
Chapter 2
An Introduction to R

Exploration is our mission; we and those who use our software
want to find new paths to understand the data and the
underlying processes.
John M. Chambers, Software for Data Analysis (2008, p. 3).

Abstract This chapter introduces R, a dialect of the S language, which was
developed at Bell Laboratories. R’s inventor Dr. John Chambers was awarded the
1998 Association of Computing Machinery Software award. In its citation, the
ACM noted that S will forever alter the way people analyze, visualize, and
manipulate data. R’s mission is to enable the best and most thorough exploration of
data possible. R is open-source software (GNU General Public License), and has
statistical, data manipulation, and visualization libraries. R is a functional pro-
gramming language, where software programs are organized into functions that can
be invoked to transform data. This chapter describes key R elements, including
vectors, lists, matrices, data frames and functions. It concludes by presenting a
system dynamics model of customer growth, which is implemented using the
deSolve open source package. Appendix A summarizes the installation process for
R, and the reader is recommended to work through this chapter using the R Studio
console, so that the short examples can be executed.

Keywords Vectors � Functions � Matrices � Data frames � deSolve

Vectors

The fundamental data type in R is the vector, which is a variable that contains a
sequence of elements that have the same data type (Matloff 2009). A vector is
defined by the ability to index its elements by position, in order to extract or replace
a subset of data (Chamber 2008). The vector object is similar to a one-dimensional
array structure in a programming language such as C or Java. Vectors can be
created in the following manner.

© Springer International Publishing Switzerland 2016
J. Duggan, System Dynamics Modeling with R, Lecture Notes in Social Networks,
DOI 10.1007/978-3-319-34043-2_2

25

v1<-c(1,2,3,4,5)

This creates a vector variable v1 and assigns it an initial value using the function c,
which is the combine function in R. By typing v1 at the console, the vector's values
can be inspected.

> v1
[1] 1 2 3 4 5

The printed value [1] at the beginning of the output is a useful piece of infor-
mation that displays the starting index for that particular printed row of vector data.
The concept of an index is important in R, as it allows access to individual elements
of a vector, using the square brackets notation. In R the index for a vector starts at 1.
This command displays the third element of the vector v1.

> v1[3]
[1] 3

In R, variable types can include integer, numeric, character, and logical types.
The mode of a variable can be examined using the typeof(x) function call. In a
vector, the mode of each element is the same.

> typeof(v1)
[1] "double"

Functions can operate on vectors, for example, to find the length, maximum
value, and minimum value, the functions length(x), max(x) and min(x) are used.
Each of these R functions returns a vector of length 1.

> length(v1)
[1] 5

> max(v1)
[1] 5

> min(v1)
[1] 1

A powerful feature of R is that it supports vectorization, where functions can
operate on every element of a vector, and return the results of each individual
operation in a new vector. Many in-built R functions support vectorization,
including the square root function sqrt(x).

26 2 An Introduction to R

A significant benefit of this feature is that the analyst does not have to write a
loop to iterate through the vector. Vectorized functions have the general form of
vector in, vector out (Matloff 2009), where the size of the output vector mirrors the
size of the input vector.

Arithmetic operations can also be applied to vectors in an element-wise manner.
For this example, the vector v1 is multiplied by the constant 3, and the result (v2) is
then added to v1, and finally stored in v3.

> v1
[1] 1 2 3 4 5
> v2<-3*v1
> v2
[1] 3 6 9 12 15
> v3<-v1+v2
> v3
[1] 4 8 12 16 20

When operations are applied to two vectors that requires them to be of equal
length, R automatically recycles the shorter vector until it is of sufficient length to
match the longer one.

> v4<-c(10,20)
> v1
[1] 1 2 3 4 5
> v5<-v1+v4
Warning message:
In v1 + v4 :
longer object length is not a multiple of shorter object

length
> v5
[1] 11 22 13 24 15

Conditional expressions can also be applied to vectors, and these are used to
filtering vector data. For example, by taking the original vector v1 and applying a
conditional expression to that vector, R will return a logical vector (e.g. a vector
whose elements are either TRUE or FALSE) containing the results for each

> v1
[1] 1 2 3 4 5

> r<-sqrt(v1)

> r
[1] 1.000000 1.414214 1.732051 2.000000 2.236068

Vectors 27

conditional expression evaluation. In this case, the condition tests which vector
elements are even, and R’s modulus operator (%%) is used.

> v1
[1] 1 2 3 4 5
> test<-v1 %% 2 == 0
> test
[1] FALSE TRUE FALSE TRUE FALSE

An interesting feature of R is that this logical vector can now be used as an index
to the original vector, and those values that match to TRUE in the logical vector
will be returned by the operation. Using the NOT logical operator (!), all the
FALSE values can be returned.

> evens<-v1[test]
> evens
[1] 2 4

> odd<-v1[!test]
> odd
[1] 1 3 5

As R is a functional programming language, many operations can be cascaded
together to provide a concise set of operations. Therefore, the statement for
obtaining the even numbers from the vector v1 can be written in a single line of
code.

> evens<-v1[v1 %% 2 == 0]
> evens
[1] 2 4

R’s which() function is used to find the location index of vector values. For
example, to create a new vector of even numbers it is possible to first find the
location the even numbers in the vector, and then use these indices to create the new
vector.

> v1
[1] 1 2 3 4 5
> ind<-which(v1 %% 2 == 0)
> ind
[1] 2 4
> evens<-v1[ind]
> evens
[1] 2 4

This process can be written in a single line of code.

> evens<-v1[which(v1 %% 2 == 0)]
> evens
[1] 2 4

28 2 An Introduction to R

Indexing can also be used to extract elements from a vector, using the colon
operator (:), which generates regular sequences within a specified range. These
sequences can be applied to filter the original vector. A minus sign can be used to
exclude a range of indices from the calculation.

> 2:4
[1] 2 3 4
> v1[2:4]
[1] 2 3 4
> v1[-(2:4)]
[1] 1 5
> v1[-1]
[1] 2 3 4 5

The function seq() is used to generate a sequence vector in arithmetic pro-
gression, and this will be used in the R system dynamics models to setup the
simulation time. For example, the vector times is a sequence from 0 to 5 (inclusive).

> times<-seq(from=0,to=5)
> times
[1] 0 1 2 3 4 5

What is convenient about the seq() function is that it can accept an additional
parameter (by) which can vary the distance between the different elements.

Vectors can also be processed using the vectorized ifelse(b,u,v) function, which
accepts a boolean vector b and allocates the element-wise results to be either u or v. For
example, a new character vector can be formed with elements classified as “EVEN” or
“ODD” depending on the input vector’s value.

> ans<-ifelse(v1%%2==0,"EVEN","ODD")
> ans
[1] "ODD" "EVEN" "ODD" "EVEN" "ODD"

Two additional vectorized functions are useful. These are all() and any() which
process the entire vector and report an overall single condition. It is an efficient
form of carrying out a sequence of logical AND (all) or logical OR (any) tests on
the vector elements.

> times<-seq(from=0,to=5,by=.5)
> times
[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Vectors 29

> v1
[1] 1 2 3 4 5
> any(v1==1)
[1] TRUE
> any(v1<0)
[1] FALSE
> all(v1>=0)
[1] TRUE

The elements of a vector can also be allocated names, and in later chapters
parameters in a simulation model will be identified this way. Here names are added
to the original vector v1, and these are then displayed at the console.

> v1
[1] 1 2 3 4 5
> names(v1)<-c("a","b","c","d","e")
> v1
a b c d e
1 2 3 4 5

A useful feature of naming vector elements is that the name also provides an
index to access the value.

> v1
a b c d e
1 2 3 4 5
> v1["c"]
c
3

Vectors can be increased with new elements. At an implementation level, a new
variable is created in memory when a vector is added to, so some computational
overhead is involved. This example shows how elements can be added to the end of
a vector, using the concatenate (c) function.

> v1
[1] 1 2 3 4 5
> v1<-c(v1,c(6,7))
> v1
[1] 1 2 3 4 5 6 7

Elements can also be added to the start of a vector.

> v1
[1] 1 2 3 4 5
> v1<-c(c(-1,0),v1)
> v1
[1] -1 0 1 2 3 4 5

30 2 An Introduction to R

Lists

R’s list structure can combine objects of different types. For example, using the list
() function, a variable is created that can represent information on a student.

s<-list(id="1234567",fName="Jane", sName="Smith", age=21)

The list variable shows the components of the list (known as tags).

> s
$id
[1] "1234567"
$fName
[1] "Jane"
$sName
[1] "Smith"
$age
[1] 21

List elements can be accessed through the operator $, for example.

> s$fName
[1] "Jane"
> s$age
[1] 21

Technically, a list is a vector, and elements it can also be accessed through its
index, although double brackets are used instead of single ones to return a vector.

> s[[1]]
[1] "1234567"
> s[[2]]
[1] "Jane"

Also, elements can be returned using single brackets containing the name of the
data type.

> s["fName"]
$fName
[1] "Jane"
> s["age"]
$age

[1] 21

New elements can be added to a list by simply adding a new element to the
variable. The str() function can be used to view the structure of an R variable.

Lists 31

s$gender<-'F'

> str(s)
List of 5
$ id : chr "1234567"
$ fName : chr "Jane"
$ sName : chr "Smith"
$ age : num 21
$ gender: chr "F"

Elements can also be removed from a list, by setting the relevant element to
NULL.

s$age<-NULL

> str(s)
List of 4
$ id : chr "1234567"
$ fName : chr "Jane"
$ sName : chr "Smith"
$ gender: chr "F"

The list elements can be accessed directly, using the names() function.

> names(s)
[1] "id" "fName" "sName" "gender"

The data contained in a list can be returned as a single vector, using the unlist()
function. Note that because the vector must contain elements of the same type, the
age value is coerced into a character string.

Finally, interesting things can be done with lists. For instance, they can be
recursive, which means a list can contain lists. The earlier example can be extended
to do this, by adding an extra student.

s1<-list(id="1234567",fName="Jane", sName="Smith", age=21)
s2<-list(id="1234568",fName="Matt", sName="Johnson", age=25)

The two lists (representing each individual student) are added to a new list, and
this list is then “a list of lists”.

l<-list(s1,s2)

> unlist(s)
 id fName sName age gender
"1234567" "Jane" "Smith" "21" "F"

32 2 An Introduction to R

The list output can be summarized as follows, which shows that each element
contains a list of 4 elements.

> str(l)
List of 2
$:List of 4
..$ id : chr "1234567"
..$ fName: chr "Jane"
..$ sName: chr "Smith"
..$ age : num 21
$:List of 4
..$ id : chr "1234568"
..$ fName: chr "Matt"
..$ sName: chr "Johnson"
..$ age : num 25

Matrices

A matrix is a data structure that has a number of rows and columns, where each
element has the same mode. Matrix subscripts, similar to vectors, commence at
[1,1], and these are used to access row and column elements. A matrix can be
initialized from a vector, where the numbers of rows and columns are specified as
parameters. R stores matrices by column-major order, and by default matrices are
filled in this manner. A matrix can be populated in row-major order by passing the
parameter byrow = TRUE to the matrix function.

Matrix elements can be accessed using their row and column numbers as indices.

> m[1,1]
[1] 10
> m[3,2]
[1] 60

Individual rows can be accessed in a convenient way, by removing the index for
a specific column. For this, a vector of row elements is returned.

> m<-matrix(c(10,20,30,40,50,60),nrow=3,ncol=2)
> m
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60

Lists 33

> m
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60

> m[1,]
[1] 10 40

Columns can be extracted by specifying the column index, and the column
values are returned in a vector structure.

> m[,2]
[1] 40 50 60

The function dim() can be used to display the matrix dimension, and the
functions nrow(), ncol() provide information on the number of rows and columns.

> dim(m)
[1] 3 2
> nrow(m)
[1] 3
> ncol(m)
[1] 2

A further useful set of matrix functions is rowSums() and colSums(), which sum
all row and column elements respectively.

> rowSums(m)
[1] 50 70 90
> colSums(m)
[1] 60 150

In a similar way, the functions rowMeans() and colMeans() calculate the means
of rows and columns.

> rowMeans(m)
[1] 25 35 45
> colMeans(m)
[1] 20 50

Filtering can also be performed on matrices. For example, if a query is required
to find all rows that have column 1 values greater than 20, the following code could
be used. First a logical vector could be applied to the full column with the specified
condition.

> test<-m[,1] > 20
> test
[1] FALSE FALSE TRUE

34 2 An Introduction to R

This logical vector can then be applied to the row index for the matrix to filter
out all FALSE values, and in this case, return the 3rd row, which matches the
condition.

> m[test,]
[1] 30 60

R matrices support linear algebra operations, and this feature will be used in the
epidemiology system dynamics model of Chap. 5. Table 2.1 summarizes these
operations.

Rows and columns can be added to a matrix, using rbind() and cbind(), where a
vector of appropriately sized values is included as an argument.

> rbind(m,c(40,70))
 [,1] [,2]
[1,] 10 40
[2,] 20 50
[3,] 30 60
[4,] 40 70

> cbind(m,c(70,80,90))
 [,1] [,2] [,3]

[1,] 10 40 70
[2,] 20 50 80
[3,] 30 60 90

Data Frames

A data frame is similar to a matrix, as it has a two-dimensional rows and columns
structure, however it differs from a matrix in that each column can have a different
mode (Matloff 2009). This is convenient for data processing, as many real-world
data sets consist of tables with different data types, and these can be easily repli-
cated in data frames. For example, the student example presented earlier can be
represented in a data frame, by specifying each attribute as a vector, and then
combining these into a data frame. The list items were:

Table 2.1 Useful matrix operations in R

Operator or function Description

A * B Element-wise multiplication

A/B Element-wise division

A %*% B Matrix multiplication

t (A) Transpose of A

e<-eigen (A) List of eigenvalues and eigenvectors for matrix A

Matrices 35

http://dx.doi.org/10.1007/978-3-319-34043-2_5

s1<-list(id="1234567",fName="Jane", sName="Smith", age=21)
s2<-list(id="1234568",fName="Matt", sName="Johnson", age=25)
l<-list(s1,s2)

Based on this data, we can identify four different vectors as follows.

ids<-c("1234567","1234568")
fNames<-c("Jane","Matt")
sNames<-c("Smith","Johnson")
ages<-c(21,25)

These vectors can be combined into a data frame, which represents data similar
to the manner in which it is stored in a convention spreadsheet. Attributes are lined
up in columns, and each individual observation is stored in a row. The flag
stringsAsFactors is set to FALSE, which means R will not convert strings to
factors, which are used to represent categorical variables in R.

s<-data.frame(ID=ids,FirstName=fNames,Surname=sNames,
 Age=ages,stringsAsFactors=FALSE)

> s
 ID FirstName Surname Age
1 1234567 Jane Smith 21
2 1234568 Matt Johnson 25

Technically, a data frame is a list, and so the list notation can be used to access
information. For example, columns can be accessed using the double bracket
notation [[]], and individual elements can also be extracted from columns by
applying a further index to locate the value.

> s[[1]]
[1] "1234567" "1234568"
> s[[1]][1]
[1] "1234567"

A data frame can also be accessed using matrix operators, where the structure is
accessed via its rows and columns.

> s[1,]
 ID FirstName Surname Age
1 1234567 Jane Smith 21
> s[,1]
[1] "1234567" "1234568"
> s[1,1]
[1] "1234567"

36 2 An Introduction to R

Finally, data frames elements can be accessed using the column names as follows.

> s$Surname
[1] "Smith" "Johnson"

Filtering can be performed by applying conditional statements to the data frame,
for example, finding all students whose age is greater than 21.

> s[s$Age > 21,]
 ID FirstName Surname Age
2 1234568 Matt Johnson 25

This query can also be applied using the subset() function, which takes a data
frame and applies a filtering condition.

> sb<-subset(s,s$Age>21)
> sb
 ID FirstName Surname Age
2 1234568 Matt Johnson 25

Additional columns can be conveniently added to a data frame. For example, if
all students under the age of 21 were eligible for a discount, the following command
would add this information as a new column in the data set.

> s$Discount<-ifelse(s$Age<=21,"YES","NO")
> s

ID FirstName Surname Age Discount
1 1234567 Jane Smith 21 YES
2 1234568 Matt Johnson 25 NO

For data analysis, opportunities often arise by merging different data sets, and the
merge() function facilitates this. In the student example, a second data frame could
store examination results for each student.

ids<-c("1234567","1234568")
subjects<-c("CT111","CT111")
grade<-c(80,80)

r<-data.frame(ID=ids,Subject=subjects,Grade=grade,
stringsAsFactors=FALSE)

> r
ID Subject Grade

1 1234567 CT111 80
2 1234568 CT111 80

As this data frame shares a common attribute with the student information (i.e.
the ID value), the two data frames can be merged based on this column (passed as
an argument to the merge function).

Data Frames 37

> new<-merge(s,r,by="ID")
> new

ID FirstName Surname Age Subject Grade
1 1234567 Jane Smith 21 CT111 80
2 1234568 Matt Johnson 25 CT111 80

The merged data frame could then be used to support statistical analysis of a
large data set, for example, to test whether there is a link between factors such as
age, and examination performance.

Functions

A function is a group of instructions that takes input, uses the input to compute values,
and returns a result (Matloff 2009). Users of R should adopt the habit of creating
simple functions which will make their work more effective and also more trust-
worthy (Chambers 2008). Functions are declared using the function reserved word.
They contain a list of parameters (some of which may have default values), and
execute a set of instructions between an opening brace ({) and a closing brace (}).

convC2F<-function(celsius)
{
fahr<-celsius*9/5 + 32.0
return(fahr)

}

> convC2F(100)
[1] 212

This initial function converts temperature in Celsius to its corresponding value in
Fahrenheit. The formal parameter celsius, and the variable fahr are both local to the
function, which means they are no longer available after the function completes its
task. This is important, as it enables information hiding within the function, and
ensures that all direct communication between functions is done through its argu-
ments and return value. Variables declared outside of functions are global, and are
visible within the functions. The second function shows how a loop structure can be
used within the function in order to calculate the result—in this case to count the
frequency of even numbers in a vector. Notice that the return statement is omitted,
as the last evaluated expression is by default returned by functions in R, and
avoiding a return statement can improve code performance.

38 2 An Introduction to R

evenCount<-function(v)
{
ans<-0
for(x in v)
{
if(x%%2==0)
ans<-ans+1

}
ans # more efficient method for returning values

}

The function is tested by passing in an arbitrary vector, and observing the result.

> evenCount(c(2,2,1,2))
[1] 3

Apply Functions

Another use of user-defined functions in R is as a parameter to the apply family of
functions, which are one of the most famous and used features of R (Matloff 2009).
The general form of the sapply(x,f,fargs) function is as follows:

• x is the target vector or list
• f is the function to be called
• fargs are the optional set of arguments that can be applied to the function f.

The sapply() function takes as input a target vector and a function. The function
specifies the logic that is executed on each vector element, and sapply() then returns
a vector with the processed data. For example, if there was a requirement to
calculate the difference between each value in a vector and the overall vector mean,
the following code could be used.

First, the sample data is generated, with 10 random values between 1 and 10,
using the function sample(), where replacement is enabled. The mean is calculated
using the mean() function.

> data<-sample(1:10,replace=T)
> data
[1] 9 2 8 10 9 1 8 2 1 6

> mean(data)
[1] 5.6

Functions 39

This sapply() call to perform this task, shown below, takes three parameters:

• The vector to be iterated over, which is the vector data.
• The function to process each element. This function is declared within the

sapply call itself, and takes two parameters, e and m. The parameter e is the
current vector element being processed, and the parameter m is the vector mean.
The function then evaluates the difference between the two values, and this is
processed by sapply and a vector returned after all the elements have been
processed.

• The third parameter maps onto the second argument (m) to be passed to the
function, which is the mean of the vector.

> d<-sapply(data,function(e,m){e-m}, mean(data))

The resulting vector displays the difference between each element and the
overall vector mean.

> d
[1] 3.4 -3.6 2.4 4.4 3.4 -4.6 2.4 -3.6 -4.6 0.4

The apply functions can also be used to process lists, as well as vectors. For
example, consider the following list of students.

s1<-list(id="1234567",fName="Jane", sName="Smith", age=21)
s2<-list(id="1234567",fName="Matt", sName="Johnson", age=25)
l<-list(s1,s2)

The task here is to implement a simple query: find the list elements (in the
list l) whose age is greater than 21. This can be done in two steps. First, sapply() is
used to process the query and return a boolean vector indicating the list indices that
match the conditional expression, and the result is stored in the vector b.

> b<-sapply(l,function(x)x$age>21)
> b
[1] FALSE TRUE

Next, the vector b can be used to filter the original list, and the answer is stored
in the ans, which now contains all those elements that match the condition.

> ans<-l[b]
> str(ans)
List of 1
$:List of 4
..$ id : chr "1234568"
..$ fName: chr "Matt"
..$ sName: chr "Johnson"
..$ age : num 25

40 2 An Introduction to R

The apply() function can be used to process rows and columns for a matrix, and
the general form of this function (Matloff 2009) is apply(m, dimcode, f, fargs),
where:

• m is the target matrix
• dimcode identifies whether it’s a row or column target. The value 1 is used to

process rows, whereas 2 applies to columns
• f is the function to be called
• fargs are the optional set of arguments that can be applied to the function f.

For example, apply() can be used to find the mean value in each row.

> m
[,1] [,2]

[1,] 10 40
[2,] 20 50
[3,] 30 60

> apply(m,1,mean)
[1] 25 35 45

In a similar way, apply() can be used to find the mean value in each column.

> apply(m,2,mean)
[1] 20 50

deSolve Package

R’s deSolve package solves initial value problems written as ordinary differential
equations (ODE), differential algebraic equations (DAE), and partial differential
equations (PDE) Soetaert et al. (2010). For system dynamics models, the ODE solver
in deSolve is used. The key requirement is that system dynamics modelers implement
the model equations in a function, and this function is called by deSolve. For this
example the customer growth model from Chap. 1 is revisited, as shown in Fig. 2.1.

Recruits Losses

Growth
Fraction

++

+

Decline
Fraction

+

Customers

Fig. 2.1 A stock and flow model of customers (from Chap. 1)

Apply Functions 41

http://dx.doi.org/10.1007/978-3-319-34043-2_1
http://dx.doi.org/10.1007/978-3-319-34043-2_1

The R implementation of this model is now described. To use the deSolve
library, the package needs to be installed, and then it should be referenced in the
model source file by calling the library() function.

library(deSolve)

In the R implementation, the first task is to define the simulation time constants,
and then create the simulation time vector using the seq() function.

START<-2015; FINISH<-2030; STEP<-0.25
simtime <- seq(START, FINISH, by=STEP)

The vector simtime can be inspected, and it is useful to see how the seq()
function creates the list of times from start to finish, with the appropriate steps in
between. The head() and tail() function are used to display the first and final six
elements of the vector.

> head(simtime)
[1] 2015.00 2015.25 2015.50 2015.75 2016.00 2016.25
> tail(simtime)
[1] 2028.75 2029.00 2029.25 2029.50 2029.75 2030.00

Next, two model vectors must be defined, as these are required as inputs to the
system dynamics model function. The first vector is named stocks and contains the
model stocks, along with their initial values. For this example, there is only a single
stock, and its initial value is set to 10000. To improve model readability, a computer
programming convention known as Hungarian notation is used to prefix a variable
name with it system dynamics type, i.e. s for stock, f for flow and a for auxiliary).

stocks <- c(sCustomers=10000)

The second vector is called auxs and this contains the exogenous parameters for
the customer model.

auxs <- c(aGrowthFraction=0.08, aDeclineFraction=0.03)

When simulating with deSolve, the modeler must write a function to implement
the model equations. The user-defined function, arbitrarily named model(), and
called from the deSolve library, takes three parameters:

• The current simulation time (time),
• A vector of all current stock values (stocks).
• A vector of model parameters (auxs).

42 2 An Introduction to R

These vectors can be transformed to lists using as.list(), and embedded in the
with() function, as this allows the variable names to be conveniently accessed.

model <- function(time, stocks, auxs){
with(as.list(c(stocks, auxs)),{

fRecruits<-sCustomers*aGrowthFraction

fLosses<-sCustomers*aDeclineFraction

dC_dt <- fRecruits - fLosses

return (list(c(dC_dt),
Recruits=fRecruits, Losses=fLosses,
GF=aGrowthFraction,DF=aDeclineFraction))

})
}

With these input values, all that remains is to specify the stock and flow
equations in their correct solving sequence.

• The flow fRecruits is a product of the stock sCustomers and the growth fraction
aGrowthFraction.

• The flow fLosses is a product of the stock sCustomers and the decline fraction
aDeclineFraction.

• The net flow (derivative) for the stock is calculated as the difference in inflow
and outflow, and stored in the variable dC_dt.

A list structure is then returned to the deSolve package. The first parameter is a
vector of all the net flows, and this must match the order in which the stocks are
initialized in the vector stocks. Following this, any other model variable can be
added to the return list to ensure that appears as part of the final result set. In this
case, the flows and auxiliaries are added, and user-friendly names provided.

Finally, the model is solved by calling the ode() function, which is part of the
deSolve library. This function takes five arguments.

• The vector of stocks (y=stocks).
• The simulation time vector (times=simtime).
• The function name that contains the model equations (func = model).
• The auxiliary parameters (parms=auxs).

deSolve Package 43

• The integration method (method=“euler”). Other methods are available,
including Runge-Kutta 4th order integration (method=“rk4”).

o<-data.frame(ode(y=stocks, times=simtime, func = model,
parms=auxs, method="euler"))

The full set of simulation results from ode are then converted into a data frame,
and using R’s head() function, the first six rows of results are displayed.

> head(o)
time sCustomers Recruits Losses GF DF

1 2015.00 10000.00 800.0000 300.0000 0.08 0.03
2 2015.25 10125.00 810.0000 303.7500 0.08 0.03
3 2015.50 10251.56 820.1250 307.5469 0.08 0.03
4 2015.75 10379.71 830.3766 311.3912 0.08 0.03
5 2016.00 10509.45 840.7563 315.2836 0.08 0.03
6 2016.25 10640.82 851.2657 319.2246 0.08 0.03

This data frame can be used as a basis to plot data and also to analyze results. For
example, the summary() function can be applied to the stock and flows in the data
frame, yielding useful summary statistics (columns 1, 5 and 6 are omitted).

> summary(o[,-c(1,5,6)])
sCustomers Recruits Losses

Min. :10000 Min. : 800.0 Min. :300.0
1st Qu.:12048 1st Qu.: 963.9 1st Qu.:361.4
Median :14516 Median :1161.3 Median :435.5
Mean :14866 Mean :1189.3 Mean :446.0
3rd Qu.:17489 3rd Qu.:1399.2 3rd Qu.:524.7
Max. :21072 Max. :1685.7 Max. :632.2

Visualization

R provides visualization libraries, and throughout this text, the R package ggplot2
is used. The terminology used in ggplot2 (Chang 2013) includes:

44 2 An Introduction to R

• The data to be visualized, which consists of variables stored in a data frame.
• The geometric objects, or geoms, that are drawn to represent the data, such as

points and lines.
• Aesthetic attributes that are the visual properties of geoms, such as line color,

point shape etc.

As the simulation results are already in a data frame, they are ready to be
visualized by calls to ggplot2. The package ggplot2 must be included, and fol-
lowing that a call to the function ggplot() is executed. A layered approach to
building a plot is used, with where additional attributes are added in sequence,
following the first call to ggplot(). With this example, a line is added specifying the
data frame, and the function aes() specifies the x and y variables.

library(ggplot2)

ggplot()+
geom_line(data=o,aes(time,o$sCustomers),colour="blue")+
geom_point(data=o,aes(time,o$sCustomers),colour="blue")+
scale_y_continuous(labels = comma)+
ylab("Customers")+
xlab("Year")

Figure 2.2 shows the variable of interest (sCustomers) changing over time.
Additional variables can be added to the plot by adding further calls to geom_line(),

Fig. 2.2 Visualizing the output from deSolve for the customer model

Visualization 45

and this data is also be presented in point format by using the function geom_point().
High resolution plots can also be created to support publication-quality presentations.
Following the ggplot() call, the function ggsave() will save the image to a file on the
disk, and this supports a range of formats.

ggsave("customers.png")

In summary, ggplot2 is a powerful visualization framework. A more compre-
hensive listing of its features is outside the scope of this text, however Chang
(2013) provides an excellent source of examples that can be built upon to maximize
the visualization impact of simulation output.

Summary

In conclusion, R is a powerful data analytics platform that supports system
dynamics modeling through the deSolve package. Further benefits from using R is
the facility to vectorize simulation models, analyze data, and apply further statistical
analysis to simulation output. For example, Chap. 5 will show how disaggregate
system dynamics models can be created using R. Chapter 6 demonstrates how R’s
unit testing framework can be used to test models, and Chap. 7 provides examples
of model calibration, sensitivity analysis, and statistical screening, that can all be
used to enhance the model building process.

Exercises

1. Create a vector of 100 random numbers, in the range 1–10. From this vector,
filter those variables that are divisible by 2. Finally, ensure that there are no
duplicates in the resulting vector (the R function duplicated() can be used to
support this final operation).

2. A quadratic equation has the form ax2 + bx + c. Use sapply() to transform an
input vector in the range [−100, +100] using a quadratic equation, where the
parameters a, b and c are provided as additional inputs to the transformation.

3. For an input vector of 1000 uniform random numbers, find the difference of
each element from the overall mean, and filter out all those resulting elements
that are less than zero or equal to zero.

46 2 An Introduction to R

http://dx.doi.org/10.1007/978-3-319-34043-2_5
http://dx.doi.org/10.1007/978-3-319-34043-2_6
http://dx.doi.org/10.1007/978-3-319-34043-2_7

References

Chambers J (2008) Software for data analysis: programming with R. Springer Science & Business
Media, Chicago

Chang W (2013) R graphics cookbook. O’Reilly Media Inc., Sebastapol, CA
Matloff N (2009) The art of R programming. No Starch Press, San Francisco, CA
Soetaert KER, Petzoldt T, Setzer RW (2010) Solving differential equations in R: package deSolve.

J Stat Soft 33

References 47

http://www.springer.com/978-3-319-34041-8

	2 An Introduction to R
	Abstract
	Vectors
	Lists
	Matrices
	Data Frames
	Functions
	Apply Functions
	deSolve Package
	Visualization
	Summary

