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Abstract. Multiagent planning addresses the problem of coordinated
sequential decision making of a team of cooperative agents. One possi-
ble approach to multiagent planning, which proved to be very efficient
in practice, is to find an acceptable public plan. The approach works in
two stages. At first, a public plan acceptable to all the involved agents
is computed. Then, in the second stage, the public solution is extended
to a global solution by filling in internal information by every agent. In
the recently proposed distributed multiagent planner, the winner of the
Competition of Distributed Multiagent Planners (CoDMAP 2015), this
principle was utilized, however with unnecessary use of combination of
both public and internal information for extension of the public solution.

In this work, we improve the planning algorithm by enhancements of
the global solution reconstruction phase. We propose a new method of
global solution reconstruction which increases efficiency by restriction
to internal information. Additionally, we employ reduction techniques
downsizing the input planning problem. Finally, we experimentally eval-
uate the resulting planner and prove its superiority when compared to
the previous approach.

1 Introduction

Intelligent agents cooperatively solving a problem in a shared environment are
required to coordinate their activity and preserve their local private knowledge.
Deterministic multiagent planning (DMAP), an established sub-area of the plan-
ning research, provides formal and practical tools to solve such problems.

The commonly used model for DMAP is MA-STRIPS [2] proposed by Brafman
and Domshlak as a minimalistic extension of the classical planning model
STRIPS [7]. MA-STRIPS begins with a set of cooperative agents, each capa-
ble of a different set of abilities described in the form of deterministic actions.
The shared environment the agents act in is defined over a finite set of possible
states, each state represented as a set of possibly holding facts. If a fact influences
and/or is influenced only by a single agent, there is no need for the other agents
to consider it, therefore it is private (or internal) for the given agent. Actions
and states form a global transition system modeling the target planning prob-
lem. In order to execute an action, its preconditions have to be satisfied in the
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current state of the environment. Conversely, after execution of an action, the
environment is transformed into a new state according to effects of the action
(under the close-world assumption). A solution of MA-STRIPS problem is an
ordered sequence of agents’ actions — a multiagent plan — which after execution
transforms the environment from a predefined initial state to one of predefined
goal states.

MA-STRIPS planning is domain independent, therefore the real-world motiva-
tion spans over a wide variety of problems [16], similarly to classical planning [14].
Representative examples, presented in our benchmarks are: the logistics domain
modeling a heterogeneous fleet of vehicles transporting goods among predefined
places; the rovers and satellites domains modeling teams of autonomous rovers
and satellites conducing experiments around and on the surface of a distant
planet; and a multi-robot variant of the classical Sokoban puzzle, where crates
has to be pushed (pulls are not allowed) from their initial positions to predefined
storage (goal) positions in a grid maze.

Following the historical development of classical planners, currently in
DMAP, plan-space and state-space search techniques compete what approach
is the more efficient. Our presented planning technique follows the principle of
plan-space search to find a valid public plan, which can be consequently extended
by local planning to a global solution of the planning problem. This princi-
ple was proposed in the first MA-STRIPS planner Planning First [17], using
transformation of the plan-space search to a Distributed Constraint Satisfaction
Problem, which solution represented the public plan. The transformation was
superseded by Fabre et al. in [6] by public plans represented as Finite State
Machines (FSMs). This idea inspired our line of work [11,19-21] on satisficing
(i.e., a correct plan is sufficient, cf. optimal plan) DMAP by intersection of Plan-
ning State Machines (PSMs), which are FSMs representing compactly a set of
plans of different agents.

DMAP problems are hard to solve. Particularly, planning of MA-STRIPS
problems is exponential in (the tree-width of) the interaction graph among the
agents [3] to the size of the planning problem. This inherent complexity cannot
be in general tackled tractably (unless P =NP), therefore as in classical plan-
ning, we had to utilize automatically derived heuristics. In our recent work, we
used the LAMA planner comprising forward-search planning heuristics (Fast-
Forward [10] and LAMA landmarks [18]) to solve the local planning problems
of particular agents. The local planning extends public plans towards a global
solution. Additionally, we used the concept of planning landmarks to direct the
plan-space search for the public plan in [19].

Besides the heuristics, which help to navigate the search, a special form of
complexity can be reduced by an appropriate transformation of the planning
problem. Such reductions can remove accidental complexity [8], i.e., superflu-
ous complexity of planning caused by inappropriate formulation of problems.
In classical planning, the most frequently used reduction technique is reacha-
bility analysis (e.g., in [9,10]), that is removal of a subset of actions which can
be proved to be inapplicable during the search. Problem reduction by reacha-
bility analysis is one of transition system reduction techniques [1,4,5,8,13,15].
Recently, we have proposed first steps towards reductions for DMAP in [12].
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In this paper, we propose a new method of global solution reconstruction,
which increases efficiency by restriction to internal information. This combined
with reductions for DMAP increases efficiency of the best performing distributed
multiagent planner PSM-RvD [21] in the Competition of Distributed Multiagent
Planners (CoDMAP 2015)*. On average, the improvement by proposed tech-
niques in the coverage of solved problems is 13 %.

2 Multiagent Planning

This section provides a condensed formal prerequisites of multiagent planning
based on MA-STRIPS formalism [2].

MA-STRIPS planning problem II is a quadruple IT = (F,{a;}",I,G),
where F is a set of facts, a; is the set of actions of i-th agent?, I C F is an
initial state, and G C F is a set of goal facts. We define selector functions
facts(IT), agents(II), init(I1), and goal(II) such that the following holds.

IT = (facts(II), agents(II),init(II), goal (II))

An action an agent can perform is a triple of subsets of facts(IT) called precon-
ditions, add effects, delete effects. Selector functions pre(a), add(a), and del(a)
are defined so that a = (pre(a), add(a), del(a)).

A planning state s is a finite set of facts and we say that fact f holds in s, or
that fis valid in s, iff f € s. When pre(a) C s then state progression function ~y
is defined classically as y(s,a) = (s\del(a)) U add(a).

In MA-STRIPS, out of computational or privacy concerns, each fact is clas-
sified either as public or as internal. A fact is public when it is mentioned by
actions of at least two different agents. A fact is internal for agent o when it is
not public but mentioned by some action of a. A fact is relevant for o when it is
either public or internal for . M A-STRIPS further extends this classification of
facts to actions as follows. An action is public when it contains a public fact (as
a precondition or effect), otherwise it is internal. An action from IT is relevant
for a when it is either public or owned by (contained in) «.

We use int-facts(a), pub-facts(x), and rel-facts(a) to denote in turn the set
of internal, the set of public, and the set of relevant facts of agent a.. Moreover,
we write pub-facts(IT) to denote all the public facts of problem II. We write
pub-actions(«) and int- actions(a) to denote in turn the set of public, and the
set of internal actions of agent a. Finally, we use pub-actions(IT) to denote all
the public actions of all the agents in problem II. The notation is summarized
in Fig. 1.

In multiagent planning with external actions, a local planning problem is
constructed for every agent «. Each local planning problem for « is a classical
STRIPS problem where « has its own internal copy of the global state and where

! See http://agents.fel.cvut.cz/codmap for more info about CoDMAP’15.
2 Note, that agents are defined only by their actions and thus c; represents both the
agent and the actions it can perform.
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each agent is equipped with information about public actions of other agents
called ezternal actions. These local planning problems allow us to divide MA-
STRIPS problem to several STRIPS problems which can be solved separately by
a classical planner.

The projection F 1> « of set of facts F' C facts(IT) to agent « is the restriction
of F to the facts relevant for «, representing F' as seen by «.. The projection a > «
of action a to agent « is obtained by restricting the facts in a to facts relevant
for «, that is, hiding internal facts of other agents. The public projection a>x
of action a is obtained by restricting the facts in a to public facts. Projections
are extended to sets of actions element-wise.

A local planning problem II >« of agent «, also called projection of II to
a, is a classical STRIPS problem containing all the actions of agent a together
with external actions, that is, public projections other agents public actions. The
local problem of « is defined only using the facts relevant for a. Formally,

II > « = (facts(IT) > «, a U ext-actions(a), I > o, G)
where the set of external actions ext-actions(«) is defined as follows.

ext-actions(a) = U (pub-actions(3) > «)
B#a

In the above, [ ranges over all the agents of IT. The set ext-actions(«) can be
equivalently described as ext-actions(a) = (pub-actions(IT)\«) > *. To simplify
the presentation, we consider only problems with public goals and hence there
is no need to restrict goal G.

3 Multiagent Planning by Plan Set Intersection

The previous section allows us to divide MA-STRIPS problem into several clas-
sical STRIPS local planning which can be solved separately by a classical plan-
ner. Recall that local planning problem of agent « contains all the actions of
« together with a’s external actions, that is, with projections of public actions
of other agents. This section describe conditions which allow us to compute a
solution of the original M A-STRIPS problem from solutions of local problems.

A plan 7 is a sequence of actions. The state progression function can then be
iteratively extended to v*(sg, ) defined on plans instead of actions. A solution
of II is a plan m whose execution transforms the initial state into a state in the
set of goals, i.e. v*(I,7) € G. A local solution of agent « is a solution of IT 1> av.
Let sols(IT) denote the set of all the solutions of MA-STRIPS or STRIPS problem
II. A public plan o is a sequence of public actions. The public projection > %
of plan 7 is the restriction of 7 to public actions. To avoid confusions possibly
arising when two different actions have the same projection, we consider actions
to have assigned unique ids which are preserved by projections. We omit ids
from formal development in this work.
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facts(a) = pre(a) Uadd(a) U del(a) facts of action a
facts(a) = Ugea facts(a) facts of agent «
facts(II) = Uaeagents(n) facts(«) all facts
actions(a) = « actions of agent a
actions(II) = UaeagentS(H) actions(«) all actions

pub-fact(f)
pub-facts(II) =
pub-action(a) <
pub-actions(II) =

Ja # B f € (facts(a) Nfacts(B))
{f € facts(II) : pub-fact(f)}
(facts(a) N pub-facts(IT)) # 0

{a € actions({I) : pub-action(a)}

public fact (predicate)
all public facts
public action (predicate)

public actions

pub-facts(ar) =
int-facts(a) =
rel-facts(«) =

pub-actions(a) =

facts(«) N pub-facts(I7)
facts(«) \ pub-facts(IT)
facts(«) U pub-facts(I7)
actions(a) N pub-actions(I7T)

public facts of agent «
internal facts of agent «
relevant facts of agent o

public actions of agent «

int-actions(a) = internal actions of agent «

actions(«) \ pub-actions(IT)

Fig. 1. MA-STRIPS privacy classification of facts and actions of problem II.

A public plan o is extensible when there is m € sols(IT) such that 7> = o.
Extensible public plans are also called public solutions. Similarly, o is a-extensible
when there is m € sols(IT > ) such that m>+ = o. Extensible public plans
give us an order of public actions which is acceptable for all the agents. Thus
extensible public plans are very close to solutions of IT and it is relatively easy
to construct a solution of IT once we have an extensible public plan. That is
why, in our previous work, the procedure of reconstruction of a global solution
of IT from a public plan received little attention. In this work, we elaborate this
procedure in detail.

The following Lemma [19] establishes the relationship between extensible and
a-extensible plans. Its direct consequence is that to find a solution of IT it is
enough to find a local solution 7, € sols(II > «) which is B-extensible for every
agent (3.

Lemma 1 ([19]). Public plan o of I is extensible if and only if o is a-extensible
for every agent .

Our previous multiagent planning algorithms [12,19,20] work in two-stages.
In the first stage, a public solution is found, while, in the second stage, the
public solution is extended to a global solution. Simple public solution search
is described in Algorithm 1. Every agent executes the loop from Algorithm 1,
possibly on a different machine. Every agent keeps generating new solutions of
its local problem and stores public projections of local solutions set @,. These
sets are exchanged among all the agents so that every agent can compute their
intersection @. Once the intersection @ is non-empty, the algorithm terminates
yielding @ as the result. Hence Algorithm 1 yields a set of extensible public
plans.
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Algorithm 1. Public solution distributed search.

1 Function MaPublicPlan(I > ) is
2 Do — @;

3 loop

4 generate new 7, € sols(II > a);
5 Do — Do U {ma > *};
6

7

8

9

exchange public plans @3 with other agents;
D — m,@eagents(ﬂ) @ﬁ;
if & # 0 then
‘ return @;
10 end
11 end
12 end

Algorithm 2. Multiagent planning algorithm.

1 Function MaPlan(I7) is

2 foreach a € agents(IT) do

3 | execute MaPublicPlan(IT > o); // Algorithm 1
4 end

5 @ — the result of MaPublicPlan(/] > ); // of an arbitrary agent o
6

7

8

9

o < any public solution from &;
7 « global solution reconstruction from o; // Sections 4 €5
return 7;

end

Once an extensible public plan is found, it needs to be extended to a global
solution. The reconstruction of a global solution of the original MA-STRIPS
problem I7 is described in details in the following sections. The overall procedure
covering both public plan search and global solution reconstruction is depicted
in Algorithm 2.

4 Global Solution from Local Solutions

This section summarizes methods of global solution reconstruction used in our
previous work [12,19,20]. In multiagent planning algorithms based on the idea
of plan set intersection sketched in Algorithm 2, every agent keeps generating
local solutions until every agent generates a local solution with the same public
projection as other agents. A global solution is then reconstructed from these
local solutions utilizing Lemma 1. Its constructive proof [19, Lemma 1] suggests
a method for reconstruction of a global solution from local solutions by their
merging.

The above method can be used in situations when local solutions with an
equal public projection were generated during the public plan search. Our suc-
cessor planning algorithms [12,20] can, however, arrive at a public solution o
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without generating local solutions with public projection o. In [20], public pro-
jections of local solutions generated by individual agents are stored in structures
called Planning State Machines (PSM). In some cases, plans stored by a PSM
are combined together giving rise to new plans which were not explicitly gener-
ated. Moreover, analysis of dependencies of public actions [12] can yield a public
solution without generating any local solution at all. Hence in these cases, a
different approach needs to be used to reconstruct a global solution from o.

Suppose we have a public plan ¢ and we know that ¢ is a public solution,
that is, we know that o is extensible. For every agent «, a local solution of
IT > o with public projection ¢ can be found by a method originally used to
test a-extensibility [19]. For a public plan o, we construct a classical STRIPS
problem « oo which contains public actions from o together with «’s internal
actions. Public actions from o are extended with special mark facts which ensure
that every solution of aoo contains all the actions from ¢ in the right order,
possibly interleaved with a-internal actions. When o = (ay,...,ax), then we
use k + 1 distinct mark facts {myg,...,m}. The meaning of fact m; is that
actions aq,...,a; has been used in the right order, and that action a;41 should
be used now. This behavior is achieved by adding m;_; to the precondition and
the delete effect of a;, and by adding m; to the add effect. For convenience,
we define function mark-act(a, from, to), which adds mark facts from and to to
action a as follows.

mark-act(a, from, to) = (pre(a) U {from},add(a) U {to}, del(a) U {from})

The following formally defines the STRIPS problem a o o. Note that the first
mark myg is added to the initial state, and that my, is added to the goal. The goal
mark fact my ensures that all the actions were used. Also note that, as opposed
to Il > «, problem a oo does not contain external actions.

Definition 1. Let a € agents(II) and let 0 = (a1,...,ar) be a public plan.
Let marks = {mqg,...,mg} be a set of facts distinct from facts(II). The a-
extensibility check of o, denoted avoo, is the STRIPS problem (Fy, Ao, I, Go)
where

1. Fy = (facts(II) > ) U marks, and

2. Ap = int- actions(a) U {mark-act(a; > a,m;_1,m;) : 0 <i <k}, and
3. Ip = (init(II) > «a) U{mo}, and

4. Go=GU{my}.

The following lemma relates the STRIPS problem « o o with a-extensibility of o.

Lemma 2 ([19]). Let o € agents(II) and let o be a public plan. Then o is
a-extensible iff sols(ao o) # 0.

Suppose we have a public solution o. It is easy to see that every solution of
aoo is also a local solution of II > «, provided mark facts are removed. Hence
problems coo can be used to generate local solutions with public projection
0. These local solutions can in turn be used to reconstruct a global solution as
described above.
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5 Global Solution from Public Solution

The previous section defines the a-extensibility check problem « oo which can
be used either to (1) verify that a public plan o is a-extensible, or to (2) find a
local solution of IT > « with public projection o. In this section we concentrate
on task (2) in situations where an extensible public plan ¢ is given. The exten-
sibility check problem « oo contains public facts in public actions coming from
o. These public facts increase the complexity of planning task oo 0. We propose
an improved method for finding a local solution with a given public projection
o, provided we know that o is (a-)extensible.

Every public solution o is a-extensible and hence there is a solution 7 of
II >« with public projection o. Recall that 7 contains all the actions from
o possibly interleaved with a-internal actions. Public preconditions of public
actions in 7 can not be affected by internal actions, and hence the public pre-
conditions must be satisfied by actions coming from o. Thus, when extending a
public solution ¢ to a local solution, we can omit public facts and concentrate
only on internal facts (public actions can have additional internal preconditions
and effects).

Given a public solution o, we define the a-reconstruction problem, denoted
o e o, similar to the a-extensibility check problem o o«a. The only difference is
that the reconstruction problem further restricts the facts to internal facts. Recall
that a-projection (>) is the restriction to the facts relevant for a. We define
internal a-projection (») as the restriction to a-internal facts. For convenience,
Fig. 2 summarizes definitions of different projections.

F>a = FNrel-facts(a) facts a-projection
F» a = Fnintfacts(a) facts internal a-projection
F>x = F N pub-facts(I7) facts public projection

a>a = (pre(a) > a,add(a) > o, del(a) > )  action a-projection
aw o = (pre(a) » a,add(a) » a,del(a) > «)  action internal a-projection

ar>* = (pre(a) > *,add(a) > *, del(a) > *) action public projection

Fig. 2. Different projections of facts and actions.

The a-reconstruction problem of ¢ is formally defined as follows. Note that
only the last mark fact constitutes the goal because all the other goal facts are
public.

Definition 2. Let o € agents(II) and let o = (a1,...,ar) be a public plan.
Let marks = {mog,...,my} be a set of facts distinct from facts(II). The a-
reconstruction problem of o, denoted av® o, is the STRIPS problem (Fy, Ao, Iy, Go)
where

1. Fy = (facts(IT) » ) U marks, and
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2. Ap = int- actions(«) U {mark-act(a; » a,m;—1,m;) : 0 <i <k}, and
3. Iy = (init(ZI) » ) U {mo}, and
4. Go = {my}.

The following lemma relates solutions of o e« with a-extensibility of o.
When compared with the similar result for the extensibility check problem ¢ o«
(Lemma 2), only one implication can be proved.

Lemma 3. Let « € agents(IT) and let o be a public plan. If o is a-extensible
then sols(ce o) # (.

Proof. By Lemma 2, there is m € sols(ao o). A solution of «ec can be obtained
from 7 by internal a-restriction of actions (preserving mark facts). O

There is a relationship between solutions of o @ & and local solutions of agent
«. When o is a-extensible then every solution of o e « is also a solution of the
local problem IT > o. Formally as follows.

Lemma 4. Let o € agents(II) and let o be an a-extensible public plan. Then
sols(o e o) C sols(II > ) (up to the mark facts).

Proof. Let 7 € sols(c e ). Let ' be m with mark facts removed from the actions.
Hence ' contains only actions from IT > «. Let I = init(IT > o) and let us prove
that v*(I,7') is defined. Every a-internal precondition of every action from w’
is satisfied because it was satisfied in 7, and other actions in ©' do not affect a-
internal facts. Hence, it is enough to prove that public preconditions are satisfied.
It, however, follows from extensibility of o. Finally, v*(I,7') C goal(Il > «)
because all the goals are public and o is a-extensible. a

Hence a-reconstruction problems of o can help us to construct local solutions
with public projection o. These local solutions can in turn be used to reconstruct
a global solution. The following theorem put the pieces together, that is, it
provides a constructive way to construct a global solution from a public solution.
Given a public solution o, a local solution with public projection ¢ is computed
using a-reconstruction by every agent «. All these local solutions contain the
same public actions given by o. These public actions naturally split the plans
into parts which are merged together giving rise to a global solution.

Theorem 1. Let agents(I1) = {a',...,a"} and let 0 = {ay,...,a;) be an
extensible plan of IT. Then

1. there is ©° € sols(a’ e o) for every 0 < i < n, and

2. for every ', there are m\,... mt such that © can be written as

7 =7i-(a})- - mp(ay)  where  a} = mark-act(a; > ') (for 0 <j<k)
3. and, plan

m=m-{(a1)- - -7 -{ag) where m; =7TJ1»- ceem (for0<j < k)

s a solution of II.
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Proof. Claim (1) is by Lemmas 1 and 3. For Claim (2), let 7* € sols(ae o) be
given. Due to the marks, ©* contains all the actions from o in the right order. We
can consider (a-projection of ) ax. to be the last action of ™ because it is the only
action fulfilling the goal of o e o. Hence 7r;- are simply the (a'-internal) actions
between (projections of ) a; and a;—y in . For Claim (3), let I = init(II). Now
v*(I,7) is defined following the same arguments as in the Proof of Lemma 4.
Finally, v*(I,7) C goal(IT) because all goals are public and o is extensible. O

6 Experiments

This section experimentally evaluates the impact of improved global solution
reconstruction. In order to undertake the experiments, we use our PSM-RvVD plan-
ner [21] which performs public solution search utilizing Planning State Machines
(PSM) [20] enhanced with analysis of internal dependencies of public actions [12].
In the Competition of Distributed Multiagent Planners (CoDMAP 2015), Psm-
RVD solved 180 problems out of total 240 problems within the 30 min time limit,
achieving the best results in the distributed track.

Planner PsM-RVD submitted to CoDMAP 2015 implemented global solution
reconstruction using extensibility check problems (o) described in Sect.4. To
undertake the experiments, we have implemented global solution reconstruction
using reconstruction problems (o) from Sect. 5. We use 220 benchmark problems
from 11 domains®, with the time limit of 5 min.

uns.
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Fig. 3. Impact of improved global solution reconstruction on the runtime of PSM-RvVD
on CoDMAP benchmark problems (logarithmic scales).

3 The last Wireless domain is not supported by the planner parser.
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Table 1. Impact of improved global solution reconstruction on the coverage of PsM-
RvD on CoDMAP benchmark problems.

Domain Solved problems [count] | Reconstruction phase [avg. % of runtime]
(0) | (o) () ()
Blocksworld (20) 18 19 2% 147%
Depot (20) 8 15 86% |24%
Driverlog (20) 19 | 20 18% [14%
Elevators (20) 7T 12 3.0% | 2.4%
Logistics (20) 12 | 18 8% |35%
Rovers (20) 6 7 23%| 1.3%
Satellites (20) 8 8 41% | 41%
Taxi (20) 20 20 82.8% | 35.9 %
Sokoban (20) 15 | 15 83% |29%
Woodworking (20) | 18 | 18 35% |20%
Zenotravel (20) 10 | 10 55% 4.4%
Total (220) 141 | 162 452% 19.7%

Figure 3 evaluates the impact of improved global solution reconstruction on
CoDMAP benchmark problems. For each problem, a point is drawn at the
position corresponding to the runtime with extensibility check problems o (x-
coordinate) and the runtime with reconstruction problems e (y-coordinate).
Hence points below a diagonal constitute improvements. We can see that for
all the problems, the runtime was either improved or unchanged.

Table 1 shows (1) the impact of improved global solution reconstruction on
the coverage of solved problems, and (2) the impact on a relative length of global
solution reconstruction phase. The relative length of global reconstruction phase
is measured in the percentage of runtime. We can see that the relative length of
a reconstruction phase was shorten even in the cases where it has no effect on
total coverage.

7 Conclusions

We have formally and practically enhanced the winning planner of recent compe-
tition of distributed and multiagent planners. The global solution reconstruction
phase was limited to use only of private facts, which increased efficiency of the
algorithm. We have formally proved that such narrowing preserves extensibility
of the plan, and therefore the soundness and completeness of the planner. Addi-
tionally, we have used recently proposed static reductions of the planning prob-
lems for multiagent planning. The practical experiments show improvements of
coverage of solved problems by 13 % and strong domination over to the original
variant of the planner.
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