
Chapter 2
Evolution Strategies

2.1 Introduction

Many real-world problems have multiple local optima. Such problems are called
multimodal optimization problems and are usually difficult to solve. Local search
methods, i.e., methods that greedily improve solutions based on search in the neigh-
borhood of a solution, often only find an arbitrary local optimum that may not be
the global one. The most successful methods in global optimization are based on
stochastic components, which allow escaping from local optima and overcome pre-
mature stagnation. A famous class of global optimization methods are ES. They
are exceptionally successful in continuous solution spaces. ES belong to the most
famous evolutionary methods for blackbox optimization, i.e., for optimization sce-
narios, where no functional expressions are explicitly given and no derivatives can
be computed.

ES imitate the biological principle of evolution [1] and can serve as an excellent
introduction to learning and optimization. They are based on three main mecha-
nisms oriented to the process of Darwinian evolution, which led to the development
of all species. Evolutionary concepts are translated into algorithmic operators, i.e.,
recombination, mutation, and selection.

First, we define an optimization problem formally. Let f : Rd → R be the fitness
function to be minimized in the space of solutions Rd . The problems we consider
in this work are minimization problems unless explicitly stated, i.e., high fitness
corresponds to low fitness function values. The task is to find a solution x∗ ∈ R

d

such that f (x∗) ≤ f (x) for all x ∈ R
d . A desirable property of an optimization

method is to find the optimum x∗ with fitness f (x∗) within a finite and preferably
low number of function evaluations. Problem f can be an arbitrary optimization
problem. However, we concentrate on continuous ones.

This chapter is structured as follows. Section2.2 gives short introduction to
the basic principles of EAs. The history of evolutionary computation is sketched
in Sect. 2.3. The evolutionary operators are presented in the following sections,
i.e., recombination in Sect. 2.4, mutation in Sect. 2.5, and selection in Sect. 2.6,

© Springer International Publishing Switzerland 2016
O. Kramer, Machine Learning for Evolution Strategies,
Studies in Big Data 20, DOI 10.1007/978-3-319-33383-0_2

13



14 2 Evolution Strategies

respectively. Step size control is an essential part of the success of EAs and is intro-
duced in Sect. 2.7 with Rechenberg’s rule. As the (1+1)-ES has an important part to
play in this book, Sect. 2.8 is dedicated to this algorithmic variant. The chapter closes
with conclusions in Sect. 2.9.

2.2 Evolutionary Algorithms

If derivatives are available, Newton methods and variants are the proper algorithmic
choices. From this class ofmethods, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [2] belongs to the state-of-the-art techniques in optimization. In this book,
we concentrate on blackbox optimization problems. In blackbox optimization, the
problem does not have to fulfill any assumptions or limiting properties. For such
general optimization scenarios, evolutionary methods are a good choice. EAs belong
to the class of stochastic derivative-free optimizationmethods. Their biological moti-
vation has made them very popular. They are based on recombination, mutation, and
selection. After decades of research, a long history of applications and theoretical
investigations have proven the success of evolutionary optimization algorithms.

Algorithm 1 EA
1: initialize x1, . . . , xμ

2: repeat
3: for i = 1 to λ do
4: select ρ parents
5: recombination → x′

i
6: mutate x′

i
7: evaluate x′

i → f (x′
i )

8: end for
9: select μ parents from {x′

i }λi=1 → {xi }μi=1
10: until termination condition

In the following, we shortly sketch the basic principles of EAs oriented to
Algorithm 1. Evolutionary search is based on a set {x1, . . . , xμ} of parental and
a set {x1, . . . , xλ} of offspring candidate solutions, also called individuals. The solu-
tions are iteratively subject to changes and selection of the best offspring candidates.
In the generational loop, λ offspring solutions are generated. For each offspring
solution, the recombination operator selects ρ parents and combines their parts to
a new candidate solution. The mutation operator adds random changes, i.e. noise,
to the preliminary candidate resulting in solution x′

i . Its quality in solving the opti-
mization problem is called fitness and is evaluated on fitness function f (x′

i ). All
candidate solutions of a generation are put into offspring population {x′

i }λi=1. At the



2.2 Evolutionary Algorithms 15

end of a generation, μ solutions are selected and constitute the novel parental popu-
lation {xi }μi=1 that is basis of the following generation.

The optimization process is repeated until a termination condition is reached.
Typical termination conditions are defined via fitness values or via an upper bound
on the number of generations. In the following, we will shortly present the history of
evolutionary computation, introduce evolutionary operators, and illustrate concepts
that have proven well in ES.

2.3 History

In the early 1950s, the idea came up to use algorithms for problem solving that
are oriented to the concept of evolution. In Germany, the history of evolutionary
computation began with ES, which were developed by Rechenberg and Schwefel in
the sixties and seventies of the last century in Berlin [3–5]. At the same time, Hol-
land introduced the evolutionary computation concept in the United States known
as genetic algorithms [6]. Also Fogel introduced the idea at that time and called this
approach evolutionary programming [7]. For about 15years, the disciplines devel-
oped independently from each other before growing together in the 1980s. Another
famous branch of evolutionary computation was proposed in the nineties of the
last century, i.e., genetic programming (GP) [8]. GP is about evolving programs by
means of evolution. These programs can be based on numerous programming con-
cepts and languages, e.g., assembler programs or data structures like trees. Genetic
programming operators are oriented to similar principles like other EAs, but adapted
to evolving programs. For example, recombination combines elements of two or
more programs. In tree representations, subtrees are exchanged. Mutation changes a
program. In assembler code, a new command may be chosen. In tree representations,
a new subtree can be generated. Mutation can also lengthen or shorten programs.

Advanced mutation operators, step size mechanisms, and methods to adapt the
covariance matrix like the CMA-ES [9] have made ES one of the most success-
ful optimizers in derivative-free continuous optimization. For binary, discrete, and
combinatorial representations, other concepts are known. Annual international con-
ferences like the Genetic and Evolutionary Computation Conference (GECCO), the
Congress on Evolutionary Computation (CEC), and EvoStar in Europe contribute to
the understanding and distribution of EAs as solid concepts and search methods.

Related to evolutionary search are estimation of distribution algorithms (EDAs)
and particle swarm optimization (PSO) algorithms. Both are based on randomized
operators like EAs, while PSO algorithms are also nature-inspired. PSO models
the flight of solutions in the solution space with velocities, while being oriented
to the best particle positions. All nature-inspired methods belong to the discipline
computational intelligence, which also comprises neural networks and fuzzy-logic.
Neural networks are inspired by natural neural processing, while fuzzy logic is a
logic inspired by the fuzzy way of human language and concepts.



16 2 Evolution Strategies

2.4 Recombination

Recombination, also known as crossover, mixes the genetic material of parents. Most
evolutionary algorithms also make use of a recombination operator that combines
the information of two or more candidate solutions x1, . . . , xρ to a new offspring
solution. Hence, the offspring carries parts of the genetic material of its parents.
Many recombination operators are restricted to two parents, but also multi-parent
recombination variants have been proposed in the past that combine information of ρ
parents. The use of recombination is discussed controversially within the building
block hypothesis by Goldberg [10], Holland [11]. The building block hypothesis
assumes that good solution substrings called building blocks are spread over the
population in the course of the evolutionary process, while their number increases.

For bit strings and similar representations, multi-point crossover is a common
recombination operator. It splits up the representations of two ore more parents at
multiple positions and combines the parts alternately to a new solution.

Typical recombination operators for continuous representations are dominant and
intermediate recombination. Dominant recombination randomly combines the genes
of all parents. With ρ parents x1, . . . , xρ ∈ R

d , it creates the offspring solution x′ =
(x ′

1, . . . , x
′
d)

T by randomly choosing the i-th component

x ′
i = (xi ) j , j ∈ random {1, . . . , ρ}. (2.1)

Intermediate recombination is appropriate for numerical solution spaces. Given ρ
parents x1, . . . , xρ each component of the offspring vector x′ is the arithmetic mean
of the components of all ρ parents

x ′
i = 1

ρ

ρ∑

j=1

(xi ) j . (2.2)

The characteristics of offspring solutions lie between their parents. Integer represen-
tations may require rounding procedures for generating valid solutions.

2.5 Mutation

Mutation is the second main source of evolutionary changes. The idea of mutation
is to add randomness to the solution. According to Beyer and Schwefel [3], a muta-
tion operator is supposed to fulfill three conditions. First, from each point in the
solution space each other point must be reachable. This condition shall guarantee
that the optimum can be reached in the course of the optimization run. Second, in
unconstrained solution spaces a bias is disadvantageous, because the direction to
the optimum is unknown. By avoiding a bias, all directions in the solution space
can be reached with the same probability. This condition is often hurt in practical



2.5 Mutation 17

optimization to accelerate the search. Third, the mutation strength should be
adjustable, in order to adapt exploration and exploitation to local solution space
conditions, e.g., to accelerate the search when the success probability is high.

For bit string representations, the bit-flip mutation operator is usual. It flips each
bit, i.e., changes a 0 to 1 and a 1 to 0 with probability 1/d, if d is the number of bits.
InRd the Gaussian mutation operator is common. LetN (0, 1) represent a randomly
drawn Gaussian distributed number with expectation 0 and standard deviation 1.
Mutation adds Gaussian noise to each solution candidate using

x′ = x + z, (2.3)

with a mutation vector z ∈ R
d based on sampling

z ∼ σ · N (0, 1). (2.4)

The standard deviation σ plays the role of the mutation strength and is also known
as step size. The isotropic Gaussian mutation with only one step size uses the same
standard deviation for each component xi . The convergence towards the optimum
can be improved by adapting σ according to local solution space characteristics. In
case of high success rates, i.e., a large number of offspring solutions being better
than their parents, big step sizes are advantageous, in order to explore the solution
space as fast as possible. This is often reasonable at the beginning of the search. In
case of low success rates, smaller step sizes are appropriate. This is often adequate
in later phases of the search during convergence to the optimum, i.e., when good
evolved solutions should not be destroyed. An example for an adaptive control of
step sizes is the 1/5-th success rule by Rechenberg [4] that increases the step size,
if the success rate is over 1/5-th, and decreases it, if the success rate is lower. The
Rechenberg rule will be introduced in more detail in Sect. 2.7.

2.6 Selection

The counterpart of the variation operators mutation and recombination is selection.
ES usually do not employ a competitive selection operator for mating selection.
Instead, parental solutions are randomly drawn from the set of candidate solutions.
But for survivor selection, the elitist selection strategies comma and plus are used.
They choose the μ-best solutions as basis for the parental population of the following
generation. Both operators, plus and comma selection, can easily be implemented
by sorting the population with respect to the solutions’ fitness. Plus selection selects
the μ-best solutions from the union {xi }μi=1 ∪ {x′

i }λi=1 of the last parental popula-
tion {xi }μi=1 and the current offspring population {x′

i }λi=1, and is denoted as (μ+λ)-ES.
In contrast, comma selection, i.e. (μ,λ)-ES, selects exclusively from the offspring
population, neglecting the parental population, even if the parents have a superior



18 2 Evolution Strategies

fitness. Forgetting superior solutions may sound irrational. But good solutions can
be only local optima. The evolutionary process may fail to leave them without the
ability to forget.

2.7 Rechenberg’s 1/5th Success Rule

The adjustment of parameters and adaptive operator features is of crucial importance
for reliable results and the efficiency of evolutionary heuristics. Furthermore, proper
parameter settings are important for the comparison of different algorithms. The
problem arises how evolutionary parameters can be tuned and controlled. The change
of evolutionary parameters during the run is called online parameter control and is
reasonable, if the conditions of the fitness landscape change during the optimization
process. In deterministic control, parameters are adjusted according to a fixed time
scheme, e.g., depending on the generation number like proposed by Fogarty [12]
and by Bäck and Schütz [13]. However, it may be useful to reduce the mutation
strengths during the evolutionary search, in order to allow convergence. For example,
running a (1+1)-ES with isotropic Gaussian mutations with constant step sizes σ,
the optimization process will become slow after a certain number of generations. A
deterministic scheme may fail to hit the optimal speed the step sizes are reduced and
may also not be able to increase them if necessary.

The step sizes have to be adapted in order to speed up the optimization process in
a more flexible way. A powerful scheme is the 1/5th success rule by Rechenberg [4],
which adapts step size σ for optimal progress. In case of the (1+1)-ES, the optimiza-
tion process runs for a number T of generations. During this period, step size σ is
kept constant and the number Ts of successful generations is counted. From Ts , the
success probability ps is estimated by

ps = Ts/T (2.5)

and step size σ is changed according to

σ =
⎧
⎨

⎩

σ/τ , if ps > 1/5
σ · τ , if ps < 1/5
σ, if ps = 1/5

with 0 < τ < 1. This control of the step size is implemented in order adapt to local
solution space characteristics and to speed up the optimization process in case of
large success probabilities. Figure2.1 illustrates the Rechenberg rule with T = 5.
The fitness is increasing from left to right. The blue candidate solutions are the
successful solutions of a (1+1)-ES, the grey ones are discarded due to worse fitness.
Sevenmutation steps are shown, at the beginning with a small step size, illustrated by
the smaller light circles. After fivemutations, the step size is increased, as the success
rate is larger than 1/5, i.e. ps = 3/5, illustrated by larger dark circles. Bigger steps



2.7 Rechenberg’s 1/5th Success Rule 19

Fig. 2.1 Illustration of step
size adaptation with
Rechenberg’s success rule.
Three of five steps are
successful resulting in a
success probability of
ps = 3/5 and an increase of
step size σ

1 2

3

4

5

6 7

into the direction of the optimum are possible. The objective of Rechenberg’s step
size adaptation is to stay in the evolution window guaranteeing optimal progress. The
optimal value for τ depends on various factors such as the number T of generations
and the dimension d of the problem.

A further successful concept for step size adaptation is self-adaptation, i.e., the
automatic evolution of the mutation strengths. In self-adaptation, each candidate is
equipped with an own step size, which is subject to recombination and mutation.
Then, the objective variable is mutated with the inherited and modified step size.
As solutions consist of objective variables and step sizes, the successful ones are
selected as parents for the following generation. The successful step sizes are spread
over the population.

2.8 (1+1)-ES

The (1+1)-ES with Gaussian mutation and Rechenberg’s step size control is the
basis of the evolutionary algorithms used in this book. We choose this method to
reduce side effects. The more complex algorithms are, the more probable are side
effects changing the interactions with machine learning extensions. We concentrate
on the (1+1)-ES,which iswell understood froma theoretical perspective.Algorithm2
shows the pseudocodeof the (1+1)-ES.After initialization ofx inRd , the evolutionary
loop begins. The solution x is mutated to x′ with Gaussian mutation and step size
σ that is adapted with Rechenberg’s 1/5th rule. The new solution x′ is accepted, if
its fitness is better than or equal to the fitness of its parent x, i.e., if f (x′) ≤ f (x).
Accepting the solution in case of equal fitness is reasonable to allow random walk
on plateaus, which are regions in solution space with equal fitness. For the (1+1)-ES
and all variants used in the remainder of this book, the fitness for each new solution
x′ is computed only once, although the condition in Line 6 might suggest another
fitness function call is invoked.



20 2 Evolution Strategies

Algorithm 2 (1+1)-ES
1: intialize x
2: repeat
3: mutate x′ = x + z with z ∼ σ · N (0, 1)
4: adapt σ with Rechenberg
5: evaluate x′ → f (x′)
6: replace x with x′ if f (x′) ≤ f (x)
7: until termination condition

The evolutionary loop is repeated until a termination condition is reached. The
(1+1)-ES shares similarities with simulated annealing, but employs Gaussian muta-
tion with step size adaptation, while not using the cooling scheme for accepting a
worse solution. For multimodal optimization, restarts may be required as the diver-
sity of the (1+1)-ES without a population is restricted to only one single solution.
The (1+1)-ES is the basic algorithm for the optimization approaches introduced in
Chaps. 3, 4, 7, 9, and 10.

2.9 Conclusions

Evolutionary algorithms are famous blackbox optimization algorithms. They are
based on a population of candidate solutions or one single solution in case of the
(1+1)-ES. Evolutionary optimization algorithms are inspired by the idea of natural
selection and Darwinian evolution. They have their roots in the fifties and sixties of
the last century. Meanwhile, ES have developed to outstandingly successful black-
box optimization methods for continuous solution spaces. For exploration of the
solution space, recombination operators combine the properties of two or more solu-
tions. Mutation operators use noise to explore the solution space. Selection exploits
the search by choosing the best solutions to be parents for the following genera-
tion. Parameter control techniques like Rechenberg’s 1/5th success rule improve the
convergence towards the optimum. In case of success, larger steps can be taken in
solution space, while in case of stagnation, progress ismore probablewhen the search
concentrates on the close environment of the current solution.

Extensions allow ES to search in constrained or multi-objective solution spaces.
In multi-objective optimization, the task is to evolve a Pareto set of non-dominated
solutions. Various strategies are available for this sake. An example is NSGA-ii [14]
that maximizes the Manhattan distance of solutions in objective space to achieve
a broad coverage on the Pareto front. Theoretical results are available for discrete
and continuous algorithmic variants and solution spaces. An example for a simple
result is the runtime of a (1+1)-EA with bit flip mutation on the function OneMax
that maximizes the number of ones in a bit string. The expected runtime is upper
bound by O(d log d), if d is the length of the bit string [15]. The idea of the proof is

http://dx.doi.org/10.1007/978-3-319-33383-0_3
http://dx.doi.org/10.1007/978-3-319-33383-0_4
http://dx.doi.org/10.1007/978-3-319-33383-0_7
http://dx.doi.org/10.1007/978-3-319-33383-0_9
http://dx.doi.org/10.1007/978-3-319-33383-0_10


2.9 Conclusions 21

based on the lemma for fitness-based partitions, which divides the solution space into
disjoint sets of solutions with equal fitness and makes assertions about the expected
time required to leave these partitions.

This book will concentrate on extensions of ES with machine learning methods to
accelerate and support the search. The basic mechanisms of ES will be extended by
covariance matrix estimation, fitness function surrogates, constraint function surro-
gates, and dimensionality reduction approaches for optimization, visualization, and
niching.

References

1. Kramer, O., Ciaurri, D.E., Koziel, S.: Derivative-free optimization. In: Computational Opti-
mization and Applications in Engineering and Industry. Springer (2011)

2. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2000)
3. Beyer, H., Schwefel, H.: Evolution strategies—A comprehensive introduction. Nat. Comput.

1(1), 3–52 (2002)
4. Rechenberg, I.: Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)
5. Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittel der Evolution-

sstrategie. Birkhaeuser, Basel (1977)
6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University ofMichigan Press, Ann

Arbor (1975)
7. Fogel, D.B.: Evolving artificial intelligence. PhD thesis, University of California, San Diego

(1992)
8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge (1992)
9. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution

strategies: the covariance matrix adaptation. In: International Conference on Evolutionary
Computation, pp. 312–317 (1996)

10. Goldberg, D.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-
Wesley, Reading, MA (1989)

11. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading,
MA (1995)

12. Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: Proceedings
of the 3rd International Conference on Genetic Algorithms, pp. 104–109. Morgan Kaufmann
Publishers Inc, San Francisco (1989)

13. Bäck, T., Schüz, M.: Intelligent mutation rate control in canonical genetic algorithms. In:
Proceedings of the 9th International Symposium on Foundation of Intelligent Systems, ISMIS
1996, pp. 158–167. Springer (1996)

14. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimisation: NSGA-II. In: Proceedings of the 6th International
Conference on Parallel Problem Solving from Nature, PPSN VI 2000, pp. 849–858. Paris,
France, 18–20 Sept 2000

15. Droste, S., Jansen, T.,Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret.
Comput. Sci. 276(1–2), 51–81 (2002)



http://www.springer.com/978-3-319-33381-6


	2 Evolution Strategies
	2.1 Introduction
	2.2 Evolutionary Algorithms
	2.3 History
	2.4 Recombination
	2.5 Mutation
	2.6 Selection
	2.7 Rechenberg's 1/5th Success Rule
	2.8 (1+1)-ES
	2.9 Conclusions
	References


