
Chapter 2
Hyperbolic Surfaces

For the purposes of this book, a surface is a connected, orientable two-dimensional
smooth manifold, without boundary unless otherwise specified. Throughout the
book we will restrict our attention to surfaces which are topologically finite, meaning
that the surface is homeomorphic to a compact surface with finitely many points
excised. An end is an equivalence class of neighborhoods which are contractible
to one of these excised points. Topologically finite surfaces are classified up to
diffeomorphism by the genus g and the number of ends n. The corresponding value
of the Euler characteristic is � D 2 � 2g � n. An example is shown in Figure 2.1.

Definition 2.1. A hyperbolic surface is a smooth surface equipped with a complete
Riemannian metric of constant Gaussian curvature �1.

For � � 0 there are only a few special cases of hyperbolic surfaces (the plane
and cylinders), but any topological surface with � < 0 admits a family of hyperbolic
metrics. After a brief introduction to plane hyperbolic geometry, the main point of
this chapter will be a classification of hyperbolic surfaces. For the later analysis we
are particularly interested in the structure of the ends.

2.1 The Hyperbolic Plane

Up to isometry, there is a unique simply connected hyperbolic surface, called the
hyperbolic plane, for which there are several standard models. The model we will
use most frequently is the upper half-plane,

(2.1) H WD ˚
z D x C iy 2 C W y > 0

�
; ds2 D dx2 C dy2

y2
:
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8 2 Hyperbolic Surfaces

Fig. 2.1 A surface of genus two with three ends, for which � D �5.

The other standard alternative is the unit disk model (or Poincaré disk),

(2.2) B WD ˚
z 2 C W jzj < 1

�
; ds2 D 4

dx2 C dy2

.1 � jzj2/2
:

Most calculations are simpler in H, but B has the advantage that the boundary is
treated uniformly.

In either model, the Möbius transformations provide a natural set of orientation-
preserving maps. Given the matrix,

(2.3) T D
�

a b
c d

�
;

the corresponding Möbius transformation is

z 7! Tz WD az C b

cz C d
:

Note that T is invertible as a map if and only if det T ¤ 0 as a matrix. And rescaling
T ! �T does not change the action. Hence Möbius transformations are naturally
identified with the matrix group,

PSL.2;C/ WD SL.2;C/=f˙Ig:

A map T 2 PSL.2;C/ will preserve H if and only if its coefficients are real, so the
group of Möbius automorphisms of H is PSL.2;R/.

Proposition 2.2. The group of orientation-preserving isometries of H is the group
PSL.2;R/ of Möbius transformations preserving the upper half-plane.

Proof. Because the hyperbolic metric is conformally related to the Euclidean
metric, an isometry H ! H preserves Euclidean angles in particular and so must be
a conformal automorphism of the upper half-plane. The Schwarz lemma implies that
the only such automorphisms are Möbius transformations. Thus isometries must be
Möbius.
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To see the converse, note that in complex coordinates the hyperbolic metric can
be written

ds2 D jdzj2
.Im z/2

:

Suppose that T 2 PSL.2;R/ is represented as in (2.3), with det T D 1. We simply
compute,

(2.4) T 0.z/ D 1

.cz C d/2
; Im.Tz/ D Im z

jcz C dj2 ;

where T 0 denotes the complex derivative. (In the notation we distinguish between
the action z ! Tz and the function T 0.z/.) Using these to compute the pullback of
the metric gives

T�.ds2/ D jT 0.z/ dzj2
.Im Tz/2

D ds2;

which shows that T is an isometry. ut
Any Möbius transformation from the upper half-plane onto the unit disk, for

example

(2.5) z 7! z � i

z C i
;

will give an isometry H ! B. From this we can immediately deduce that the
(orientation-preserving) isometry group of B is the group of Möbius transformations
preserving the unit disk. This is identified with the matrix group PSU.1; 1/.

We will make frequent use of the topology of the unit sphere metric on the
Riemann sphere C [ f1g. For z 2 C, w 2 C [ f1g, the unit sphere distance
function is given by

d1.z; w/ WD

8
ˆ̂̂
<

ˆ̂̂
:

2jz � wj
p

.1 C jzj2/.1 C jwj2/
w 2 C;

2
p

1 C jzj2 w D 1:

For example, we define the boundary of H with respect to this topology, as the one-
point compactification of the real line,

@H WD R [ f1g:
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For the B model the Riemann sphere topology is equivalent to the Euclidean
topology, and we simply have @B WD S1.

When considering Möbius transformations, it is convenient to define a circle in
C in the generalized sense of a circle with respect to d1. Any Euclidean circle or
straight line in C is a circle in this sense.

The large isometry group makes it easy to determine the geodesics of the
hyperbolic plane, which turn out to be circles of a certain type.

Proposition 2.3. The geodesics of H are precisely the arcs of circles intersecting
@H orthogonally. Similarly the geodesics of B are circles intersecting @B orthogo-
nally.

Proof. First, we claim that the positive y-axis is a geodesic. Let � W Œt1; t2� ! H be
some curve connecting ia to ib, where a < b. The hyperbolic length of the curve is
given by integrating ds along �, so if we write �.t/ D x.t/ C iy.t/, then

`.�/ D
Z t2

t1

p
x0.t/2 C y0.t/2

y.t/
dt

�
Z t2

t1

jy0.t/j
y.t/

dt

�
Z t2

t1

.log y.t//0 dt

D log.b=a/:

It’s clear from this calculation that the minimum is achieved if and only if y0.t/ > 0

and x0.t/ D 0 (which implies x.t/ D 0). Thus the y-axis is a path of shortest distance
and hence geodesic.

Now suppose that � W R ! H is an arbitrary geodesic. By a Möbius
transformation R we can send �.0/ to i and rotate � 0.0/ to i also. By uniqueness
of the geodesic with given starting position and velocity, this implies that R ı �

parametrizes the y-axis. The characterization of � follows easily because PSL.2;R/

preserves circles as well as angles and fixes @H.
Conversely, any arc of a generalized circle intersecting @H orthogonally could be

mapped to the y-axis by an isometry and is therefore geodesic. The same reasoning
applies to B. ut

From Proposition 2.3 it follows that there is a unique geodesic arc connecting
any two distinct points z; w 2 H[ @H. We will denote this segment by Œz; w�. When
z; w 2 H, the hyperbolic distance is defined by

d.z; w/ WD `.Œz; w�/:
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Proposition 2.4. For z; z0 2 H the hyperbolic distance is given by

(2.6) cosh d.z; z0/ D 1 C jz � z0j2
2yy0

Proof. A simple exercise using the formula for T 0.z/ from (2.4) shows that

jTz � Twj2 D ˇ
ˇT 0.z/T 0.w/.z � w/2

ˇ
ˇ:

The second identity in (2.4) then makes it obvious that the right-hand side of (2.6)
is invariant under isometries. Since the distance function is invariant by definition, it
suffices to check the formula for two general points on the y-axis. The computation
in the proof of Proposition 2.3 shows that d.ia; ib/ D log.b=a/, which verifies (2.6).

ut
Elements of PSL.2;R/ are classified by their fixed points. The solutions of the

equation z D Tz are roots of the polynomial cz2 C .d � a/z � b, whose discriminant
is .d � a/2 C 4bc D .tr T/2 � 4. The sign of the discriminant determines how the
fixed points are situated within H.

Definition 2.5. A transformation T 2 PSL.2;R/ is:

1. elliptic if tr T < 2, implying one fixed point within H (with a matching point in
the lower half-plane);

2. parabolic if tr T D 2 (and T ¤ I), with a single degenerate fixed point in @H;
3. hyperbolic if tr T > 2, yielding two distinct fixed points in @H, one attracting and

one repelling.

(The double usage of the term “hyperbolic” here is standard but potentially
confusing; note that all three types of transformations could reasonably be called
“hyperbolic isometries.”) Figure 2.2 shows the fixed points and circles preserved
by each type of isometry. Since traces are preserved under conjugation, the same
classification by traces applies in PSU.1; 1/ as well.

Consider an elliptic transformation T , with fixed point z0 2 H. Let Q be a Möbius
transformation mapping H onto B such that Q.z0/ D 0. Then QTQ�1 fixes the origin
and so must be a rotation of the form z 7! ei� z, by the Schwarz lemma. Hence the
conjugacy class of an elliptic transformation is determined by the rotation angle.

elliptic parabolic hyperbolic

axis

Fig. 2.2 Isometries of H.
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A parabolic transformation can be conjugated to a map whose fixed point
is 1. The only such maps are horizontal translations z 7! z C b for b 2 R.
A further conjugation by the dilation R W z 7! jbj�1z reduces this translation to
z 7! z ˙ 1. Thus, within PSL.2;R/ there are two conjugacy classes of parabolic
transformations, corresponding to left or right translations.

The standard form for a hyperbolic transformation is given by conjugating the
repelling fixed point to 0 and the attracting fixed point to 1. The resulting map must
be a dilation z 7! e`z with ` > 0. The conjugacy classes of hyperbolic elements are
indexed by the positive number ` D `.T/, called the displacement length of T .

There is a unique geodesic ˛.T/ called the axis connecting the fixed points of
a hyperbolic transformation T , as shown in Figure 2.2. By conjugating T to the
standard dilation form as above, we see immediately that the displacement length
`.T/ is the distance by which points on ˛.T/ are translated. Since conjugation
preserves traces, this implies

tr.T/ D 2 cosh.`.T/=2/:

By applying (2.6) to give a simple expression for cosh d.z; e`z/, we can easily see
that the displacement length satisfies

(2.7) `.T/ D min
z2H d.z; Tz/;

with the minimum achieved if and only if z lies on ˛.T/.
Other geometric features of H which will be important to us are the area form,

(2.8) dg.z/ D dx dy

y2
;

and the formula for the Laplacian. The (positive) Laplacian on a Riemannian
manifold is defined globally by � D �div grad. In local coordinates xi, with the
metric given by ds2 D gijdxidxj, this translates to

� D � 1p
det g

@i

�
gij

p
det g @j

�
;

where gij denotes the components of the inverse matrix to gij. For the hyperbolic
metric on H, the resulting operator is

� D �y2.@2
x C @2

y/:

In addition to the H and B models, we will make frequent use of geodesic
normal coordinates for hyperbolic metrics. These are coordinates .r; t/ for which
the r-coordinate curves are unit-speed geodesics and the t-coordinate curves are
orthogonal to them. This implies a metric of the form
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(2.9) ds2 D dr2 C '2dt2;

for some function '.r; t/. In any such coordinate system, the Gaussian curvature is
given by the simple formula

K D �@2
r '

'
:

For a hyperbolic metric written in the form (2.9), ' must therefore satisfy

(2.10) @2
r ' D ':

Geodesic polar coordinates .r; �/ 2 RC � S1 are defined so as to be asymptotic
to Euclidean polar coordinates as r ! 0. This means that if we write the metric
in the form dr2 C '2 d�2, then ' � r as r ! 0. In the hyperbolic case, (2.10)
then implies '.r; �/ D sinh r. Hence the geodesic polar form of the metric of a
hyperbolic surface is

(2.11) ds2 D dr2 C sinh2 r d�2:

Two other obvious solutions of (2.10) will be important for us as well: ' D cosh r
and ' D e�r are the model metrics for funnel and cusp ends, respectively.

We let B.wI r/ denote an open neighborhood with respect to the hyperbolic
metric: for w 2 H and r > 0,

B.wI r/ WD fz W d.z; w/ < rg:

In geodesic polar coordinates dg D sinh r dr d� , so that

(2.12) area.B.wI r// D 2	

Z r

0

sinh r dr D 2	.cosh r � 1/:

2.2 Fuchsian Groups

Given the large isometry group of H, a natural way to obtain a hyperbolic surface
is as a quotient 
 nH, for some subgroup 
 � PSL.2;R/. Points in the quotient
correspond to orbits of 
 , and there is a natural projection

	 W H ! 
 nH

given by 	.z/ D 
 z. For the quotient to be well defined as a metric space,
the action needs to be properly discontinuous, which means that the orbits are
locally finite (any compact subset of H contains only finitely many orbit points).
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Conveniently, we can characterize the groups which act properly discontinuously
on H by their topology as subsets of PSL.2;R/. On PSL.2;R/ we use the standard
matrix topology defined by the norm kTk WD .tr T�T/1=2.

Definition 2.6. A Fuchsian group is a discrete subgroup of PSL.2;R/.

One easy way to obtain examples of Fuchsian groups is to choose an even
number of Euclidean disks centered on the real axis, with mutually disjoint closures.
Divide the disks up into pairs, and for each pair choose a hyperbolic transformation
mapping the exterior of one disk to the interior of the other. These transformations
generate a particular kind of Fuchsian group called a Schottky group. We will study
this class in more detail in §15.1.

Proposition 2.7. A subgroup 
 � PSL.2;R/ acts properly discontinuously on H

if and only if it is Fuchsian.

Proof. If a subgroup 
 is Fuchsian, then it is easy to see that any orbit 
 z is discrete.
For any compact K � H, the set 
 z \ K is both discrete and compact and therefore
finite. Hence 
 acts properly discontinuously.

On the other hand, assume that 
 acts properly discontinuously. We claim that
there are points in H not fixed by any element of 
 except I. Indeed, if Tw D w,
then for any z 2 H we have

d.Tz; z/ � d.Tz; Tw/ C d.Tw; z/ D 2d.z; w/;

by the triangle inequality. Proper discontinuity therefore implies that only finitely
many points in any neighborhood of z could be fixed by elements of 
 � fIg.

Hence we can pick a point w not fixed by any element of 
 except I. If 
 is
not discrete, then there exists a sequence fTkg � 
 of distinct elements such that
Tk ! I. By the choice of w, the sequence fTkwg contains only distinct points, and
Tkw ! w contradicts the proper discontinuity of the action. ut

Our requirement that the quotient space to be smooth corresponds to the
condition that 
 act without fixed points. Since only elliptic transformations fix
points within H, this is equivalent to the absence of elliptic elements in 
 . If 
 had
elliptic elements, then the quotient would be an orbifold, with conical singularities
corresponding to the elliptic fixed points. Orbifolds are not intractable from a
spectral theory point of view, because one can always pass to a finite cover. We
omit this case mainly to avoid excessive notational complexity later on.

Hopf’s theorem on the classification of manifolds of constant sectional curvature
implies, in the two-dimensional case, that all hyperbolic surfaces are associated with
Fuchsian groups.

Theorem 2.8 (Hopf). For any hyperbolic surface X there is a Fuchsian group 


with no elliptic elements and a 
 -invariant Riemannian covering map 	 W H ! X
realizing the isometry X Š 
 nH.
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Proof (Sketch). For p 2 X the exponential map expp W TpX ! X defines geodesic
polar coordinates, in which the metric takes the form ds2 D dr2 C sinh2 r d�2

by the assumption of Gaussian curvature �1. The lack of singularity in the
metric for r 2 .0; 1/ implies that expp W TpX ! X is an immersion. With
the geodesic polar coordinates we can identify TpX Š H, and expp induces a
local isometry 	 W H ! X. A local isometry of complete Riemannian manifolds
is automatically a covering map. And since X is a smooth surface, the group of
covering transformations must be Fuchsian with no elliptic elements. (The details
of these arguments involve some differential geometry that will not be needed for
the rest of this book; see, e.g., [155] or [223].) ut

A hyperbolic structure on a surface is defined by an atlas of coordinate patches
identified with open subsets of H, with transition maps given by orientation-
preserving isometries. Theorem 2.8 shows that any hyperbolic metric is induced
by a hyperbolic structure. Of course, since isometries are Möbius transformations,
the hyperbolic structure also induces a complex structure.

A Riemann surface is a one-dimensional complex manifold, so the fact that a
hyperbolic structure on a surface induces a complex structure implies that hyper-
bolic surfaces are a subcategory of Riemann surfaces. One might expect complex
structure to be a more general concept than hyperbolic structure, since analytic
functions need not be Möbius. But the uniformization theorem for Riemann surfaces
says that a smooth Riemann surface is either the Riemann sphere or a quotient of C
or H by a discrete group of conformal automorphisms (see, e.g., [82]). The Riemann
sphere and flat tori are the only compact examples of Riemann surfaces with � � 0.
Every Riemann surface with � < 0 is a hyperbolic surface, so in some sense most
of the Riemann surfaces are hyperbolic.

2.2.1 The Limit Set

A fundamental object associated with a Fuchsian group is the set of accumulation
points of orbits of the group action.

Definition 2.9. For a Fuchsian group 
 , the limit set �.
 / � @H is the set of limit
points (in the Riemann sphere topology) of all orbits 
 z for z 2 H. The complement
of the limit set in @H is the set of ordinary points.

To analyze the limit set, we introduce some basic concepts that will help us
understand the structure of the orbits. A fundamental domain F � H for a Fuchsian
group 
 is a closed region such that


 F WD
[

T2


TF D H;
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and for each T 2 
 � fIg, the interiors of F and TF do not intersect. A convenient
construction of fundamental domain is given by the Dirichlet domain of a point
w 2 H, defined by

(2.13) Dw WD ˚
z 2 H W d.z; w/ � d.z; Tw/ for all T 2 


�
:

Convexity in H is interpreted in terms of hyperbolic geodesics, i.e., a set U � H

is convex if for any z; w 2 U the geodesic arc Œz; w� is a subset of U.

Lemma 2.10. If w is not the fixed point of an elliptic element of 
 , then the
Dirichlet domain Dw is a fundamental domain for 
 . Moreover, Dw is convex and
bounded by a union of geodesics.

Proof. Fix such a w with domain Dw. Given z0 2 H, we can minimize d.z; w/ for
z 2 
 z0 by the discreteness of the orbit. This gives at least one z 2 
 z0 \ Dw,
implying that z0 2 
 Dw. Hence 
 Dw D H.

Suppose now that both z 2 Dw and Rz 2 Dw for R 2 
 � fIg. Then z 2 Dw

implies

d.z; w/ � d.z; Rw/;

and Rz 2 Dw implies

d.Rz; w/ � d.Rz; Rw/ D d.z; w/:

Hence d.z; w/ D d.z; Rw/, so z lies on the boundary of Dw. This shows that the
interiors of Dw and RDw do not intersect, and thus Dw is a fundamental domain.

Note that Dw is an intersection of closed half-planes of the form,

Hw.T/ WD fz 2 H W d.z; w/ � d.z; Tw/g;

for T 2 
 . Thus to prove the second statement, it suffices to check that such
half-planes have geodesic boundary. By conjugation we can assume w D i and
T W z 7! �2z. Then z 2 @Hw.T/ is characterized by d.z; i/ D d.z; i�2/. By (2.6) this
can easily be reduced to jzj D �, which defines a geodesic. ut

The action of 
 on a fundamental domain gives a tessellation of H. An example
is shown in Figure 2.3. The corresponding quotient surface is a funneled torus of
genus one with a single end.

Lemma 2.11. The tessellation fTDw W T 2 
 g is locally finite, meaning that
any compact region of H meets only finitely many copies of Dw, and contains only
finitely many vertices and sides of any particular copy.

Proof. Suppose that B.wI r/ contained infinitely many points of the form zj D Tj.wj/

for wj 2 Dw. Then



2.2 Fuchsian Groups 17

w
Dw

Fig. 2.3 A Dirichlet tessellation of H.

d.w; Tjw/ � d.w; zj/ C d.zj; Tjw/

D d.w; zj/ C d.wj; w/

� 2r:

Thus B.wI 2r/ would contain infinitely many images of w, contradicting the properly
discontinuous action of 
 . ut
Lemma 2.12. If w 2 H is not an elliptic fixed point of 
 , then �.
 / is the set of
limit points of the single orbit 
 w. It follows immediately that �.
 / is closed and
invariant under 
 .

Proof. Let Dw be the Dirichlet domain centered at w. Suppose q 2 �.
 /. Then
there is a z 2 Dw and a sequence fTjg � 
 such that Tjz ! q. Applying the triangle
inequality for the Riemann sphere metric d1 gives

d1.Tjw; q/ � d1.Tjw; Tjz/ C d1.Tjz; q/:

We claim that the first term on the right converges to zero as j ! 1. The second
term does so by assumption, so this would imply Tjw ! q, establishing that q is a
limit point of 
 w.

To prove the claim, suppose that d1.Tjw; Tjz/ doesn’t converge to zero. Because
H [ @H is compact in the topology of d1, by passing to a subsequence we can
assume that Tjw ! p 2 @H and Tjz ! p0 2 @H, where p ¤ p0 by assumption. Then
the geodesic arcs ŒTjw; Tjz� accumulate on Œp; p0�, contradicting Lemma 2.11. ut

2.2.2 Classification of Fuchsian Groups

The standard classification of Fuchsian groups is based on the following characteri-
zation of the limit set.

Theorem 2.13 (Poincaré, Fricke-Klein). The possibilities for the limit set of a
Fuchsian group 
 are:
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1. �.
 / contains 0, 1, or 2 points.
2. �.
 / is a perfect nowhere dense subset of @H.
3. �.
 / D @H.

Proof. Assume that �.
 / contains more than two points. Our first claim is
that then 
 must contain non-elliptic elements. If 
 was purely elliptic, then a
straightforward exercise shows that all elements of 
 have the same fixed point.
(The product of elliptic transformations with different fixed points is hyperbolic;
see, e.g., [142, Thm. 2.4.1]). A group for which all elements fix a single point must
be finite cyclic by discreteness, so �.
 / would be empty in this case.

Now suppose 
 contains a parabolic element. By conjugation we can assume
this parabolic element is T W z 7! z C 1 and therefore 1 2 �.
 /. If every element
of 
 fixed 1 then this would imply that 
 was parabolic cyclic by discreteness,
which would also mean that �.
 / D f1g. Hence, under the assumption that �.
 /

has more than two points, 
 must contain in addition to T some transformation that
does not fix infinity, say

S D
�

a b
c d

�
;

with c ¤ 0. Since

T D
�

1 1

0 1

�
;

a simple computation shows that

tr.TkS/ D a C kc C d:

For k sufficiently large, this implies that jtr TkSj > 2, so that TkS must be hyperbolic.
Hence 
 contains hyperbolic elements.

At this stage, under the assumption that �.
 / contains at least three points, we
have shown that 
 contains at least one hyperbolic element. Our next claim is that
�.
 / is perfect (every point is a limit point). An arbitrary point in �.
 / can be
moved to 0 by conjugation of the group. So it suffices to assume 0 2 �.
 / and
prove that this is a limit point of �.
 /. This is easy if 0 is a hyperbolic fixed point.
In this case 
 contains a dilation T W z 7! e��z for some � > 0. Since �.
 /

contains at least three points, there must exist some q 2 �.
 /, not equal to 0 or 1,
Then Tkq ! 0, showing that 0 is a limit point.

Suppose that 0 2 �.
 / is not a hyperbolic fixed point. We know that 
 contains
some hyperbolic element T with fixed points p1; p2. Choose some point w on the
axis ˛.T/. By Lemma 2.12, since 0 2 �.
 / we can assume that Rjw ! 0 for
some sequence fRjg � 
 . Given " > 0, we can insist that jRjwj < " for all j, by
passing to a subsequence if needed. Then because Rjw lies on the half-circle Rj˛.T/,
at least one of the endpoints Rjp1 or Rjp2 must lie in the interval .�"; "/. Since these
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endpoints are the fixed points of RjTR�1
j 2 
 , this shows that 0 is a limit point of

hyperbolic fixed points. In particular, 0 is a limit point of �.
 /. This completes the
argument that �.
 / is perfect if it contains at least three points.

It remains to show that �.
 / is either @H or nowhere dense. Assume that
�.
 / ¤ @H. Then we have at least one ordinary point a 2 @H � �.
 /. Given
q 2 �.
 / and " > 0, we need to show that there is an ordinary point within " of
q (assuming q ¤ 1 without loss of generality). By the arguments above we can
find a hyperbolic fixed point p within "=2 of q. Let T 2 
 have p as an attractive
hyperbolic fixed point. Then Tka converges to p as k ! 1. Choosing k so that
jTka � pj < "=2 then implies jTka � qj < ". Note that Tka is ordinary since �.
 / is

 -invariant. This shows that there is an ordinary point within every neighborhood
of any point of �.
 /. Therefore, if �.
 / ¤ @H and it contains at least three points,
�.
 / is nowhere dense in @H. ut

With Theorem 2.13 in mind, we introduce some further terminology:

Definition 2.14. A Fuchsian group 
 is said to be:

1. elementary if �.
 / is finite;
2. of the first kind if �.
 / D @H;
3. of the second kind if �.
 / is perfect and nowhere dense.

An alternate definition for elementary group is the condition that 
 has a finite orbit
in H [ @H. This sounds more general than the definition above, but turns out to be
equivalent. Cyclic Fuchsian groups are obviously elementary, with �.
 / consisting
of 0, 1, and 2 points in the elliptic, parabolic, and hyperbolic cases, respectively. The
only other elementary possibility is a group conjugate to the group generated by z 7!
�z and z 7! �1=z, for which �.
 / has 2 points also (see e.g. [142, Thm. 2.4.3]).
Since we assume smoothness, the elementary hyperbolic surfaces consist only of H
and its quotients by hyperbolic or parabolic cyclic groups.

If the quotient 
 nH has finite area, then 
 is called cofinite. Fuchsian groups
of the first kind are precisely the cofinite groups (see e.g. [142, §4.5]). A cofinite
Fuchsian group is called cocompact if the quotient 
 nH is compact. For most of
this book we are concerned with surfaces of infinite area, so our attention will be
focused on Fuchsian groups of the second kind.

2.3 Geometrically Finite Groups

We turn next to the question of what conditions are imposed on the group 
 by the
assumption of topological finiteness of the quotient 
 nH. The answer can be given
in terms of a nice geometric condition.

Definition 2.15. A Fuchsian group (or corresponding hyperbolic surface) is said to
be geometrically finite if there exists a fundamental domain which is a finite-sided
convex polygon.
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There is also an algebraic finiteness condition—we say 
 is finitely generated if
there exists a finite list of transformations that generate the group.

Theorem 2.16 (Geometric Finiteness). For a Fuchsian group 
 the following are
equivalent:

1. 
 nH is topologically finite (i.e., finite Euler characteristic).
2. 
 is finitely generated.
3. 
 is geometrically finite.

A related result which we won’t prove here is Siegel’s theorem, which says that
all cofinite Fuchsian groups are geometrically finite (see e.g. [142, Thm. 4.1.1]).

For the proof of Theorem 2.16 we need to establish some connections between
the structure of the group and the geometry of the Dirichlet domain. In Lemma 2.10,
we saw that the boundary of Dw is a union of geodesics. Since Dw is convex, each
geodesic meets Dw either in a point or in a geodesic segment. The segments in the
boundary are called sides and must take the form

(2.14)
�w.R/ WD ˚

z 2 @Dw W d.z; w/ D d.z; Rw/
�

D Dw \ RDw

for some R 2 
 . By Lemma 2.11, the vertices of Dw are isolated.
Two sides of a Dirichlet domain Dw are called congruent if they are related by

an element of 
 . Notice that if a side is given by �w.R/ ¤ ;, then

R�1�w.R/ D .R�1Dw/ \ Dw D �w.R�1/:

Since this is nonempty as well, �w.R�1/ must also be a side of Dw, congruent to
the original. This is illustrated in Figure 2.4. It follows that the sides of Dw come in
congruent pairs of the form �w.R/; �w.R�1/.

Lemma 2.17. The side-pairing congruences of a Dirichlet domain generate the
group 
 .

Proof. Suppose Dw is a Dirichlet domain. Let 
s � 
 be the subgroup generated
by side-pairing congruences. Clearly, if we define

R−1w Rww

R

R−1
σw(R)σw(R−1)

Fig. 2.4 Side-pairing congruences.
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A WD
[

T2
s

TDw; B WD
[

T2
 �
s

TDw;

then A [ B D H. Furthermore, A and B are closed, since Dw is closed and any
compact region contains only finitely many copies of Dw by Lemma 2.11.

Thus if we can show that A and B are disjoint, the connectedness of H would
imply that B D ; (since A is clearly not empty). To prove disjointness, suppose A
intersects B. This could happen only at a side or vertex of the Dirichlet tessellation.
To rule out a shared side, suppose TDw is adjacent to RDw and TDw � A, with
T 2 
s. This implies R�1TDw is adjacent to Dw, hence R�1T is a generator of 
s,
hence R 2 
s. Thus RDw 2 A, which shows that A cannot meet B along a side.

Ruling out a shared vertex is similar. Suppose that TDw shares a vertex with
RDw and T 2 
s. There can be only finitely many sides of the Dirichlet tessellation
sharing the same vertex. Therefore TDw is connected to RDw by a chain of side-
sharing faces of the tessellation. We saw above that faces in A only share sides with
other faces in A, so we find R 2 
s. Hence A does not intersect B at a vertex, and
this finishes the proof that B D ;. ut
Proof of Theorem 2.16. Lemma 2.17 shows in particular that 3 ) 2. The implica-
tion 1 ) 2 holds because the fundamental group of a finitely punctured compact
surface is finitely generated and 	1.X/ Š 
 . And 3 ) 1 is also clear, because a
surface assembled out of a finite-sided polygon by gluing the sides together in pairs
must have finite Euler characteristic.

The hard part to prove is 2 ) 3. We will follow the approaches from Beardon
[20] and Katok [142]. Assume that 
 is finitely generated, and choose a Dirichlet
domain Dw. By Lemma 2.17 we know that the side pairing transformations of Dw

generate 
 . By assumption, 
 can be generated by finitely many of the side pairing
transformations, say T1; : : : ; Tk.

The strategy is to choose a disk B.wI r/ that includes arcs of positive length of
the 2k sides of Dw paired by the Tj’s. By local finiteness of the sides and vertices
(Lemma 2.11), we can choose r so that the boundary circle @B.wI r/ does not
intersect vertices of Dw and is not tangent to any side. Our goal will be to show that
Dw � B.wI r/ is the union of finitely many connected components, each of which
meets only finitely many sides of Dw. Thus Dw has only finitely many sides outside
of B.wI r/. Since only finitely many sides of Dw meet the interior of B.wI r/, by
Lemma 2.11, this will imply that the total number of sides of Dw is finite.

First we show that 
 B.wI r/ is connected. Clearly B.wI r/ overlaps TjB.wI r/ for
j D 1; : : : ; k, since Tj pairs sides of Dw and B.wI r/ was chosen to include arcs of
such sides. Then we can argue TjB.wI r/ overlaps TjTiB.wI r/, by translation, and so
on. Since the Tj’s generate 
 , by continuing this process we see that 
 B.wI r/ is
connected.

Let �1; : : : ; �m be the arcs of @B.wI r/ \ Dw. If z is an endpoint of �j then it lies
in some side of Dw. Therefore there is a side-pairing R 2 
 such that Rz 2 Dw also.
By definition of the Dirichlet domain, z 2 Dw implies

r D d.z; w/ � d.z; R�1w/ D d.Rz; w/:
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w

Dw

∂B(w; r)

η

Sη

β

Fig. 2.5 Construction of ˇ.

On the other hand Rz 2 Dw implies

d.Rz; w/ � d.Rz; Rw/ D r:

This shows that d.Rz; w/ D r, so that Rz 2 @B.wI r/ also. Therefore Rz must be an
endpoint of some side �i (possibly the other endpoint of the same �j).

It suffices to focus on a single arc � D �j. Given an endpoint of � we can find
another endpoint of some �i congruent to it, and translate that �i by some element
of 
 to add an arc to our original �. Iterating this process in both directions results
in a uniquely defined continuous curve ˇ which is a union of arcs each congruent to
some �i. Since there are only finitely many �i’s, ˇ must eventually include two arcs
congruent to each other, hence there is some nontrivial S 2 
 which preserves ˇ.
This setup is illustrated in Figure 2.5.

Let E be the component of Dw � B.wI r/ meeting �. Our goal is to show that E
meets Dw in only finitely many sides. For this purpose it suffices to show that E does
not meet �.
 /. Observe that the curve ˇ divides H into two components, one of
which contains E and the other w. Since 
 B.wI r/ is connected, ˇ separates all of

 B.wI r/ from E. The limit points of 
 are all limit points of 
 w � 
 B.wI r/. So
the only limit points we need to worry about being close to E are the endpoints of ˇ.

Suppose first that S is hyperbolic. Then ˇ must run between its two fixed points.
By the definition of a Dirichlet domain, Dw is contained in the closed half-planes
fz W d.z; w/ � d.z; Sw/g and fz W d.z; w/ � d.z; S�1w/g. In the notation (2.14),
these half-planes are bounded by arcs �w.S/ and �w.S�1/. These two arcs don’t
intersect (obvious if one conjugates S to a dilation). Since S maps �w.S�1/ to �w.S/,
neither contains a fixed point of S. Therefore E is separated from the limit points of

 (in the d1 metric). If E met infinitely many sides of Dw then there would have
to be a limit point of 
 on its boundary. Since this doesn’t happen, E meets only
finitely many sides of Dw.
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Now consider the case when S is parabolic. If p denotes the fixed point of S, then
the curve ˇ is a closed loop from p to itself. If w lies inside ˇ, then 
 B.wI r/ does
also, and this would imply that p was the only point in �.
 /. Then 
 would be
parabolic cyclic and obviously geometrically finite. So assume that w lies on the
outside of ˇ, in which case E must be contained inside the loop. If E doesn’t meet
the boundary @H then it is separated from the limit points of 
 and then we argue
as above that E meets only finitely many sides of Dw.

So let us suppose that E lies inside ˇ and meets @H at p. We want to control
the shape of Dw nearby. As in the hyperbolic case above, Dw lies between the arcs
�w.S/ and �w.S�1/. These arcs do not intersect in H but are tangent to each other
at p. This implies that a small neighborhood of p meets exactly two sides of Dw

Since otherwise E is bounded away from �.
 /, E meets only finitely many sides
of Dw.

Finally, suppose that S is elliptic, in which case ˇ is a closed loop. If E is
contained in the interior, then it is obviously bounded away from the limit set. But
if w lies in the interior, then �.
 / D ; and the group is cyclic. ut

2.4 Classification of Hyperbolic Ends

Geometric finiteness imposes strong restrictions on the ends of a hyperbolic surface.
We will show that the only possibilities, beyond the hyperbolic plane itself, are
the ends of cylinders, i.e., quotients of H by hyperbolic and parabolic cyclic groups.
We start by examining these model cases.

A hyperbolic transformation T 2 PSL.2;R/ generates a cyclic hyperbolic
group hTi. The quotient C` WD hTinH is a hyperbolic cylinder of diameter ` D `.T/.
By conjugation, we can identify the generator T with the map z 7! e`z, and we
define 
` to be the corresponding cyclic group. A natural fundamental domain for

` would be the region F` WD f1 � jzj � e`g. The y-axis is the lift of the only
simple closed geodesic on C`, whose length is `.

Definition 2.18. A funnel is a closed half of a hyperbolic cylinder, with boundary
given by the central geodesic.

Let T be a hyperbolic transformation of H with displacement length `. If H
denotes one of the open half-planes of H bounded by the axis ˛.T/, then

F` WD hTinH;

is a funnel of diameter `.T/. This is illustrated in Figure 2.6, which also shows the
Riemannian embedding of a portion the funnel into R

3. From the hyperbolic area
form dg given in (2.8), it is clear that

area.F`/ D 1:
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T

Fig. 2.6 Hyperbolic funnel.

The quotient of H by a parabolic cyclic group hTi will be called a parabolic
cylinder. We can always conjugate hTi to the group 
1 generated by z 7! z C 1,
so the parabolic cylinder is unique up to isometry. A natural fundamental domain
for 
1 is F1 WD f0 � Re z � 1g � H. A circle lying in H and tangent to @H is
called a horocycle. The curves stabilized by a parabolic transformation, as shown in
Figure 2.2, are horocycles tangent at the fixed point.

Definition 2.19. A cusp is the small end of a parabolic cylinder, with boundary the
unique closed horocycle of length 1.

There is no canonical choice of boundary for a cusp, but it is convenient to
standardize the definition by fixing the boundary length. To get a cusp from 
1
as defined above, we take the quotient

C WD 
1n˚
0 � Re z � 1; Im z � 1

�
:

To obtain the cusp corresponding to a general parabolic generator T with fixed point
p, we would first find the unique horocycle � tangent to @H at p, such that hTin� has
length one. If O denotes the interior of � then hTinO is the cusp associated with T .
The cusp can be fully embedded into Euclidean R

3, as illustrated in Figure 2.7,
where it forms a portion of the classical pseudosphere. Using the fundamental
domain for 
1 we compute that

area.cusp/ D
Z 1

1

Z 1

0

dx dy

y2
D 1:

The large end of the parabolic cylinder furnishes yet another type of hyperbolic
cylindrical end. This end in some sense just a special case of the funnel. This type
will not play much of a role in our discussion, because it does not occur in any other
hyperbolic surface.
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T

Fig. 2.7 Cusp.

2.4.1 Nielsen Regions

Let us focus on the case of a hyperbolic surface X D 
 nH where 
 is non-
elementary. By Theorem 2.13, �.
 / is either perfect and nowhere dense or equal
to @H. In the former case, @H � �.
 / is a countable union of open intervals Ij. For
each j suppose that �j is the geodesic whose endpoints are the endpoints of Ij, and
Hj is the open half-plane bounded by �j and Ij. If �.
 / D @H then we take the
convention that fHjg D ;.

Definition 2.20. The Nielsen region of a Fuchsian group 
 is the set

(2.15) QN WD H � �[Hj
�

:

The quotient

N WD 
 n QN

is called the convex core of X.

Figure 2.8 shows a sample construction of the Nielsen region, pictured in the
unit disk model for the sake of clarity; the dotted lines mark the boundary of
the fundamental domain. The Nielsen region is also commonly (and equivalently)
defined as the convex hull of the limit set �.
 / in H, meaning the union of geodesic
arcs Œp; q� for all p; q 2 �.
 /. The term “convex core” refers to the fact that N is
the smallest closed, nonempty convex subset of X. If 
 is of the first kind, i.e.,
�.
 / D @H, then QN WD H and N D X.

In Theorem 2.23 we will show that X � N is a finite collection of funnels. But
before we get to that, let us develop a way to isolate the cusps also. The basic idea
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˜N

Hj

Ij

γj

Fig. 2.8 Nielsen region.

is that each parabolic fixed point in �.
 / should have a cusp fundamental region
attached to it. Given a parabolic fixed point p 2 @H, let 
p be the parabolic cyclic
subgroup of 
 fixing p. We take �p to be the unique horocycle tangent to @H at p
such that 
pn�p has length 1. Then let Op be the open region bounded by �p, so that

pnOp is a cusp fitting our convention of boundary length 1.

Lemma 2.21. For �p and Op defined as above, the following statements hold:

1. If two points of Op are related by T 2 
 , then T 2 
p.
2. The horocycles �p for different parabolic fixed points do not intersect.
3. The horocycles �p do not intersect the half-planes Hj defining the Nielsen region,

so that each Op � N.

Proof. Let T be the map z 7! z C 1. By conjugation, we assume that p D 1 and

p D hTi, so that Op D fIm z > 1g. Let S 2 
 be given by

S D
�

a b
c d

�
;

with ad � bc D 1. Assume that S does not fix 1, which implies c ¤ 0. We claim
that in fact jcj � 1. This will prove the first assertion, because then the inequality
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Im.Sz/ D Im z

jcz C dj2 � 1

c2 Im z

shows that any point inside Op is mapped to fIm z < 1g by S.
For the proof that jcj � 1 we follow Kra [145, Lemma II.2.4]. Suppose that

jcj < 1. Define a recursive sequence of Sn 2 
 by setting S0 WD S and

SnC1 WD SnTS�1
n :

If the matrix elements of Sn are denoted an; bn; cn; dn, then the recursive condition
becomes

(2.16)

�
anC1 bnC1

cnC1 dnC1

�
D

�
1 � ancn a2

n

�c2
n 1 C ancn

�
:

In particular, the assumption jcj < 1 implies that

cn D �c2n ! 0;

as n ! 1. Also, from the equation anC1 D 1 � ancn, it is easy to prove inductively
that an is bounded for jcj < 1, and hence that an ! 1. Then by (2.16) we conclude
immediately that bn ! 1 and dn ! 1 also. This shows that SnT�1 ! I within 
 ,
contradicting the discreteness of 
 . We conclude that jcj � 1, and this proves the
first claim.

Still assuming that p D 1, with T and Op as above, let q 2 R be some other
parabolic fixed point of 
 . Then �q is a Euclidean circle tangent to R, and the first
part of the proof shows that no two points of �q could be related by T W z 7! z C 1.
This means in particular that the Euclidean diameter of �q must be strictly less
than 1, and thus �q is too short to intersect Op.

The proof of the third claim is similar to the second. Suppose Hj is one of the
half-planes in question. If 1 is assumed to be a parabolic fixed point, then Hj cannot
include 1 and so must be a Euclidean half-disk centered on R. The full collection
[Hi is invariant under 
 by the invariance of �.
 /. The map T clearly does not
fix Hj, hence no two points of Hj are related by T . This implies that the Euclidean
diameter of Hj is less than 1. Thus the half-planes Hj are contained in the region
fIm z � 1

2
g, whereas Op D fIm z > 1g. ut

Using Lemma 2.21, we can now modify the definition of the Nielsen region so
as to isolate the cusps as well as the funnels.

Definition 2.22. The truncated Nielsen region is

QK WD QN � [Op;

with the union taken over all parabolic fixed points p of 
 . When 
 is geometrically
finite, the corresponding quotient region,
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˜KOp

σp

p

Fig. 2.9 Truncated Nielsen region.

K

N

Fig. 2.10 Convex core N and compact core K.

K WD 
 n QK;

is called the compact core of X.

Figure 2.9 shows an example of the truncated Nielsen region, for the same
Fuchsian group whose Nielsen region was pictured in Figure 2.8. The distinction
between the convex core and compact core is illustrated in Figure 2.10.

Use of the term “compact core” is justified by the following, which is the main
result of this section:

Theorem 2.23 (Classification of Hyperbolic Ends). Let X D 
 nH be a non-
elementary geometrically finite hyperbolic surface. Then the region K defined above
is compact, and X � K is a finite disjoint union of cusps and funnels.



2.5 Length Spectrum and Selberg’s Zeta Function 29

Proof. Suppose 
 is a geometrically finite, non-elementary Fuchsian group. Let Dw

be a Dirichlet fundamental domain for 
 , which can intersect @H only in a finite
number of intervals or isolated points. We saw in the proof of Theorem 2.16 that
Dw could meet �.
 / only at parabolic fixed points. At such a point p, two sides of
Dw must meet tangentially. So if Op is the corresponding horocyclic region Op from
Lemma 2.21, then Dw � Op is bounded away from p in the d1 metric. If Dw meets
@H in an arc � (possibly just a point) consisting of ordinary points, then � must be
included in one of the half-planes Hj used to define QN in (2.15). Since the boundary
of each Hj meets @H in �.
 /, Dw � Hj is bounded away from � with respect to d1.
These arguments show that Dw \ QK is bounded away from @H in the d1 metric, and
therefore compact. Hence K is compact also.

We have shown also that the components of Dw � QK are either be contained in
either half-planes Hj or in horocyclic regions Op. What remains to be seen is that
the former give rise to finitely many funnels, and the latter to finitely many cusps.

First the funnel case. Let 
1; : : : ; 
k denote the geodesic segments of the form
@Hj \ Dw. Any point in @Hj is congruent to a point in Dw, and these points must lie
in some 
i. In other words, @Hj is covered by segments each of which is congruent
to one of the 
i’s. Since the 
i’s have finite length, @Hj must in fact contain multiple
segments congruent to some particular 
i. Therefore there are hyperbolic elements
of 
 which relate points of @Hj, and because the collection [Hj is invariant under

 , such transformations must then preserve @Hj. The subgroup 
j � 
 which
preserves @Hj is thus nontrivial, and by discreteness it must be cyclic. Then we
have 
 nHj D 
jnHj, which is by definition a funnel. Because the set of 
k’s was
finite to begin with, we conclude that X � N is a finite disjoint union of funnels.

For any parabolic fixed point p, 
 nOp is a cusp bounded by a horocycle of length
1 by Lemma 2.21. Since Dw meets �.
 / at only finitely many points, N � K is a
finite disjoint union of cusps. ut

The compactness of K is equivalent to geometric finiteness; see, e.g., [84, §15.1].
We will further subdivide the compact core K into a “pants” decomposition in
Theorem 2.38.

If the convex core is compact, i.e. N D K, then 
 is said to be convex cocompact.
This is equivalent to the quotient being geometrically finite with no cusps.

2.5 Length Spectrum and Selberg’s Zeta Function

The Euler characteristic, genus, and numbers of funnels and cusps are the most basic
invariants of a hyperbolic surface. An additional set of natural geometric invariants
is provided by the lengths of closed geodesics.

For compact surfaces of negative curvature, each closed geodesic is uniquely
associated with a free homotopy class of closed curves, as the representative of
minimum length within the class. For a non-compact surface we must be a little
careful about this; the horocycle bounding a cusp has no geodesic within its
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homotopy class. To account for this exception, we say a curve is cuspidal if it is
freely homotopic to the horocyclic boundary of a cusp, and non-cuspidal otherwise.

Proposition 2.24. Let � be a homotopically nontrivial curve on a hyperbolic
surface X. If � is non-cuspidal, then there is a unique closed geodesic � which
is the shortest closed curve freely homotopic to �.

Proof. Let Q� be a maximal continuous curve in H obtained by joining successive
lifts of �. There is some T 2 
 that preserves Q� and corresponds to moving through
one period of �. This T must be hyperbolic, or else � would be cuspidal. The axis
˛.T/ descends to a closed geodesic � D hTin˛.T/, in the free homotopy class of
�. Since ˛.T/ is the unique geodesic in H fixed by T , there is no other geodesic in
the free homotopy class of �. It follows from (2.7) that � is the shortest curve in this
class. ut

The proof of Proposition 2.24 reveals an association between closed geodesics
and axes of hyperbolic elements of 
 which will turn out to be of great importance
to us. We can express this more precisely in the following:

Proposition 2.25. There is a one-to-one correspondence between the closed, ori-
ented geodesics of a hyperbolic surface X D 
 nH and the conjugacy classes
of hyperbolic elements of 
 . The length of the geodesic corresponding to the
conjugacy class ŒT� is the displacement length `.T/.

Proof. Suppose T 2 
 is hyperbolic. The axis ˛.T/ of T is preserved by T and so
projects to a closed geodesic under 	 W H ! X. The length of 	.˛.T// is equal to
the displacement length `.T/. Note that the axis has a natural orientation because
T maps points away from one fixed point toward the other. The projected geodesic
inherits the orientation. The axis of any other element of the conjugacy class of T
will also project to 	.˛.T//, since

(2.17) ˛.RTR�1/ D R.˛.T//:

For the converse statement, suppose that � is a closed oriented geodesic in X, with
�.t/ D �.t C `/ for some `. We can construct a complete oriented geodesic arc Q� in
H by successive lifts of � . Associated with Q� is a unique hyperbolic T 2 PSL.2;R/

with axis and displacement length given by Q� and `, respectively. To see that T must
be an element of 
 , we observe that since Q�.0/ and Q�.`/ project to the same point
of X, we must have Q�.`/ D R Q�.0/ for some R 2 
 . In this case R�1T fixes Q�.0/,
implying T D R since 
 acts freely. Hence T 2 
 . To complete the argument,
note that (2.17) shows that any other lift of � must be the axis of a hyperbolic
transformation conjugate to T in 
 . ut

Given a closed geodesic, we can generate a family of iterates which traverse
the same path multiple times. We define a primitive closed geodesic to be the root
element of such a family, a closed geodesic which is not an iterate of a shorter closed
geodesic. Similarly, an element of 
 is called primitive if it is not the power of some
other element.
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It is trivial to see that an oriented closed geodesic � is uniquely represented as the
iterate of a primitive oriented closed geodesic. Starting from �.0/, we simply follow
the curve and find the first value of t > 0 such that �.t/ D �.0/ and � 0.t/ D � 0.0/.
The corresponding result for group elements is:

Lemma 2.26. Given a Fuchsian group 
 , each element S 2 
 can be written
uniquely as a power Tk where T 2 
 is primitive and k � 1. The centralizer ZS of
S in 
 is the cyclic group hTi.
Proof. Suppose S is hyperbolic. By conjugation, we can assume that it has the
standard form S W z 7! e`z with ` > 0. The commutation relation,

�
a b
c d

� �
e`=2 0

0 e�`=2

�
D

�
e`=2 0

0 e�`=2

� �
a b
c d

�
;

implies b D c D 0, so any element of ZS is a dilation also. The signed displacement
length, given by logjR.i/j for R 2 ZS, therefore defines a homomorphism ZS ! R.
The discreteness of 
 implies that the image must be a lattice `0Z, for some
minimum displacement length `0 > 0. The unique choice for T is then z 7! e`0z,
and we let k D `=`0.

The proof for parabolic S is very similar. ut

2.5.1 Length Spectrum

The full set of lengths of closed geodesics includes integer multiplies of each length
corresponding to iterates of the curve. For our purposes it is convenient to restrict
our attention to the primitive elements.

Definition 2.27. The (primitive) length spectrum of a hyperbolic surface X is the set

LX D ˚
`.�/ W � is a primitive oriented closed geodesic on X

�
;

with lengths repeated according to multiplicity.

Note that the values of ` in LX come in pairs corresponding to the two possible
orientations of each closed geodesic. This might seem redundant, but it proves
convenient because of the association with conjugacy classes.

The corresponding length counting function is given by

(2.18) 	X.t/ D #f` 2 LX W ` � tg:

In Chapter 14 we will develop a precise asymptotic formula for 	X.t/, but for the
moment we need only a basic bound.
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Proposition 2.28. For X a geometrically finite hyperbolic surface,

	X.t/ D O.et/:

Proof. Let K be the compact core of X as introduced in Theorem 2.23. Closed
geodesics on X are contained in the convex core N, though not necessarily in K.
It is clear, however, that any closed geodesic must at least pass through K, since a
cusp cannot contain a closed geodesic completely. Given a realization X Š 
 nH,
the lift of K to H is the truncated Nielsen region QK.

For some w 2 QK, let Z be the compact region QK \ Dw. If � is a primitive closed
geodesic on X, then because � passes through K it can be covered by a geodesic Q� in
H that passes through some point q 2 Z. This curve Q� is the axis of some primitive
T 2 
 . If the length of � is ` D `.T/ and we set a equal to the diameter of Z, then
by the triangle inequality,

(2.19)
d.w; Tw/ � d.w; q/ C d.q; Tq/ C d.Tq; Tw/

� ` C 2a:

This means that for each primitive closed geodesic of length ` there is a transforma-
tion T which maps w to a point of distance less than ` C 2a away. We can therefore
bound 	X.t/ by the number of images of w lying within distance tC2a of the point w.
Alternatively, we could use the number of images of Z lying within distance t C 3a
of the point w, which gives a bound

	X.t/ � area.B.wI t C 3a//

area Z
:

The result follows, because area.B.wI r// D O.er/ by (2.12). ut

2.5.2 Zeta Function

For a Fuchsian group 
 , the function given by summing e�sd.z;Tw/ over T 2 
 is
called the (absolute) Poincaré series for 
 . This sum converges for all Re s above
some threshold value, which we single out in the following:

Definition 2.29. The exponent of convergence of a Fuchsian group 
 is

(2.20) ı WD inf

	
s � 0 W

X

T2


e�sd.z;Tw/ < 1



;

for some z; w 2 H.
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To see that the definition does not depend on the choice of z; w, we use the
triangle inequality to show that

(2.21) e�sd.z;w/e�sd.w;Tw/ � e�sd.z;Tw/ � esd.z;w/e�sd.w;Tw/:

It is easy to check that ı D 0 when 
 is elementary. For 
 geometrically finite,
a slight modification of the argument from Proposition 2.28 shows that

(2.22) #
˚
T 2 
 W d.z; Tw/ � t

� D O.et/:

This implies in particular that ı � 1. It turns out that ı D 1 precisely when X D

 nH has finite area (
 is of the first kind).

The interesting case is when X is non-elementary but infinite area (
 is of the
second kind). Under this assumption, Beardon [18, 19] established that 0 < ı < 1,
with ı > 1

2
if 
 has parabolic elements (i.e., if X has cusps). Patterson [208] and

Sullivan [260] proved that ı is the Hausdorff dimension of the limit set when 
 is
geometrically finite. We will explore their theory, along with interesting applications
to spectral theory, in Chapter 14.

By setting z D w in (2.20) and using the bound (2.19), we see that

X

`2LX

e�s` < 1; for Re s > ı:

This gives the range of convergence for the following:

Definition 2.30. For a hyperbolic surface X, the Selberg zeta function is defined for
Re s > ı by the product

(2.23) ZX.s/ WD
Y

`2LX

1Y

kD0

�
1 � e�.sCk/`

�
:

The product expression for ZX.s/ is analogous to the Euler product form of
the Riemann zeta function, with the role of the prime numbers being played by
the primitive length spectrum. Like the Riemann zeta function, the Selberg zeta
function admits an analytic continuation to a meromorphic function of s 2 C.
This can be derived from the Selberg trace formula if X has finite area. For the full
geometrically finite case, meromorphic continuation was proven by Guillopé [113].
We will essentially follow the same route to give the proof in Proposition 10.13.
A simpler proof by dynamical methods is available if X has no cusps (
 is convex
cocompact); see Chapter 15.
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2.6 Hyperbolic Trigonometry

One of the most satisfying results in differential geometry is the Gauss-Bonnet
theorem relating the shape of a polygonal region to the curvature of its interior.
We present here only the hyperbolic version, for which we can take advantage of
the characterization of geodesics given in Proposition 2.3.

The first step in our proof is to compute the area of a triangle in H. Note that
since the geodesic arc Œp; q� is uniquely defined even for p or q in @H, it makes sense
to allow “degenerate” triangles with some vertices in @H. Two geodesics meeting at
a point of @H must be tangent there, so the interior angle at a vertex is zero if and
only if it lies in @H.

Lemma 2.31 (Triangle Area). Let T be a triangle in H with interior angles
˛; ˇ; � � 0. Then

area.T/ D 	 � .˛ C ˇ C �/:

Proof. This simple proof is taken from Katok [142]. First consider a triangle with
at least one point on @H. We can apply a Möbius transformation to map this point
to 1 while sending the opposite side to an arc of the unit circle. Let ˛, ˇ be the
interior angles at the other two vertices. From the diagram in Figure 2.11 we can
see that the two sides meeting at infinity are the vertical lines Re z D � cos ˛ and
Re z D cos ˇ. To compute the area we simply integrate

area.T/ D
Z cos ˇ

� cos ˛

Z 1
p

1�x2

dy dx

y2

D
Z cos ˇ

� cos ˛

dxp
1 � x2

D 	 � ˛ � ˇ:

α β

α
β

Fig. 2.11 Triangle with vertex at 1.
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β

γ θ

A

B

C

D

Fig. 2.12 Triangle extension.

If a triangle has all three vertices A; B; C in H, we simply draw an auxiliary
triangle by extending the segment ŒA; B� until it meets H at a new vertex D, as
shown in Figure 2.12. Applying the above computation to the triangles ACD and
BCD gives

area.ABC/ D area.ACD/ � area.BCD/

D .	 � ˛ � .� C �// � .	 � � � .	 � ˇ//

D 	 � ˛ � ˇ � �:

ut
The computation of Lemma 2.31 already gives a local version of the Gauss-

Bonnet theorem. For the global version we allow a polygonal region with possibly
nontrivial topology.

Theorem 2.32 (Gauss-Bonnet). Suppose Z is a region of finite area in some
geometrically finite hyperbolic surface X, with boundary (if any) consisting of n
geodesic arcs meeting at interior angles ˛1; : : : ; ˛n. Then

area.Z/ D �2	�.Z/ C
nX

jD1

.	 � ˛j/:

In particular, the area of the convex core N of a geometrically finite non-elementary
hyperbolic surface X is given by

area.N/ D �2	�.X/:

Proof. First assume Z is compact. If FX is a Dirichlet fundamental region for X then
Z is represented inside FX by a polygonal region QZ. By subdividing this polygonal
region with geodesic arcs, we can produce a triangulation of Z with all edges are
geodesic. Let V; E; F be the number of vertices, edges, and faces of the triangulation.
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By definition, �.Z/ D V �ECF. Note that there are n exterior edges and vertices in
the triangulation. Since each interior edge bounds two faces, while an exterior edge
bounds a single face, we have

(2.24) 3F D 2E � n:

Applying Lemma 2.31 to the F triangles and summing gives

area.Z/ D 	F �
3FX

iD1

�i;

where the �i are the interior angles of the triangles. For each of the V � n interior
vertices the sum of the �i’s contributes 2	 , and of course ˛j is the sum of the �i’s at
the exterior vertex j. Hence

area.Z/ D 	F � 2	.V � n/ �
nX

jD1

˛j:

By (2.24), F � 2V C n D �2�.Z/, so this completes the proof for Z compact.
For a non-compact region Z there are two cases to consider. The first is when Z

has a vertex at the cusp point, meaning that two sides of Z extend tangentially out
the cusp. This case requires no change from the above argument; we simply allow
degenerate triangles in the triangulation and assign interior angle zero to any cusp
vertices.

The second possibility is that some complete ends of cusps are contained within
Z. Suppose that Z encompasses the ends of k cusps. For each of these ends we
introduce a geodesic loop (with one new vertex) to cut off the end of the cusp,
as shown in Figure 2.13. Let Z1; : : : ; Zk be the regions cut off in this way, so that
Y D Z � [Zj is a compact region with n C k vertices. Because the regions Y and Z
have the same diffeomorphism type, �.Y/ D �.Z/. If the interior angles of Y at the
added vertices are denoted ˇ1; : : : ; ˇk, then by the formula above for the compact
case we have

area.Y/ D �2	�.Z/ C
nX

jD1

.	 � ˛j/ C
kX

jD1

.	 � ˇj/:

On the other hand, by Lemma 2.31 we can see that

area.Zj/ D ˇj � 	;

so that the extra terms cancel out in the formula for area.Z/. (Note that a fully
enclosed cusp end is not counted as a vertex of Z.) ut
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Zj

βj

2π − βj

Fig. 2.13 Geodesic loop around a cusp end.

We next consider the geometry of hyperbolic hexagons. As with triangles, it
makes sense to include cases where geodesics meet on the boundary and the interior
angle is zero. We can also allow sides to have length zero, so that the two adjacent
sides meet at the boundary. If multiple sides have length zero then they must be
nonadjacent.

Lemma 2.33 (Right-Angled Hexagons). Given any a; b; c � 0, there is a unique
right-angled hexagon in H (up to isometry) such that a; b; c are the lengths of three
nonadjacent sides.

Proof. Start with an arbitrary geodesic �1, on which we mark off a segment of
length a. From the endpoints draw geodesic arcs �2 and �6 which are perpendicular
to the original segment. (If a D 0 we let �1 be a boundary point and take for �2 and
�6 any two geodesic arcs meeting at �1.) Inside the region enclosed by these three
curves, let �2 be the locus of points whose distance to �2 is b, and �6 the locus of
points at distance c from �6, as shown in Figure 2.14. (In either the H or B model, a
curve lying at a fixed distance from a geodesic is a circle meeting the boundary @H

or @B at the endpoints of the geodesic.)
We claim that there is a unique geodesic arc tangent to both �2 and �6, which we

label �4. To complete the construction, we fill in �3 as the arc of shortest distance
between �2 and �4. This meets �4 at its intersection point with �2. Similarly �5 is
the shortest arc between �4 and �6. By the construction of �4, the segments �3 and
�5 have lengths b and c, respectively. The hexagon obtained by this procedure is
uniquely determined by the starting segment (and the choice of �2 and �6 if a D 0).

ut
To prove other basic formulas of hyperbolic trigonometry, it is helpful to

introduce yet another model for hyperbolic space, the Minkowski or hyperboloid
model. We follow the treatment in Buser [51, §2.1] for this discussion. Three-
dimensional Minkowski space is R

3 equipped with the Lorentzian metric h D
dx2

1 C dx2
2 � dx2

3. (This type of metric is used in general relativity.) To obtain a
model for the hyperbolic plane we restrict our attention to the hyperboloid,

H WD ˚
x 2 R W x2

1 C x2
2 � x2

3 D �1
�
:
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γ1

γ2

γ4

γ6

a

b
cη2 η6

Fig. 2.14 Right-angled hexagon.

p0

H

B

−1

Fig. 2.15 Isometry from B to .H; g/.

The restriction of h to H gives a positive definite metric g, and .H; g/ is isometric to
B by stereographic projection from .0; 0; �1/, as shown in Figure 2.15.

Isometries of .H; g/ are generated by the linear transformations of R3 preserving
h, so the orientation-preserving isometry group is identified with SO.2; 1/. In
particular, we can generate all isometries using

(2.25) L� WD
0

@
cos � � sin � 0

sin � cos � 0

0 0 1

1

A ; Mr WD
0

@
cosh r 0 sinh r

0 1 0

sinh r 0 cosh r

1

A ;
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ab

c
αβ

γ

a

b

c

α
p0 p0

Lπ−αMc

Fig. 2.16 Proving the sine rule.

for �; r 2 R. Fixing an origin p0 D .0; 0; 1/, it is easy to check that the map
.r; �/ 7! L� Mrp0 defines a coordinate system on H in which g takes the geodesic
polar form (2.11).

Lemma 2.34 (Sine Rule). For a triangle ABC with geodesic sides, let ˛; ˇ; �

denote the interior angles at the vertices, and a; b; c the respective lengths of the
opposite sides. Then

sin ˛

sinh a
D sin ˇ

sinh b
D sin �

sinh c
:

Proof. Regarding the triangle as a subset of H, we may assume vertex B is located
at p0 and that A is the point M�cp0. We first apply Mc to move vertex A to p0, and
then L	�˛ to rotate so that C is located at M�bp0, as shown in Figure 2.16. Then
we apply L	�� Mb to shift C to p0, followed by L	�ˇMa to move B to p0. Since this
returns the triangle to its original position, we conclude that

(2.26) L	�ˇMaL	�� MbL	�˛Mc D I:

Taking the equivalent statement

MaL	�� Mb D Lˇ�	M�cL˛�	 ;

and evaluating two particular matrix elements on either side gives

0

@
� � �
� � sin � sinh b
� � sin � sinh a �

1

A D
0

@
� � �
� � sin ˇ sinh c
� � sin ˛ sinh a �

1

A :

This proves our identity. ut
We could have introduced rotations and translations in B or H and obtained a

corresponding identity of the form (2.26), but it is much more difficult to read the
sine and cosine rules from the matrix elements in those models. It is possible, though
not easy, to prove the sine rule by more direct computation; see, e.g., [142].
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Lemma 2.35 (Pentagon Rule). For a right-angled pentagon with geodesic sides,
with the lengths of consecutive sides labeled a; b; c; d; e,

sinh a sinh b D cosh d:

Proof. We apply the same strategy as in Lemma 2.34 to obtain the identity,

L 	
2

MaL 	
2

MbL 	
2

McL 	
2

MdL 	
2

Me D I:

This implies the relation

L 	
2

MaL 	
2

Mb D M�eL� 	
2

M�dL� 	
2

M�cL� 	
2
;

and the claimed formula follows by comparing matrix entries on both sides. ut

2.7 Fenchel-Nielsen Coordinates

Theorem 2.23 shows that a geometrically finite hyperbolic surface consists of a
compact core with a finite number of funnels and cusps attached. In this section our
goal is to develop some understanding of the space of hyperbolic metrics that could
be put on the compact core in order to create such a surface.

2.7.1 Pants Decomposition

We will start by breaking the compact core of the surface up into components which
are easy to parametrize.

Definition 2.36. A pair of pants is a hyperbolic surface diffeomorphic to a sphere
with 3 punctures, with either geodesic boundary or cusp ends.

The Euler characteristic of a pair of pants is �1, so the Gauss-Bonnet theorem
(Theorem 2.32) shows that the hyperbolic area is 2	 . We can characterize each end
with a boundary length `, which is either the length of the closed geodesic or zero
if the end is a cusp.

Lemma 2.37. For each triple `1; `2; `3 � 0, there is a unique pair of pants Y with
these boundary lengths.

Proof. Start with two identical right-angled hexagons with boundary lengths `1=2,
`2=2, `3=2, whose existence is guaranteed by Lemma 2.33. Because of the right
angles, the hexagons can be glued together along seams given by the three edges
whose lengths were not specified, to form a pair of pants with the appropriate
boundary lengths, as shown in Figure 2.17.
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Fig. 2.17 Constructing a pair of pants.

Y1

Y2

Y3 F1

Fig. 2.18 Pants decomposition.

To prove uniqueness we observe that taking the shortest paths between the three
boundary geodesics of a pair of pants gives three unique seams that split the pair
of pants into two right-angled hexagons. (For a cusp, the “boundary geodesic”
degenerates to a point at infinity and the hexagon has a side of length zero.) Since
three nonadjacent side lengths (the seams) of the hexagons already match, the two
hexagons are identical by Lemma 2.33. Therefore the lengths of the non-seam sides
must be given by half the corresponding boundary lengths of the pair of pants.
Lemma 2.33 thus shows that the hexagons are uniquely determined. ut

Theorem 2.38 (Pants Decomposition). The convex core of a geometrically finite,
non-elementary hyperbolic surface X can be decomposed into a finite union of pairs
of pants Yj, j D 1 	 	 	 ; m, where m D ��.X/, so that

X D Y1 [ 	 	 	 [ Ym [ F1 [ : : : Fnf :

Proof. Figure 2.18 illustrates the claimed decomposition. From Theorem 2.23 we
recall that the convex core N is X with funnels removed, and the compact core K is
N minus the cusps. Since area.N/ D �2	�.X/ and each pair of pants has area 2	 ,
it is clear from the outset that at most m pairs of pants could be used. By induction,
it suffices to show that we can cut a single pair of pants from N. (We are following
the argument of Buser [51, Thm. 4.4.5] here.)

The boundary of K consists of finitely many closed geodesics or horocycles. For
simplicity, we’ll assume that there is at least one boundary geodesic, say � . (The
argument starting from a bounding horocycle is quite similar.) The neighborhood of
points within distance a of � ,
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γ1 γ2

α(T)

˜

Ga

W

η1

Fig. 2.19 Case 1 for pants decomposition.

Ga WD fz 2 K W d.z; �/ � ag;

is isometric for small a to a half-collar Œ0; a� � S1, ds2 D dr2 C `2 cosh2 r d�2. (If we
had started with a boundary horocycle, we’d get ds2 D dr2 C e2r d�2 instead.) As
a increases, Ga must stop being isometric to a half-collar at some point. Otherwise
the limit of Ga as a ! 1 would be a funnel (or the big end of a parabolic cylinder).
There are only two ways for the isometry to break down; for some value of a, either
Ga meets itself (case 1) or Ga bumps into some other boundary curve of K (case 2).

Case 1: The perpendicular geodesic segments from � to the first self-intersection
point of Ga connect to form a geodesic arc � dividing � into two parts �1, �2. This
set up is shown on the left in Figure 2.19. From the division of � we form two simple
closed curves, �1 D �1� and �2 D �2��1. We can focus on �1, as the argument is the
same for either. Let Q�1 denote a lift of �1 to H, as shown on the right in Figure 2.19.
This lift is a union of segments meeting at right angles, which project down to �1

and � in alternation. Since Q�1 covers a closed curve on X, it is preserved by some
maximal cyclic subgroup of 
 . Let T 2 
 be the generator of this subgroup.

Assume first that T is parabolic, in which case Q�1 would be a loop meeting @H

at the fixed point p of T . For R 2 
 � hTi, R Q�1 cannot intersect Q�1 because �1 is
simple. Also, p could not be fixed by R. (Lemma 2.21 shows that hyperbolic and
parabolic fixed points cannot coincide, and if p were a parabolic fixed point of R
this would contradict R Q�1 \ Q�1 D ;.) If W denotes the region enclosed by Q�1, then
since R Q�1 \ Q�1 D ; and R does not fix p, we have RW \ W D ;. This means that

 nW D hTinW, which therefore contains a single cusp.

On the other hand, suppose T is hyperbolic, with axis ˛.T/. This is the case
actually shown in Figure 2.19. Reasoning as above, for R 2 
 � hTi we have
R Q�1 \ Q�1 D ; and R cannot fix the endpoints of ˛.T/. Together these imply that if W
is the region bounded by Q�1 and ˛.T/, then RW \ W D ;. Hence 
 nW D hTinW is
an annulus bounded at one end by �1 and at the other by the simple closed geodesic

 n˛.T/.
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Fig. 2.20 Case 2 for pants decomposition.

With these two possibilities accounted for, and a similar argument applied to �2,
we have shown that � is one of the boundary curves of a pair of pants contained
within N.

Case 2: Let � 0 be the boundary curve that Ga has bumped into, as shown in
Figure 2.20. By linking � and � 0 through the geodesic arc � connecting them and
then expanding slightly, we can produce a simple closed curve � WD ��1�0�� which
encompasses both boundary curves. We can argue exactly as in case 1 that � bounds
either a cusp or an annulus with a closed geodesic at the other end. Thus � and � 0
are two of the boundary curves of a pair of pants contained within N. ut

2.7.2 Moduli and Teichmüller Space

Let X be a non-elementary geometrically finite hyperbolic surface of genus g with n
ends. The ends are already “marked” in the sense that they are divided into funnels
and cusps. We also fix a pants decomposition as in Theorem 2.38. The combination
of the pants decomposition with the labeling of the ends will be called a marking
of X.

The number of pairs of pants in the marking is 2g � 2 C n. Let ni denote the
number of “interior” bounding geodesics in the pants decomposition, meaning the
boundaries between two pant legs. The decomposition contains a total of 2ni C n
pant legs, and each pair of pants has 3 legs, which means that

ni D 3g � 3 C n:

Let us label the interior bounding geodesics of the pants decomposition by
�1; : : : ; �ni . To each of these curves we can associated a two-parameter family of
deformations of the surface. First, we can change the length `j of �j by changing
the appropriate boundary lengths of the pairs of pants on both sides. Second, we
can introduce a rotation in the gluing map between the two legs. To make the twist
angle well defined, we can assume that the marking includes an orientation for each
�j. A twist by angle �j 2 R can then be defined as a translation of the right side
of the boundary geodesic by arclength �j`j=2	 relative to the left side. With this
convention, a twist of ˙2	 gives a surface isometric to the original.
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There are an nf additional geodesics bounding pairs of pants where funnels
attach. The lengths of these geodesics, which we label `niC1; : : : ; `riCnf , could
also be changed to deform the surface. However, since funnels are rotationally
symmetric, there are no twist parameters for the funnels. The cusp ends correspond
to pant legs of length zero, with no associated deformation parameters.

The parameters f`j; �jg describing deformations of the hyperbolic structure on X
are called Fenchel-Nielsen coordinates.

Proposition 2.39. Let X be a geometrically hyperbolic surface with a marking as
described above. Any complete hyperbolic surface diffeomorphic to X with ends
of the same type can be realized by some combination of the Fenchel-Nielsen
coordinates.

Proof. Suppose Y is a hyperbolic surface diffeomorphic to X with ends of the same
type. Since each non-cuspidal free homotopy class of Y contains a unique geodesic
by Proposition 2.24, the marking of X can be transferred to Y . Now consider the
deformation of X given by taking the boundary lengths `j to match those of Y . Since
the boundary lengths determine the pairs of pants and funnels uniquely, it is clear
that the angle parameters can then be chosen to create a deformation isometric to Y .

ut
The Fenchel-Nielsen coordinates are related to the moduli space MX , the set of

isometry classes of complete hyperbolic metrics on X. In our convention the original
surface X carries a hyperbolic metric, but MX depends only on the topology and
labeling of the ends. The moduli space is given a C1 topology, meaning that a
sequence of isometry classes converges if and only if there exists representative
metrics whose coordinate components and their derivatives converge uniformly on
compact sets.

Let us define the full the Fenchel-Nielsen parameter space associated with a
marking of X as

(2.27) TX WD
n
.`1; : : : ; `niCnf I �1; : : : �ni/ 2 R

niCnfC � R
d
o

(ignoring the periodicity of the twist angles). Proposition 2.39 gives a covering map

TX ! MX:

It is straightforward to see that the Euclidean topology on TX is compatible with that
of MX; see Buser [51, §3.2–3] for the details.

The space TX is called Teichmüller space, and the standard definition is as the
space of complex structures on X modulo pullback by diffeomorphisms isotopic
to the identity. The Fenchel-Nielsen construction gives a set of coordinates for
Teichmüller space by exploiting the connection between complex and hyperbolic
structures on a surface. (See Buser [51, Ch. 6] for a proof of the identification
of (2.27) with the definition in terms of complex structures.)
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Notes

For the basic topology of differentiable manifolds assumed in this chapter (topology
of surfaces, Euler characteristic, covering spaces, fundamental group, etc.), see
e.g. Massey [168] or Munkres [188]. The differential geometry needed (metrics,
Gaussian curvature, geodesics, etc.) can be found in an introductory book on
surfaces, such as do Carmo [67] or Pressley [231]. Anderson [6] covers the basic
geometry of the hyperbolic plane.

Our main sources for the theory of hyperbolic surfaces and Fuchsian groups
were Beardon [20], Buser [51], Fenchel-Nielsen [84], and Katok [142]. Ratcliffe
[233] gives a highly detailed introduction, with extensive historical notes. Milnor
summarizes the history of hyperbolic geometry in [183].

Higher dimensional hyperbolic manifolds are obtained as quotients of H
n by

discrete subgroups of isometries. Isometries of H3 can be realized by extending the
action of Möbius transformations on the Riemann sphere to its interior. Thus in
three dimensions the oriented isometry group is PSL.2;C/. A discrete subgroup of
PSL.2;C/ is called a Kleinian group; see Maskit [167] for the basic theory. Limit
sets of Kleinian groups are fascinating objects; see Mumford-Series-Wright [187].

Geometric finiteness is a more complicated issue in higher dimensions; see
Bowditch [40] for an account of the various possible definitions.

There are many other approaches to Teichmüller theory. See, for example, Jost
[138], Lehto [156], Seppälä-Sorvali [247], or Tromba [269].
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