
A Posteriori Openable Public Key Encryption

Xavier Bultel1,2(B) and Pascal Lafourcade1,2

1 CNRS, UMR 6158, LIMOS, 63173 Aubière, France
2 Université Clermont Auvergne, LIMOS, BP 10448, 63000 Clermont-Ferrand, France

Xavier.Bultel@UDAMAIL.FR

Abstract. We present a public key encryption primitive called A Pos-
teriori Openable Public Key Encryption (APO-PKE). In addition to con-
ventional properties of public key cryptosystems, our primitive allows
each user, who has encrypted messages using different public keys, to
create a special decryption key. A user can give this key to a judge to
open all messages that have been encrypted in a chosen time interval
with the public keys of the receivers. We provide a generic efficient con-
struction, in the sense that the complexity of the special key generation
algorithm and this key size are independent of the number of ciphertexts.
We give security models for our primitive against chosen plaintext attack
and analyze its security in the random oracle model.

Keywords: Public-key encryption · Openable encryption · ROM · CPA

1 Introduction

Since the emergence of the Internet, email communication is accessible to any-
one. Email privacy is an important computer security topic. Without public key
encryption schemes, plaintext messages are sent and stored by the mail server
without any protection. Fortunately, there exist many straightforward to use
softwares that allow everyone to encrypt and sign emails using public key cryp-
tography, such as the well known GnuPG1 tool. Unfortunately, these softwares
are rarely used [27], consequently encrypted emails may be considered as a sus-
pect behavior. Hence as P. Zimmermann, the designer of PGP, said:“If privacy
is outlawed, only outlaws will have privacy”. We hope that in a near future
everybody can privately exchange emails. Then our motivation is based on the
following scenario, where Alice is implied in a court case. To find some clues, the
judge needs to read emails that Alice has sent during a specified time period.
The judge uses his power to obtain from Alice’s email server all emails sent by
Alice (including dates of dispatch and receiver identities). If the messages are not
encrypted then the judge can read emails without relation to the investigation,

This research was conducted with the support of the “Digital Trust” Chair from the
University of Auvergne Foundation.

1 https://www.gnupg.org.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 17–31, 2016.
DOI: 10.1007/978-3-319-33630-5 2

https://www.gnupg.org

18 X. Bultel and P. Lafourcade

which is a privacy violation. On the other hand, if messages are encrypted with
the receiver public key then the judge can suspect Alice to hide crucial informa-
tion for the investigation. Moreover, without the receivers’ private keys, Alice
has no solution to prove her innocence and cannot reveal his correspondence to
the judge.

To solve this problem, Alice needs a mechanism to give to the judge a possi-
bility to open all messages sent during a specified time period. Using our solution
Alice can construct such a special key called an interval-key. With this key, the
judge can only read the encrypted messages sent during this specific interval of
time, because this key does not allow him to open other encrypted messages
stored on the email server. Nowadays, to the best of our knowledge, there is no
efficient cryptographic solution that offers such functionality to the users. The
goal of this paper is to propose a practical and efficient solution to this problem.

In many public key cryptosystems, when a ciphertext is generated, it is pos-
sible to create a special key that allows a person to decrypt it, without knowing
the corresponding secret key. For example, in ElGamal [13], C = (C1, C2) =
(gr, gx·r · m) is the ciphertext of the message m with the public key gx and a
random element r (for g a generator of G a group of prime order). Knowing
the random element r, the public key of Bob gx and the ciphertext C a third
party can compute C2/(gx)r = m to recover the plaintext. Using this property
it is possible to construct a näıve solution by giving n random elements to a
third party to decrypt n ciphertexts. However, this method presents an inherent
limitation when the number n is large and the user has to store all the random
elements used to encrypt all the messages during an interval of time. The aim
of this paper is to allow a user to construct an interval-key to decrypt several
consecutive messages in a time interval where the size of the key, the stored
information and the key generation complexity are constant and do not increase
with the number of ciphertexts.

Contributions: We first present the notion of Random Coin Decryptable Public
Key Encryption (RCD-PKE). The idea of RCD-PKE is that one can open a cipher-
text with the secret key and also use the random coin used during the encryption
to open a cipher. We show that several existing schemes in the literature satisfy
this notion, e.g. [1,10,14]. We use the RCD-PKE property to construct a scheme
that allows a user to generate an interval-key for a judge to open all the mes-
sages he sent during a period of time. This scheme, called A Posteriori Openable
Public Key Encryption (APO-PKE), allows the judge to open all messages sent
between two given dates. The number of ciphertexts is potentially infinite but
the judge decryption capability is limited to the a posteriori chosen interval. It
contains, like a standard public key encryption, a key generation function, an
encryption function and a decryption function. It also has an extraction function
that, given two ciphertexts and a secret value, generates an interval-key for the
judge. Using this interval-key he can then open all messages encrypted by differ-
ent public keys between the two ciphertexts for which the key has been created.

A Posteriori Openable Public Key Encryption 19

Our scheme is generic since it only relies on any IND-CPA secure RCD-PKE and
hash functions.

Performances: Our scheme has reasonable encryption and decryption execution
time overhead comparing to the PKE we use, because the size of ciphertexts
generated by our scheme is approximately the double of the size of the PKE
encryption. Moreover the generation of the interval-key, its size and the stored
information are also independent of the number of messages contained in the
interval of time. Finally, there is no restriction neither about the total number
of generated ciphertexts nor about the number of ciphertexts in a time interval.

Security: We provide the security models to prove the security of our schemes in
the Random Oracle Model (ROM). We prove that the judge colluding with some
users cannot learn more than the messages for which he received the interval-
key. We also show that several users cannot collude in order to learn information
about plaintexts contained in an interval of ciphertexts with the judge interval-
key. We also demonstrate that the judge gets the same plaintext as the one
received by the owners of the secret keys. This means that it is not possible to
forge fake messages that the judge can open and not the owners of the secret
keys, and vice-versa.

Our construction allows us to use the extraction algorithm only once per
judge (or per set of encrypted mails). Our security model captures this situation.
It is not going against our motivation as long as we consider that two judges
having an interval key in two different court cases (for the same set of mails)
do not collude. To avoid this drawback, we need to reinitialize the secret values
stored by a user after the generation of an interval-key, in order to be able to
produce new interval-key on the next encrypted data. We leave the construction
of an APO-PKE with constant interval key generation complexity and constant
interval key size allowing several interval key generations for the same judge and
the same set of encrypted mails as an open problem.

Related Work: Functional encryption [26] is a public-key encryption primitive
that allows a user to evaluate a function on the plaintext message using a key and
a ciphertext. This cryptographic primitive was formalized in [5]. It generalizes
many well know cryptographic primitives such identity based encryption [4] or
attribute based encryption [26]. Moreover, some schemes that evaluate an arbi-
trary function have been proposed in [17,18]. A posteriori openable encryption
can be seen as a functional encryption, where all ciphertexts (resp. plaintexts)
that are encrypted by one user correspond to a unique large ciphertext (resp.
plaintext). Then the interval-keys allow a user to find only some parts of the
corresponding plaintext. Our proposal scheme is an efficient solution for this
kind of functional encryption.

Deniable encryption [7,22] is an encryption system that allows to encrypt two
messages (original and hidden messages) in the same ciphertext. Using his secret
key, the receiver can retrieve the original message. Using another shared secret

20 X. Bultel and P. Lafourcade

key, the receiver can also decrypt the hidden message. It is not possible for the
sender to prove that his encryption does not contain an hidden encrypted mes-
sage. In our a posteriori openable encryption, the judge is only convinced that
the plaintext that he decrypts is the same message that the plaintext decrypted
by the secret key of the receiver. This notion differs from undeniability since the
judge is convinced that a message he decrypts using interval key has actually
been sent and received, but does not deal with message from another channel
that the given encryption system (including different way to encrypt or decrypt
a message in the same ciphertext).

Some cryptographic primitives deal with time in decryption mechanism or
rights delegation. Timed-Release Encryption (TRE), first proposed in [24], is
a public key encryption where encrypted messages cannot be opened before a
release-time chosen by the person who encrypted the messages. In this primitive,
it is generally a time server that allows the receiver to decrypt the message in
the future at a given date. Several TRE with diverse security properties have
been proposed [3,8,9]. More recently, an extension of TRE, called Time-Specific
Encryption (TSE), has been proposed in [25] and deals with time intervals.
Somehow these primitive are close to our because APO-PKE allows somebody
to give decryption capabilities in the future, after that encrypted messages has
been sent. However, TRE and TSE cannot be used to achieve APO-PKE, because
TRE ciphertext are intended to only one user and decryption capabilities cannot
be delegated to another party. Moreover, in TRE, time of decryption capability
must be chosen during the encryption phase, while in our primitive it can be
chosen at any time (a posteriori).

It is interesting to note that some TRE possess a pre-open mechanism [21]
that allows the sender to give decryption capabilities before the pre-specified
release-time. In this case, a security requirement (called binding property)
ensures that the decrypted message from the pre-open mechanism is the message
decrypted by the receiver after the release-time [11]. For our primitive, we define
a similar property, called integrity, since we require that decrypted messages
using an interval key must be equal to the messages decrypted by the legitimate
receivers.

Finally, Key-Insulated Encryption (KIE) [12,20,23] is a public key encryption
primitive where messages are encrypted from a tag corresponding to a time
period and a public key. At each time period corresponds a partial secret key
computed from a master key and the previous partial secret key. Moreover, the
public key is never changed. The motivation of this primitive is to provide secret
keys that can be stored in an untrusted device without compromising the master
key. Indeed, the leakage of a secret key compromises only messages received in a
specified time interval, and future encryptions remain secure. In the motivation
of [12], the authors give another interesting use of this primitive based on [16].
They provide a secure delegation of decryption rights in a time period. However,
this type of delegation allows them to delegate decryption rights only on pre-
defined time period. For example, if the time period corresponds to one month
then right delegation cannot be restricted to the last week of a month and the

A Posteriori Openable Public Key Encryption 21

first week of the following month without revealing all messages of these two
months. Moreover, delegator must give a different secret key to each time period,
so the decryption keys are proportional to the number of time periods contained
in the interval. Our goal is to propose decryption delegation capabilities to the
sender, while KIE only focuses on receiver decryption right delegation. Thus this
primitive cannot solve our problem.

Outline: In the next section, we introduce some cryptographic tools and define
the notion of RCD-PKE. In Sect. 3, we present a generic A Posteriori Openable
Public Key Encryption. Then in Sect. 4, we provide security models and analyze
the security of our scheme before concluding in the last section. All the proofs
of our security results are given in the full version of this paper [6].

2 Random Coin Decryptable Public Key Encryption

We first recall the definition of probabilistic public key encryption.

Definition 1 (Probabilistic Public Key Encryption (PKE)). A proba-
bilistic PKE is a triplet of polynomial time algorithms (Gen,Enc,Dec) such that
Gen(1k) returns a public/private key pair (pk, sk), Encpk(m;σ) returns a cipher-
text c from the public key pk, the message m and the random coin σ, and Decsk(c)
returns a plaintext m or a bottom symbol ⊥ from a secret key sk and a cipher-
text c. Moreover the following equation holds: Decsk(Encpk(m;σ)) = m.

ExpIND-CPA
Π,A (k):

b
$← {0, 1}

(pk, sk) ← Gen(1k)
(m0, m1, st) ← A0(1k, pk)
c ← Encpk(mb; σ)
b′ ← A1(st, pk, c)
return (b = b′)

Fig. 1. IND-CPA experiment.

A PKE scheme Π is said indistinguishable
under chosen-plaintext attack (IND-CPA) [19]
if for any polynomial time adversary A, the
difference between 1

2 and the probability that
A wins the IND-CPA experiment described
in Fig. 1 is negligible.

We introduce the notion of Random Coin
Decryptable PKE (RCD-PKE). A public key
encryption scheme is said RCD-PKE, if there
exists a second way to decrypt the ciphertext
with the random coin used to construct the
ciphertext. This primitive is a kind of PKE with double decryption mechanism
(DD-PKE) which is defined in [15]. Actually RCD-PKE is a DD-PKE where the
second secret key is the random coin and is used once.

Definition 2 (Random Coin Decryptable PKE (RCD-PKE)). A proba-
bilistic PKE is Random Coin Decryptable if there exists a polynomial time algo-
rithm CDec such that for any public key pk, any message m, and any coin σ,
the following equation holds: CDecσ(Encpk(m;σ), pk) = m.

22 X. Bultel and P. Lafourcade

For instance, ElGamal encryption scheme is RCD-PKE. It is possible, from
a ciphertext c = Encpk(m;σ) = (c0, c1) = (gσ, pkσ · m) to use the algorithm
CDecσ(c, pk) that computes c1/pk

σ to retrieve the plaintext message m. Many
probabilistic encryption schemes in the literature are RCD-PKE, e.g. [1,10,14].
Algorithms CDec of these two cryptosystems PKE are given in the full version of
this paper [6]. We also introduce the concepts of valid key pair and of verifiable
key PKE.

Definition 3 (Verifiable Key PKE (VK-PKE)). We say that a key pair
(pk, sk) is valid for PKE = (Gen,Enc,Dec) when for any message m and any
random coin σ the equation Decsk(Encpk(m;σ)) = m holds. We say that a proba-
bilistic PKE is verifiable-key (VK) when there exists an algorithm Ver such that
Ver(pk, sk) = 1 if and only if (pk, sk) is valid for PKE.

In many probabilistic public key cryptosystems, the public key is generated
from the secret key by a deterministic algorithm. For example, the ElGamal
public key is the value gx computed from the secret key x. In this case, it suffices
to check that gsk = pk in order to be convinced that a key pair (pk, sk) is valid.
It is easy to see that [1,10] are also VK-PKE.

3 A Posteriori Openable Public Key Encryption

An APO-PKE is a public key encryption scheme, where Alice can use receiver
public keys to send them encrypted messages that can be opened thanks to
the corresponding secret keys. The goal of an APO-PKE is to allow Alice to
keep enough information to be able to construct a key to a posteriori open a
sequence of messages that she had encrypted during an interval of time. We do
not consider real time but a sequence of n successive ciphertexts {Cx}1≤x≤n that
have been encrypted by Alice with possibly different public keys. Then with an
APO-PKE, it is possible for Alice to extract a key for a judge that opens all
ciphertexts between the message Ci and the message Cj where 1 ≤ i < j ≤ n.
We call this key an interval-key denoted by Kpko

i→j where pko is the public key of
the opener (here the judge). Moreover before encrypting her first message with
a public key, Alice needs to initialize a secret global state denoted st. The goal of
st is to keep all required information to generate an interval-key and to encrypt a
new message. Naturally each time Alice encrypts a message with a public key, st
is updated (but has a constant size). Finally an APO-PKE, formally described in
Definition 4, contains an algorithm that opens all ciphertexts in a given interval
of time thanks to the interval-key forged by Alice.

Note that all key pairs come from the same algorithm APOgen. However, for
the sake of clarity, we denote by pko and sko (for opener public key and opener
secret key) the keys of an interval-key recipient, e.g. a judge that can open some
messages, denoted by O (for opener) in the rest of the paper.

A Posteriori Openable Public Key Encryption 23

Definition 4 (A Posteriori Openable Public Key Encryption
(APO-PKE)). An APO-PKE is defined by:

APOgen(1k): This algorithm generates a key pair for a user. It returns a pub-
lic/private key pair (pk, sk).

APOini(1k): This algorithm initializes a global state st and returns it.
APOencstpk(m): This algorithm encrypts a plain-text m using a public key pk and

a global state st. It returns a ciphertext C and st updated.
APOdecsk(C): This algorithm decrypts a ciphertext C using the secret key sk. It

returns a plaintext m or ⊥ in case of error.
APOextstpko(Ci, Cj): This algorithm generates an interval-key Kpko

i→j that allows
the owner O of the public key pko to decrypt all messages {Cx}i≤x≤j using
algorithm APOpen.

APOpensko(K
pko
i→j , {Cx}i≤x≤j , {pkx}i≤x≤j): Inputs of this algorithm contain a

ciphertext set {Cx}i≤x≤j and all the associated public keys {pkx}i≤x≤j. This
algorithm allows a user to decrypt all encrypted messages sent during an
interval using his secret key sk and the corresponding interval-key Kpko

i→j. It
returns a set of plaintexts {mx}i≤x≤j or ⊥ in case of error.

In Scheme 1, we give a generic construction of APO-PKE based on an
IND-CPA secure RCD-PKE and three hash functions.

Scheme 1 (Generic APO-PKE (G-APO)). Let k be a security parameter, E =
(Gen,Enc,Dec) be a RCD and VK PKE scheme, R be the set of possible random
coins of E and F : {0, 1}∗ → {0, 1}k, G : {0, 1}∗ → R and H : {0, 1}∗ →
{0, 1}2k be three universal hash functions. Our generic APO-PKE is defined by
the following six algorithms where ⊕ denotes the exclusive-or, |x| denotes the bit
size of message x and y||z the concatenation of y with z:

APOgen(1k): This algorithm generates (pk, sk) with Gen and returns it.
APOini(1k): This algorithm picks three random values σ̂

$← {0, 1}k, σ̃
$← {0, 1}k

and K
$← {0, 1}k of the same size, and returns the state st = (K||σ̂||σ̃).

APOencstpk(m): We note that st = (K||σ̂N ||σ̃N). This algorithm picks a random
m̂ such that |m̂| = |m| and computes m̃ = m̂ ⊕ m. Let σ̂

$← {0, 1}k and
σ̃

$← {0, 1}k be two random values of size |σ̂N |. This algorithm computes
̂C = Encpk(m̂||(σ̂ ⊕ F(σ̂N));G(σ̂N)) and ˜C = Encpk(m̃||(σ̃N ⊕ F(σ̃));G(σ̃)).
It also computes D = (σ̂N ||σ̃) ⊕ H(K|| ̂C|| ˜C). Finally it updates the state st

with (K||σ̂||σ̃) and returns C = (̂C|| ˜C||D).
APOdecsk(C): The decryption algorithm computes the decryption of m̂||σ̂ =

Decsk(̂C) and the decryption of m̃||σ̃ = Decsk(˜C), where C = (̂C|| ˜C||D).
It returns m = m̂ ⊕ m̃.

APOextstpko(Ci, Cj): Using the state st = (K||σ̂N ||σ̃N), Ci = (̂Ci|| ˜Ci||Di) and
Cj = (̂Cj || ˜Cj ||Dj), this algorithm computes σ̂i−1||σ̃i = Di ⊕ H(K|| ̂Ci|| ˜Ci)
and σ̂j−1||σ̃j = Dj ⊕ H(K|| ̂Cj || ˜Cj). It picks r

$← R and returns Kpko
i→j =

Encpko((σ̂i−1||σ̃j); r).

24 X. Bultel and P. Lafourcade

APOpensko(K
pko
i→j , {(̂Cx|| ˜Cx||Dx)}i≤x≤j , {pkx}i≤x≤j): This algorithm begins to

recovering values σ̂i−1||σ̃j = Decsko(K
pko
i→j).

– For all x in {i, i + 1, . . . , j}, it computes ̂R = G(σ̂x−1) and opens ̂Cx

as follows m̂x||σ̂∗
x = CDec

̂R(̂Cx, pkx). It computes the next σ̂x = σ̂∗
x ⊕

F(σ̂x−1). If Encpkx
((m̂x||σ̂∗

x);G(σ̂x−1)) �= ̂Cx then it returns ⊥.
– For all x in {j, j − 1, . . . , i}, it computes ˜R = G(σ̃x) and opens ˜Cx as

follows m̃x||σ̃∗
x−1 = CDec

˜R(˜Cx, pkx). It computes the previous σ̃x−1 =
σ̃∗

x−1 ⊕ F(σ̃x). If Encpkx
((m̃x||σ̃∗

x−1);G(σ̃x)) �= ˜Cx then it returns ⊥.
Finally, it returns {m̂x ⊕ m̃x}i≤x≤j.

The encryption algorithm APOenc separates the plaintext m in two parts
using xor operation such that m = m̂⊕ m̃. We generate two random coins σ̂ and
σ̃. Using the two previous coins σ̂N and σ̃N in the state st, we encrypt into two
different ciphertexts ̂C and ˜C the following two messages m̂||(σ̂ ⊕ F(σ̂N)) and
m̃||(σ̃N ⊕ F(σ̃)). Finally we hide the usefull random elements with H(K|| ̂C|| ˜C).

Knowing the secret key it is possible to recover m̂ and m̃ and then to obtain
the plaintext m thanks to the algorithm APOdec.

An interval-key for the owner O of a public key pko is constructed using the
algorithm APOext. It is simply the encryption with pko of σ̂N and σ̃. At each
encryption, the values σ̂i−1 and σ̃i are masked by a “one time pad” with the
digest H(K|| ̂Ci|| ˜Ci) in Di. Then with the ciphertexts Ci, Cj and the secret value
K we can construct an interval-key that contains these values σ̂i−1 and σ̃j .

Using an interval-key Kpko
i→j it is possible to open all ciphertexts encrypted

during an interval of time with the algorithm APOpen: thanks to the RCD prop-
erty, someone who knows values σ̂N and σ̃ for one ciphertext can open each part
̂C and ˜C of it in order to recover σ̂ and σ̃N , and m̂ and m̃, hence m. We also
notice that with σ̂i it is possible to decrypt all ciphertexts in { ̂Cx}(i+1)≤x≤N . In
the other hand, with σ̃j it is possible to decrypt all ciphertexts in { ˜Cx}1≤x≤j .
Then it is possible to recover all messages between Ci and Cj . Thus, it is possible
to decrypt all messages between Ci and Cj with the knowledge of σ̂i−1 and σ̃j .

If the interval always contains the first message, we give a more efficient
algorithm. The idea is to only keep one part of the ciphertext, by consequence
we do not need to split into two the message m. Hence the size of the ciphertext is
smaller. Similarly if the algorithm always ends with the last encrypted message,
we can also drop one half of the ciphertext and the tag value following the same
idea. These simpler schemes are given in the full version of this paper [6].

4 Model and Security

We present the security properties of an APO-PKE scheme and we analyze the
security of our G-APO scheme. The first security property corresponds to a
chosen-plaintext attack scenario where the adversary has access to interval-
keys on intervals that do not contain the challenge. We next introduce the
notion of indistinguishability under chosen sequence of plaintext attack security

A Posteriori Openable Public Key Encryption 25

(IND-CSPA) that corresponds to a chosen-plaintext attack scenario where the
challenge is an interval of ciphertexts and the corresponding interval-key gener-
ated for a given judge public key. The last property is integrity, and captures
the integrity of messages decrypted by APOpen algorithm. All security proofs
are detailed in [6].

4.1 IND-CPA security

It concerns the resistance of an APO-PKE against a collusion of adversaries that
have access to interval-keys in a chosen-plaintext attack scenario. For example, if
we consider a judge who receives an interval-key to open a sequence of ciphertexts
and who colludes with ciphertext recipients; then it ensures that they cannot
deduce any information about messages that are not in the sequence. Indeed,
he cannot request an interval-key for an interval containing the challenge. We
define the OT-IND-CPA security when only one interval-key can be asked during
the experiment. Our scheme is proved secure in this model.

Definition 5 (OT-IND-CPA Experiment). Let Π be an APO-PKE, let k be
a security parameter, and let A = (A0,A1) be a pair of polynomial time algo-
rithms. We define the one-time indistinguishability under interval opener chosen-
plaintext attack (OT-IND-CPA) experiment as follows:

ExpOT-IND-CPA
Π,A (k):

b
$← {0, 1}

(pk∗, sk∗) ← APOgen(1k)
st∗ ← APOini(1k)
(m0,m1, state) ← A0(1

k, pk∗)
C∗ ← APOencst∗pk∗(mb)

b′ ← A1(state, C∗)
If b = b′ return 1, else 0

The adversaries A0 and A1 have access to the following oracles:

OCPA
enc : On the first call to this oracle, it initializes the following values l = 1 and

n = 1. This oracle takes as input a public key pk and a message m. It returns
Cl = APOencst∗pk (m). It increments the counter l. Only in the first phase, it
increments the value n that counts the number of calls to the encryption
oracle before the generation of the challenge.

OCPA
ext : The adversary can ask this oracle only one time during the experiment.
This oracle takes a public key pko and two ciphertexts C ′

a and C ′
b. In the

second phase, if there exists Ci = C ′
a and Cj = C ′

b such that i ≤ n ≤ j
then the oracle rejects the query. Else, if C ′

a = Cn or C ′
b = Cn, it rejects the

query. Else it returns APOextst∗pko(C
′
a, C ′

b).

We also define the IND-CPA experiment as the same as the OT-IND-CPA exper-
iment except that the adversary can ask the oracle APOext several times.

26 X. Bultel and P. Lafourcade

Definition 6 (OT-IND-CPA Advantage). The advantage of the adversary
A against OT-IND-CPA is defined by:

AdvOT-IND-CPA
Π,A (k) = |Pr[ExpOT-IND-CPA

Π,A (k) = 1] − 1
2
|

We define the advantage on OT-IND-CPA experiment by:

AdvOT-IND-CPA
Π (k) = max{AdvOT-IND-CPA

Π,A (k)}
for all A ∈ poly(k). The advantages on IND-CPA experiment are similar to those
of OT-IND-CPA. We say that a APO-PKE scheme Π is OT-IND-CPA (resp.
IND-CPA) secure when AdvOT-IND-CPA

Π (k) (resp. AdvIND-CPA
Π (k)) is negligible.

Our construction is not IND-CPA since if a judge has two interval-keys for
two different intervals of time given by the same user and computed with the
same secret value then he can open all messages between the two extreme dates.

Theorem 1. Let E be an IND-CPA secure RCD-PKE, then G-APO based on E
is OT-IND-CPA secure in the random oracle model.

Proof idea: To prove the OT-IND-CPA security, we show first that no polynomial
adversary wins the experiment with non negligible probability using the oracle
OCSPA

ext in an interval of previous ciphertexts of the challenge. The interval-key
allows to open the part ̂C∗ of the challenge C∗, but since the PKE is IND-CPA then
the interval-key gives no information about the part of the challenge encrypted
in the part ˜C∗. Similarly, we then prove that no adversary can win using the
oracle in an interval of next ciphertexts of the challenge. Finally, using this two
results, we show that our scheme is OT-IND-CPA in any case. 	

4.2 IND-CSPA security

A sequence of ciphertexts coupled with an interval-key can be seen as an unique
ciphertext that encrypts a sequence of plaintexts because the open algorithm
allows a judge to decrypt all the messages of the sequence with the knowledge
of any secret key. Thus, we define a security model where the adversary must
distinguish the sequence of plaintexts used to produce a challenge sequence of
ciphertexts associated to an interval-key. The IND-CSPA security captures this
security property. In this model, the adversary is a collusion of users that must
distinguish the sequence of plaintexts used to produce a sequence of ciphertexts
given the corresponding interval-key generated for the judge.

Definition 7 (IND-CSPAφ Experiment). Let Π be an APO-PKE, let k be a
security parameter, and let A = (A0,A1) be a pair of polynomial time algorithms.
We define the indistinguishability under chosen sequence of plaintext attack
(IND-CSPAφ) experiment as follows, where n denotes the number of calls to the
encryption oracle during the first phase and φ denotes the number of calls to the
generation oracle:

A Posteriori Openable Public Key Encryption 27

Exp
IND-CSPAφ

Π,A (k):

b, d
$← {0, 1}

(pko∗, sko∗) ← APOgen(1k)
st∗ ← APOini(1k)
(q, {m0

x}n<x≤n+q, {m1
x}n<x≤n+q, {pkx}n<x≤n+q, state) ← A0(1

k, pko∗)
∀ x ∈ {n + 1, n + 2, ..., n + q} :

if pkx comes from OCSPA
gen then C∗

x = APOencst∗pkx
(mb

x)

else, C∗
x = APOencst∗pkx

(md
x)

K
pko∗
(n+1)→(n+q) ← APOextst∗pko∗(Cn+1, Cn+q)

b′ ← A1(state, {C∗
x}n<x≤n+q,K

pko∗
(n+1)→(n+q))

If b = b′ return 1, else 0

The adversaries A0 and A1 have access to the following oracles:

OCSPA
gen : At the first call, the oracle creates a keys’ list K that contains (pko∗, sko∗).
At each call, it generates values (pk, sk) from APOgen(1k) and adds it to K.
Then it returns pk. This oracle can be called only φ times.

OCSPA
enc : This oracle takes as inputs a public key pk and a message m. Only in
the first phase, it increments the value n that counts the number of calls to
the encryption oracle before the generation of the challenge.
In the two phases, it returns APOencst∗pk (m).

OCSPA
ext : This oracle takes as input two ciphertexts Ci and Cj. It returns the
interval-key K

pko∗
i→j = APOextst∗pko∗

(Ci, Cj).
In the first phase The challenger generates (pko∗, sko∗) from APOgen(1k)

and a state st∗ from APOini(1k). He sends the public key pko∗ to the adversary.
The challenger initializes a counter n that counts number of calls to the oracle
OCSPA

enc during this phase. Finally, the adversary sends to the challenger values
(q, {m0

x}n<x≤(n+q), {m1
x}n<x≤(n+q), {pkx}n<x≤n+q, state).

In second phase, the challenger computes a sequence of ciphertexts from
the adversary’s output. He encrypts messages of one of the two sequences. The
sequence of produced ciphertexts forms the challenge. More formally, the chal-
lenger picks two random bits b and d. Then, ∀ x ∈ {n + 1, n + 2, ..., n + q}, if
pkx corresponds to an honest user (i.e. pkx comes from oracle OCSPA

gen) then
he computes C∗

x = APOencst∗pkx
(mb

x) else if pkx corresponds to a dishonest
user (i.e. pkx comes from the adversary), he computes C∗

x = APOencst∗pkx
(md

x).

Finally, he computes K
pko∗
(n+1)→(n+q) = APOextst∗pko∗

(Cn+1, Cn+q) and he sends

(state, {C∗
x}n<x≤(n+q),K

pko∗
(n+1)→(n+q)) to the adversary A1. During the guess

phase, the adversary returns the bit b′. If b′ = b then A wins.

Definition 8 (IND-CSPA Advantage). We define the advantage of A against
IND-CSPA by:

Adv
IND-CSPAφ

Π,A (k) = |Pr[ExpIND-CSPAφ

Π,A (k) = 1] − 1
2
|

We define by:
Adv

IND-CSPAφ

Π (k) = max{AdvIND-CSPAφ

Π,A (k)}

28 X. Bultel and P. Lafourcade

for all A ∈ poly(k) the advantage on IND-CSPA. We say that an APO-PKE
scheme Π is IND-CSPA secure when the advantage Adv

IND-CSPAφ

Π (k) is negligible
for any polynomial φ.

Theorem 2. Let E be a PKE that is RCD, then G-APO using E is IND-CSPA
secure in the random oracle model.

Proof idea: In [2] authors prove that any IND-CPA PKE is still secure in multi-
user setting, i.e. where the adversary can ask several challenges for several dif-
ferent public keys. Without interval-key oracle, the IND-CSPA security of our
scheme can be reduced to the IND-CPA of the PKE in multi-user setting since
the challenge corresponds to ciphertexts of several messages from several public
keys. Moreover, since the interval-keys from the oracle are encrypted, then the
adversary must break the IND-CPA security of PKE to use it. It is possible to
prove that no adversary can efficiently break the IND-CSPA of our scheme using
these two arguments. 	

4.3 Integrity

The last security property for APO-PKE is the integrity. This property is similar
to binding property of TRE defined in [11]. The judge must be sure that the
messages he decrypts with APOpen algorithm are the sent messages.

Definition 9 (Integrity Experiment). Let Π a APO-PKE, let k be a secu-
rity parameter, and let A a polynomial time algorithm. We define the integrity
experiment as follows:

ExpIntegrity
Π,A (k):

(pko∗, sko∗) ← APOgen(1k)

(N, {Cx}1≤x≤N , {pkx}1≤x≤N , l, skl, i, j,K
pko∗
i→j) ← A(1k, pk∗)

if (pkl, skl) is not a valid key pair then return 0

{mx}i≤x≤j ← APOpensko∗(K
pko∗
i→j , {Cx}i≤x≤j , {pkx}i≤x≤j)

if ml �= APOdecskl(Cl) then return 1, else 0.

The challenger generates (pko∗, sko∗) from APOgen(1k) and sends the public
key pko∗ to the adversary. The adversary A sends to the challenger an inte-
ger N , an ordered set of N ciphertexts {Cx}1≤x≤N and an ordered set of N
public keys {pkx}1≤x≤N . The adversary then sends two integers i and j and
the corresponding interval-key K

pko∗
i→j . He finally sends the integer l and the

secret key skl corresponding to pkl. If (pkl, skl) is not a valid key pair then the
challenger aborts and returns 0. The challenger then computes {mx}i≤x≤j ←
APOpensko∗(Kpko∗

i→j , {Cx}i≤x≤j , {pkx}i≤x≤j). If ml �= APOdecskl
(Cl) then the

challenger returns 1, else he returns 0.

Definition 10. The advantage of A against integrity is defined by:

AdvIntegrityΠ,A (k) = Pr[ExpIntegrityΠ,A (k) = 1]

A Posteriori Openable Public Key Encryption 29

The advantage against integrity by:

AdvIntegrityΠ (k) = max{AdvIntegrityΠ,A (k)}

for all A ∈ poly(k). We say that a APO-PKE scheme Π satisfies the integrity
property AdvIntegrityΠ (k) is negligible.

Theorem 3. Let E be a RCD and VK PKE that is IND-CPA secure, then G-APO
using this PKE satisfies the integrity property.

Proof idea: Since the judge has all the random coins and all the public keys
used to encrypt all the opened messages, he can use them to re-encrypt these
messages. Thus, if the ciphertexts that he opens correspond to the ciphertexts
that he encrypts by himself, then he can conclude that the opened messages are
the same as the messages decrypted by the recipient secret keys. 	

5 Conclusion

We introduce the notion of RCD-PKE. Based on this notion, we propose an a
posteriori openable PKE (APO-PKE) scheme. Our scheme allows a user to prove
his innocence by showing to a judge the content of his encrypted communica-
tion with several PKE during a period of time. Our construction preserves the
privacy of the others communications, meaning that the judge cannot learn any
information concerning the other encrypted messages. Moreover the receivers of
the encrypted messages cannot collude in order to learn more information that
is contained in the received messages. Our construction is proven secure in the
Random Oracle Model and is generic because it only requires RCD-PKE and
hash functions.

In the future, we aim at proving that is not possible to have a secure con-
struction that supports several generations of interval key with constant size
interval-key and stored data (state). Another future work is to design a secu-
rity model for chosen-ciphertext security of APO-PKE and to provide a generic
construction that achieves this higher security. Finally, it may be interesting to
design such a scheme in the standard model.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHIES: an encryption scheme based on the
Diffie-Hellman problem. Contributions to IEEE P1363a, September 1998

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Blake, I.F., Chan, A.C.-F.: Scalable, server-passive, user-anonymous timed release
public key encryption from bilinear pairing. In: ICDS. IEEE Computer Society
Press (2005)

30 X. Bultel and P. Lafourcade

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

6. Bultel, X., Lafourcade, P.: A posteriori openable public key encryption. Tech-
nical report, University Clermont Auvergne, LIMOS (2015). http://sancy.
univ-bpclermont.fr/∼lafourcade/APOPKE.pdf

7. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

8. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-
release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

9. Cheon, J.H., Hopper, N.J., Kim, Y.-D., Osipkov, I.: Timed-release and key-
insulated public key encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

11. Dent, A.W., Tang, Q.: Revisiting the security model for timed-release encryption
with pre-open capability. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)

12. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

15. Galindoa, D., Herranz, J.: On the security of public key cryptosystems with a
double decryption mechanism. Inf. Process. Lett. 108(5), 279–283 (2008)

16. Goldreich, O., Pfitzmann, B., Rivest, R.L.: Self-delegation with controlled propa-
gation - or - what if you lose your laptop. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 153–168. Springer, Heidelberg (1998)

17. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

18. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: 45th ACM STOC,
pp. 555–564. ACM Press (2013)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

20. Hanaoka, G., Weng, J.: Generic constructions of parallel key-insulated encryp-
tion. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 36–53.
Springer, Heidelberg (2010)

21. Hwang, Y.-H., Yum, D.H., Lee, P.J.: Timed-release encryption with pre-open capa-
bility and its application to certified e-mail system. In: Zhou, J., López, J., Deng,
R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg
(2005)

http://sancy.univ-bpclermont.fr/~lafourcade/APOPKE.pdf
http://sancy.univ-bpclermont.fr/~lafourcade/APOPKE.pdf

A Posteriori Openable Public Key Encryption 31

22. Klonowski, M., Kubiak, P., Kuty�lowski, M.: Practical deniable encryption. In: Gef-
fert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.)
SOFSEM 2008. LNCS, vol. 4910, pp. 599–609. Springer, Heidelberg (2008)

23. Libert, B., Quisquater, J.-J., Yung, M.: Parallel key-insulated public key encryption
without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol.
4450, pp. 298–314. Springer, Heidelberg (2007)

24. May, T.: Time-release crypto. Manuscript (1993)
25. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,

R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)
26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-

CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
27. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: A usability evaluation of

PGP 5.0. In: Proceedings of the 8th Conference on USENIX Security Symposium
- SSYM 1999, vol. 8, p. 14. USENIX Association, Berkeley (1999)

http://www.springer.com/978-3-319-33629-9

	A Posteriori Openable Public Key Encryption
	1 Introduction
	2 Random Coin Decryptable Public Key Encryption
	3 A Posteriori Openable Public Key Encryption
	4 Model and Security
	4.1 IND-CPA security
	4.2 IND-CSPA security
	4.3 Integrity

	5 Conclusion
	References

