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Abstract. Local properties of image (phase, amplitude and orienta-
tion) can be estimated practically using quadrature filters kernel and
can be easily represented in two dimensions using the monogenic signal.
This powerful feature representation has given rise to robust phase-based
edge detection. Nonetheless, it is limited to the class of intrinsically one-
dimensional signals, such as lines and edges. All other possible local
patterns such as corners and junction are of intrinsic dimension two.
Our aim in this paper is to present a new edge detection method for
extracting local features of any curved signal. It is based on the confor-
mal monogenic signal which is in practical applications compatible with
intrinsically one and two-dimensional signal. Using different filters, our
model have been tested and compared with classical models and some
recent ones. The preliminary results show that our detection technique
is more efficient and more accurate.
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1 Introduction

Interestingly, several physiological experiences have suggested that image struc-
tures like lines, edges, junctions and orientations play an important role in the
Human Visual System. Consequently, these features have always been considered
as central in the analysis since the early days. Their detection has therefore been
a fundamental operation that needed to be processed in a reliable and robust
way. Feature detection has been extensively studied in the literature and still
remains an active field of research [1,6,9-13,16].

Throughout the history of digital image processing, smoothing and differ-
entiation have been subjects of intense study. A variety of optimal differential
operators have been proposed to solve different computer vision problems. For
instance, edges and lines detection have received a particular attention. Differ-
entiation is highly sensitive to illumination variations and do not localize accu-
rately or consistently. Indeed, the localization of gradient based features varies
with scale of analysis. Amplitude-based techniques however are known to be
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sensitive to smooth shading and lighting variations. Furthermore, edges, corners
and other features are not simple step changes in luminance. Hence, recent con-
tributions have reached a high degree of sophistication [13]. These may include,
for instance, statistical models based detection [9]; linear and non linear scale
space methods and links to regularisation theory [11].

Amplitude-based operators (Gradient) are sensitive to intensity variations
and do not localize accurately or consistently. To minimize these problems we
need a feature operator that is maximally invariant to intensity and scale. An
alternative approach to amplitude based techniques is the use of phase informa-
tion. Theoretically, it is known that a wide range of feature types gives rise to
points of high Phase Congruency (PC). Also,it has been shown that this model
successfully explains a number of psychophysical effects on human feature per-
ception. PC is a dimensionless quantity, invariant to contrast and allows to the
features to be tracked over extended sequences more reliably. Indeed, phase is
an underused local image attribute that can have many applications [3,4,10].

Local properties of image (phase, amplitude and orientation) can be esti-
mated practically using quadrature filters kernel [2,5] and can be easily repre-
sented in two dimensions using the monogenic signal [7]. This powerful feature
representation has given rise to robust phase based detectors contours, the most
remarkable is the Feature Asymmetry (FA) [3,4,10]. Nonetheless, it is limited
to the class of intrinsically one-dimensional signals.

Two dimensional images can be classified into local regions of different intrin-
sic dimensions as shown in Fig. 1. The intrinsic dimension expresses the number
of degrees of freedom necessary to describe local structure. Constant signals are
of intrinsic dimension zero (i0D), lines and edges are of intrinsic dimension one
(i1D) and all other possible patterns such as corners and junction are of intrin-
sic dimension two (i2D). For a given two-dimensional signal f and local region
N C R?%:

0D = {f : f(x:) = f(x;)¥x1,%; € N}, (1)
iD= {f : f(x) = g((x,y))¥x € N,y € R and |y| = 1}\i0D,  (2)
2D = f & (i0D UilD), (3)

7N

Fig. 1. Typical examples of a global intrinsic 2D signals. From left to right: a constant
signal (10D), an arbitrary rotated 1D signal (i1D) and a curved i2D signal. All signals
displayed here preserve their intrinsic dimension globally. Figure from [18].
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where (-, ) denotes the inner product and g : R — R represents the local struc-
tural feature function of 1D signal model such as g(x) = a(z)cos(¢p(x)). Note
that, in general, i2D signals can only be modeled by an infinite number of super-
imposed i1D signals [18].

In this paper, we present a novel way to compute the FA. It is based on
the conformal monogenic signal which is a rotational invariant quadrature filter
for extracting local features of any curved signal [18]. The conformal monogenic
signal contains the introduced monogenic signal as a special case and combines
scale space theory in one unified algebraic framework. The main advantage of
the conformal monogenic signal in practical applications is its compatibility with
intrinsically one-dimensional (i1D) and special intrinsically two-dimensional sig-
nal (i2D).

2 The Conformal Monogenic Signal

The local properties of a given 2D signal f(x) can be estimated by the monogenic
signal fas(x) : R®" — R™*1 Tt is defined in a space of dimension n + 1 with
sufficient degrees of freedom to represent the local characteristics of a signal
in nD:

fu(x) = (f, fr)(x). (4)

The Riesz transform fr is considered as a generalised 1D Hilbert transform and
preserves its most interesting properties, it is written by means of convolution as:

n4+1l
b'd . 22
fr(x) = (h= f)(x) = R * f(x), with Apyq = Ty (5)
For the particular case of a two-dimensional signal (n = 2) the generalised

Hilbert transform kernel h is given by:

Zg

h(X) = (hl,hg)(x) y and hi = W

(6)

The local properties turned out to be invariant with respect to rotations
and translation, due to the rotational equivalent and the linear shift invariance
properties of the Riesz transform. These properties make the monogenic signal
as a powerful feature representation. Nonetheless, it is limited to the class of
intrinsically one-dimensional signals. Thus, the conformal monogenic signal is
considered as a generalisation for analysing i1D and i2D local feature for two-
dimensional signal.

2.1 The Conformal Space

As introduced by Wietzke and Sommer [18], the main idea of the conformal
monogenic signal is to lift up 2D signals to an appropriate conformal space with
more degrees of freedom compared to the 2D monogenic signal. Since, line and
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circle of the two-dimensional signal domain are mapped to circles on the sphere
in conformal space, with center (0,0, %)T and radius %:

1 1
s—{eer:g+g+@-57 -] ™
The sphere S touches the Euclidean plan R? such that its south-pole coincides
with the origin (0,0,0)7. This projection is conformal and can be inverted by
C~! for all elements of S € R3:

1 71
Clx)=——— | oz , 8
() x%—i—x%—i—l x%jxg ()

for x = (x1,72)T € R? whereas the projection from S to R? is given by:

1 —ws \w2

Clw) = — (‘*’1) , with w € S. (9)

Lines and circles of the 2D signal domain will be mapped to circles on the sphere.
All planes corresponding to circles remain unchanged. That is the reason why
the conformal monogenic signal models i1D line and all kinds of curved i2D
signals which can be locally approximated by circles.

The spherical embedding f. of the circular signal f with respect to a point
on interest x € R? is given by:

fCE)+x) forfes,

0 else.

fc(x; 5) = {

Now the conformal monogenic signal can be introduced by:
fem(x) = (fe, fe)(x;0), (11)
= (fmhl * f07 h2 * fC7h3 * fc)(xvo)

We are now able to estimate the i1D and i2D local amplitude, orientation and
phase of curved 2D signal respectively by:

3
a(x) = || f20x0) + D _(hi + fo)*(x; 0), (12)
0(x) = arctan 2 (hs * fe, hy * fe) (x;0), (13)

and

3
¢(x) = arctan 2 Z (hi * fo)?(x;0), fo(x;0) |. (14)
i=1
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3 Feature Asymmetry

In practical applications, the local properties are estimated using a pair of band-
pass quadrature filters. Indeed, the detection of local properties by the conformal
monogenic signal assumes that the signal consists of few frequencies, that is ban-
dlimited. A real image consist of a wide range of frequencies, therefore a set of
bandpass filters needs to be combined with the conformal monogenic signal.
Equation (11) becomes:

fem(x) = (Qx fe, Qxfe)(x;0), (15)

where Q(x; s) is the spatial domain representation of an isotropic bandpass filter
and s > 0 is a scaling parameter. Thus, the monogenic signal can be represented
by a scalar valued even and vector valued odd filtered responses, with the fol-
lowing simple tick:

even = (Q * f.)(x;0),
odd = (Q* hy * fo, Q% hy % fe, @ ha * f.)(x;0).

Several families of quadrature pairs have been proposed and applied in the
literature. Most authors have not provided a reasonable justification for the
use of a particular family apart from simplicity of use or the satisfaction of
the zero DC condition. In [2], the authors introduce a new generalised pairs of
quadrature filters, and after comparison, they concluded that the widely used
log-Gabor kernels are probably not a very good choice in the case of feature
detection. They showed that Derivative of Derivative/Difference of « scale space
family (ASSD and DoSS respectively) has better properties. (see Fig.2). A 2D
isotropic ASSD kernel is defined in Fourier domain by

ncu® exp (—(su)?*) if u>0

. (16)
0 otherwise

Qassp(u) = {

where the frequency coordinate u = (ug,uz2), a €]0,1], n. is a normalisation
constant. The derivative parameter a € RT meaning we are using fractional
order derivatives.

3.1 The Edge Detection Measure

Step edge detection is performed using the feature asymmetry measure (F'A) of
Kovesi [10] redefined using the conformal monogenic signal presented previously.
To identify step edges essentially involves finding points where the absolute value
of the local phase is 0° at a positive edge and 180° at a negative edge. In other
words, the difference between the odd and the even filter responses is large. We
define the new multiple scales feature asymmetry by:

> ||odds| — |evens| — T
FAcy = 3 .
Yoo Veven? 4+ |odd,|? + ¢

(17)
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Fig. 2. 2D DoSS kernels in Fourier domain for certain parameters. From left to right:
the isotropic even part and the pair composing the odd part.

where |-] denotes zeroing of negative values and T is a noise threshold esti-
mate [10]. Here, ¢ is used to avoid zero division. The FAc)s takes values in
[0, 1], close to zero in smooth regions and close to one near boundaries.

4 Results and Discussion

To evaluate the performance of the proposed approach, we made comparisons
between manual delineation of Berkeley Segmentation Database [1] and the auto-
matic results. One band-pass filter has been chosen for these tests, namely the
a-Scale Spaces Derivative filter [2] (ASSD). This filter was chosen for its para-
metric nature of « €]0, 1] which makes it possible to find the classic filters like
the Derivative (Difference) of Gaussian (oo = 1) and Poisson filter (o = 0.5).
The evaluation of this method is carried out by Precision-Recall curves which
are obtained by varying the detection threshold. There is however, an interest-
ing point on the curves defined by the measure F' = 2%’%. Thus, the
location of the maximum of this measure along the curve defines the optimum
threshold and provides a summary score. Table 1 reports a summary of results
obtained on the database of 500 images of Berkeley. It should be noted that the
most interesting measure is the F-measure (ODS), the other ones are involved
only to bring more precision. Table 1 summarises the comparison results between
the proposed method F'Acjs and the classical models as well as some newer and
more sophisticated models [1,8,16]. An overview of these results is illustrated in
Fig. 3. It is easy to see that the F'A¢ s approach significantly exceeds, in terms of
performance, the remaining methods, irrespective of the selected filter (Gaussian
or Poisson). Since the F Ay, detector performed by conformal monogenic sig-
nal combines all intrinsic dimensions in one framework, including curved edges
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Table 1. Summary of comparison results. Represented on the table, the best score
over the image dataset ODS (Optimal Dataset Scale), the best score per image OIS
(Optimal Image Scale), as well as the area below the precision-recall curve AR (Average
Precision).

Edge detection method ODS | OIS | AR
Manual 0.80 0.80 |-

FAcum 0.61 |0.64|0.54
Felzenszwalb and Huttenlocher [8] | 0.61 |0.64 | 0.65
Arbelaez et al. [1] 0.60 [0.640.58
Sharon et al. [16] 0.56 [0.590.54
Canny [6] 0.60 | 0.63 | 0.58
Marr and Hildreth [12] 0.57 10.590.21
Prewitt [14] 0.51 |0.54|0.38
Sobel and Feldman [17] 0.51 [0.530.38
Roberts [15] 0.50 |0.530.73

Fig. 3. Edge detection results on the BSDS500 benchmark. From top to bottom:
original images, corresponding manual segmentations, results obtained by the FAcnr
method.
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and lines. It could be an interesting alternative for the gradient or the Laplace
operator.

The FAcpr can be computed efficiently and easily implemented into existing
low level image processing steps of Computer Vision applications. Furthermore,
it can be calculated with all the advantages of rotationally invariant local phase
based approaches, robustness against brightness and contrast changes, and with-
out the need of any partial derivatives. Hence, lots of numerical problems of
partial derivatives on discrete grids can be avoided.

It is natural to think tackle the proposed approach with more recent and effi-
cient ones, such as the model called GPB-owt-ucm of [1]. However, such methods
are in a quite developed and sophisticated level, and take into account the tex-
ture, the multi-scale framework and the presence of noise in images. To be at
the same level and get better detection, it is interesting to include a component
for treating texture. We can note also that according to the experiments carried
out on the Berkeley database, the measure F depends on the size and type of
the selected images sample. Thus, we plan to experiment our approach by other
publicly available datasets.

5 Conclusion

We proposed in this paper a new idea in isotropic 2D phase based edge detec-
tion. This new Conformal Monogenic Feature Asymmetry detector combines all
intrinsic dimensions in one framework, including curved edges and lines. Using
different filters, we tested and compared our approach with conventional models
and some newer models. It appears that our results are in the same order as
those of the state of the art. Although these results are introductory, they seem
to be promising. Indeed, this method, simple to implement and easily expand-
able to higher dimensions, opens up new perspectives. Furthermore, it can be
computed efficiently and easily implemented with all the advantages of rotation-
ally invariant local phase based approaches, robustness against brightness and
contrast changes, and without the need of any partial derivatives. Hence, lots
of numerical problems of partial derivatives on discrete grids can be avoided. In
short, it could be an interesting alternative for the gradient based method. More
applications of the F'Ax)s such as edge detection on three-dimensional data will
be part of our future work.
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