘outside’ B(p+) (in the dark-gray region) diverge to infinity. Since p+ is
attracting, its stable set is simply its basinB(p+), and one branch ofWu(p−) clearly
tends to p+ with t → ∞ (the other branch diverges to infinity). The unstable set is
Wu(p+) = ∅, because Ha,b is invertible.

2.4 Homoclinic Bifurcations

In this section we explain such notions as a homoclinic orbit and a homoclinic
bifurcation. A homoclinic orbit is often a basic tool for rigorously showing existence
of chaotic dynamics [10, 33]. In spaceswith dimension greater than one, a homoclinic
bifurcation is related to a homoclinic tangle. The latter represents a structure where
stable and unstable sets of a saddle fixed point twist and interlace in a very complex
manner. Whenever this intersection is transverse, there exists an invariant set on
which the restriction of the map is chaotic.

As for a one-dimensional DDS, there is no concept of a saddle point. However, if
the map is noninvertible, the stable set of a repelling fixed point may be nonempty
(as was mentioned above). Then, homoclinic bifurcations are also possible but the
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scenario is slightly different from the one involving a saddle point. Namely, the
homoclinic orbit has to be mapped directly to a repelling fixed point after a finite
number of iterates. Moreover, homoclinic orbits of this kind also appear in nonin-
vertible higher-dimensional maps. As was proved byMarotto [22], a non-degenerate
homoclinic orbit of an expanding fixed point (a snap-back repeller) is associated with
an invariant set on which the map is chaotic.

2.4.1 The Notion of a Homoclinic Orbit

In simple words, a homoclinic orbit is the one that tends to the same invariant set in
both the forward and the backward processes. Whenever the stable and unstable sets
of a fixed point intersect, this induces such a homoclinic orbit. We give all definitions
for fixed points and remark that to get similar definitions for k-cycles it is enough to
consider the k-th iterate of the map T k .

Definition 2.5 Let x∗ be a hyperbolic fixed point of a map T . Any point y ∈
Ws(x∗) ∩ Wu(x∗)\{x∗} is called homoclinic.

If a homoclinic point exists, then infinitely many homoclinic points must also exist,
accumulating in a neighborhood of x∗. Intuitively, this can be understood by observ-
ing that the images of y and its suitable preimages are also homoclinic points, which
converge to x∗.

Definition 2.6 A sequence of images and suitable preimages of a homoclinic point
y, which converge to x∗, is called a homoclinic orbit of x∗.

In other words, a homoclinic orbit is an infinite set of points

Oh(x∗) = {. . . , y−t , . . . , y−1, y0, y1, . . . , yt , . . .} (2.13)

such that T t (y−t ) = y0 and yt = T t (y0) with

lim
t→∞ y−t = x∗, lim

t→∞ yt = x∗.

It is sometimes important to distinguish between critical and noncritical homoclinic
orbits. A homoclinic orbit is called critical if it contains a critical point, that is, a
point at which the map T is not locally invertible. Otherwise, a homoclinic orbit is
noncritical (see, e.g., [13]). For instance, in case of a unimodal map a homoclinic
orbit including the local extremum point is critical.
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2.4.2 Homoclinic Orbits for One-Dimensional Maps

By analyzing a simple example we explain how homoclinic orbits appear in scalar
maps and what is a homoclinic bifurcation in this case. Consider a famous logistic
map Tμ(x) = μx(1 − x), Tμ : [0, 1] → [0, 1]. In Fig. 2.4a the bifurcation diagram
of Tμ is plotted, where the dashed curve indicates the fixed point x∗ = 1 − 1/μwhen
it becomes unstable, while the black vertical line corresponds to the parameter value
μ = μ∗ ≈ 3.6786, at which a homoclinic bifurcation occurs. The graphs of Tμ with
μ < μ∗, μ = μ∗, and μ > μ∗ appear in Fig. 2.4b, c and d, respectively. A few steps
of the forward orbit of the extremum point xe = 1/2 are also plotted.

(a) (b)

(c) (d)

Fig. 2.4 Logistic map: A bifurcation diagram in (a); and the map dynamics (b) before, c at, and
d after the first homoclinic bifurcation of the fixed point x∗
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As can be noticed in Fig. 2.4b, typical asymptotic orbits of Tμ (see the shown
staircase diagram) never exit intervals J1 ∪ J2 which are bounded by the first four
images of the extremum point xe. Note that T 3

μ(xe) is greater than x∗. As for the fixed
point x∗, the set of all its preimages can be divided into two sequences. The first (left)
sequence approaches zero with increasing rank. The second (right) sequence consists
of points which do not have preimages. This implies that x∗ cannot have homoclinic
orbits.

In Fig. 2.4c the point xe is clearly homoclinic. On one hand, in three steps xe is
mapped into x∗, that is, T 3(xe) = x∗. On the other hand, there exists an appropriate
backward orbit of xe that tends to x∗, since the fixed point is repelling. This moment
corresponds to thefirst homoclinic bifurcation of x∗. Due to the equality T 3(xe) = x∗,
the two intervals J1 and J2 merge at x∗ creating a single invariant interval J , which
persists after the bifurcation.

Forμ > μ∗ (see Fig. 2.4d) the image T 3
μ(xe) is less than x∗ (in contrast to the case

before the bifurcation where it was greater than x∗). Then, there exists a sequence of
preimages of x∗ that tends to x∗ with increasing rank, thus, constituting a homoclinic
orbit of x∗ (dotted line). This implies that there exists a subset Λ ⊂ J such that the
restriction Tμ|Λ is chaotic in sense of Devaney.

The mechanism of homoclinic bifurcation described above is common for a class
of unimodal maps with a local maximum or minimum. We formulate the following
theorem for maps with a local maximum, which can be easily modified to get similar
statement for maps with local minimum.

Theorem 2.2 Let T : I → I be a unimodal continuous map of the interval I ⊂ R

into itself and denote the point of maximum of T as xe. Suppose that

1. T is smooth in I\{xe};
2. T has a unique unstable fixed point x∗;
3. there exists a sequence of preimages of xe approaching x∗.

Then when T 3(xe) = x∗, there occurs a (critical) homoclinic orbit of the fixed
point x∗. Furthermore, for T 3(xe) < x∗ there exists a closed invariant set Λ ⊆
[T 2(xe), T (xe)] ⊆ I such that the restriction T |Λ is chaotic in sense of Devaney.

A similar result can be clearly obtained for a k-cycle Ck = {x∗
1, . . . , x

∗
k } by apply-

ing Theorem 2.2 to x∗
j as fixed points of T k on suitable intervals I j . The latter

correspond to cyclical intervals of T , that is T (I j ) = I j+1, j < k, T (Ik) = I1.
Theorem 2.2 can be also used when studying models with “backward dynam-

ics”. That is, the models where the iterative relation is given as xt = T (xt+1), but
one is still interested in the behavior of the forward values of the state variable
(xt , xt+1, xt+2, . . .) [11]. Among economic examples there may be mentioned the
overlapping generations (OLG) model [14] and the cash-in-advance model [23].
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2.4.3 Homoclinic Tangles

In this section we turn to saddle points in dynamical systems of dimension greater
than one and their homoclinic orbits. A homoclinic orbit causes the stable and unsta-
ble sets of a saddle point x∗ fold, twist and intersect in a rather complex way. Due
to its complexity, this structure is referred to as a homoclinic tangle (see, e.g., [1,
17]) and often the mechanism of its appearance is as follows. First, a homoclinic tan-
gency between stableWs(x∗) and unstableWu(x∗) sets occurs. Then tangency turns
to transverse crossing that persists for a certain parameter range. Finally, the homo-
clinic tangle is destroyed through the second tangency between the same branches
of Ws(x∗) and Wu(x∗) (see Fig. 2.5a–c). Moreover, whenever Ws(x∗) and Wu(x∗)
intersect transversely, there exists an invariant set Λ such that the restriction of the
map to Λ is chaotic (see, e.g., [17, 34]).

Note that asymptotic behavior of the related branches of Ws(x∗) and Wu(x∗)
differ before and after the homoclinic tangle. Namely, if before the first tangency the
suitable branch ofWs(x∗) tends towards some invariant set A1, then after the second
tangency this branch must tend towards another invariant set A2. The same is true for
Wu(x∗), i.e., it must come from different invariant sets B1 and B2 before and after
the tangle. Knowing this, one can discover existence of a homoclinic tangle studying
asymptotic behavior of stable and unstable sets of a fixed point.

The phenomena described above can be clearly generalized to a saddle k-cycle
Ck = {x∗

1, . . . , x
∗
k } by considering k-th iterate T k . However, since there are k saddle

fixed points for T k , there are two situations possible. The first situation is complete
analogue of what happens for a single fixed point when the stable and unstable sets
of the same point of the cycle intersect. Namely,Ws(x∗

i ) ∩ Wu(x∗
i ) �= ∅, 1 ≤ i ≤ k.

The second situation is when the stable set of each x∗
i intersects the unstable set of the

next point x∗
i+1 (we assume i + 1 = 1 for i = k), that is, Ws(x∗

i ) ∩ Wu(x∗
i+1) �= ∅.

In this case, it is sometimes said that there exist heteroclinic orbits for points x∗
i ,

1 ≤ i ≤ k, and the structure of their stable and unstable sets is referred to as a
heteroclinic tangle.

Fig. 2.5 A homoclinic tangle: a the first homoclinic tangency; b transverse intersection of the
stable and unstable manifolds; c the second homoclinic tangency
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2.4.4 Homoclinic Orbits in 2D: Smale Horseshoe

In two-dimensional systems, a prototypical example for chaotic behavior related to
homoclinic orbits of saddle points is a Smale horseshoe. Thorough understanding
of asymptotic behavior related to this structure is essential for understanding certain
aspects of global dynamics of specific real systems. The map possessing the Smale
horseshoe was introduced by Smale [33] while studying dynamics of orbits of the
van der Pohl oscillator. The action of the map is defined geometrically by squeezing
the square, then stretching the result into a long strip, and, finally, folding the strip
into the shape of a horseshoe as shown in Fig. 2.6 (see also [3, 7, 34]).

More formally, let us consider a regionΔ consisting of three components: a central
square Q with side length 1 and two semidisks D1 and D2 at either end (that is, Δ
is shaped like a “stadium”). The horseshoe map F takes Δ inside itself according
to the following prescription. First, F linearly contracts Q in the vertical direction
by a factor δ < 1/2, while the regions D1 and D2 are contracted so as to remain
semidisks attached to the resulting rectangle. Then, F expands Q in the horizontal
direction by a factor 1/δ so that it is long and thin (D1 and D2 remain unchanged).
Finally, F puts Q back inside Δ in a horseshoe-shaped figure. The regions D1 and
D2 are then mapped into D1. We remark that F(Δ) ⊂ Δ and that F is one-to-one,
however, since F is not onto, the inverse F−1 is not globally defined. In particular,
only the points belonging to the two horizontal stripes shaded in Fig. 2.6 has rank-1
preimages in the square Q.

Figure2.7 serve to clarify this point, where only the region Q is shown for com-
pactness. The two stripes which has rank-1 preimages are denoted H0 and H1 and
both has height δ. The preimages of H0 and H1 constitute two vertical stripes V0 and
V1 (both of the width δ) also shown in Fig. 2.7a. For sake of simplicity, we assume
that V0 and V1 are mapped linearly onto H0 and H1. This assumption implies that
F preserves horizontal and vertical lines in Q. For later use we note the following
property of F .

LP Let �h ⊂ Q be a horizontal line segment of length a, such that F(�h) ⊂ Q.
Then, F(�h) is also a horizontal line segment whose length is a/δ. Similarly, let
�v ⊂ Q, F(�v) ⊂ Q, be a vertical line segment of length b, then, F(�v) is also a
vertical line segment whose length is bδ.

Fig. 2.6 Schematic (geometric) representation of one iterate of a horseshoe map
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(b) (c)(a)

Fig. 2.7 Consecutive construction of images of the square Q under action of the Smale horseshoe
map F . a The first image F(Q) ∩ Q consists of two horizontal stripes H0 and H1 of height δ. b The
second image F2(Q) ∩ Q is represented by four stripes of height δ2. c The third image F3(Q) ∩ Q
is eight δ3-height stripes

In other words, F preserves vertical and horizontal line segments belonging to Q if
they are mapped into Q.

Now, we turn to describing asymptotic dynamics of orbits of F . First, note that
F is a contraction in D1, hence, there is a unique attracting fixed point p ∈ D1, that
is, limt→∞ Ft (y) = p for any y ∈ D1. Since F(D2) ⊂ D1, all forward orbits in D2

behave likewise. Similarly, if y ∈ Q but Ft (y) /∈ Q for some t > 0, then we must
have Ft (y) ∈ D1 ∪ D2, so that the orbit O(y) also converges to p. Consequently, to
understand the forward orbits of F , it suffices to consider the set of points whose
forward orbits lie for all time in Q, that is,

Λ = {y ∈ Q : Ft (y) ∈ Q, t ≥ 0} = ∩∞
t=−∞Ft (Q). (2.14)

It can be shown, that most points eventually leave the square Q under the action of
F , and the remaining invariant set Λ is a Cantor set. Recall that a Cantor set is an
uncountable set with no connected subsets (except individual points). In a space of
dimension greater than one such a set is sometimes referred to as a Cantor dust.

Construction of the invariant set Λ is an inductive process, and it is convenient
to construct separately those parts corresponding to forward iterates and backward
iterates, taking further their intersection to obtain Λ. As it has been already said,
Q1 = Q ∩ F(Q) = H0 ∪ H1. Since only points belonging toV0 ∪ V1 stay inQ under
F , only the points belonging to the intersection of H0, H1 and V0, V1 are mapped into
Q under next iteration of F . In Fig. 2.7a these four squares aremarked by symbols 00,
01, 10, and 11. The image Q2 = F(Q1) ∩ Q = F2(Q) ∩ F(Q) ∩ Q (of the squares
00, 01, 10, and 11) is made up of four horizontal stripes as in Fig. 2.7b (each stripe is
of height δ2). Similarly, only the points belonging to the intersection of Q2 and V0,
V1 are mapped into Q under F generating Q3 = F(Q2) ∩ Q = F3(Q) ∩ F2(Q) ∩
F(Q) ∩ Q,which is constituted by eighthorizontal stripes of height δ3 (seeFig. 2.7c).
Inductively, the set Qt = ∩t

j=0F
j (Q), F0(Q) = Q, consists of 2t horizontal stripes
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each having width δt . Thus, the part of Λ corresponding to forward iterates of F
denoted

Λ+ = ∩∞
t=0F

t (Q)

is the product of a Cantor set with a horizontal interval.
By similar arguments it is easy to check that the rank-t preimage of Q which is

contained in Q consists of 2t vertical stripes of the width δt . Hence, the part of Λ

corresponding to backward iterates

Λ− = ∩0
t=−∞Ft (Q)

is the product of a Cantor set with a vertical interval. This implies that the invariant
set Λ = Λ+ ∩ Λ− is also a Cantor set (a two-dimensional Cantor dust). In Fig. 2.8
the first three approximations of Λ are shown.

It is possible to show further, that this invariant Cantor set Λ is in one-to-one
correspondence with the set 	2 of bi-infinite binary sequences. Recall that 	2 is
defined as

	2 = {(s) = (. . . s−2s−1 · s0s1s2 . . .) : s j = 0 or 1}

with the metric d((s), (t)) = ∑∞
i=−∞ 2−|i ||si − ti |. Introduce also the shiftmap σ as

σ(. . . s−2s−1 · s0s1s2 . . .) = (. . . s−2s−1s0 · s1s2 . . .),

which is known to be chaotic. It can be proved that the restriction F |Λ is topologically
conjugate to σ , which proves that F |Λ : Λ → Λ is chaotic as well (see, e.g., [7]).

What has that got to do with homoclinic orbits? one may ask. Indeed, above
we have mentioned only one fixed point p ∈ D1 which is attracting, and hence any
point in Q which eventually leaves Q belongs to the stable set of p. However, the
map F has two more fixed points belonging to Λ which are saddles (their existence
can be proved by using symbolic sequences of zeros and ones, for more detail see

(a) (b) (c)

Fig. 2.8 First three approximations of the invariant Cantor set Λ
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Fig. 2.9 Transverse
homoclinic intersection of
the stable Ws and unstable
Wu sets of a saddle fixed
point q for a horseshoe map

[7, 34]). The stable and unstable sets of these points have much more complex
structure. For example, consider a fixed point q ∈ V0 ∩ H0 ⊂ Q. Figure2.9 shows q
together withWs(q) andWu(q), which clearly mimic the “fold-and-pleat” behavior
of F . Any point that lies on the vertical segment �v through q belongs to Ws(q).
Indeed, since at each iteration of F the segment �v is squeezed by factor δ, the
points from �v constantly approach q. Clearly, all preimages F−t (�v), t ≥ 1, belong
to Ws(q) as well. Due to property LP these preimages constitute a set of vertical
segments of length 1.More precisely, F−t (�v) consists of 2t such segments. Similarly,
the horizontal segment �h through q belongs to Wu(q), as well as all its forward
images Ft (�h). It can be checked, that Ft (�h) ⊂ Δ is a “snake-like” curve that cuts
across Q exactly 2t times. This inevitably implies that Ws(q) ∩ Wu(q) �= ∅, and,
hence, there exists infinite number of points which are homoclinic to q.

Let us show that as soon as for an invertible map T there exists a transverse
homoclinic orbit (that is, the stable and the unstable sets intersect transversally),
then there also exists a related horseshoe-like structure. We start with a rectangle
R containing a fixed point x∗ of the map T . Successive iterates of T stretch R out
along the unstable set Wu(x∗). Under iterates of T−1, it is stretched out along the
stable setWs(x∗). In particular, there exist numbers l and k such that T−l(R) extends
along the stable set to include some homoclinic point y, and T k(R) extends along the
unstable set to include y as well (see Fig. 2.10). Thus T k+l is a horseshoe map with
the “square” domain Q = T−l(R) and its image T k(R). This can be summarized as

Theorem 2.3 [33] Let T be a diffeomorphism of the plane, and let x∗ be a saddle
fixed point. If the stable and unstable manifolds of x∗ cross transversally, then there
is a hyperbolic horseshoe for some iterate of T .

Note that in order to have exactly the dynamics of the ideal horseshoe, there must
be uniform stretching and contraction at points in the invariant set, which is unlikely
to happen in a real system. Thus, the domains which are squares and rectangles for
the pure horseshoe map in real systems are somewhat deformed (though being still
topologically conjugate to “ideal” shapes).
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x∗

Ws

W u

T−l(R)

T k(R)

R

Fig. 2.10 A horseshoe generated from a homoclinic orbit. The domain T−l (R) corresponds to the
square Q, while the domain T k(R) is its horseshoe-shape image. The iterate T k+l is a horseshoe
map

Example 2.6 Theorem 2.3 guarantees that presence of a transverse homoclinic point
implies chaotic orbits (although we cannot say anything about whether they are
attracting or not). Let us illustrate this by an example. We consider the Hénon map
Ha,b defined in (2.11) with a = 2.1, b = 0.3. Figure2.11a (cf. Fig. 2.10) shows the
stable and the unstable sets of the saddle point p+ = (x+, x+) which is marked by
a circle. The initial area ˜R is not a rectangle but a parallelepiped snapped onto the
related eigenvectors. The rank-4 image R4 = H 4

a,b(
˜R) of ˜R and its rank-2 preimage

R−2 = H−2
a,b (

˜R) are also shown. Figure2.11b is a zoomed window marked by letter
‘b’ in Fig. 2.11a, in which one can clearly see that the intersection R4 ∩ R−2 �= ∅.
Hence, H 6

a,b is topologically conjugate to the Smale horseshoe.

Fig. 2.11 Horseshoe structure in the Hénon map. Plot b is a zoom of the rectanglemarked ‘b’ in a
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2.5 Crises

In this section we describe bifurcations which concern transformation or disappear-
ance of chaotic attractors. Chaotic attractors are unlike fixed points or cycles not
only because they are infinite sets. A periodic point can not abruptly change its peri-
odicity or location while existent. With varying parameters it can only change its
stability characteristics or disappear through the related bifurcation. On the contrary,
a chaotic attractor may undergo sudden dramatic transformation under small varia-
tions of the map parameters. Such sharp changes are called crises and can include
sudden appearance or disappearance of the attractor or a discontinuous variation in
its size or shape [3, 16, 27]. Very commonly, these transformations occur when a
chaotic attractor has a contact with some unstable invariant set (e.g., the stable set of
a saddle periodic point).

2.5.1 Interior Crisis

Interior crisis is a bifurcation due to which a chaotic attractor Q experiences a
sudden change in size and shape. In simple words, this phenomenon can be explained
as follows. Let x∗ be an unstable periodic point with nonempty stable Ws(x∗) and
unstableWu(x∗) sets, which belongs to the interior of the basin ofQ. At some critical
(bifurcation) parameter value the attractorQ has a contact with x∗ (or, equivalently,
with Ws(x∗)). After the bifurcation the point x∗ joins Q which implies the whole
unstable set Wu(x∗) to be “swallowed up” by Q as well. This clearly leads to swift
transformation of Q.

To explain this in more detail, we analyze a simple example. Let consider Ikeda
map family g : R

2 → R
2 given by

g :
(

x
y

)

�→
(

A + bx cos(m) − by sin(m)

by cos(m) + bx sin(m)

)

(2.15)

with

m = φ − q

1 + x2 + y2
. (2.16)

The system having more general form was proposed first by Ikeda [19] as a model
of light going around across a nonlinear optical resonator. In [20] the original map
was reduced to the simplified form given above.

We fix all the parameters except q. Figure2.12a, b show the chaotic attractorQq

of g for two different parameter values: before (q = 7.1) and after (q = 7.3) the
crisis. There are two different attractors here: (i) the sink fixed point p whose basin
is the shaded area and (ii) the chaotic attractorQq whose basin is shown white. The
two basins are separated by the stable set of the saddle fixed point q.
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Fig. 2.12 State space of the Ikeda map with A = 0.84, b = 0.9, φ = 0.4 and a q = 7.1 < qc,
b q = 7.3 > qc. The basins of the stable fixed point p and the chaotic attractor Qq are separated
by the stable set of the saddle point q

Simple numerical experiments for intermediate values of q (between 7.1 and 7.3)
show that the shape of Qq varies only slightly from that shown in Fig. 2.12a for
7.1 < q ≤ qc ≈ 7.24. For q > qc, however, the attractor in this region of the plane
suddenly becomes much larger. So that, the attractor does not continuously increase
in size as q passes qc, as it happens in local bifurcations for periodic points.

Let us discover what happens at a crisis value qc. It appears that for all q being
close to qc there exist a saddle 5-cycle C5 in the vicinity of Qq (in fact, there exist
several 5-cycles, but only one is relevant to the phenomenon investigated). For q < qc
the cycle C5 does not belong to the attractor Qq . As q approaches qc from below,
the distance betweenQq and C5 (equivalently, Ws(C5)) goes to zero. At q = qc the
attractor Qq and the cycle C5 (Ws(C5)) collide. Then, after the crisis the chaotic
attractor Qq absorbs C5 together with its unstable set Wu(C5). The result of such
crossing between chaotic attractor and the stable set of some periodic point can be
formalized as follows (see, e.g., [3]).

Lemma 2.1 (Lambda or Inclination Lemma) Let T be a diffeomorphism of the
plane, and let x∗ be a hyperbolic saddle fixed point of T . Suppose that a curve L
crosses the stable manifold Ws(x∗) transversally. Then each point in the unstable
manifold Wu(x∗) is a limit point of ∪t>0T t (L).

The proof of Lemma 2.1 can be found, e.g., in [28].
In other words, if a curve L crosses the stable manifoldWs(x∗) transversally, then

forward iterates of L limit on the entire unstable manifold Wu(x∗) (see Fig. 2.13).
Specifically, it means that for each point y ∈ Wu(x∗) and for any ε-neighborhood
Uε(y), there exists t > 0 such that T t (L) ∩Uε(y) �= ∅. Similar property is known
to be true also for noninvertible maps, but there is no rigorous proof for general case.

Using Lemma 2.1, we can interpret the crisis in the Ikeda example above.
Figure2.14a shows that as a parameter q comes close to a critical value qc, the
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x∗
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Fig. 2.13 Whenever a curve L crosses the stable set of a saddle x∗ transversally, forward iterates
of L approach the unstable set of x∗
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Fig. 2.14 Interior crisis for the chaotic attractorQq of the Ikeda map. a Before the crisis, q = 7.1;
b at the crisis value q = qc ≈ 7.24; c zoom of box outlined light-blue in (b); d after the crisis
q = 7.3. Green points mark the saddle 5-cycle C5, whose stable and unstable sets are shown by
blue and red lines, respectively. The other parameters are A = 0.84, b = 0.9, φ = 0.4
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attractorQq approaches the stable setWs(C5). At qc the outer edge ofQqc is tangent
to this stable set, as shown in Fig. 2.14b (see also Fig. 2.14c which is a zoom of the
rectangle indicated in Fig. 2.14b). Finally, for q > qc the attractor has crossed the sta-
ble setWs(C5) (Fig. 2.14d). Once there is a crossing, Lemma 2.1 tells us that forward
iterates of portions ofQq limit on the entire unstable set Wu(C5). Consequently, for
q > qc the attractorQq containsWu(C5). In simple words, having a contact with the
stable set of the saddle cycle C5, the chaotic attractor Qq absorbs this cycle, but it
inevitably follows thatQq also absorbs the unstable set of this cycle. It is important
thatWu(C5) is contained in the basin of attraction ofQq for q near qc. In this case it
is said that there is an interior crisis at q = qc, and sudden increase of the attractor
size is a specific feature of such crises.

Note that the structure of the “smaller” attractor (which is relevant for q < qc) is
still apparent in Fig. 2.14d for q > qc. It appears darker since orbits spend a larger
percentage of iterates in this region. The closer q > qc is to the crisis parameter value
qc, the longer orbits typically stay on the “former” attractor before following the new
larger structure (cf. Fig. 2.12b).

2.5.2 Boundary Crises

We have considered above the situation when a chaotic attractorQ contacts the sta-
ble set of a saddle periodic point belonging to the interior of the basin B(Q). It
may, however, happen that a saddle point x∗ is on the boundary of B(Q) before
the bifurcation (recall that in invertible maps basin boundaries are often consisted of
stable sets of saddle points). Then, it is said that at the moment of contact between
Q andWs(x∗) there occurs a boundary crisis. In this case there are points inWu(x∗)
which go to another attractor (perhaps infinity). Then for the parameter value greater
than the critical value, the chaotic attractorQ (as well as its basin) no longer exists.
However, if a parameter exceeds the critical value only slightly, typical orbits spend
many iterates on the “former” chaotic attractor before escaping from its neighbor-
hood. This behavior is called transient chaos, and the transient structure itself is
called a “ghost” of the chaotic attractorQ.

We illustrate this again by using the Ikeda map family (2.15) with b = 0.9, φ =
0.4, q = 6 and changing A through Ac ≈ 1. For A < Ac, the stable set of the saddle
fixed point q forms the boundary between the basins of the sink fixed point p and
the chaotic attractorQA. In Fig. 2.15a it can be seen that one branch of Wu(q) goes
to QA, and the other branch goes to p. For A = Ac the attractor QAc collides with
the boundary of its basin (that is,Ws(q)), and for A > Ac it no longer exists (and all
points from the former basin of QA approach p). However, as shown in Fig. 2.15b,
some orbits spend many iterates on what was the structure ofQA before crossing the
stable set Ws(q) and converging to p.
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Fig. 2.15 Boundary crisis for the chaotic attractor QA of the Ikeda map. a Before the crisis, A =
0.95, the stable set of the saddle fixed point q separates the two basins, B(QA) and B(p). b After
the crisis, A = 1.003, there is a “ghost” attractor. Other parameters are b = 0.9, φ = 0.4, q = 6

2.6 Conclusions

Dynamical systems theory distinguishes two types of bifurcations: those which can
be studied in a small neighborhood of an invariant set (local) and those which cannot
(global). In this chapter we focused on several aspects of global bifurcation analysis
of discrete time dynamical systems, such as homoclinic bifurcations and crises. There
are also other global phenomena being important when investigating a dynamical
system. Among them there are bifurcations related to appearance of closed invariant
curves and those which cause qualitative changes in the basin structure (for example,
when a connected basin becomes nonconnected). For further reading and deeper
understanding of all these aspects, wemay suggest [1, 24, 25] and references therein.
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