Chapter 2
Fundamentals of Dislocation Dynamics
Simulations

Ryan B. Sills, William P. Kuykendall, Amin Aghaei, and Wei Cai

2.1 Overview

When crystalline solids undergo plastic deformation, line defects known as disloca-
tions move, multiply, and react with one another. The overall mechanical properties
of the crystal in this plastic regime are governed by these dislocation processes.
Dislocation dynamics (DD) is a modeling approach that aims to simulate the motion
and interaction of these dislocation lines to gain insights concerning the mechanical
properties of the material.

Dislocation lines are defects whose core widths are at the scale of the crystal
lattice. The length scale over which dislocation structures evolve is, however, many
orders of magnitude larger than the interatomic distance. A classical example is the
formation of dislocation cells; at moderate to large amounts of plastic deformation,
dislocation networks are known to form cellular structures, with an average cell
size on the order of 1 um (see Fig.2.1a). Hence, any model which hopes to
inform our understanding of bulk plastic deformation—for example, understanding
the temperature dependence of the stress—strain curves shown in Fig.2.1b—must
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Fig. 2.1 Examples of dislocation plasticity. (a) Cellular dislocation structure in single crystal
copper after tensile loading in the [1 1 1] direction at —90°C and (b) stress—strain curves for single
crystal copper at various temperatures. Reproduced from [48] with permission from Elsevier

simulate a material volume above this length scale. Using an atomistic approach
would require the simulation of more than 10'° atoms, a simulation size which is
prohibitively expensive even for the most modern computational tools. This gap in
scale necessitates a new model at the so-called mesoscale: dislocation dynamics.

The idea behind the DD approach is that because plastic deformation is domi-
nated by the motion and interaction of dislocation lines, one only needs to consider
the dislocation lines, rather than the locations of all of the atoms, to understand the
plastic behavior of a material. Taking such an approach enables simulations with
length scales of 10 um and time scales of 1 ms. As with all mesoscale approaches,
DD requires the input of multiple physical models to describe the various behaviors
of the dislocation lines, meaning that much information must be provided either
from experiments or more fundamental models. Unlike other mesoscale models of
plasticity which consider the dislocation density in terms of a homogenized field, in
DD dislocation lines are treated explicitly so that individual dislocation—dislocation
interactions can be properly captured.

Much of the theory that feeds into the models that describe the dislocation lines
has been established for many decades, as has the concept of DD itself [34, 53].
However, only recently have large-scale simulations been made possible with the
inception of modern computational tools. Despite these many advances, DD remains
a challenging tool to use, often requiring hundreds of computer cores for a single
simulation of a short duration of physical time relative to experiments.

The remainder of the chapter will be organized as follows. First, in Sect. 2.2 we
will discuss the basic features of the DD formulation. In Sect.2.3, we will then
discuss how to run a DD simulation all the way from inputs to outputs, and show
a few examples. Section 2.4 will discuss DD’s place in the hierarchy of material
models. Finally, Sect. 2.5 will present topics of current research and challenges that
the DD community need to overcome to enable more widespread use of the tool.
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2.2 Fundamentals

In order to simulate the motion and interaction of dislocation lines, a number of
algorithms, rules, and procedures have been developed. In this section, we break
these features into two groups. First, we discuss the most basic ingredients necessary
to conduct a DD simulation: how driving forces are exerted on dislocations (2.2.2.1),
how to determine dislocation velocities given these forces (2.2.2.2), discretization
and adaptive remeshing of the dislocation lines (2.2.2.3), time integration of the
equations of motion (2.2.2.4), and how dislocations can collide and react (2.2.2.5).
We will then introduce more advanced aspects of DD simulations: how to handle
dislocation junctions and intersections (2.2.3.1), different types of boundary condi-
tions (2.2.3.2), how screw dislocations can change their glide plane through cross-
slip (2.2.3.3), and a brief discussion of two-dimensional DD simulations (2.2.3.4).
These features are presented in the flowchart shown in Fig. 2.3. We begin, however,
with a discussion of the overall problem formulation.

2.2.1 Problem Formulation

The basic idea behind DD is to embed the physics of dislocations into a set of
governing equations that can be solved for the positions of a network of dislocation
lines, given an initial dislocation configuration, boundary conditions, and loading
conditions. The positions of the lines are described by the vector r(s, f), where s
is a scalar parameter dictating the location along the lines, as shown in Fig.2.2a,
and ¢ denotes time. Because we seek a tool that can obtain a solution in arbitrary
settings (e.g., many dislocation lines loaded multiaxially), we will need to discretize
our system in both space and time, and employ numerical methods to solve the
governing equations. Figure 2.2b shows an example of discretization in space.

As we will discuss, many things can exert forces on dislocations. These forces
can be broken into drag forces, which resist dislocation motion, and driving forces,
which promote it. Additionally, dislocation lines are known to have effective
masses, giving rise to inertial forces [51]. In many crystalline materials under a
broad range of conditions, however, drag forces intrinsic to the crystal lattice are
orders of magnitude larger than the inertial forces, making dislocation motion over-
damped [51]. This means that in the overall equations of motion, we can neglect
inertial terms altogether, and simply require that the total driving force balance the
total drag force, i.e.,

> Fag(v.5) + Y Farve(s) = 0 2.1)
where v is the dislocation velocity
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Fig. 2.2 Position of a pair of dislocation loops at time z. (a) Continuous representation described
by position vector r as a function of parameter s. (b) Discrete representation using node-based
discretization (see Sect. 2.2.2.3) described by position vectors of nodes r;

and the summations are over all drag and driving force contributions. Usually, in
dislocation dynamics, Eq. (2.1) can be explicitly solved for v and restated as

v = M(F© 2.3)

drive

where F{& [r(s), 0exi,...] = Y Farive is the total driving force as a function of

parameter s, dependent upon the dislocation position r(s), the externally applied
stress o ¢y, and any other features which exert driving forces. The function M(:),
which provides the velocity given a total driving force, is called the mobility law.
The final governing equation of motion can be written as

ar(s,
% = g [r(s), Uexta .. ] ) (24)

where g = M (Fi% . [r(s), 0ex. .. .]) is an operator which computes the velocity

v(s) from a given dislocation structure r(s) and loading condition.

2.2.2 Basic Features

A flowchart depicting the major steps in a DD simulation is presented in Fig.2.3.
We will now discuss each of these steps in turn.
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Fig. 2.3 Flowchart showing
the basic steps for a
dislocation dynamics code.
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2.2.2.1 Driving Forces

Many features of crystalline solids can apply driving forces to dislocation lines.
These forces can be divided into two categories: forces arising from local stress
fields (Peach—Koehler forces) and forces due to dislocation self interaction.

To determine the driving force exerted on a dislocation by a stress field o (s)
applied at position s, the Peach—Koehler expression is commonly used. It gives that
the force per unit length, F (s), is [42]

F(s) = (o (s)-b) x&(s), 2.5
where b is the Burgers vector of the dislocation and & (s) is the direction of the

dislocation line at s (which varies with position for curved dislocations). Hence,
any feature of a crystalline solid that results in a stress field can exert forces on
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dislocations. The most common sources of stress in dislocation dynamics simula-
tions are applied stresses due to loading of the simulation cell and stresses from other
dislocations, which decay as 1/r, where r is the distance from the dislocation [1].
The latter means that to determine the total force on a dislocation segment, we must
consider the force exerted by every other segment in the simulation cell. This gives
rise to an &'(N?) computation if all pair-wise interactions are computed explicitly (N
is the number of segments), and makes DD difficult to implement efficiently. Other
possible origins of stress include solute atoms, precipitates or inclusions, and free
surfaces or secondary phase boundaries. The material system of interest will decide
which of these must be considered.

With nanomaterials, free surface effects are especially important, since the small
specimen size means every dislocation is near a free surface. For this reason, we will
briefly discuss the nature of forces generated by free surfaces. In elasticity theory, for
simplicity, stress expressions for dislocations are usually derived in a homogeneous,
infinite medium. When these expressions are then used in finite media, they result
in nonzero traction forces at the surfaces, violating the traction-free boundary
condition at the surfaces. To correct this, a set of so-called image tractions must
be applied to the surface. These image tractions render the surface traction-free, but
additionally produce their own image stress field, which can also exert forces on
dislocations. Thus, the problem of a finite solid requires that the image stresses be
determined for the given geometry and distribution of dislocations; this generally
has to be done numerically, and we defer further discussion of image solvers
(which compute the image field) to Sect. 2.2.3.2. We will discuss an example with a
cylindrical specimen in Sect. 2.3.5.

The above discussion applies to forces arising externally from the dislocation
line. In addition to these effects, the dislocation line can exert a force on itself. This
self-force can be thought of as resulting from the energy of the dislocation line, and
has two contributions. The first contribution is elastic, and can be computed using
a number of approaches, such as the non-singular theory of dislocations [15]. The
second contribution is due to nonlinear interatomic interactions at the dislocation
core, and we shall refer to it as the core force. Core forces can influence the
dislocation line in two ways. First, the core force will try to reduce the length of
the dislocation line, since the total core energy scales with the line length. Second,
because the core energy varies with line character (i.e., edge and screw dislocations
have different energies), the core force will exert a torque on the line, trying to
rotate it into its orientation of lowest energy. One approach for determining the core
force is to derive it from the core energy. The core energy per unit length, E., of
a dislocation line can be calculated using atomistic or first-principles methods as
a function of the character angle 8 (the angle between the Burgers vector and line
direction). Alternatively, it is common in DD simulations to use an approximate
analytical model to describe the core energy. For example, in the deWit and Koehler
model [25] the core energy varies as

E.(0) = &b° ( sin? 6 + cos? 9) (2.6)

1—v
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where v is Poisson’s ratio, b is the magnitude of the Burgers vector, and & is a
parameter that controls the magnitude of the core energy; this is the same way
the line energy varies according to elasticity theory for an isotropic solid. Often
& is approximated as & & o, where u is the shear modulus and « is a material
parameter in the range 0.1 — 0.5 [45]. Given this function E.(6), the core force
can be determined using a number of approaches. Our preference is to calculate the
core force after the dislocation lines have been discretized, and hence we postpone
further discussion of core forces until Sect. 2.2.2.3.

2.2.2.2 Mobility Laws

As we discussed in Sect.2.2.1, mobility laws serve as constitutive equations in
dislocation dynamics simulations, relating the total driving force per unit length
acting on a dislocation line to its velocity. Since the movement of a dislocation
is strongly material dependent, mobility laws must be constructed with a specific
material system in mind [9, 14]. The mobility of a dislocation line is commonly
dependent upon the dislocation character, direction of motion, the crystallographic
plane on which the dislocation can move conservatively—known as the glide
plane—and the temperature. The goal of a mobility law is to express these
dependencies in terms of an explicit function for the velocity given a total driving
force per unit length. Usually, this means determining the drag force exerted by the
crystal lattice on a dislocation. In this section we explain how mobility laws can be
obtained, and provide an example of a mobility law for face-centered cubic (FCC)
crystals.

Linear mobility laws are commonly used. The viscous drag forces experienced
by dislocations in crystalline solids, due, for instance, to phonon dispersion, are
often proportional to the dislocation velocity [45]. Hence, a linear mobility model
can be written as

ML) = B (s) - Fido(s). 2.7

where Z(s) is a drag coefficient tensor (with dimensions [mass]/([length][time]))
and is strongly material dependent. The components of Z(s) account for the various
features affecting the dislocation drag coefficient. If more than one mechanism
exerts linear drag on a dislocation, the net drag coefficient is the sum of the drag
coefficients for each mechanism.

As an example of a linear mobility law, we consider the case of FCC crystals
(using the same model as [12]). Excluding the possibility of cross-slip (to be
discussed separately in Sect.2.2.3.3), dislocations in FCC metals are confined to
glide on {111} planes; climb motion out of the glide plane requires the diffusion
of vacancies into or out of the core, and is generally negligible at temperatures less
than one-third of the melting point [42]. This glide confinement is a reflection of the
dissociated core structure in FCC metals. The glide constraint can be enforced by
setting the components of % coupled to out-of-plane motion to very large values.
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This can lead to an ill-conditioned system, however, and it is numerically easier to
project out climb motion by simply zeroing the velocity components in the direction
of the glide plane normal; we will represent motion within the glide plane with the
superscript ¢. Additionally, we often find with FCC metals that the drag coefficient
is isotropic with respect to dislocation character (screw versus edge). Therefore, we
can write the FCC mobility law as

v=v= E, (2.8)
B

where B is the isotropic drag coefficient and is typically between 10™> and 10™*
Pa s for FCC metals [52]. With other materials, such as body-centered cubic (BCC)
crystals, the drag coefficient is not isotropic and the glide constraint is not as strictly
obeyed (for screw or near-screw dislocations), so that % will have to take a more
complex form [12].

In many settings, a linear mobility law is inappropriate. For example, at low-
to-moderate temperatures with BCC metals, the motion of screw dislocations is
a thermally activated process; it occurs by the formation and movement of so-
called kink pairs in the dislocation line. In this case, thermal activation theory
should be used [52], which generally leads to a nonlinear mobility law. Nonlinear
mobility laws have also been proposed to incorporate material effects besides lattice
friction. For instance, solute atoms are known to exert drag forces on dislocations.
A number of researchers have proposed nonlinear mobility laws that incorporate
these effects [62, 95], and DD simulations have been conducted by approximating
solute drag as a constant “back stress” which is subtracted from the driving
force [69] (i.e., a ramp function mobility law).

2.2.2.3 Line Discretization and Remeshing

To employ numerical methods, we need to discretize the dislocation lines so that
the overall dislocation structure is characterized by a set of nodes (or segments) and
a data structure defining the connectivity between them. Discretization allows us
to focus on a finite number of degrees of freedom (DOF), rather than an infinite
number of points along the dislocation lines. Since dislocation lines can change
their shape significantly during a simulation, and the total length of dislocation
lines often increases, we also need to implement remeshing algorithms to modify
the discretization when necessary. Dislocation lines can be discretized in a number
of ways. Across the major DD codes, there are two general approaches to line
discretization: lattice-based discretization and node-based discretization. Here we
will discuss both. Major features of the two approaches are shown in Fig. 2.4.

In the Ilattice-based approach (used in the codes microMegas [24] and
TRIDIS [103]), a grid of computational points, i.e., a lattice, often with a simple
cubic structure of spacing a, is predefined throughout the simulation cell. Based on
the structure of this lattice, a finite set of dislocation orientations is then selected
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Fig. 2.4 Schematic depictions of (a,b) lattice-based and (¢) node-based discretization. (a) The
lattice grid used to define the segment directions t; and movement directions d;. (b) Remeshing
when a segment exceeds twice the average length /, and response of pivot nodes after a time step
At is taken. (c) Nodes are inserted (bullseye nodes) when [ > [.x or A > Apax, and removed
(unfilled circles) when [ < Iy, or A < A, with the area shrinking (dA/dt < 0)

and only these orientations are considered, as shown in Fig. 2.4a. These orientations
define a unique set of straight line segments used to represent the dislocation lines
(denoted as t; in Fig. 2.4a). Dislocation motion is only considered in the direction
orthogonal to each of these orientations (denoted as d; in Fig.2.4a). In this way,
the segments are the degrees of freedom of the model. As the dislocation structure
evolves, two different configurations of the dislocation lines are considered. The
actual configuration is stored as the segments move continuously through space.
When computing interaction forces and considering dislocation junctions, however,
the actual configuration is projected onto the nearest set of lattice grid points in
order to simplify the computations. Remeshing proceeds by dividing segments
into smaller segments connected by “pivot segments” based on the user-specified
average segment length, /. The pivot segments initially have zero-length and extend
along the direction set by the motion of their neighbors, allowing segments of
new orientations to form, as depicted in Fig.2.4b. In the lattice-based approach,
the fidelity of the discretization is controlled by the spacing of the lattice grid, a,
the number of line orientations allowed, and by the specified average dislocation
segment length, /.

With the node-based approach, dislocation lines are discretized according to
a set of nodes and shape functions that connect the nodes, with the simplest
case being linear shape functions that result in straight line segments. In this
approach, any dislocation orientation is allowed and dislocation segments can move



62 R.B. Sills et al.

in any direction (consistent with their mobility law). In contrast to lattice-based
discretization, in the node-based approach the nodes are the fundamental degrees of
freedom. Only a single dislocation configuration is considered at a given time; the
same configuration which is evolved in time is used for force calculations. Node-
based codes have been written using linear segments (MDDP [64], NUMODIS [73],
ParaDiS [5], PARANOID [89]) and cubic splines (PDD [35]) to connect the nodes.
Given the greater versatility of the node-based approach, a larger set of remesh rules
must be specified. For example, in ParaDiS two criteria are used for remeshing:
segment lengths and the area enclosed by adjacent segments [9]. Both minimum
(Zimins Amin) and maximum (/n.x, Amax) Values are specified for each, and nodes are
added or removed to bring the dislocation structure into compliance with these
ranges (see Fig. 2.4c).

In order to evolve the dislocation structure, we need to compute the forces
acting on the segments or nodes. Generally, the forces per unit length discussed in
Sect. 2.2.2.1 vary with position along the lines. To get the total force acting on node
or segment i, we need to integrate the force along the line. In this respect, lattice-
based and node-based discretization differ slightly. With lattice-based models, since
the segments are the fundamental degrees of freedom, we need to calculate the total
force acting on a segment with the line integral

f; = [C | F(s)dL(s) (2.9)

where C; denotes segment i. Note that a lower case f denotes a force, and an upper
case F denotes a force per unit length. Node-based codes, on the other hand, require
the total force acting on the nodes. This is determined in terms of the line shape
function N/ (s) which describes the contribution to node i from segment j as

/= / N/(5)F(s)dL(s). (2.10)

G

For example, with linear segment j connecting nodes i and &, N{ (s) = swheres =0
at node k and s = 1 at node i. The total force on node i is then the sum of the
contributions from each of the segments it is attached to:

f, = Zf{. 2.11)
J

These expressions are valid if the force per unit length acting along the line
is known. However, in the case of the core force, determining the force per unit
length is not very straightforward. Instead, it is easier to derive the force acting on a
segment or node directly from the core energy per unit length expression, E.(6) [9].
Given E.(0), we can compute the total core energy E . for a given discretized
dislocation structure by summing the contribution from each segment, and then find
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the corresponding nodal or segment forces with

fi=— OEeore. (2.12)
8r,~

where r; is the position vector of node or segment j.

Summing the Peach—Koehler and self-force contributions gives us the total force
acting on a node or segment. However, mobility laws are usually written in terms
of the force per unit length acting on the line. The force per unit length needed to
evaluate the mobility law can be determined with

F,=— (2.13)

where . is a line length that depends on the discretization method. For the lattice-
based approach, .%; is simply the length of segment i, .%; = [;. With node-based
discretization, the following approximation! is commonly used: .4 = Y, lx/2,
where [;;, is the length of the segment connecting nodes i and k and the summation
is over all nodes k connected to node i.

Now we have discretized the dislocation structure, and discussed the calculation
of driving forces and subsequent velocity determination through the mobility law.
Next we need to focus on evolving the positions of the nodes or segments, and the
underlying dislocation structure they represent, in time.

2.2.2.4 Time Integration

As shown in Sect. 2.2.1, dislocation line motion is governed by a partial differential
equation (PDE) in time (Eq.2.4). After discretizing the dislocation lines, we can
write this governing equation in terms of the motion of the nodes or segments,
converting the PDE into a coupled system of N ordinary differential equations
(ODEs). For example, in the nodal representation we have

% =g, ({rj}.0ex...) (2.14)
where r; is the 3 x 1 position vector of node i and brackets denote the set of all
nodes. In DD, we solve these ODEs using time integration, an approach where the
solution is found over a series of sequential time steps. Many methods exist for
time integrating coupled systems of ODEs, and in this section we discuss a few
in the context of DD. In the following, for clarity we will assume {rj} is the only
argument of g(-).

The simplest time integration scheme is the forward Euler method, which has the
following form:

' A more rigorous definition can be written in terms of the line shape functions [9, 35].
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it =+ Arg ({rh}). (2.15)

Superscripts denote the time step number and At is the time step size. In this scheme
we assume that the nodes maintain their current velocities over the duration of
the time step, and update their positions accordingly. The forward Euler method is
commonly used in DD simulations. One issue with this approach is that the error it
introduces is unknown (without additional numerical methods). All time integration
schemes introduce error and we must ensure this error does not overwhelm the
solution. A simple method that provides an error estimate is the Heun method:

it =rh+ Arg; ({1f}) (2.16a)
At

N =T+ [gi ({rf}) + 2 ({r,’?jl})] (2.16b)

e = max |ri i, — . (2.16¢)

Eq.(2.16a) is the forward Euler “predictor” and Eq.(2.16b) is the trapezoidal
method “corrector.” The corrector can be applied arbitrarily many times using a
fixed-point iteration, with the second subscript denoting the iterate number, until
the error estimate of Eq.(2.16c¢) falls below some user-specified tolerance. If the
solution does not converge in a prespecified number of iterations, the time step must
be reduced and the method applied anew. Note that in addition to providing an error
estimate, the Heun method is globally second order accurate, meaning the solution
converges as O'( At?), whereas the forward Euler method is only first order accurate,
O (At). The Heun method is the default time integrator in ParaDiS.

Time integration turns out to be a challenging problem in DD, and is an active
area of research. We defer discussion of more advanced topics, such as implicit time
integration and subcycling, to Sect. 2.5.

2.2.2.5 Dislocation Collisions

When dislocation lines collide, they can react and form junctions or annihilate.
The resulting junction formation and annihilation events can significantly influence
the evolution of the dislocation structure. Hence, detecting and handling collision
events reliably is important. To detect the collision of dislocation lines, a number
of approaches have been developed. The simplest is a proximity-based algorithm,
which assumes two lines have collided if they come within a user-defined minimum
distance of each other. This approach can miss collisions, however, if dislocation
lines are displaced too far in a time step. More advanced algorithms can safeguard
against missing collisions [96]. Once a collision is detected, the appropriate
topological changes must be made. The conservation of the Burgers vector must be
invoked to determine the Burgers vectors of resulting segments. For instance, if two
segments with opposite Burgers vectors collide they will annihilate with each other.



2 Fundamentals of Dislocation Dynamics Simulations 65

Fig. 2.5 Schematic showing the process of dislocation line collision, the zipping of a junction,
subsequent unzipping, and then final dissolution after the dislocations cut each other. The cutting
results in the formation of a jog and a kink

2.2.3 Additional Aspects

The fundamentals presented in Sect. 2.2.2 provide the basic toolset necessary to run
a simple DD simulation. For example, the Frank—Read source simulations presented
in Sect.2.3.5.1 can be conducted using these methods. More advanced simulations
require additional details, some of which are presented in this section.

2.2.3.1 Junctions and Dislocation Intersections

The discussion of dislocation collisions in Sect.2.2.2.5 does not consider how to
handle the formation and dissolution of dislocation junctions; we will elaborate
these details here. When two dislocation lines moving in different planes collide,
one of two things may occur. They may cut through each other and continue their
motion, potentially producing Burgers-vector-sized steps on the lines known as jogs
or kinks (depending on whether they are out of or within the glide planes, see
Fig.2.5). Or, they may zip together and react to annihilate or form a junction. Even
if a junction does form, it may be ripped apart if a large enough force is applied, and
the lines may cut each other and continue on as if the junction had never existed; this
process is depicted in Fig.2.5. Accurately capturing these behaviors is important
because sessile (immobile) junctions (often referred to as locks) and dislocation
intersections are thought to play vital roles in work hardening.

Considering this process in the context of DD, there are (at least) three different
steps that need to be considered. First, the collision of dislocation lines needs to be
detected, the result of which is a point junction between the two lines. The resulting
point junction can then either zip together and form a proper junction, or split apart
and possibly produce jogs and/or kinks. In some codes, the lines never formally
react, and instead simply approach each other closely and align parallel to each
other when forming a junction [24]. If the lines do formally react, the code must
be able to detect whether the formation of a junction is favorable. This is typically
done by applying an energy criterion to ensure that the system moves towards a
state that maximizes its dissipation rate. Common examples include approximations
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based on line energy arguments [108], tests to see if the involved lines are moving
apart [90], and the principle of maximum dissipation [9], which approximates the
dissipation rate as the dot product of the nodal force with the velocity and seeks to
maximize it. If it is decided that the point junction should instead split in such a
way that lines cut each other, there may be an energy barrier inhibiting this split due
to, for example, the formation of jogs. This barrier can be accounted for in terms
of a splitting rate through the use of thermal activation theory (see Sect.2.2.3.3), or
athermally in terms of a junction strength dictating the minimum stress that must be
applied for the split to occur. As an example for the latter scheme, Kubin et al. [54]
have developed the following law to determine the strength of a junction:

= —— 2.17)

where p is the shear modulus, [, is the length of the dislocation arms surrounding
the junction, and § is a material constant that must be determined from experiments
or atomistic simulations. If a cutting event like this does occur, the resulting jogs
can influence the mobility of the dislocation lines [42]. However, most DD codes do
not account for the presence of jogs.

2.2.3.2 Boundary Conditions

As with any initial-boundary value problem, the boundary conditions (BCs) need to
be stated in order to have a well-defined problem. The specific form of the BCs is
dictated by the geometry of interest. The types of BCs used in DD simulations can
be categorized into three groups as shown in Fig. 2.6: (a) infinite BCs, (b) periodic
BCs, and (c) heterogeneous BCs.
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Fig. 2.6 Schematic depictions of different types of boundary conditions. (a) Infinite BCs, (b)
periodic BCs, and heterogeneous BCs with (¢) a free standing film with in-plane periodic BCs and
(d) a bimaterial interface in an infinite medium. For simplicity, the dislocations are represented by
the perpendicular symbol, even though the figure refers to 3D DD simulations
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Infinite BCs (Fig.2.6a) are the simplest, and correspond to the simulated
dislocation lines being embedded in an infinite medium. Enforcement of an infinite
BC in any coordinate direction requires simply that we allow dislocations to move
an arbitrary distance along that axis. The stress expressions for dislocation lines (and
even other defects) are known for an isotropic, homogeneous, infinite medium, so
they may be implemented readily.

While infinite BCs provide a reasonable model for the behavior of dislocation
lines far from free surfaces (i.e., in the bulk), it is computationally infeasible to
keep track of all dislocation lines in an infinite medium that has a finite average
dislocation density. This makes infinite BCs primarily useful for idealized test cases.
Periodic BCs, in contrast, mimic an infinite medium while allowing for a nonzero
average dislocation density. With periodic BCs, the simulation cell represents a so-
called supercell which is repeated in all directions ad infinitum—Fig. 2.6b depicts
this idea for a 2D geometry. The replicas surrounding the main simulation cell are
called images. Periodic BCs provide a model for the simulation of bulk metals,
where the material element being simulated is in the middle of a specimen many
times larger than the cell. Any dislocation configuration or pattern, however, whose
characteristic length scale is larger than the supercell cannot be captured with
periodic BCs. To enforce periodic BCs, the total stress field due to every dislocation
line in each of the infinite number of periodic images must be computed to determine
the driving forces. In practice, only a finite number of images is considered,
however, care must be taken to ensure the resulting stress field is well defined (due
to conditional convergence [13, 55]). When a dislocation line crosses the supercell
boundary, its next image over will enter the supercell from the opposing boundary.
See [9] for a more detailed discussion of periodic boundary conditions.

The final type of boundary condition we will discuss applies to a much broader
class of problems. In the case of a heterogeneous BC (Fig.2.6c), some feature of
the geometry breaks the homogeneity of the domain. Common examples are free
surfaces, with geometries like cylinders, thin films, and half spaces, and bimaterial
interfaces, as in the case of a layered material. As was discussed in Sect.2.2.2.1,
since analytic stress expressions generally only apply to an infinite, homogeneous
medium, a corrective image stress field must be determined. Image stress solvers
have been developed using the finite element method [100, 103, 108, 110], Fourier
methods [32, 105, 107], and boundary element methods [26], as well as various
other methods [29, 41, 49] to solve for the image field.

As a final note, we point out that these BCs can be combined. For instance, we
may simulate a freestanding thin film [107] by employing periodic BCs in one or
two coordinate directions and free surface BCs in the others (Fig. 2.6¢).

2.2.3.3 Cross-Slip

Conservative dislocation motion occurs when no atomic diffusion is required and is
termed dislocation glide. Nonconservative motion, on the other hand, requires the
diffusion of vacancies and is referred to as dislocation climb. Assuming a dislocation
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only moves by conservative glide (i.e., no climb), it is confined to motion within
the plane that contains both its Burgers vector and its line direction—this defines
its glide plane. In the case of a screw dislocation, because the Burgers vector is
parallel to the dislocation line, a unique glide plane cannot be defined. In principle, a
screw dislocation can glide in any plane that contains its Burgers vector. Most of the
time, however, dislocations prefer to glide along a few families of crystallographic
planes that minimize their core energy, and this sets the slip systems for that metal.
For instance, in FCC metals dislocations usually glide in {111} planes, giving
each screw dislocation two viable glide planes. The process of a screw dislocation
changing from one glide plane to another is called cross-slip. Cross-slip is thought
to be an important feature of dislocation motion, and in this section we will briefly
outline the key aspects relevant to DD.

Cross-slip is known to be a thermally activated process [79]. This means that
there is an energy barrier associated with its occurrence, and this barrier can be
overcome by thermal fluctuations. The rate at which a thermally activated event
occurs can be approximated with an Arrhenius-type relationship [51]:

E,
R = Vo EXp _ﬁ (218)
B

where R is the rate in number of events per unit time, E}, is the energy barrier, kg is
Boltzmann’s constant, 7 is the absolute temperature, and v is the attempt frequency.
Often, the attempt frequency is approximated as vo = vp(L/Ly), where vp is the
Debye frequency, L is the length of the dislocation segment, and L is a reference
length. Thus, in order to determine the cross-slip rate at a specified temperature, one
needs to know the energy barrier and the attempt frequency. Atomistic simulations
have commonly been used to determine these quantities, often finding that the
energy barrier is sensitive to the local stress state (see Sect. 2.4.1).

Using thermal activation theory, cross-slip can be implemented in DD as follows.
We test for cross-slip events once during each time step. We loop over all dislocation
lines, looking for segments that are of screw character. If a screw segment is found,
the energy barrier is calculated based on the local stress state at that segment,
with which the cross-slip rate can be determined using Eq. (2.18). The cross-slip
probability is then simply RA¢?, where At is the time step size. We then select a
random number ¢ uniformly distributed in [0,1], and cross-slip occurs if RAt > (.
The most difficult aspect of implementing this model is determining how the energy
barrier depends on the local conditions (e.g., stress, local dislocation configuration,
etc.).

2.2.3.4 2-Dimensional Dislocation Dynamics
As we have shown, fully three-dimensional dislocation dynamics simulations are

complex and computationally expensive. Consequentially, many researchers have
sought to develop dislocation dynamics in two-dimensions [3, 8, 18, 21, 37, 39,
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72,93, 100, 111]. In two-dimensional dislocation dynamics (2DDD), dislocations
are assumed to be infinitely long and straight, so that they can be represented by
point objects in the plane perpendicular to the dislocation line; this approximation
greatly reduces the number of degrees of freedom and removes the need to track the
complex topology present in three dimensions. 2DDD codes run much faster and
can achieve much larger amounts of plastic deformation than 3D codes. However,
these advantages are offset by the limited subset of problems that can be faithfully
represented in two-dimensions (e.g., fatigue problems where dislocations are often
long and straight). Because many physical phenomena are absent in the 2D picture,
additional physics, such as sources for multiplication and obstacles [8, 16, 100],
must be added. While many important contributions to DD have been made in a 2D
setting, we will not elaborate on 2DDD further.

2.3 Running a DD Simulation

Over the past several decades, DD has been utilized to study a range of problems
in crystal plasticity. While the specific details surrounding each of these simulations
vary, they all share a number of basic ingredients. In this section we will briefly
discuss each of these ingredients, and then provide several case studies.

2.3.1 Types of Simulations

DD simulations can be categorized into two groups: (1) small-scale—those inter-
ested in the interactions and behavior of one or a few dislocation lines and (2)
large-scale—simulations examining the collective behavior of many dislocations.
Examples of small-scale simulations include the simulation of intersecting dislo-
cation lines, junction formation, and junction dissolution [58, 60]; the interaction
of dislocations with precipitates [80] and solutes [17, 69]; and the interaction of
dislocations with free surfaces [49, 98, 106]. Simulations of large-scale collective
behavior generally involve simulating the stress—strain response of a material, with
examples including work hardening in bulk metals [5, 11, 22, 96], the plasticity of
micropillars [2, 19, 88, 106, 109], and plasticity during nanoindentation [30, 103].
Details below will be presented in terms of the two simulation types.

2.3.2 DD Codes

There are currently about a dozen 3D dislocation dynamics codes in use. Here we
will briefly discuss some of their differences to aid the user in making a selection.
See [28], [52], or [78] for additional reviews of DD codes.
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As discussed in Sect.2.2.2.3, DD codes can be categorized as either lattice-
based or node-based. In practice, each of these discretization schemes has its own
advantages and disadvantages in terms of accuracy, computing efficiency, simplicity,
and flexibility. A strength of lattice-based simulations is that force calculations
and tracking of dislocation intersections are simplified, since only a finite set of
dislocation configurations (dictated by the lattice) are considered [24, 52].

With the node-based scheme, since dislocation segments can take any arbitrary
orientation, dislocation lines tend to be smoother. In contrast, with lattice-based
DD, the angles between neighboring segments remain unchanged regardless of how
much the lattice or segment length is refined.

microMegas [24, 65] and TRIDIS [99, 103] are two examples of lattice-based
DD codes dedicated to the 3D DD simulations of crystalline solids. microMegas,
an open source code written mainly in Fortran, utilizes a base of eight line vectors
per slip system, for describing dislocation lines in FCC, BCC, and HCP crystals, in
addition to a few mineral materials. TRIDIS, suitable for the study of the mechanical
response of FCC and BCC metals and alloys, is a parallel code that uses four line
vectors per slip system and has been coupled to the finite element code CAST3M.

There are many node-based codes available and we briefly discuss a few.
Parametric dislocation dynamics (PDD) is the only code which uses curved (cubic)
dislocation segments [35, 77]; it was recently made open-source and renamed
mechanics of defect evolution library (MODEL) [67, 77]. Multiscale dislocation
dynamics plasticity (MDDP) [64] is a hybrid code coupling dislocation dynamics,
continuum finite elements, and heat transfer models. Its DD code was originally
named micro3d and was later implemented in MDDP. PARANOID [89] is a DD
code suitable for DD simulations of thin films, strained layers, and bulk metals and
semiconductors. Parallel dislocation simulator (ParaDiS) [5, 76] is an open-source,
massively parallel DD code that has mobility laws implemented for FCC and BCC
crystals incorporating glide and climb. NUMODIS [73] is a recently developed
open-source, parallelized code, with features for simulations of polycrystals and
polyphases.

2.3.3 Input Specification

Usually, DD simulations are controlled through two (or more) different input files.
The control file specifies the parameters of the simulation. These include the
material properties (elastic constants, drag coefficients, etc.), the loading conditions
(strain rate, stress state, etc.), the numerical parameters (time step size, remeshing
parameters, etc.), and output controls (e.g., what output to generate and how
frequently). The structure file specifies the initial dislocation configuration and the
geometry of the simulation cell or boundaries. This generally requires specifying
where nodes are located, how segments connect the nodes, and what their Burgers
vectors are. In the next section we will discuss how to select the necessary
parameters and design a DD simulation.
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2.3.4 Designing a Simulation
2.3.4.1 Initial Configuration

The initial dislocation configuration will be dependent upon the type of simulation.
In small-scale settings, generally a few initially straight lines are used, and the
dislocation character angle is often varied to see the different effects. The specific
goals of the simulation will decide the initial geometry.

In large-scale simulations, initial configuration selection is more complex [71].
Usually, the initial configuration is intended to emulate a specific material state,
for example, an annealed or cold-worked metal. The DD simulation would then
predict the response of a material in such a state to the chosen loading. However, the
full three-dimensional detail of dislocation structures in materials is generally not
known; this means the initial configuration will have to be approximated somehow.
Often, the following procedure is used. First, a simulation cell is populated with a
chosen initial density of straight dislocation lines, usually randomly oriented and
positioned. Then, the simulation cell is allowed to relax—equilibrate under zero
imposed stress—until the dislocation structure reaches a meta-stable configuration.
Once relaxed, the configuration may be used for further simulations.

2.3.4.2 Loads and Boundary Conditions

As with most solid mechanics simulations (and experiments), there are two common
types of loadings in DD: stress-controlled and strain-controlled. Under stress-
control, often referred to as creep loading, the applied stress is specified and the
dislocation lines simply respond to the Peach-Kochler forces resulting from the
applied stress and the stress fields of other dislocations. The stress state may be
constant or vary in time.

Under strain-control, usually a strain rate tensor, €; is specified and the resulting
stress state must be calculated as follows. The total strain at any time 7 is

(1) = /0 &s(M)di. (2.19)

When ¢ is a constant, the result is simply e}lf"(t) = t¢;. Using the procedure

discussed in Sect.2.3.4.3, the plastic strain due to the motion of the dislocation
lines at time f, eg. (1), can be determined. The elastic strain is then e?il (n = e}]‘." (r) —
ef’j(t) (assuming infinitesimal deformations), which is related to the stress through
Hooke’s law. For an isotropic linear elastic material with Lamé constants A and p

(the shear modulus), they are related by

0 = A&8; + 2pe (2.20)
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where §;; is the Kronecker delta and € = %(e;‘}c + e; + 62) is the hydrostatic
elastic strain. At each time step, the increments of total strain and plastic strain are
computed, and then the stress state is updated according to Eq. (2.20).

The two loading conditions can also be combined. For instance, in the commonly
used uniaxial tension loading condition, a normal strain rate is imposed along the
loading direction while all other stress components are set to zero. In this case,
assuming the imposed uniaxial strain rate is €,,, the externally applied stress state at
any point in time is simply oy, = E(té,, — €k(?)), where E is the Young’s modulus.

As discussed in Sect.2.2.3.2, the boundary conditions will depend on the
problem of interest. Periodic BCs are used to simulate bulk material response. Often
infinite BCs are used when we are interested in the behavior of a few isolated
dislocation lines. When running simulations under periodic boundary conditions,
the size of the simulation cell is an important feature of the simulation; any
dislocation structure whose length scale is larger than the simulation cell width
cannot be accurately represented. Furthermore, if the cell is too small the interaction
between a dislocation and its own periodic image can yield artificial behaviors.

2.3.4.3 Outputs

With DD, the positions of all the dislocation lines are known at each time step. This
means that specific features of the dislocation structure can be extracted directly.
For instance, we can determine how common a particular type of junction is or
how predominant different line orientations are (e.g., edge versus screw). Often, it
is useful to express features of the dislocation structure in terms of their density, p,
the dislocation line length per unit volume (in units of [length]™2). For example, a
dislocation structure could be characterized in terms of the densities of the different
slip systems. The density of a dislocation population can be computed by simply
summing the length of all relevant segments and dividing by the simulation volume.

An important output for DD simulations is the plastic strain; it is needed for
computing the stress state under strain-control (discussed in Sect.2.3.4.2). In DD
simulations, plastic deformation is produced by the motion of the dislocation lines.
The area swept out by a dislocation segment in a time step is proportional to the
plastic strain produced in the crystal according to the relation [4]

bi}’lj + bjni

5P =
€y 202

SA 2.21)
where §A is the area swept out by the dislocation segment during its motion, £2 is
the simulation volume, b is the burgers vector, and n is the slip plane normal. The
total plastic strain produced in a time step is the summation of Eq. (2.21) over all
dislocation segments.
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2.3.4.4 Solution Convergence

As with any numerical simulation technique, it is important to ensure that the errors
introduced by our discretizations in space and time are sufficiently small so that
the solution converges. In DD, this means ensuring the time step and dislocation
segments are small enough.

Two approaches have been used in DD to confirm that the time step size is ade-
quately small. The first was discussed in Sect.2.2.2.4, and involves approximating
the truncation error of the time integrator, and selecting the time step size so that
it falls below a user-specified tolerance. Another approach is to limit the time step
size so that the dislocation structure does not change too much from step to step.
This usually involves specifying a maximum displacement and/or rotation allowed
for any dislocation segment during a time step, and limiting the time step so they
are obeyed. While this approach does not directly control the error of the solution,
it is commonly used and generally accepted.

Spatial discretization error is dictated by how well the discretized structure
approximates the actual smooth structure of interest. The goal of the remeshing
algorithms discussed in Sect. 2.2.2.3 is to provide a means for controlling the quality
of the discretization. The remeshing algorithm operates according to the chosen
remeshing parameters—the maximum and minimum segment lengths and areas. As
these parameters are reduced, the discretization becomes more and more refined,
and the discretization error is reduced. A refined structure is more accurate, but is
also more computationally expensive. This is also true when choosing the shape of
the dislocation segments. The cubic segments used in PDD better reproduce smooth
dislocation structures, but at the cost of increased computational complexity. The
user must decide where his or her simulation falls in the trade-off between speed
and accuracy.

2.3.5 Example Simulations

Here we present three case studies showing the basics of running a DD simulation.
First, we determine the activation stress of a Frank—Read source using the lattice-
based code microMegas and the node-based code ParaDiS. Second, we examine
the activation of a single-arm source in a micropillar using ParaDiS. Finally, we
show results from a few simple work hardening simulations using ParaDiS. All
simulations use the material properties for nickel at 7 = 300 K, which are given in
Table 2.1, and the FCC mobility law presented in Sect. 2.2.2.2.

2.3.5.1 Case Study 1: Activation Stress of a Frank—Read Source

The Frank—Read source is a canonical case study in dislocation theory, showing
how a single dislocation can multiply indefinitely by simply gliding in its slip
plane under an applied shear stress [45]. A Frank—Read source can be modeled
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Table 2.1 Parameters for nickel at 7 = 300 K used in DD simulations in all case studies

microMegas ParaDiS
Property Name Value | Unit| Name Value Unit
Shear modulus (@) | ModuleGO 76.0 GPa| shearModulus| 76e9 Pa
Poisson’s ratio (v) | DPOISS 0.31 - pois 0.31 -
Burgers vector (b) | VecBurgers 2.49 A burgMag 2.49e-10 | m
Core energy - Ecore 6.05¢9 | Pa
parameter®
Drag coefficient (B)| Coef visqueux | 1.6le-5 | Pas MobEdge 62,112.0 | (Pas)™!
or Mobility (M) MobScrew 62,112.0 | (Pas)™!
Core radius (r.) - rc 1.0 b
Error tolerance - rTol 2.0 b
Reference scale Echelle 6.75 - -
Time step size deltato le-12 |s Variable based on rTol
Line tension type | LINTEN 4 (Mohles) -

Unspecified parameters were set to their default values. The mobility or drag coefficients are
obtained from atomistic simulations [75]

4In ParaDiS, the core energy parameter Ecore controls the scaling of the core energy in the same
way the & parameter does in Eq. (2.6) (hence it has units of Pa). The Ecore value used here leads

2
. . ubj
to a core energy per unit length which scales as

vector of segment i.

, where b; is the magnitude of the Burgers

by considering a straight dislocation line of length L lying in its slip plane that is
pinned at both ends. These pinning points could represent intersections with forest
dislocations, impurities, obstacles, or any number of other pinning sites that occur in
real metals. A force per unit length of b (b is the magnitude of the Burgers vector)
will be experienced by the dislocation line when a shear stress with magnitude
is applied, which in turn causes the line to bow out. As t increases, the radius of
curvature decreases until the shear stress reaches 7., the activation stress. Figure
2.7a and e shows the configuration when 7 = 7, from simulations in microMegas
and ParaDiS, respectively. At stresses above 7.y, the line is able to bow around
completely and partially annihilate with itself, as shown in (b,c) and (f,g). This
process produces a new dislocation loop, shown in (d) and (h), which is free to
continue expanding. The objective of this case study is to determine the activation
stress for the Frank—Read source.

For these simulations, we choose a line direction of [1 12] and a Burgers vector
of %[1 10], corresponding to an edge dislocation in an FCC metal with glide

plane normal (111). The x-, y-, and z-axes of the coordinate system are along
the [100], [010], and [00 1] directions, respectively. The end nodes are flagged
as immobile (velocities set to zero). Simulations were run under stress-control, with
oyy applied to produce a resolved shear stress on the glide plane of 7, and all other
stress components were set to zero. By slowly increasing the applied stress with
increments of At = 0.5MPa and monitoring for activation, we can determine the
activation stress to within £Az/2. To detect activation, we can simply watch for
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a b c d

Fig. 2.7 Snapshots from Frank-Read source simulations using (a—d) microMegas with L/l = 2.4
and (e-h) ParaDiS with L/l,x = 2.4, where L = 0.596 um (24000) is the distance between the
pinning points. ParaDiS graphics made with AtomEye [59]

whether activation occurs, or examine the plastic strain as a function of time—the
plastic strain will plateau if the source is not activated. This is by no means the
only possible approach for computing the activation stress, and strain-control or a
combination of stress- and strain-control (like with microMegas deformation mode
6) could also be used.

The coarseness of the representation of the Frank—Read source will affect the
activation stress. As the segment length is reduced, the activation stress should
reach a converged value. Figure 2.8a shows the effect of the segment length on the
activation stress with source length L = 0.596 um (24000) in both codes. It is clear
from the figure that the solution converges as smaller segments are used in both
codes, and large segment lengths overestimate (in ParaDiS) or underestimate (in
microMegas) the activation stress by up to 10 % in the parameter space considered
here.

We can also study the effect of the source length, L, on the activation stress.
Figure 2.8b shows the results for L ranging from 0.298 to 1.79 um (120056 to 7200b)
when L/ = L/l = 10. The activation stresses estimated by the two codes differ
by at most 2.2 % for all source lengths tested here. Also provided is the fit utilized
by Foreman [31] of the form 7., = [(Aub)/(4wL)]In(L/r.) where r. is the core
radius, with A = 1.2, close to unity as Foreman found for an edge source.

2.3.5.2 Case Study 2: Spiral-Arm Source Activation in a Cylinder

In nanomaterials, the small specimen size allows spiral-arm or single-arm sources
to operate. This type of source is similar to a Frank—Read source, except that only
one end of the source is pinned in place; the rest of the source is free to rotate about
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Fig. 2.8 (a) Activation stress 7, of an edge Frank—Read source with L = 0.596 um (2400b) as
a function of the inverse of the segment length. The maximum segment length in ParaDiS and
microMegas is, respectively, controlled by maxSeg (Ima) and Ldis (I). Error bars show the
inaccuracy caused by Az, the stress increment used. (b) Activation stress 7,o as a function of the
source length with L/l = L/I.x = 10. Error bars include the differences between microMegas
and ParaDiS as well. See text for explanation of Foreman fit

the pinning point under an applied stress. The result is a spiral-shaped dislocation
line generating plastic strain with each revolution.

We here study the behavior of a single-arm source in a cylindrical specimen of
radius R oriented along the [00 1] direction, imitating a source in a micropillar. For
our source geometry, we choose a screw dislocation in an FCC metal with Burgers
vector and line direction [011] and glide plane normal (111) that has a Lomer
jog at its mid point. The Lomer jog is a section of dislocation with line direction
[01 1] which is out of the glide plane and treated as sessile in our simulation; in this
way, the jog provides the pinning points for the source. Lomer jogs can form during
plastic deformation when dislocations react and are often thought to act as immobile
locks. We choose a jog height of 0.141 wm (566b) for all simulations.

The simulation geometry is shown in Fig.2.9. Initially, the arms are straight
(Fig. 2.9a). Under an applied compressive stress o, the source will begin to rotate.
Once again, the application of a stress greater than the activation stress o, is
necessary for the source to activate and rotate freely about the jog. Figure 2.9b shows
the configuration at activation when R = 0.37 wm (15000). For this case study, we
will again examine the activation stress, but now focusing on the effects of the free
surface. The same procedure with stress-control taking steps of Ac = 0.5MPa
is employed. We use ParaDiS to simulate the activation process, with a Fourier-
based image stress solver [105]. A fast Fourier transform is used over a uniform
grid on the surface of the cylinder to determine the image stress field. As with the
discretization length, this grid spacing must be small enough to achieve a convergent
solution. Periodic boundary conditions are used at either end of the cylinder, with a
cell height of 6R, which gives us an approximately square n X n grid. The maximum
segment length was set to /,x = 2R/15.
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Fig. 2.9 Snapshots and results from single-arm source simulations using ParaDiS. (a) Initial
configuration. (b) Configuration slightly below the activation stress when R = 0.37 pm (15005).
(¢) Convergence of the activation stress as the number of grid points used for image stress
calculation, n, is increased, with R = 0.37 pm (15005). (d) Activation stress as a function of
the cylinder radius. See text for the definition of Foreman fit. Graphics made with AtomEye [59]

First we examine the convergence behavior of the image stress solver. Figure
2.9c shows how the activation stress varies with the number of grid points.
We see that about a 40 x 40 grid is required to achieve a converged result. Figure
2.9d demonstrates the dependence of the activation stress on the cylinder radius in
the range R = 0.124-1.24 um (5006-50000) using n = 50 for the image stress
calculation. At the larger radii, the activation stress again follows the Foreman
behavior with A = 2.15 (using R in place of L), however, the smaller cylinders
yield slightly higher values than the Foreman estimate.

2.3.5.3 Case Study 3: Bulk Plasticity Simulation

During plastic deformation the dislocation density tends to increase, causing the
material to strengthen. This behavior is called work-hardening or strain-hardening.
The study of work hardening is a key research area ripe for DD simulations. We
close out this section with a few work hardening simulations.

For our work hardening simulations we use ParaDiS with a 10 x 10 x 10 um
simulation cell, imposing periodic boundary conditions in all directions. No cross-
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Fig. 2.10 Snapshots of work-hardening simulation performed on nickel at 300 K. (a) Initial
configuration, (b) after relaxation, (c) dislocation microstructure at 0.5 % strain with [001]
uniaxial loading. Graphics made with AtomEye [59]
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Fig. 2.11 Stress—strain and dislocation density-strain curves for the different loading directions

slip was allowed. The remesh parameter /,,,x (maxSeg) was set to 1.25 um (50005)
(other remesh parameters were set to defaults). We start with 50 straight dislocation
lines with a 60° character angle, random {11 1}-type glide plane, and random
(1 10)-type Burgers vector, as depicted in Fig.2.10a, and then allow the system
to relax under zero applied stress until it has reached the equilibrium configuration
shown in Fig. 2.10b.

We study the response of the system under uniaxial tension with a constant strain
rate of 103s™! applied in the [00 1] and [102] directions. A recently developed
subcycling-based time integrator was used [96], with simulations run for 40 and
7.2h on a single CPU for [001] and [102] loading, respectively. The resulting
dislocation configuration after a total strain of 0.5 % in the [0 0 1] direction is shown
in Fig.2.10c. Figure 2.11 shows the evolution of stress and dislocation density
with respect to total strain. The initial yield strengths are similar for both loading
directions. However for the [00 1] loading the crystal hardens with plastic strain
as the dislocation density increases. In comparison, the flow stress and dislocation
density remain relatively unchanged for the [1 0 2] loading.
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2.4 Relation to Models at Other Length/Time Scales

Dislocation dynamics is just one of many tools that can be used to study the
deformation behavior of materials. As this book demonstrates, these various models
can be organized into a hierarchy that spans many orders of magnitude in both
length and time scale. It is important to understand where a given model falls in this
hierarchy, so that its connections to other models can be assessed. As discussed in
the introduction, DD simulations are generally run at the length scale of about 0.1—
10 wm and at time scales in the range of 1 s to 1 ms, depending on the material. In
this section, we will briefly discuss how DD relates to other material models, and
examine a few examples of information propagation from one length/time scale to
another.

2.4.1 Lower Scale Models

By its nature as a mesoscale modeling approach, DD requires numerous inputs
that describe the physical behavior of dislocation lines. Elasticity and dislocation
theory provide much of the information needed to define these models (e.g., Peach—
Koehler forces, stress fields of dislocations, etc.). However, certain basic features
of the behavior of dislocations are simply out of reach of these types of continuum
models. A common example is the dislocation core. Many aspects of a dislocation’s
behavior are controlled by the structure at the dislocation core. Because the core is
composed of a small number of atoms that are displaced far from their equilibrium
positions, continuum models are often highly inaccurate. Where these models fail,
experiments can be used to inform dislocation physics. However, it is usually
challenging to extract information on individual dislocations from experiments.

Atomistic simulations, on the other hand, are well suited to informing DD
models. Because the atomistic approach is closer to a “first principles” model, it
can be used to study the fundamentals of dislocation physics. Atomistic simulations
of one or a few dislocations can be conducted to study basic behaviors with different
geometries, loading conditions, and temperature regimes, and this information can
be included in the DD framework. Thus, we can think of DD as a model occupying
the next larger length/time scale tier above atomistics. Common examples of the
transfer of information from atomistic to DD include:

* Dislocation mobilities—This can be in the form of drag coefficients [36, 75, 83]
or energy barriers [36, 38, 74, 83].

* Core energies—The core energy affects a number of features, including the core
force (as discussed in Sect.2.2.2.1). Core energy calculations have been carried
out for a number of materials [10, 104, 114].

e Strength of junctions—In addition to using the scaling law discussed in
Sect. 2.2.3.1, junction strengths can be calculated directly [10, 40].
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e Cross-slip rate—Usually, this is calculated in the form of an energy barrier
(as discussed in Sect.2.2.3.3). Examples include the effects of different stress
components [47, 56], intersection with forest dislocations [85], the presence of
jogs [87, 102], and nucleation at the surface [86]. Many of these results have been
incorporated in DD simulations [46].

2.4.2 Higher Scale Models

In the same way that MD can provide inputs for DD simulations, many researchers
hope to use DD as a tool for informing higher length/time scale models. For
example, a model residing at a larger length/time scale than DD is crystal plasticity
(CP). In CP’s continuum approach, constitutive laws are defined in terms of
phenomenological models based on densities of different dislocation populations
(e.g., forest and mobile dislocations). These dislocation densities are tracked at the
continuum scale and dictate the loading response of each material element. DD can
be used to develop the models which describe the relationship between dislocation
densities, stress, and strain, thereby informing CP models.

An example of this transfer of information is the calculation of interaction
coefficients in the Taylor hardening model. The generalized Taylor hardening law is
commonly used in CP simulations, and states that the flow stress on slip system i is

T =ub /Zaljpj (2.22)
J

where the summation is over all slip systems j, p; is the dislocation density of slip
system j, and a;; is a matrix of interaction coefficients between the slip systems. The
interaction coefficients can be determined using specialized DD simulations that
target a specific pair of slip systems. These calculations have been performed for
FCC metals [23, 61] and «-iron [81], and have been used to inform CP models [91].

2.4.3 Concurrently Modeling Across Scales

The approaches we have discussed so far involve passing information between
modeling approaches using independently conducted simulations. However, it
is also possible to transfer information between simulations as they both run
concurrently. This approach may be useful in a number of settings. One example
is if we are only interested in atomistic resolution over a small part of the domain,
such as at the tip of a crack or beneath an indenter. Since atomistic resolution is not
needed far from these regions where events such as dislocation nucleation are not
occurring, we wish to represent the rest of the domain with a less expensive, higher
scale model like DD. The atomistic and DD simulations would then be coupled at
their mutual boundaries.
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Such an approach has been implemented by Shilkrot et al. [92] in two-dimensions
with the coupled atomistic and discrete dislocation (CADD) method for solving
plasticity problems. In the CADD approach, the computational domain is divided
up into atomistic and continuum regions; molecular dynamics is used in the
atomistic region and 2D dislocation dynamics in the continuum domain [20]. For
any concurrent modeling approach, the most challenging aspect is coupling the
models at their shared domain boundaries. For instance, with CADD the code must
detect when dislocations transmit between the domains. CADD has been used to
study nanoindentation [66, 92, 93] as well as fracture and void growth [93].

2.5 Challenges and Current Research Topics

Here we will briefly list and introduce a few active research topics in the DD
community. Some of the issues driving this research are purely mathematical or
numerical in nature—for example, the fact that dislocation interactions cannot be
calculated analytically in anisotropic elasticity. Other issues stem from the difficulty
of accurately representing atomic-scale phenomena in a mesoscopic framework—
for example, accounting for effects of the dislocation core structure. The following
list is by no means comprehensive:

o Time integration—Efficiently time integrating the equations of motion in DD,
i.e., taking a large time step with minimal computational expense, is a chal-
lenging but necessary task. Recent work examined implicit time integration
methods [33, 43, 94] and time step subcycling [94, 96]. While larger time steps
can be achieved with implicit methods, the additional computational cost makes
performance gains less significant [33]. With subcycling, it has been shown that
100-fold speed-ups can be achieved [96].

* Elastic anisotropy—Most single crystals exhibit anisotropy in their elastic behav-
ior, and yet most DD codes use isotropic elasticity to calculate the interactions
between dislocation segments. This is because the analytic expressions for
the stress fields of dislocations in anisotropic media are not known, and their
numerical calculation is very expensive [112]. An approximate method was
recently developed that utilizes spherical harmonics to estimate the interaction
forces between dislocations [6]. With this approach, the computational cost can
be adjusted according to the desired accuracy of the approximation.

* Kinematics—DD simulations are usually run under the assumption of infinites-
imal deformations, so that the displacement field surrounding each dislocation
is ignored. There are, however, instances where these displacements are known
to be important. For instance, a symmetric tilt boundary can be thought of as
a vertical array of edge dislocations; however, if the displacement fields of the
dislocations are ignored then there is no tilt across the boundary. In addition
to this effect, as dislocations move through a crystal, they alter the alignment
of the crystallographic planes, i.e., they shift the connectivity of the planes of
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atoms. This means two dislocations which are not coplanar initially may have
their planes intersected by a series of dislocations which shift them onto the
same plane [57]. This effect is related to the fact that when dislocations cut each
other, jogs and/or kinks are produced. Incorporation of these effects in DD is
challenging.

Core effects—Some features of dislocation behavior are very sensitive to the
nature of the core structure. These behaviors are challenging to capture in a
framework that smears out all of these details into a simple line object. In
some instances, certain features of the core can be included in the formulation
presented above, for example, when constructing the mobility law or determining
the stress dependence of the cross-slip rate. Sometimes explicit treatment of
the core structure is important. For instance, FCC metals with low stacking
fault energies have dislocations which are disassociated into Shockley partial
dislocations that can be separated by 10s of nm. This can significantly influence
the dislocation structures that develop. An approach for incorporating these
effects in ParaDiS has been developed [63] .

Point defects—Dislocations interact in a number of ways with point defects such
as vacancies and solute atoms. These defects arise quite readily through material
processing, alloying, and contamination, and give rise to many phenomena
in dislocation physics. For example, solute atoms can accumulate on disloca-
tions, forming so-called Cottrell atmospheres, which can slow down dislocation
motion. Additionally, at high temperatures, dislocations are known to move
out of their glide planes (climb) by consuming or producing vacancies. Some
models have been developed to account for solutes [17, 69] and vacancy-driven
climb[7, 70], however only a limited set of geometries have been considered.
Inclusions and precipitates—The interactions of dislocations with inclusions and
precipitates give rise to important phenomena such as precipitation hardening and
kinematic hardening (Orowan looping). A number of researchers have conducted
simulations examining the interaction of dislocations with a few precipitates
in simplified settings [50, 68, 80, 84, 97], in addition to a few examples of
large-scale simulations [44, 82, 101]. DD models describing the behavior of a
dislocation as it cuts through a precipitate are still lacking.

Grain boundaries—Most DD codes are only capable of simulating single crys-
tals, whereas most structural materials are polycrystalline. The grain boundaries
separating the individual grains of polycrystals can interact with dislocations
in complex ways. Grain boundaries can both absorb and emit dislocations. A
grain often experiences “misfit” stresses imposed by the surrounding grains
during deformation, which can exert forces on dislocations. Dislocations can
also transmit across grain boundaries, from one grain to another. As discussed in
Chap. 11, DD simulations have been run with simplified grain and twin boundary
models [27, 113], but a robust DD model for polycrystals still requires further
development.
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