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Abstract. This article is a tutorial on how to achieve software evolution
and adaptation in a dependable manner, by systematically applying for-
mal modelling and verification. It shows how software can be designed
upfront to tolerate different sources of uncertainty that cause contin-
uous future changes. If possible changes can be predicted, and their
occurrence can be detected, it is possible to design the software to be
self-adaptable. Otherwise, continuous evolution has to be supported and
continuous flow into operation has to be ensured. In cases where sys-
tems are designed to be continuously running, it is necessary to support
safe continuous software deployment that guarantees correct operation
in the presence of dynamic reconfigurations. The approaches we survey
here have been mainly developed in the context of the SMScom project,
funded by the European Commission —Programme IDEAS-ERC (http://
erc-smscom.dei.polimi.it/.) — and lead by the author. It is argued that
these approaches fit well the current agile methods for development and
operations that are popularized as DevOps.
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1 Introduction and Motivations

Modern software systems increasingly live in a dynamic and open world [3]. The
goals to fulfil and the requirements to meet evolve over time. The environment in
which the software is embedded often behaves in ways that cannot be predicted
upfront during design. And if it can, it might later change after the software has
been developed and became operational. This situation is often encountered in
the design of cyber-physical systems, in which the physical and the cyber worlds
are intertwined, through many kinds of devices behaving as sensors and actua-
tors. Interaction with the physical world introduces a great variety of possible
contingencies, like noise, vibrations, humidity, or temperature, which may unex-
pectedly affect the system’s behavior. Sensors and actuators may also behave
in a hard-to-predict manner, and this may change over time, e.g. their behavior
may change because of the battery level. For these reasons, many different kinds
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of uncertainty may be present when the system is being designed and uncertainty
may ultimately affect the system’s ability to satisfy the requirements.

Design uncertainty is increasingly becoming the norm also for many other
kinds of system. User-intensive, highly interactive systems depend on users’
behaviors, which also may change over time. The widespread availability of
virtual environments, providing infrastructure/software-as-a-service, which raise
the level of abstraction for system designers, add their own sources of uncertainty
that must be properly handled. Furthermore, modern systems are increasingly
multi-owner. They depend upon parts (components, services) that are not under
the developers’ full control, but rather they are owned, managed, and operated
by others. They may run on platforms that developers do not own and do not
run; for example, they may run on a cloud. Yet, software designers are respon-
sible for the service they provide to their clients, and the level of service they
must guarantee has to satisfy the contractual agreements they subscribed with
their customers.

Requirements volatility and environment uncertainty are two main causes
that drive software evolution. Software evolution is not a new problem. It has
been recognized as a key distinguishing factor of software with respect to other
technologies since the early work pioneered by Belady and Lehman since the
1970’s [4,17], although the phenomenon has reached today unprecedented levels
of intensity. In the past software evolution was often viewed as a nuisance. The
term maintenance was often used to capture the evolution of software needed to
remedy inadequate requirements and wrong design choices. Evolution is instead
intrinsic in software. Like evolution in nature, it has a positive connotation,
which refers to the ability to adapt and improve in quality.

Today software is developed through evolutionary processes. Traditional pre-
defined, monolithic, waterfall lifecycles are generally replaced by incremental,
iterative, evolutionary, agile processes. Agility indicates a fast and flexible way
to react to changes. At the same time, researchers developed approaches to
embed in software capabilities to drive its own evolution, in an autonomic or
self-managed manner [14].

Agile processes originated in the practitioners’” world and have only been
marginally investigated by researchers. As observed by [19], in their iconoclastic
reaction to other approaches, the proponents of agile methods tend to dismiss
some of the key principles of software engineering that lead to improved depend-
ability. They dismiss requirements analysis —replaced by user stories— (formal)
modelling —viewed as as a sterile exercise— and the value of formal verification
—fully replaced by continuous testing. The importance of formal methods in the
context of self-managed systems has also been largely underestimated by most
initial research efforts.

The body of work we survey in this paper is fully reliant on formal methods to
enable dependable software evolution. Within the vast area of software evolution,
this article focuses mostly on two aspects:

1. Non-functional requirements: The system’s evolution is dictated by the need
to satisfy certain non-functional requirements in the presence of changes that
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would otherwise lead to violations. Among non-functional requirements we
focus in particular on those that can be modelled in a mathematically precise,
quantitative way. This includes requirements on response time, reliability,
power consumption. Often these can be expressed in a probabilistic manner.

2. Self-adaptation: We analyze when and how the system can be made capable of
collecting and analyzing run-time data that hint at changes in the behavior of
the environment that may lead to requirements violations and are amenable
to reactions that may be decided autonomously.

3. Dynamic software updates: In the case of self-adaptation, the system must
reconfigure itself dynamically, while it is operational. This requirement also
holds for systems where updates are performed offline by software engineers
and installed online while the system is offering service. This situation is
becoming very common today because many systems are required to be con-
tinuously running and operation cannot be interrupted to accommodate new
updates. Dynamic updates must be performed both safely and efficiently, to
ensure timely reaction to changes.

The paper is structured as follows. Section 2 presents a general framework to
understand and reason about evolution and adaptation. In particular, it allows
us to articulate the complex interactions that may occur between the software
and the environment in which it is embedded, and how dependency on the envi-
ronment may affect dependability and drive adaptation. Section 3 introduces a
case study. Section 4 introduces background material on modeling and verifica-
tion. Section 5 discusses how models and verification may be brought to run time
to support self-adaptation. Section 6 addresses the problem of safe dynamic soft-
ware updates. Finally, Sect. 7 illustrates final considerations and points to future
research.

2 Reference Framework

In this section we describe a framework to understand and reason about software
and change, which was proposed by the foundational work on requirements engi-
neering developed by Jackson and Zave [13,21]. Jackson and Zave observe that
in requirements engineering one needs to carefully distinguish between two main
concerns: the world and the machine. The machine is the system of interest that
must be developed; the world (the environment) is the portion of the real-world
affected by the machine. The ultimate purpose of the machine is always to be
found in the world. The goals to be met and the requirements are ultimately
dictated by the world and must be expressed in terms of the phenomena that
occur in it. Some of these phenomena are shared with the machine: they are
either controlled by the world and observed by the machine —through sensors—
or controlled by the machine and observed by the world —through actuators.
The machine is built exactly for the purpose of achieving satisfaction of the
requirements in the real world. Its specification is a prescriptive statement of
the relation on shared phenomena that must be enforced by the system to be
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developed. The machine that implements it must be correct with respect to the
specification.

The task of software engineers is to develop first a specification and then
an implementation for a machine that achieves requirements satisfaction. To
this end, domain or environment knowledge plays an essential role. That is, the
software engineer needs to understand the laws that govern the behavior of the
environment and formulate the set of relevant assumptions that have to be made
about the environment in which the machine is expected to work, which affect
the achievement of the desired results. Quoting from [21],

“The primary role of domain knowledge is to bridge the gap between
requirements and specifications.”

If R and S are the prescriptive statements that formalize the requirements
and the specification, respectively, and D are the descriptive statements that
formalize the domain knowledge, assuming that S and D are are both satisfied
and consistent with each other, the designer’s responsibility is ultimately to
ensure that

S.D=R

i.e., the machine’s specification S we are going to devise must entail satisfaction
of the requirements R in the context of the domain properties D. We call this
the dependability argument.

Figure 1 provides a visual sketch of the Jackson/Zave approach. The domain
knowledge D plays a fundamental role in establishing the requirements. We
need to know upfront how the environment in which the software is embedded
works, since the software to develop (the machine) can achieve the expected
requirements only based on the assumptions on the behavior of the domain,
described by D. Should the environment behave in a way that contradicts the
statements in D, the current specification might lead to violation of R. The
statements expressed by D may fail to capture the environment’s behavior for
two reasons: either because the domain analysis was initially flawed (i.e., the
environment behaves according to different laws than the ones captured by D) or
because changes occurred, which cause the assumptions made earlier to become
invalid. An example of the latter case may be an exceptional and unexpected
traffic of submitted user requests that may generate a denial of service.

It is possible to further breakdown D into two components: domain laws —DI—
and domain assumptions —Da. Laws indicate the physical or mathematical prop-
erties that have been proved for the domain, whose truth can only be invalidated
by falsifying the theory. An example is the law of motion that says that the appli-
cation of a force in a given direction to a body causes motion of the body in that
direction. A designer relying on this property may specify that a command to a
force actuator has to be issued by the software to satisfy the requirement that a
body should be moved. This property holds and cannot be refuted. Assumptions
instead are properties that are subject to some level of uncertainty and may be
disproved. In some cases, they denote currently valid properties that may later
change, as for example, traffic conditions changes. They represent the best of
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Fig. 1. The Jackson/Zave framework.

our knowledge at a given time. But because of design-time uncertainty and/or
because variability in time, assumptions may become invalid.

Software evolution refers to changes that affect the machine, to enable it to
respond to changes in the requirements and/or in the environment (we ignore in
this paper the fact that implementation may be be incorrect, i.e., the running
software violates its specification S). The term adaptation is used in this work
to indicate the specific case of evolution dictated by changes in the environment,
while self-adaptation indicates changes that can be handled autonomously by
the machine.

The management of evolution in traditional software is performed off-line,
during the maintenance phase. The traditional classification in perfective, adap-
tive, and corrective maintenance can also be explained by referring to the Jack-
son/Zave framework. Changes in the requirements, dictated by changes in the
business goals of organizations or new demands by users, cause perfective main-
tenance. Environmental changes affecting domain assumptions, which may rep-
resent organizational assumptions or conditions on the physical context in which
the software is embedded, cause adaptive maintenance. Corrective maintenance
is instead caused by failure of the dependability argument and forces the speci-
fication to change.

According to the traditional paradigm, in order to undergo a maintenance
intervention, software returns into its development stage, where changes are
analyzed, prioritized, and scheduled. Changes are then handled by modifying
the design and implementation of the application. The evolved system is then
verified, typically via some kind of regression testing.

This paradigm does not meet the requirements of current application sce-
narios, which are subject to continuos changes in the requirements and in the
environment, and which require rapid reaction to such changes. By following an
agile development style, software development became incremental and iterative.
By following the currently widely advocated DevOps culture, agility extends in
a seamless manner to delivery and deployment, viewing development and oper-
ation as an integrated perpetual process.
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Figure 2 illustrates our envisioned process that supports continuous develop-
ment and operation, through two main, interacting loops: the development loop
and the self-adaptation loop. The process incorporates the run-time feedback
loop advocated by the autonomic computing proposal [14], which enables self-
adaptation. Designers are in the loop and drive evolution. They get informed
about the system’s dynamic behavior by leveraging monitored data. They are
required to initiate evolution whenever self-adaptation fails. Whenever they
decide that components should be transferred to the running system to replace
faulty functionalities, add functionalities, or enhance existing ones, they can
instruct the operational environment to reconfigure itself dynamically in a com-
pletely safe, non-disruptive, and efficient way.

In this paper we embrace this holistic view and discuss the role that formal
methods can play to support continuous evolution in a dependable manner, i.e.,
where the designer’s focus is constantly driven by the need to formally guarantee
satisfaction of the dependability argument.

The next section introduces a practical application domain and a case study
that provide concrete motivations for this work. We subsequently show how the
run-time adaptation loop can be structured and how safe dynamic reconfigu-
rations can be supported. Finally we will conclude by discussing how we might
progress to achieve the global picture of Fig. 2 and by outlining a research agenda.

Development cycle

/_‘ Sensor Effector ‘_\
Operation (with

self-adaptation)

Analyze Plan

—

Software
System

Knowledge

Monitor Execute

X y
=

Environment

Fig. 2. The development and operation process.
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3 A Case Study

Hereafter we illustrate a concrete example in which the approach described ear-
lier is successfully applied. The example, which was originally introduced in [9],
refers to a typical e-commerce application that sells merchandise on-line to end
users by integrating several services offered by third-parties:

1. Authentication Service. This service manages the identity of users. It provides
a Login and a Logout operation through which the system authenticates users.

2. Payment Service. This service provides a safe transactional payment service
through which users can pay the selected merchandise via the CheckOut oper-
ation.

3. Shipping Service. This service is in charge of shipping goods to the customer’s
address. It provides two different operations: NrmShipping and ExpShipping.
The former is a standard shipping functionality while the latter represents
a faster and more expensive alternative. Finally, the system classifies the
logged users as NewCustomer (NC) or ReturningCustomer (RC), based on
their usage profile.

The case study illustrates a situation that has become quite common, which
is abstracted by Fig. 3. It is a user-intensive application, where end-users interact
with the application in a hard-to-predict and time variable manner. For example,
usage patterns may vary during the different periods of the year, and may have
seasonal peaks (for example, around Christmas holidays). Moreover, the behavior
of integrated services may be subject to variability, and even deviations from
the expected quality of service. Figure4 provides a high-level view of the flow
of interaction between users and the e-commerce application, expressed as an
activity diagram.

Integrated Service

User s>
<uses> use <uses>

e

Fig. 3. A class of applications

This application has to guarantee a certain quality of service to customers.
In particular, here we focus on reliability. Services may in fact fail to provide
an answer by timing out incoming requests in situations where the load exceeds
their capacity.
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Fig. 4. Operational description of the specification via an activity diagram

Reliability requirements can be typically expressed in probabilistic terms: for
example, the probability that a user-triggered transaction completes successfully
must be higher than a given value. In the case of the e-commerce application,
fulfilment of a reliability requirement clearly depends on certain assumptions
about the environment, such as the reliability of the third-party services that are
integrated into the application and usage profiles (e.g., the ratio between new and
returning customers), which may affect the satisfaction of specific requirements
that may refer to the different categories.

As mentioned, environment phenomena of these kinds are quite hard to pre-
dict when the system is initially designed. Even in cases where the expected
failure rate of services may be stated in the contract with the service provider,
values are subject to uncertainty and may very likely change over time (for
example, due to a new release of the service). Likewise, usage profiles are hard
to predict upfront and are very unstable.

Let us assume that the e-commerce application must satisfy the following
reliability requirements:

— R1: “Probability of success is greater then 0.8”

— R2: “Probability of a FExzpShipping failure for a wuser recognized as
ReturningCustomer is less then 0.035”

— R3: “Probability of an authentication failure is less then 0.06”

Let us further assume that development time domain analysis tells us that
expected usage profile can be reasonably described as in Table 1. The notation
P(z) denotes the probability of “x”. Table2 instead summarizes the results of
domain analysis concerning the external services integrated in the e-commerce
application. P(Op) here denotes the probability of failure of service operation Op.
The environment assumptions expressed in Tables1 and 2 may derive from dif-
ferent sources. For example, reliability properties of third-party services may be
published as part of the service-level agreement with service providers. Usage
profiles may instead be derived from previous experience of the designers or
knowledge extracted from previous similar systems.
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Table 1. Domain assumptions on usage profiles

Description Value
P(User is a RC) 0.35
P(RC chooses express shipping) 0.5
P(NC chooses express shipping) 0.25
P(RC searches again after a buy operation) | 0.2
P(NC searches again after a buy operation) 0.15

Table 2. Domain assumptions on external services

Description Value
P (Login) 0.03
P (Logout) 0.03

P (NrmShipping) | 0.05
P (ExpShipping) | 0.05
P (CheckOut) 0.1

4 Modeling and Verification Preliminaries

As we discussed earlier, the software engineer’s goal is to derive a specification
S which leads to satisfaction of requirements R, assuming that the environ-
ment behaves as described by D. From the activity diagram in Fig.4 and the
information contained in the tables regarding environment assumptions, we can
derive an enriched state-machine model that summarizes a formal description
both of the application and of the environment. The state machine transitions
describe the possible sequences of interactive operations, according to the proto-
col specified by the activity diagram of Fig. 4. Domain assumptions are modeled
as probabilities that label the transitions. The model also represents failure and
success states for the external services.

Formally, the model in Fig.5 is a Discrete Time Markov Chain (DTMC). It
contains one state for every operation performed by the system plus a set of aux-
iliary states representing potential failures associated with auxiliary operations
(e.g., state 5) or specific internal logical states (e.g., state 2).

Once a formal model is provided, like the DTMC in Fig. 5, it is possible to
formally verify whether requirements are satisfied, provided they are expressed
in suitable language for which a verification procedure exists. In the case of
DTMCs, requirements may be formalized using the probabilistic temporal logic
language PCTL, and then checked against the model using a probabilistic model
checker, like PRISM [12,16]. By doing so on our example, we obtain the following
results:
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Fig. 5. DTMC model for the case study

— Probability of success = 0.804

— Probability of a FxpShipping failure for a user recognized as ReturningCus-
tomer =o 0.031

— Probability of an authentication failure (i.e., Login or Logout failures) = 0.056

which ensure satisfaction of the requirements.
Hereafter we explain how this can be done, by first briefly reviewing DTMCs
and then introducing PCTL.

4.1 Discrete Time Markov Chains

DTMCs are defined as state-transition systems augmented with probabilities.
States represent possible configurations of the system. Transitions among states
occur at discrete time and have an associated probability. DTMCs are discrete
stochastic processes with the Markov property, according to which the probabil-
ity distribution of future states depend only upon the current state.

Formally, a (labeled) DTMC is tuple (S, So, P, L) where

S is a finite set of states

So C S is a set of initial states

P:SxS —[0,1] is a stochastic matrix, where ), .o P(s,s') =1 Vs € S. An
element P(s;, s;) represents the probability that the next state of the process
will be s; given that the current state is s;.

L : S — 247 is a labeling function which assigns to each state the set of
Atomic Propositions which are true in that state.

For reasons that will become clear later, we implicitly extend this definition
by also allowing transitions to be labeled with variables (with values in the
range 0..1) instead of constants. A state s € S is said to be an absorbing state if
P(s,s) = 1. If a DTMC contains at least one absorbing state, the DTMC itself
is said to be an absorbing DTMC.
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In an absorbing DTMC with r absorbing states and ¢ transient states, rows
and columns of the transition matrix P can be reordered such that P is in the

following canonical form:
_(QR
P (17

where [ is an r by r identity matrix, 0 is an r by ¢ zero matrix, R is a nonzero
t by r matrix and @ is a t by ¢ matrix.

Consider now two distinct transient states s; and s;. The probability of mov-
ing from s; to s; in exactly 2 steps is >, ¢ P(8i,82) - P(54, ;). Generalizing,
for a k-steps path and recalling the definition of matrix product, it follows that
the probability of moving from any transient state s; to any other transient state
sj in exactly k steps corresponds to the entry (s;,s;) of the matrix QF. As a
natural generalization, we can define Q° (representing the probability of moving
from each state s; to s; in 0 steps) as the identity ¢ by ¢ matrix, whose elements
are 1 iff s; = s; [10].

Due to the fact that R must be a nonzero matrix, and P is a stochastic
matrix, @ has uniform-norm strictly less than 1, thus @™ — 0 as n — oo, which
implies that eventually the process will be absorbed with probability 1.

In the simplest model for reliability analysis, the DTMC will have two absorb-
ing states, representing the correct accomplishment of the task and the task’s
failure, respectively. The use of absorbing states is commonly extended to mod-
eling different failure conditions. For example, different failure states may be
associated with the invocation of different external services. Once the model
is in place, we may be interested in estimating the probability of reaching an
absorbing state or in stating the property that the probability of reaching an
absorbing failure state should be less than a certain threshold. In the next section
we discuss how these and other interesting properties of systems modeled by a
DTMC can be expresses and how they can be evaluated.

T-0ery

; 1-z ‘,\1
— —
v ¥ 0.15 0.8 !
% Success ] Logout ) End

N

©-

AuthenticationFail]

Fig. 6. DTMC example.

Let us consider the simple example of DTMC in Fig. 6, which represents a
system sending authenticated messages over the network. States 5, 6, and 7 are
absorbing states; states 6 and 7 represent failures associated respectively to the
authentication and to message sending. We use variables as transition labels to
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indicate that the value of the corresponding probability is unknown, and may
change over time.

In matrix form, the same DTMC would be characterized by the following
matrices @) and R:

01 0 0 0
00 y 0 1—z—y
Q=100 0 1—=z 0
000.15 0 0.85
00 0 0 0

000
0z0
R=]100z
000
100

This is a toy example that we use hereafter instead of the more complex
original case study to exemplify the approach within a constrained space.

4.2 Formally Specifying Requirements

Formal languages to express properties of systems modeled through DTMCs
have been studied in the past and several model checkers have been designed
and implemented to support property analysis. Through model checking one
can verify that a given model (representing domain assumptions and the speci-
fication) satisfies the requirements, provided they are formalized in a language,
such as PCTL, for which a verification procedure exists. In particular, PCTL [2]
—which is briefly introduced hereafter— proved to be useful to express a number
of interesting reliability properties.

PCTL extends the branching-time temporal logic language CTL [2] to deal
with probabilities. Instead of the existential and universal quantification of CTL,
PCTL provides the probabilistic operator Py, (-), where p € [0, 1] is a probability
bound and e {<, <, >, >}.

PCTL is defined by the following syntax:

Pu=true|a|P N P| D | Pup ()
pu=Xo|OUD| DU @
Formulae @ are named state formulae and can be evaluated over a boolean
domain (true, false) in each state. Formulae v are named path formulae and

describe a pattern over the set of all possible paths originating in the state
where they are evaluated.
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The satisfaction relation for PCTL is defined for a state s as:

s | true

sEa iff a€ L(s)

s E iff sE@

sE®IAND, i s|E Prands E Do
S E Puple) it Pr(s = ) mp

A formal definition of how to compute Pr(s = v) is presented in [2]. The
intuition is that its value corresponds to the fraction of paths originating in s
and satisfying v over the entire set of paths originating in s. The satisfaction
relation for a path formula with respect to a path 7 originating in s (7[0] = s)
is defined as:

e X iff 7[1
T | UV iff 3j
T dUSY  iff 30

= ¢
0.(r[j] EZ A (VO < k < jrlk] E D))
J<t(n[jlE¥ AN <k<jmk] =P))

]
>
<

PCTL is an expressive language that allows reliability-related properties to
be specified. A taxonomy of all possible reliability properties is out of the scope
of this paper. The most important case is a reachability property. A reachabil-
ity property states that a state where a certain characteristic property holds
is eventually reached from a given initial state. In most cases, the state to be
reached is an absorbing state. Such state may represent a failure state, in which
a transaction executed by the system modeled by the DTMC eventually (regret-
tably) terminates, or a success state. Reachability properties are expressed as
Poap(true U &)!, which expresses the fact that the probability of reaching any
state satisfying @ has to be in the interval defined by constraint < p. @ is
assumed to be a simple state formula that does not include any nested path
formula. In most cases, it just corresponds to the atomic proposition that is true
in an absorbing state of the DTMC. In the case of a failure state, the probability
bound is expressed as < x, where x represents the upper bound for the failure
probability; for a success state it would be instead expressed as > x, where x is
the lower bound for success.

PCTL allows more complex properties than plain reachability to be
expressed. Such properties would be typically domain-dependent, and their def-
inition is delegated to system designers. For example, referring to the example
in Fig. 6, we express the following reliability requirements:

— R1: “The probability that a MsgFuil failure happens is lower than 0.001”

— R2: “The probability of successfully sending at least one message for a logged
in user before logging out is greater than 0.001”

— R3: “The probability of successfully logging in and immediately logging out is
greater than 0.001”

— RA4: “The probability of sending at least 2 messages before logging out is greater
than or equal to 0.001”

! Note that this is often expressed as Py, F'P, using the finally operator.
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Notice that R1 is an example of reachability property. Also notice that these
requirements have different sets of initial states: R1, R3, and R4 must be eval-
uated starting from state 0 (i.e., Sop = {0}) while R2 must be evaluated starting
from state 1. Formalization of requirements R1-R3 using PCTL is left as an
exercise.

5 Supporting Self-adaptation via Run-Time Verification

Let us refer to the process model represented in Fig. 2, which shows the interplay
between the run-time adaptation and the off-line evolution feedback loops. To
support dependable self-adaptation, we root the analysis phase taking place dur-
ing operation (see Fig.2) into model checking. The model that represents both
the software system and the environment —such as the one shown in Fig. 6— is
kept alive at run time and is updated according to the data gathered by monitor-
ing, which can be used to infer possible environment changes through a machine
learning component. In our case study, new values for the probabilities of certain
transitions representing service failures may be inferred by monitoring the failure
rate of service invocations. Likewise, user profiles may be inferred by monitoring
log-in customers’ data. Inference can be based on standard statistical approaches,
like the Bayesian learning method we used in [6]. Once the model is updated, the
properties of interest can be checked. Violation of a given property is a trigger
for self-adaptation, which is successful if changes of the implementation can be
found that can eliminate the problem through a dynamic reconfiguration.

The key concepts upon which this approach is based are that (1) the mod-
els of interest are kept at run time and continuously updated, and (2) model
checking provides continuous verification support to detect the need for adap-
tive reactions. Reactions are often subject to hard real-time constraints: they
must lead to a valid software reconfiguration before the violation of requirements
leads to unacceptable mishaps. The conventional model checking techniques are
not really suitable for use at run time. They require the model checker to be
run from scratch after any model change. It is thus necessary to re-think model
checking algorithms to make them suitable for run-time use.

Our work has focused on making DTMC model checking for PCTL incre-
mental. An incremental approach avoids re-analysis of the entire model by pre-
computing the effects of changes. To achieve this goal, we make the assumption
that changes are local and not disruptive. This is a reasonable assumption in
most practical cases, assuming that the source model for the update is a rea-
sonable approximation of the target. For DTMC models this assumption boils
down to the hypothesis that the structure of the model does not change: only
transition parameters may change. Furthermore, although in principle all such
parameters may change, the solution we found works very efficiently if the num-
ber of transition parameters that may change is a small fraction of all transitions.

In the next section we present an incremental approach to probabilistic model
checking that is based on parameterization. Changeable transition probabilities
are treated as variables and a mathematical procedure computes a symbolic ana-
lytic expression for the properties we want to verify at run time. The underlying
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idea is that computation of the analytic expression, which takes place at design
time, can be computationally expensive, but then evaluation of the pre-computed
analytic expression, which occurs at run time, can be very efficient.

5.1 Run-Time Efficient Parametric Model Checking

The most commonly studied property for reliability analysis concerns the prob-
ability of reaching a certain state, which typically represents the success of the
system or some failure condition. Both success and failure are modeled by absorb-
ing states. The reachability formula in this case has the following form: Py, F1,
where [ is the label of the target absorbing state. Hereafter we focus our dis-
cussion on how to pre-compute at design time a reachability formula for an
absorbing state of a DTMC. All the details and the extension of the approach
to cover all PCTL can be found in [7,8].

We assume that a DTMC can contain both numerically and symbolically
labeled transitions. Since the sum of probabilities of all transitions exiting any
given state must be 1, in the case where one transition is a variable, we require
that all transitions exiting the state be also variable. We refer to such state as
variable state.

For an absorbing DTMC, the matrix I — @ has an inverse N and N =1 +
Q+Q*+--- =372, Q" [10]. The entry n;; of N represents the expected number
of times the Markov chain reaches state s;, given that it started from state s;,
before getting absorbed. Instead, g;; represents the probability of moving from
the transient state s; to the transient state s; in exactly one step.

Given that @™ — 0 when n — oo (as discussed in Sect. 4.1), the process will
always be absorbed with probability 1 after a large enough number of steps, no
matter from which state it started off. Hence, our interest is to compute the
probability distribution over the set of absorbing states. This distribution can
be computed in matrix form as:

B=NxR

where r;;, is the probability of being absorbed in state s, given that the process
started in state s;.

B is a t X r matrix and it can be used to evaluate the probability of each
termination condition starting from any DTMC state as an initial state. In
particular the element b;; of the matrix B represents the probability of being
absorbed into state s; given that the execution started in state s;.

The design-time computation of an entry b;; requires mixed symbolic and
numeric computation, since variable states may be traversed to reach state s;.
Let us evaluate the complexity of such computation. Inverting matrix I — @
by means of the Gauss-Jordan elimination algorithm [1] requires ¢> operations.
The computation of the entry b;; once N has been computed requires ¢ more
products, thus the total complexity is t3+t arithmetic operations on polynomials.
The computation could be further optimized by exploiting the sparsity of I — Q.
Notice that the symbolic nature of the computation makes the design-time phase
quite costly [11].
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The complexity can be significantly reduced if the number of variable compo-
nents c¢ is small and the matrix describing the DTMC is sparse, as very frequently
happens in practice. Let W = I — Q. The elements of its inverse N are defined

as follows: )
"5 = Gergwy V)

where a;;(WW) is the cofactor of the element w;;. Thus:

1
bir, = Z Nijg * Txj = W Z Oém'(W) * Ty

z€0..t—1 z€0..t—1

Computing b, requires the computation of ¢ determinants of square matrices
with size t — 1. Let 7 be the average number of outgoing transitions from each
state (7 << n by assumption). Each of the determinants can be computed by
means of Laplace expansion. Precisely, by expanding first the ¢ rows representing
the variable states (each has 7 symbolic terms), we need to compute at most 7¢
determinants and then linearly combine them. Each submatrix of size ¢ — ¢ does
not contain any variable symbol, by construction, thus its determinant can be
computed with (t—c)3 operations among constant numbers (LU-decomposition),
thus much faster than the corresponding ones among polynomials. The final
complexity is thus:

¢ (t—c) ~ 7o 3

which significantly reduces the original complexity and makes the design-time
pre-computation of reachability properties feasible in a reasonable time, even for
large values of t.

As a term of comparison, the computation of reachability properties per-
formed by probabilistic model-checkers is based on the solution of a system of n
equations in n variables [2], which has, in a sequential computational model, a
complexity equal to n? [5].

Summing up, we discussed the computation of properties in the form
Poap(F'si), where s, is an absorbing state, starting in any initial transient state
of the system?. With this procedure, it is possible to obtain closed formulae for
a number of interesting reliability properties.

For example, evaluating R1 on our toy system, that is the probability of
reaching the state MsgFuail failure in any number of execution steps corresponds
to evaluating b7 as:

(y2)
(0.85 4 0.15z2)
The approach can be extended to computing the probability of successfully
reaching a non-absorbing state. This extension supports verification of properties
like “the probability of reaching state s; without reaching any failure” or “the

R1: < 0.001

2 Actually we discussed the computation of the probability associated with the prop-
erty, to which the constraint > p has to be applied.
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probability of a successfully performing a certain operation or service”. In our
example, the probability of reaching the Logout state 7 after any number of
. : ) _ 0.85-0.85240.152—0.1522— :
steps is expressed by the following formula: fos = ossro s, . This
extension, as well as the ones needed to cover the entire PCTL are presented

in [8].

6 Achieving Safe Dynamic Software Update

Once the need for a change in running software is identified, an alternative solu-
tion has to be found and then instantiated. A number of different approaches
have been proposed to address the problem, focusing on changes at different lev-
els of granularity. In this section we assume that the implementation has a dis-
tributed component-based architecture, where components interact via remote
invocations. We do not address here the issue of how the alternative solution
may be identified, but instead focus on how the architectural update may be
instantiated at run time in a safe way, while the system is running.

Traditional approaches to software update are static. They require (1) to
shut down the currently running version, (2) deploy the new version, and (3)
restart the system. This allows safe replacement if off-line verification has proved
that the new version satisfies the new requirements, but cannot be applied in
the increasingly common cases where the system cannot be shut down and the
update must be performed while the system is running.

Dynamic software update must satisfy two main requirements. It has to have
low disruption, i.e. it must have low overhead and minimize the the delay with
which the system is updated. It also has to be safe, i.e. it must not lead the
system into an unexpected erroneous state.

The rest of this section summarizes the work presented in [18], where different
criteria for dynamic update are assessed and a new criterion, called wversion
consistency is proposed. This criterion leads to a safe and efficient dynamic
update approach for distributed component-based architectures.

Auth

Portal DB

Proc

Fig. 7. Our example system.
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Let us consider, as an example, the architecture shown in Fig.7. A portal
component (Portal) interacts with an authentication component (Auth) and a
business processing component (Proc), while Proc interacts with both Auth and
a database component (DB). This means that Portal statically depends on (i.e.,
can invoke) Proc and Auth, and Proc depends on Auth and DB.

A component can host (execute) transactions. A transaction is a sequence
of actions that completes in bounded time. Actions include local computations
and message exchanges. A transaction T' can be initiated by an outside client or
by another transaction T”. T is called a root transaction in the former case and
a sub-transaction (of T") in the latter case. The term sub(T”,T) denotes that T
is a direct sub-transaction of T7”. The set ext(T) = {z|r = TV sub™ (T, x)} is the
extended transaction set of T, which contains T and all its direct and indirect
sub-transactions. The extended transaction set of a root transaction models
the concept of distributed transaction that can span over multiple components.
The host component of transaction 7' is denoted as hp. Transactions are also
always notified of the completion of their sub-transactions. This implies that a
transaction 7' cannot end before its sub-transactions T;. All other exchanged
messages between hr and h7, —because of T;— are temporally scoped between
the two corresponding messages that initiate the sub-transaction and notify its
completion.

Figure8 shows a usage scenario for the example system. The Portal first
gets an authentication token from Auth and then uses it to require services

Portal Auth Proc DB

\/

T

I

|

I

I

[}

I

|

I
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Fig. 8. Detailed scenario.
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from Proc. Proc verifies the token through Auth and then starts computing,
and interacting with DB. If we consider the root transaction 7Ty at Portal, its
extended transaction set is ext(Ty) = {To, T1, T2, T5, T4}, where T7 at Auth is in
response to the getTocken request, T5 at Proc in response to process, T35 at Auth
in response to verify, and T, at DB for T5’s request of database operations.

A dynamic update can be specified as an operation that substitutes one or
more components of the original configuration with new versions. We assume
components to be stateless; i.e., there is no need to transfer the state from one
component to its replacement during the update. We also assume the update
to be correct, i.e., the update satisfies the requirements in the current environ-
ment conditions. The update leads to a dynamic reconfiguration, where new
bindings are established between the existing components and a newly installed
component. We assume that re-binding is performed as an atomic operation.

Let S be the current specification of the requirements to be satisfied by the
system, and let S’ be the updated specification that must be satisfied after the
update. The dynamic reconfiguration is defined to be correct if:

— The transactions that end before the update satisfy S;

— The transactions that begin after the update satisfy S';

— The transactions that begin before the update, and end after it, satisfy either
Sor§.

In our example, suppose that Auth has to be updated to exploit a stronger
encryption algorithm and prevent weaknesses in system security. Although the
new algorithm is incompatible with the old one, the other components need
not to be updated because all encryption/decryption operations are done within
Auth. If the update is allowed to happen any time, however, it may be impossible
to ensure correctness. An obvious restriction on when the update can happen is
that components targeted for update must be idle, that is, they are not hosting
transactions. This constraint is a necessary but not sufficient condition for safe
dynamic update. In fact, if we consider the scenario of Fig.8, and substitute
Auth when idle, but after serving getTocken, the resulting system would behave
incorrectly since the security token would be created with an algorithm and
validated by another.

It can be proved that correctness of arbitrary runtime updates is undecid-
able, even if the corresponding off-line update is correct and the on-line update
only happens when components are idle. However, it is possible to derive auto-
matically checkable sufficient correctness conditions.

In a seminal paper, Kramer and Magee [15] proposed a criterion called quies-
cence as a sufficient condition for a component to be safely replaced in dynamic
reconfigurations. Their approach models a distributed system as a directed
graph, whose nodes represent components and edges represent static dependen-
cies. A node can initiate transactions on itself, or initiate two-party transactions
on another node if there is an edge between the two nodes. A node’s state can
only be affected by transactions. Every two-party transaction is a sequence of
message exchanges between the two nodes. A (dependent) transaction T can



Dependability of Adaptable and Evolvable Distributed Systems 55

“contain” other (consequent) transactions T;: the completion of T" depends on
the completion of all the T;. Transactions always complete in bounded time and
the initiator is always notified about their termination.

Definition 1 (Quiescence). A node is quiescent if:

It is not currently engaged in a transaction that it initiated;

It will not initiate new transactions;

It is not currently engaged in servicing a transaction;

No transactions have been or will be initiated by other nodes which require
service from this node.

B o o =

A component node satisfying the first two conditions is said to be passive.
A node is required to respond to a passivate command from the configuration
manager by driving itself into a passive state in bounded time. The last two con-
ditions further make the node independent of all existing or future transactions,
and thus it can be manipulated safely. To drive a node into a quiescent status,
in addition to passivating it, all the nodes that statically depend on it must also
be passivated to ensure the last two conditions.

According to this approach, a node cannot be quiescent before completion
of all the transactions initiated by statically dependent nodes. This means that
the actual update could be deferred significantly. In our example, Auth cannot
be quiescent before the end of the transactions initiated by Portal and Proc.
Moreover, all the other nodes that could potentially initiate transactions, which
require service from Auth, directly or indirectly, are passivated, and their progress
blocked till the end of the update. Again, in our example Portal and Proc are
to be passivated. This means that the this approach can introduce significant
disruption in the service provided by the system.

To reduce disruption, Vandewoude et al. [20] proposed an alternative crite-
rion, called tranquillity. The idea is that there is no need for waiting a transaction
to complete if it will not further request the service provided by the node tar-
geted for update, even if the node has been involved in the transaction. Symmet-
rically, it is also permitted to update a node even if some on-going transactions
will require the service provided by the node in the future, but they have not
interacted with it yet.

Definition 2 (Tranquillity). A node is tranquil if:

It is not currently engaged in a transaction that it initiated;

It will not initiate new transactions;

It is not actively processing a request;

None of its adjacent nodes are engaged in a transaction in which it has both
already participated and might still participate in the future.

™ Lo do =

If applied to our example, however, tranquillity would lead to unsafe updates.
In fact, after Auth returns the token to Portal, it will not participate in the session
initiated by Portal anymore. Before the request for verification is sent, Auth has
not participated in the session initiated by Proc. So Auth is tranquil at time @).
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However, if Auth is updated at this time a failure may occur since the token was
issued by the old version of Auth with an incompatible encryption algorithm.
This failure would not happen if the system was either entirely in the old or in
the new configuration.

To conclude, we can say that the quiescence is a general and safe criterion,
but it can be disruptive. Tranquillity is less disruptive, but it can be applied
safely in a restricted set of cases assumption, otherwise it can be unsafe.

Version consistency is a new criterion introduced in [18], which tries to get the
best of the previous two proposals and achieves safety while reducing disruption.
The criterion can be stated as follows:

Definition 3 (Version Consistency). Transaction T is version consistent iff
I, Ty € ext(T) | by, € wA Ry, €W'. A dynamic reconfiguration of a system is
version consistent if all its transactions are kept version consistent.

This means that a dynamic reconfiguration of a system is correct if it hap-
pens at a time instant where all its transactions, including those started before
and ended after the update, are kept version consistent. This is because of the
correctness of the old and new configurations and the fact that any version-
consistent transaction is served—along with all its sub-transactions—as if it
entirely completed within the old or the new configuration, no matter when the
update actually happens. Also note that a transaction that ends before (starts
after) the update cannot have a direct or indirect sub-transaction hosted by the
new (old) version of a component being updated.

For our example, if the update of Auth happens after transaction T begins
but before it sends a getToken request to Auth, all transactions in ext(Tp)
(i.e., all transactions in Fig.8) are served in the same way as if the update
happened before they all began. If it happens at any time after Auth replies
to the verify request issued by Proc (time ®), all transactions in ext(Tp) are
served the same way as if the update happened after they all ended. However,
if it happens at time ®, then hy, = Auth, but hy, = Auth’. As both T} and
T5 € ext(Tp), To would not be version-consistent.

Since version consistency is not directly checkable, we need to identify a
condition that is checkable on a component (or a set of components) and that
ensures that its (their) runtime update does not break version consistency.

Dynamic dependences are the means to define such a condition, and they
can easily be added to the diagram of Fig.7 through properly-labelled edges
besides those that represent the static dependencies. A static-labelled edge rep-
resents both a static dependence and the communication channel between the
two components; future and past edges represent dynamic dependences. Future
and past edges are also labelled with the identifier of a root transaction. We

use C L@ o 4 denote a future(past) edge labelled with the identifier

of root transaction T, from component C to component C’. This means that
because of T, some transactions in ext(T") hosted by C' will use (has used) the
service provided by C’ by initiating sub-transactions on it.
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Definition 4 (Valid Configuration). A walid configuration with dynamic
dependences, hereafter configuration, must satisfy the following constraints:

future(past)
- - 5

1. (LOCALITY) For each future or past edge C C'’ there is a static

edge between C' and C';
2. (FUTURE-VALIDITY) A future edge C

future

C" must be in place before the

first sub-transaction T € ext(T), where T' # T, is initiated, and continues
to exist at least until no transactions hosted by C will initiate further T" €
ext(T) on C';

3. (PAST-VALIDITY) A past edge C paT—St> C' must be in place at the end of any

transaction T' € ext(T) initiated by a transaction hosted by C on C' and
continues to exist at least until the end of T.

Figure 9 shows some configurations of the example system. Active compo-
nents that are executing a transaction are marked with a %, and numbers corre-
spond to the order with which edges are added.

The configuration of Fig.9 (A) corresponds to time point @ in Fig. 8: trans-
action Ty is executing on Portal, which is *-annotated. The dynamic edges indi-
cate that to serve transactions in ext(Tp), Portal might use Auth and Proc in
the future, and also Proc might use Auth and DB. Figure9 (B) corresponds to
time B and says that a transaction in ext(Tp) (73) is currently running on

2

2:6M0 & prog [--4: T Proc |--4: 1T

4

*
1:1T0 ¥ Auth / Auth
* 'Y * A
Portal ' \
3/tmo DB Portal 3:T0 DB
\\ - /‘; \ : /‘;
2:4M0 D proc [--4:f/T0 2:4M0 | prog [--4:1/TO
(A) (B)
SZW Auth sz,p/'ré—* Auth
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Portal - .
ortal 3.0 DB Portal 6:p/TO DB
L

Fig. 9. Some configurations of the example system with explicit dynamic dependencies.
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Auth, but no further transaction in ext(7Tp) hosted on Portal will initiate any
sub-transaction on Auth anymore because there is no Ty-labelled future edge
between the two nodes. Figure9 (C), which corresponds to time © in Fig.8,
indicates that Auth might have hosted transactions in ext(Tp) initiated by Portal
in the past, and might host further transactions in ext(7p) initiated by Proc in
the future. Figure9 (D) corresponds to time © in Fig.8 and shows that Auth,
although it might have hosted transactions in ext(Tp), is not hosting and will
not host these transactions anymore.

Given a valid configuration, we can identify a locally checkable condition that
is sufficient for the version consistency of dynamic reconfigurations.

Definition 5 (Freeness). Given a configuration X, a component c is said to be
free of dependencies with respect to a root transaction T iff ¢ is not hosting any
transaction in ext(T) and there does not exist a pair of T-labelled future/past
edges entering c. c is said to be free in X iff it is free with respect to all the root
transactions in the configuration.

In our example, Auth is free with respect to Tj in the configurations of
Fig.9 (A) and (D), but not in the one of Fig.9 (C) since there exist two f/Tj
and p/Ty edges that enter Auth. Moreover, since Auth is active, it as also not
free in Fig.9. Intuitively, for a valid configuration X', the freeness condition for
a component ¢ —with respect to a root transaction T— means that the distrib-
uted transaction modeled by ext(T) either has not used ¢ yet (otherwise there
should be a past edge), or it will not use ¢ anymore (otherwise there should be a
future edge). This leads to the following proposition, which is not proved here®.

Proposition 1. Given a valid configuration X of a system, a dynamic update
of a component c is version consistent if it happens when c is free in X.

Without entering into details, for which we refer to [18], our solution proposes
a distributed algorithm for efficiently managing dynamic dependencies that: (1)
keeps the configuration valid and (2) ensures version consistency with limited
disruption. Dynamic dependencies are maintained in a distributed way. Each
component only has a local view of the configuration that includes itself and its
direct neighbors. A component is responsible for the creation and removal of the
outgoing dynamic edges, but it is also always notified of the creation and removal
of the incoming ones. This is achieved by exchanging management messages that
keep the consistency among the views of neighbor components.

The management of dynamic dependencies may slightly delay the execution
of the actual transactions, but it guarantees that no transaction will be blocked
forever. The underlying message delivery is assumed to be reliable, and the mes-
sages between two components are kept in order. Dynamic edges are labelled
with the identifiers of the corresponding root transactions to allow for the man-
agement of the dynamic edges of a root transaction independently of those of
other transactions.

3 A proof can be found in [18].
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To assess version consistency we used simulation to evaluate its disruption
for a wide set of randomly generated component-based distributed systems that
varied in the number of components, service time, and network latency. The
results showed that dynamic updates based on version consistency are on average
more than 50 % less disruptive than those based on quiescence.

7 Conclusions

The objective of this paper was to give a high-level view of the problems involved
in supporting software evolution without compromising its correctess, i.e., con-
tinuous requirements satisfaction. After setting the problem of software evolu-
tion in the context of Jackson and Zave’s framework [13], we digged into the
problem of achieving self-adaptation via models and verification at run time.
Focusing on requirements that ask for probabilistic models and properties, we
have shown how probabilistic model checking can be brought to run time to
drive self-adaptation. We have then focused on another important problem that
must be solved to support both self-adaptation and also, more generally, any
kind of dynamic reconfiguration that is a consequence of evolution.

The approaches presented in this paper are a first step in the direction of
integrating development and operation (DevOps), conceived as two interacting
feedback loops that are funded on mathematically precise models and contin-
uous formal verification. Models and verification are necessary in both loops,
and they must be handled in an iterative and incremental manner. Agile devel-
opment is often hostile to modeling and verification, sometimes they are even
viewed as deprecated upfront activities [19]. Requirements are replaced by user
stories. Although they realize that continuous verification is necessary, verifica-
tion is simply equated to testing. Likewise, modeling and verification are often
conceived as heavy-weight monolithic processes. For example, verification of par-
tial and incomplete models is seldom supported, while incremental development
intrinsically goes through incomplete descriptions. Verification is seldom incre-
mental, support to understanding the effect of changes and reasoning on them is
rarely provided. The two worlds, however, should get together, and this urgently
calls for a sustained research agenda that goes widely beyond the initial steps
presented in the paper.
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