Big Data Management in the Cloud:
Evolution or Crossroad?

Abdelkader Hameurlain® and Franck Morvan

IRIT Institut de Recherche en Informatique de Toulouse IRIT,
Paul Sabatier University, 118, Route de Narbonne, 31062 Toulouse Cedex, France
{abdelkader.hameurlain,franck.morvan}@irit.fr

Abstract. In this paper, we try to provide a synthetic and compre-
hensive state of the art concerning big data management in cloud envi-
ronments. In this perspective, data management based on parallel and
cloud (e.g. MapReduce) systems are overviewed, and compared by rely-
ing on meeting software requirements (e.g. data independence, software
reuse), high performance, scalability, elasticity, and data availability.
With respect to proposed cloud systems, we discuss evolution of their
data manipulation languages and we try to learn some lessons should
be exploited to ensure the viability of the next generation of large-scale
data management systems for big data applications.

Keywords: Big data management - Data partitioning - Query process-
ing and optimization - Parallel Relational Database Systems + High per-
formance - Scalability - Cloud systems - Hadoop - Mapreduce + Spark -
Elasticity

1 Introduction

Data management process dates from long ago (i.e. since 4000 BC). Between
4000 BC and 2000 AD, five generations of data management have been distin-
guished by [28]: “Manual processing paper and pencil; Mechanical punched card;
Stored program sequential record processing; On-line navigational set process-
ing; Nonprocedural- relational; Multimedia internetwork”. In this paper, we will
be interested in the penultimate generation.

A large number of datasets (structured, unstructured and semi-structured
data) are produced by different sources (e.g. scientific observation, simulation,
sensors, logs, social networks, finance). This large number of datasets, often
referred to as Big Data and characterized by 4Vs (Volume, Variety, Velocity,
and Value) [57], are distributed in large scale, heterogeneous, and produced con-
tinuously. The management of such data raises new problems and presents a
real challenge such as: data modeling and storage, query processing and opti-
mization, data replication and caching, cost models, concurrency control and
transaction, data privacy and security, data streaming, monitoring services and
tuning, autonomic data management (e.g. self tuning, self repairing).
© Springer International Publishing Switzerland 2016

S. Kozielski et al. (Eds.): BDAS 2016, CCIS 613, pp. 23-38, 2016.
DOI: 10.1007/978-3-319-34099-9 2



24 A. Hameurlain and F. Morvan

In the landscape of database management systems, data analysis (OLAP) and
transaction processing systems (OLTP) are separately managed. The reasons [2]
for this dichotomy are that both systems have very different functionalities,
characteristics and requirements. This paper will focus only on the first class
(OLAP systems).

Very recently (with respect to reference period 4000 BC), we have seen an
explosion in the volume of data manipulated by applications. This phenomenon
results from, on the one hand, that it is easier to collect information (e.g. log
information) and, on the other hand, lower cost of storage devices. Querying and
analyzing of collected data, with acceptable response time, have become essential
for many companies such as web societies. Furthermore, some applications with
a small amount of data need high availability of data. This is the case, for
example, with data from an online game with great success. In both contexts,
a uniprocessor database server can quickly become a bottleneck or result in
prohibitive response times for certain queries.

To manage a huge amount of data and meet the requirements in terms of
high performance (e.g. minimizing of response time) and resource availability
(e.g. data source), there are two approaches: parallel database systems and cloud
systems. The parallel database systems [20,47,62] have been an important suc-
cess, both in research in the early 90s and now in industry. They have enabled
many applications handling large data volumes to meet their requirements in
terms of high performance and resource availability. It is recognized that par-
allel database systems are very expensive and require having high level skills
within the company to administer the systems and databases. As for cloud sys-
tems, developed by using data processing frameworks (e.g. Hadoop MapReduce,
Apache Spark) [4,18,29], they allow a company to reduce these costs in terms of
infrastructures either by purchasing a server comprised of low-cost commodity
machines or by renting services (Infrastructure-as-a Service IaaS, Platform-as-a
Service PaaS, Software-as-a Service SaaS) in pay-per-use.

Currently, new tools [21,49,54,65] allow to make the bridge between both
approaches. These tools allow either to a MapReduce program to load data from
a relational database, either to convert, through a wrapper, a file stored in an
HDFS format into a relational format. This class of systems is called multistore
systems [7].

In this paper we propose a synthetic and comprehensive state of the art
concerning: (i) big data management in parallel database systems and cloud
systems, and (ii) evolution of data manipulation languages in cloud systems.
There are many synthesis papers about data management in cloud systems |2,
12,25,45,55]. Agrawal et al. [2] and Chaudhuri [12] focus on the future challenges
of clouds systems to meet the needs of applications. As far as the contributions
of Floratou et al. [25] and Stonebraker et al. [55] they propose a performance
comparison of applications with cloud systems and parallel database systems.
They point out the advantages and drawbacks of each system depending on the
application type.



Big Data Management in the Cloud: Evolution or Crossroad? 25

The rest of this paper is structured as follows. In Sect. 2, data management
based on parallel and cloud (e.g. MapReduce) systems are over-viewed and com-
pared by relying on meeting software requirements (e.g. data independence,
software reuse), high performance, scalability, elasticity, and data availability.
Section 3 presents an overview of data manipulation languages proposed in cloud
systems: (i) without relational operators, and (ii) including relational operators
in data manipulation languages. In Sect. 4, with respect to proposed cloud sys-
tems, we try to learn some lessons and we discuss the evolution of their data
manipulation languages. We conclude in Sect. 5.

2 Parallel Database Systems Versus Cloud Systems

2.1 Parallel Relational Database Systems

This sub-section presents an extended abstract of the paper [33]. Parallel data-
base systems have been developed for applications processing a large volume
of data. Their main objectives are to obtain high performance and resource
availability. High performance can be obtained by integrating and efficiently
exploiting different types of parallelism (partitioned parallelism, independent
parallelism and pipeline parallelism) in relational database systems on paral-
lel architecture models. More precisely, the objectives of parallel databases are:
(i) ensuring the best cost/performance ratio compared with a mainframe solu-
tion, (ii) minimizing query response times by efficiently exploiting the different
forms of parallelism and data placement approaches, (iii) improving the parallel
system throughput by efficiently managing resources, and (iv) insuring scalabil-
ity, which consists in holding the same performance after adding new resources
and applications. A parallel relational database system is a standard relational
DBMS implemented on a MIMD (Multiple Instruction Multiple Data Stream)
parallel architecture. Editors of parallel servers offer three main categories of
parallel RDBMS based on: (i) shared memory multiprocessor architecture, (ii)
shared disks multiprocessor architecture, and (iii) shared nothing multiprocessor
architecture (e.g. DBC 1012 Teradata [8,64], Tandem NonStop SQL [23], DB2
Edition [5], ORACLE Parallel Query).

Partitioning a relation is defined as distributing the tuples of the relation
among several nodes (attached disks) [20]. In a parallel RDBMS, it becomes
possible to: (i) improve I/O bandwidth by fully exploiting the parallelism of read
operations of one or more relations (ii) apply data locality principle (operators
are performed where/or very close to the data are located), and (iii) facilitate
load balancing to maximize throughput. The key problem with data partitioning,
also called data placement, consists in reaching and holding the best tradeoff
between processing and communication [17]. Two approaches make it possible to
solve the data placement problem of a set of relations in a parallel RDBMS. The
first approach, called full desclustering [46], consists in distributing horizontally
each base relation over all the nodes of the system. It is applied to shared memory
parallel RDBMS. The second approach, called partial desclustering, consists in
distributing each base relation over a subset of nodes. It is mainly found in a



26 A. Hameurlain and F. Morvan

shared-nothing parallel RDBMS which own a large number of nodes. However,
whatever the advocated data placement approach used, there are many data
partitioning methods. In parallel systems, three methods are generally offered
to the administrator to distribute data over nodes [20,46]: round robin, use of a
hashing function which associates a node number to one or more attribute values
of a relation, and use of range partitioning given by the administrator thanks to
fragmentation predicates. These partitioning methods have great influence and
impact on load balancing.

The optimization phase of SQL queries consists basically of three phases: log-
ical optimization, physical optimization and parallelization. The problem raised
at physical optimization, dealing with the choice of a scheduling search strat-
egy for join operators among enumerative strategies or randomized ones. Each
one of these strategies is more or less adapted depending on the query char-
acteristics. A query is characterized by the number of relations it refers to
(i.e. size), the number of join predicates and the way they are arranged (i.e.
query shape) and its nature (i.e. ad-hoc or repetitive). As far as parallelization
strategies, they have been introduced concerning inter-operation parallelization
phase, the key problem of optimization [13,14,31,32,34,36,52,58,68]. Indeed,
two inter-operation parallelization approaches have been described in the lit-
erature [47]: the one-phase and the two-phase approaches. In the two-phase
approach [13,31,32,34,36], the first phase consists in generating a query exe-
cution plan (without considering run time resources). The second phase ensures
an optimal allocation of resources (memory and processors) for the previously
generated plan. As for the one-phase approach [14,52,68], plan generation and
resource allocation are packed into one single phase.

Finally, with regard to minimization of communication costs, which repre-
sents the plague of parallelism, the parallel processing of SQL queries requires
the initialization of several processes on different processors with underlying data
communications. The main problem to be solved by parallel execution models
is to find the best processing-communication trade-off in order to maximize the
system throughput and minimize the response time, while maintaining an accept-
able cost optimization. In this objective, several efforts have been conducted to
reduce inter-processor communication costs, and in particular to avoid the redis-
tribution of data and minimize message transfers [23,30,35].

2.2 Cloud Systems

The rapid development of information technology and the popularity of the Inter-
net allow the emergence of new Web applications (e.g., social networks, log and
profile analysis, online document indexing). These new applications produce data
that are often under the form of continuous streaming (e.g., data from sensors),
with very large volume, in heterogeneous formats and distributed in a large scale.
To address these data characteristics, data management community has recently
proposed, with respect to traditional RDBMS, new data management systems
that are more flexible in terms of data models (compared to relational model



Big Data Management in the Cloud: Evolution or Crossroad? 27

which is operational since 30 years), more cost-efficient in terms of investment
(as most of these systems are open-source) and provide better availability of
resources (i.e. data sources and computing resources (CPU, RAM, I/0 and net-
work bandwidth)) in terms of fault-tolerance. From this perspective, four classes
of data management systems [37,56], depending on the adopted data structure
type, have been designed and developed, mainly, by Google, Amazon, Microsoft,
Yahoo, Facebook, IBM, and Oracle: (i) Key-Value based systems, (ii) Document
based systems, (iii) Column based systems and (iv) Graph based systems for
social networks.

These systems, based on a shared-nothing architecture, have been developed
in Hadoop environment, using the functional programming model MapReduce
and HDFS/GFS (Hadoop Distributed/Google File System). In a cloud environ-
ment, these systems are aimed to achieve high performance, maintain scalability
(because they are based on massively parallel architectures), ensure elasticity
(on-demand service and pay-per-use) and guarantee the fault-tolerance. High
performance is based on the intensive exploitation of intra-operation parallelism
of an operation (in a map or reduce operation) and independent parallelism
(between multiple map or reduce programs). The elasticity paradigm [50] con-
sists in allocating resources dynamically on demand. It extends the objective
function, combined with dynamic resource allocation models, by integrating the
economic model meeting the “pay-per-use” principle (tenant side), and guaran-
teeing a minimum profitability (provider side). Finally, in most of the proposed
solutions in cloud systems fault-tolerance is managed. In fact, when a processor
or process fails, only a part of the query is executed again. This is very attrac-
tive for applications that have queries that can take up to several hours as, for
example, the analysis of log files.

In addition, to insure a uniform access to heterogeneous, autonomous and
distributed data sources (e.g. RDBMS, NoSQL, HDFS) several mutlistore sys-
tems have been, recently, proposed. These systems, based on Mediator-Wrapper
architecture [63] can be classified in three categories [7]: (i) loosely-coupled multi-
store systems, (ii) tightly-coupled multistore systems, based on a shared-nothing
architecture, whose objective is the high performance. This approach consists in
modifying the SQL engine to make the data access to HDFS transparent. Poly-
base [21] illustrates this approach. And (iii) hybrid/integrated multistore sys-
tems, whose objective is to query indifferently structured and unstructured data
using a SQL-like declarative language. SCOPE system [67] and CoherentPaaS
project [7], illustrate this approach.

2.3 Comparison

In this sub-section, we propose a qualitative comparison between Parallel Rela-
tional Database Systems PRDBMS and cloud systems/MapReduce by pointing
out their advantages and weakness. For a quantitative comparison, we strongly
suggest to authors reading the very good papers [25,38,51,55].



28 A. Hameurlain and F. Morvan

Advantages and Weakness of PRDBMS. With respect to compilation of
recently published studies and experiences, the advantages of PRDBMS can be,
mainly, summarized as follows: (i) logical data independence, meaning that any
modification of a schema (data structure) have not any impact on application
programs, (ii) regular data structure (relational schema), homogeneity and sta-
bility of parallel infrastructure (shared-nothing architecture) enable to estimate
and deduce relevant annotations (Metadata, and Cost Models are used by an
Optimizer-Parallelizer to generate an efficient parallel execution plan), (iii) par-
titioning degree for each base relation and parallelism degree estimation for each
relational operator can be estimated by analytical models, (iv) declarative lan-
guages and sophisticated query Optimizer-Parallelizer (physical optimization,
exploiting and integrating of partitioned, independent and dependent (pipeline)
parallelisms), and (v) minimizing of communication costs by avoiding the data
redistribution in some favorable cases.

However, their main weakness, in massive parallel environments, can be sum-
marized as follows: (i) PRDBS run only on expensive servers, (ii) require very
high level of skills to manage and administrate these systems, (iii) weak fault-
tolerance in massive PRDBS, and (iv) hard management of Web applications
(Web datasets are unstructured).

Advantages and Weakness of Cloud Systems/MapReduce. The main
advantages of cloud systems/MapReduce are: (i) scaling very well to manage
massive datasets, (ii) support the partitioned and independent parallelisms, (iii)
mechanism to achieve load-balancing, and (iv) strong fault-tolerance because of
HDFS characteristics and used mechanisms to data replication (a file is parti-
tioned into fixed size chunks of 64 MB and each chunk is replicated, by default,
three times).

As far as the weakness of MapReduce (initial version) two levels can be
distinguished: application level and software level. In fact, application side, the
developers: (i) are forced to translate their business logic to MapReduce model,
(ii) have to provide efficient implementation for the map and reduce functions,
and to determine the best scheduling of map and reduce operations. With regard
to software side: (i) data-dependence: so, we lost the propriety of logical data
independence which is a qualitative requirement of software engineering, (ii)
extensive materialization of I/O (Input/Output), because each result of a map
instance is written on the disk.

To avoid this weakness, recently, pipeline parallelism has been implemented
in Tez framework which is used, recently, to improve Hive performance [24]. Also,
Cloudera Impala [15] implements pipeline parallelism for all queries. However,
the consequence is that the fault-tolerance or resource availability will be seri-
ously weakened. For detailed and complete analysis of weakness of MapReduce,
the most relevant work can be found in the recent survey papers [22,44].



Big Data Management in the Cloud: Evolution or Crossroad? 29

3 Evolution of Data Manipulation Languages
in Cloud Systems

3.1 Introduction

First tools, such as MapReduce [18], Bigtable [10] and PNUTS [16], were pro-
posed to develop cloud applications. These tools allow querying data using pro-
cedural languages without relational operators. Programs written using these
languages introduce a dependency between data structure and programs. Thus,
when you have some modifications on the data structure it is also necessary to
adapt the programs. In addition, these programs are more difficult to optimize
than program writing with a declarative language. Indeed, optimization of func-
tions defined by “users have never been a central data management challenge in
researches” [12]. Program optimizations and their maintenance due to data struc-
ture evolution lead to important human costs. This is why the first tools were
mainly used for queries which are performed only once, such as applications on
logs and paper collections [26]. Recently, new tools have emerged in order to avoid
the dependency between data structure and programs. Their common goal is to
use the benefits of data independence and implicit (automatic) optimization pro-
grams of parallel database approaches and the advantages of scalability, fault tol-
erance and elasticity of cloud systems. Thus, high level of declarative languages
have emerged HiveQL [60], SCOPE language [67], and CloudMdsQL [7]. This
allows an automatic optimization-parallelization of queries. Moreover, new tools
[21,49,54,65], based on integrated approach, allow to make the bridge between
the both approaches. These tools allow either to a MapReduce program to load
data from a relational database, either to convert, through a wrapper, a file stored
in an HDF'S format into a relational format.

In this section we propose a state of the art concerning the evolution of data
manipulation languages in cloud systems, and we point out why the proposed
languages have evolved. More precisely, we present an overview of data manip-
ulation languages, first, without relational operators, and next, with relational
operators in data manipulation languages.

3.2 Data Manipulation Languages Without Relational Operators

The first tools [10,16,18] proposed in the literature allow to manipulate massive
datasets by using procedural languages. Generally, they propose relatively sim-
ple languages which permit only filter or project operation on massive datasets.
These tools were, mainly, designed to serve Web applications which do not need
complex queries. For example, they want to query massive datasets such as logs
and click streams. However, Web applications require scalability, high perfor-
mance (e.g. minimization of response time) and high availability of data.

A very popular framework for processing massive datasets is MapReduce [18].
It allows the programmer to write map and reduce functions which corre-
spond respectively to perform grouping and reduce functions. The program-
ming model provides a good level of abstraction. However, for some applications



30 A. Hameurlain and F. Morvan

(e.g. applications querying a relational model) this programming model is not suit-
able. It can make it complex to write some programs. For example, it is not easy for a
programmer to write projection, selection, or join operators over datasets with map
and reduce functions [9]. It also requires valuable expertise from the programmer
since users specify the physical execution plan (i.e. users implement the operators
and the scheduling of operators). This physical execution plan has many chances
to be sub-optimal and there does not exist an automatic optimization process for a
user program. We find a first solution to these problems in Bigtable [10] and Pnuts
systems [16].

Bigtable [10] is a distributed storage system which supports a simple data
model that look likes a relational model. For that it relies on the file manage-
ment system GFS (Google File System) [27] which provides fault-tolerance and
data availability [50]. A table is a sparse, distributed, persistent multidimen-
sional sorted map where data is organized into three dimensions: rows, columns
and timestamps. Rows are grouped together to form the unit of distribution
and load balancing. Columns are grouped to form the unit of access control. As
for timestamps, they allow to differentiate different versions of the same data.
Bigtable provides a basic API for creating, deleting and querying a table in a
procedural language such as C++. This API provides only simple operators for
iterates over subsets of data produced by a scan operator. There is no imple-
mentation of complex operators like join and minus operations. In the same way,
PNUTS [16] supports only selection and projection. It presents a simplified rela-
tional data model where data are stored in hashed or ordered relation. Pnuts
tables are horizontally partitioned and each partition named tablets is no big-
ger than 1Gbyte. Other systems like Dynamo [19] and Cassandra [42] use an
even simpler data access. Dynamo is used only by Amazon’s internal services.
Dynamo has a simple key/value interface which offers read and write operations
to a data item that is uniquely identified by a key. As far as Cassandra, the data
are also partitioned using a hash function and data are accessed by a key using
an API composed of three methods: insert, get and delete.

3.3 Data Manipulation Languages Using Relational Operators

The use of low level languages, like MapReduce, forces the users to write repet-
itively the same code for standard operations, like relational operators (e.g. join
operator), for all new datasets. This is expensive in terms of development. Fur-
thermore, the programs are complex to read. The bug probability is increased
and an optimization process is complex. Based on these observations, the Pig
Latin [26,48] and Jaql [6] languages have been proposed. These languages allow
developers to work at a higher level of abstraction than MapReduce language.
With Pig Latin a user can write without knowing the physical organization of
the data and it introduces new operators like join. Pig Latin programs encode
explicit dataflow graphs which interleave relational-style operators like join and
filter with user-provided executables. A Pig Latin program is compiled in MapRe-
duce program after four steps of transformation. Two of these steps concern
the optimization process. A classical logical optimization step, where filter and



Big Data Management in the Cloud: Evolution or Crossroad? 31

project operators pushdown on the graph in order to reduce the processed
data volume. With regard to the second optimization step, it optimizes the
MapReduce program generated by a MapReduce compiler step. This optimiza-
tion step consists in break distributive and algebraic aggregation functions into
a series of map, combine and reduce operators. The authors [3,26] use the Com-
biner/Intermediate Reduce as often as possible in order to (i) reduces the volume
of data handled by the shuffle and merge operators and (ii) balance the amount
of data associated for each key in order to limit the data skew for the Reduce
operator. Jaql is also a procedural language where the functions are combined
using ‘->’ operator inspired from Unix pipes. A Jaql script [6] is transformed
in a MapReduce program by a compiler following approximately the same opti-
mization step as in Pig system. A difference with Pig Latin language is that
the users have access to the internal system. This allows to users to develop a
specific feature to solve performance problems.

A program written with Pig Latin or Jaql is complex to optimize. Indeed,
the user determines a scheduling of relational operators. For an optimizer, it is
difficult to determine a new optimal scheduling like in physical optimization of
relational systems [43]. Furthermore, the alternative which suggests writing a
program with low level languages requires a high expertise level from the user.
For these reasons, Hive [59,60], SCOPE [67] systems, and CoherentPaaS project
[7] propose to use declarative languages close to SQL language. These languages
allow a user to define a relation compounded of several typed columns. Each of
these languages can load data from external data sources and insert query results
in formats defined by users. For example, SCOPE language has been enriched
by extractor operators in order to parse and construct rows from any kind of
data sources and outputter operators to format the final result of a query. As for
HiveQL language, the formats of an external data source or result is defined in
data definition language (i.e. during create table order).

With regard to the optimization process, in Hive system, it comprises four
steps: (i) a logical optimization step, (ii) a simplification step which prunes par-
titions and buckets that are not needed by the query, (iii) a combiner step which
groups multiple joins sharing the same join attribute in order to be executed in
a single MapReduce join, and (iv) a step which adds repartition operators for
join, group-by and custom MapReduce operators. As for SCOPE system [67],
the optimization process includes a logical optimization and chooses for each
operator the best algorithm to process it (e.g. hash join or sort-merge join) and
determines the scheduling of operators. With regard to avoid data reshuffling,
which deteriorates the performance, a top-down approach is proposed in order
that a parent operator imposes its requirements to the child operators [3,66,67].

4 Discussion

To manage a huge amount of data there are two approaches: parallel database
servers and tools proposed by cloud servers. The parallel database servers have
been an important success, whether in research in the early 90s and now in



32 A. Hameurlain and F. Morvan

industry. They have enabled many applications handling large data volumes to
meet their requirements in terms of high performance and resource availability.
However, the use of a parallel database server is expensive for a company. Indeed,
it requires the purchase of an expensive server and requires having high level
skills within the company to administer servers and databases.

An alternative approach is to use tools proposed by cloud servers to manip-
ulate massive datasets. This allows a company to reduce these costs in terms
of infrastructures (Iaas) either by purchasing a server comprised of low-cost
commodity machines or by renting services (PaaS and/or SaaS) in pay-per-use.
An important characteristic of cloud systems is to provide a mechanism for
integrated fault tolerance. This feature is important because it avoids restart-
ing, from the beginning, a program in case of processor or process failure. As
data volumes grow every day, this feature has become a critical requirement for
applications. In addition, more and more applications querying only one time a
dataset. For this kind of application, the loading cost of the dataset in a database
server becomes prohibitive for a single query. Hence, this kind of application is
not suitable for a database server, and many applications have turned to use
cloud systems.

Regarding to the state of the art and previous quantitative and qualitative
studies and comparisons [25,38,55] between PRDBMS and cloud systems, we
can point out the following statements:

1. Functional Complementarity between cloud systems and parallel DB systems:
in fact, the cloud systems are not intended to replace traditional RDBMS
but rather to provide them with the missing features, particularly, for Web
applications and Internet services. Moreover, these systems provide scalability
in terms of loads adapted for Web applications. In [55], the authors have
conducted a benchmark study by comparing Hadoop/MapReduce and two
parallel RDBMSs. “The results show that the DBMSs are substantially faster
than the MapReduce system once the data is loaded” . Their main conclusion of
[55] is that: “MapReduce complement DBMSs since databases are not designed
for ETL (Extract-Transform-Load) tasks, a MapReduce specialty”.

2. Maturity: Compared to traditional RDBMS, the cloud systems lack matu-
rity and standardization/normalization (e.g., query languages). These sys-
tems require more experimentation and benchmarking (e.g. TPC - H, and
TPC - DS) [24] with full-scale big data applications while taking into maxi-
mum consideration simultaneously their Vs which characterize them.

As far as the evolution of data manipulation languages in cloud systems, the
first proposed languages allow manipulation of data stored in a cloud system,
either with functional languages like MapReduce or with imperative languages like
C++. These languages force the developer to: (i) modify the program if the data
structure changes, and (ii) often rewrite the very similar code on different datasets.
In addition, in case of performance problems, these programs are very difficult to
optimize due, in particular, to their understanding which is complex. Thus, new
languages like Pig Latin [26] and Jaq] [6] have been proposed using relational oper-
ators such as join. As a result, user programs are more readable. Using these high



Big Data Management in the Cloud: Evolution or Crossroad? 33

level languages, the automatic optimization process has been introduced as the
logic optimization, conventionally used by a RDBMS. However, these languages
are still procedural and classical physical optimization process cannot be applied
like in RDBMS. Therefore, Hive [60], Clydesdale [40] and SCOPE [67] systems and
CoherentPaas project [7] use non-procedural (i.e. declarative) languages close to
the SQL language. This helped to adapt the automatic relational optimization
process proposed in the context of RDBMS (e.g. parallel RDBMS). The major
drawback of this optimization process, compared to those used in RDBMS, is the
scarcity of statistics stored in the meta-base. Indeed, in a cloud system, at com-
pile time, there is no statistics on datasets (e.g. cardinality). This blinds the opti-
mization process and impacts the choice of the optimal execution plan. Hence, a
dynamic optimization process becomes necessary in order to react to sub-optimal
execution plans. In this objective, [1] proposes to collect statistics at runtime, and
adapts the execution plan at runtime by interfacing with a query optimizer. This
proposal can be seen as an elegant adaptation of [39], proposed in a parallel data-
base system, to a cloud system. More generally, with respect to the issue of query
optimization in cloud environments, the most recent and relevant proposals are

described in [11,41,53,61].

5 Conclusion

In this paper, we provided a synthetic and highlight state of the art concerning
big data management in cloud environments. In this objective, we have tack-
led two major issues: (i) data management based on parallel and cloud (e.g.
MapReduce) systems are over-viewed and compared by relying on meeting soft-
ware requirements (e.g. data independence, software reuse), high performance,
scalability, elasticity, and data availability and (ii) we mainly focused on the
evolution of data manipulation languages in cloud systems. Initially, these lan-
guages were low level procedural languages as for example MapReduce. For
software engineering requirements these languages evolved by introducing rela-
tional algebra operators while remaining procedural. It also allowed introducing
some optimization processes used classically in RDBMS. Then, they continued
their evolution for optimization needs. They became declarative to increase the
opportunities of automatic optimization for user queries. The various optimiza-
tion steps are very close to those used in parallel RDBMS. The main difference
is due to the quasi-absence of statistics used by cost models. This blinds the
optimization process and an efficient dynamic optimization becomes essential
and necessary, to correct sub-optimality of sub-execution plans.

References

1. Agarwal, S., Kandula, S., Bruno, N., Wu, M., Stoica, 1., Zhou, J.: Reoptimiz-
ing data parallel computing. In: Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
25-27 April 2012, pp. 281-294 (2012). https://www.usenix.org/conference/nsdil2/
technical-sessions/presentation /agarwal


https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/agarwal
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/agarwal

34

10.

11.

12.

13.

14.

15.

A. Hameurlain and F. Morvan

Agrawal, D., El Abbadi, A., Ooi, B.C., Das, S., Elmore, A.J.: The evolv-
ing landscape of data management in the cloud. IJCSE 7(1), 2-16 (2012).
http://dx.doi.org/10.1504/I1JCSE.2012.046177

Akbarinia, R., Liroz-Gistau, M., Agrawal, D., Valduriez, P.: An efficient solution
for processing skewed mapreduce jobs. In: Chen, Q., Hameurlain, A., Toumani, F.,
Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 417-429. Springer,
Heidelberg (2015)

Apache Spark. https://spark.incubator.apache.org/

Baru, C.K., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S., Wil-
son, W.G.: An overview of DB2 parallel edition. In: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, San Jose, California,
22-25 May 1995, pp. 460-462 (1995). http://doi.acm.org/10.1145/223784.223876
Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M.Y.,
Kanne, C., Ozcan, F., Shekita, E.J: JAQL: a scripting language for
large scale semistructured data analysis. PVLDB 4(12), 1272-1283 (2011).
http://www.vldb.org/pvldb/vol4/p1272-beyer.pdf

Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P.: Integrating big data
and relational data with a functional SQL-like query language. In: Chen, Q.,
Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS,
vol. 9261, pp. 170-185. Springer, Heidelberg (2015)

Carino, F., Kostamaa, P.: Exegesis of DBC/1012 and P-90 - indus-
trial supercomputer database machines. In: Etiemble, D., Syre, J.-C. (eds.)
PARLE 1992. LNCS, vol. 605, pp. 877-892. Springer, Heidelberg (1992).
http://dx.doi.org/10.1007/3-540-55599-4_130

Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:
SCOPE: easy and efficient parallel processing of massive data sets. PVLDB 1(2),
1265-1276 (2008). http://www.vldb.org/pvldb/1/1454166.pdf

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows,
M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage
system for structured data. ACM Trans. Comput. Syst. 26(2), 4 (2008).
http://doi.acm.org/10.1145/1365815.1365816

Chang, L., Wang, Z., Ma, T., Jian, L., Ma, L., Goldshuv, A., Lonergan, L., Cohen,
J., Welton, C., Sherry, G., Bhandarkar, M.: HAWQ: a massively parallel process-
ing SQL engine in hadoop. In: International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, 22-27 June 2014, pp. 1223-1234 (2014).
http://doi.acm.org/10.1145/2588555.2595636

Chaudhuri, S.: What next?: a half-dozen data management research goals for big
data and the cloud. In: Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA,
20-24 May 2012, pp. 1-4 (2012). http://doi.acm.org/10.1145/2213556.2213558
Chekuri, C., Hasan, W., Motwani, R.: Scheduling problems in parallel query opti-
mization. In: Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Jose, California, USA, 22-25
May 1995, pp. 255-265 (1995). http://doi.acm.org/10.1145/212433.212471

Chen, M., Lo, M., Yu, P.S., Young, H.C.: Using segmented right-deep trees for the
execution of pipelined hash joins. In: Proceedings of 18th International Conference
on Very Large Data Bases, Vancouver, Canada, 23-27 August 1992, pp. 15-26
(1992). http://www.vldb.org/conf/1992/P015.PDF

Cloudera Impala. http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html


http://dx.doi.org/10.1504/IJCSE.2012.046177
https://spark.incubator.apache.org/
http://doi.acm.org/10.1145/223784.223876
http://www.vldb.org/pvldb/vol4/p1272-beyer.pdf
http://dx.doi.org/10.1007/3-540-55599-4_130
http://www.vldb.org/pvldb/1/1454166.pdf
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/2588555.2595636
http://doi.acm.org/10.1145/2213556.2213558
http://doi.acm.org/10.1145/212433.212471
http://www.vldb.org/conf/1992/P015.PDF
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Big Data Management in the Cloud: Evolution or Crossroad? 35

Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H., Puz, N., Weaver, D.; Yerneni, R.: PNUTS: Yahoo!’s hosted data
serving platform. PVLDB 1(2), 1277-1288 (2008). http://www.vldb.org/pvldb/1/
1454167.pdf

Copeland, G.P.,; Alexander, W., Boughter, E.E., Keller, T.W.: Data placement
in bubba. In: Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data, Chicago, Illinois, 1-3 June 1988, pp. 99-108 (1988).
http://doi.acm.org/10.1145/50202.50213

Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: 6th Symposium on Operating System Design and Implementation (OSDI 2004),
San Francisco, California, USA, 6-8 December 2004, pp. 137-150 (2004). http://
www.usenix.org/events/osdi04/tech/dean.html

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P.,; Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, 14-17 October
2007, pp. 205-220 (2007). http://doi.acm.org/10.1145/1294261.1294281

DeWitt, D.J., Gray, J.: Parallel database systems: The future of high performance
database systems. Commun. ACM 35(6), 85-98 (1992). http://doi.acm.org/10.
1145/129888.129894

DeWitt, D.J., Halverson, A., Nehme, R.V., Shankar, S., Aguilar-Saborit, J.,
Avanes, A., Flasza, M., Gramling, J.: Split query processing in polybase. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, 22-27 June 2013, pp. 1255-1266 (2013).
http://doi.acm.org/10.1145/2463676.2463709

Doulkeridis, C., Ngrvag, K.: A survey of large-scale analytical query process-
ing in mapreduce. VLDB J. 23(3), 355-380 (2014). http://dx.doi.org/10.1007/
s00778-013-0319-9

Englert, S., Glasstone, R., Hasan, W.: Parallelism and its price: a case study of
nonstop SQL/MP. SIGMOD Rec. 24(4), 61-71 (1995). http://dx.doi.org/10.1145/
219713.219760

Floratou, A., Minhas, U.F., Ozcan, F.. SQL-on-hadoop: full circle back
to shared-nothing database architectures. PVLDB 7(12), 1295-1306 (2014).
http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf

Floratou, A., Teletia, N., DeWitt, D.J., Patel, J.M., Zhang, D.: Can the
elephants handle the NoSQL onslaught? PVLDB 5(12), 1712-1723 (2012).
http://vldb.org/pvldb/vol5/pl1712_avriliafloratou_vldb2012.pdf

Gates, A., Natkovich, O., Chopra, S., Kamath, P., Narayanam, S., Olston,
C., Reed, B., Srinivasan, S., Srivastava, U.: Building a highlevel dataflow sys-
tem on top of mapreduce: the pig experience. PVLDB 2(2), 1414-1425 (2009).
http://www.vldb.org/pvldb/2/vldb09-1074.pdf

Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: Proceed-
ings of the 19th ACM Symposium on Operatig Systems Principles 2003, SOSP
2003, Bolton Landing, NY, USA, 19-22 October 2003, pp. 29-43 (2003).
http://doi.acm.org/10.1145/945445.945450

Gray, J.: Evolution of data management. IEEE Comput. 29(10), 38-46 (1996).
http://dx.doi.org/10.1109/2.539719

Hadoop. http://hadoop.apache.org


http://www.vldb.org/pvldb/1/1454167.pdf
http://www.vldb.org/pvldb/1/1454167.pdf
http://doi.acm.org/10.1145/50202.50213
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/129888.129894
http://doi.acm.org/10.1145/129888.129894
http://doi.acm.org/10.1145/2463676.2463709
http://dx.doi.org/10.1007/s00778-013-0319-9
http://dx.doi.org/10.1007/s00778-013-0319-9
http://dx.doi.org/10.1145/219713.219760
http://dx.doi.org/10.1145/219713.219760
http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf
http://vldb.org/pvldb/vol5/p1712_avriliafloratou_vldb2012.pdf
http://www.vldb.org/pvldb/2/vldb09-1074.pdf
http://doi.acm.org/10.1145/945445.945450
http://dx.doi.org/10.1109/2.539719
http://hadoop.apache.org

36

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A. Hameurlain and F. Morvan

Hameurlain, A., Morvan, F.: An optimization method of data communica-
tion and control for parallel execution of SQL queries. In: Proceedings of
4th International Conference on Database and Expert Systems Applications,
DEXA 1993, Prague, Czech Republic, 6-8 September 1993, pp. 301-312 (1993).
http://dx.doi.org/10.1007/3-540-57234-1_27

Hameurlain, A., Morvan, F.: A parallel scheduling method for efficient query
processing. In: Proceedings of the 1993 International Conference on Parallel
Processing. Algorithms & Applications, Syracuse University, NY, USA, 16-20
August 1993, vol. III, pp. 258-262 (1993). http://dx.doi.org/10.1109/ICPP.1993.31
Hameurlain, A., Morvan, F.: Scheduling and mapping for parallel execu-
tion of extended SQL queries. In: CIKM 1995, Proceedings of the 1995
International Conference on Information and Knowledge Management, Balti-
more, Maryland, USA, 28 November-2 December 1995, pp. 197-204 (1995).
http://doi.acm.org/10.1145/221270.221567

Hameurlain, A., Morvan, F.: Parallel relational database systems: Why, how and
beyond. In: Proceedings of 7th International Conference on Database and Expert
Systems Applications, DEXA 1996, Zurich, Switzerland, 9-13 September 1996, pp.
302-312 (1996). http://dx.doi.org/10.1007/BFb0034690

Hasan, W., Motwani, R.: Optimization algorithms for exploiting the parallelism-
communication tradeoff in pipelined parallelism. In: VLDB 1994, Proceedings of
20th International Conference on Very Large Data Bases, Santiago de Chile, Chile,
12-15 September 1994, pp. 36-47 (1994), http://www.vldb.org/conf/1994/P036.
PDF

Hasan, W., Motwani, R.: Coloring away communication in parallel query opti-
mization. In: VLDB 1995, Proceedings of 21th International Conference on Very
Large Data Bases, Zurich, Switzerland, 11-15 September 1995, pp. 239-250 (1995).
http://www.vldb.org/conf/1995/P239.PDF

Hong, W.: Exploiting inter-operation parallelism in XPRS. In: Proceed-
ings of the 1992 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, California, 2-5 June 1992, pp. 19-28 (1992).
http://doi.acm.org/10.1145,/130283.130292

Indrawan-Santiago, M.: Database research: Are we at a crossroad? reflection
on nosql. In: 15th International Conference on Network-Based Information Sys-
tems, NBiS 2012, Melbourne, Australia, 26-28 September 2012, pp. 45-51 (2012).
http://dx.doi.org/10.1109/NBiS.2012.95

Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of mapreduce: an in-depth
study. PVLDB 3(1), 472-483 (2010). http://www.comp.nus.edu.sg/vldb2010/
proceedings/files/papers/E03.pdf

Kabra, N., DeWitt, D.J.: Efficient mid-query re-optimization of sub-optimal query
execution plans. In: SIGMOD 1998, Proceedings of ACM SIGMOD International
Conference on Management of Data, Seattle, Washington, USA, 2-4 June 1998,
pp. 106-117 (1998). http://doi.acm.org/10.1145/276304.276315

Kaldewey, T., Shekita, E.J., Tata, S.: Clydesdale: structured data processing on
mapreduce. In: Proceedings of 15th International Conference on Extending Data-
base Technology, EDBT 2012, Berlin, Germany, 27-30 March 2012, pp. 15-25
(2012). http://doi.acm.org/10.1145/2247596.2247600

Karanasos, K., Balmin, A., Kutsch, M., Ozcan, F., Ercegovac, V., Xia, C., Jackson,
J.: Dynamically optimizing queries over large scale data platforms. In: International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, 22-27
June 2014, pp. 943-954 (2014). http://doi.acm.org/10.1145/2588555.2610531


http://dx.doi.org/10.1007/3-540-57234-1_27
http://dx.doi.org/10.1109/ICPP.1993.31
http://doi.acm.org/10.1145/221270.221567
http://dx.doi.org/10.1007/BFb0034690
http://www.vldb.org/conf/1994/P036.PDF
http://www.vldb.org/conf/1994/P036.PDF
http://www.vldb.org/conf/1995/P239.PDF
http://doi.acm.org/10.1145/130283.130292
http://dx.doi.org/10.1109/NBiS.2012.95
http://www.comp.nus.edu.sg/vldb2010/proceedings/files/papers/E03.pdf
http://www.comp.nus.edu.sg/vldb2010/proceedings/files/papers/E03.pdf
http://doi.acm.org/10.1145/276304.276315
http://doi.acm.org/10.1145/2247596.2247600
http://doi.acm.org/10.1145/2588555.2610531

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.
55.

56.

57.

Big Data Management in the Cloud: Evolution or Crossroad? 37

Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage sys-
tem. Opera. Syst. Rev. 44(2), 35-40 (2010). http://doi.acm.org/10.1145/1773912.
1773922

Lanzelotte, R.S.G., Valduriez, P.: Extending the search strategy in a query opti-
mizer. In: Proceedings of 17th International Conference on Very Large Data Bases,
Barcelona, Catalonia, Spain, 3-6 September 1991, pp. 363-373 (1991). http://
www.vldb.org/conf/1991/P363.PDF

Lee, K., Lee, Y., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with
mapreduce: a survey. SIGMOD Rec. 40(4), 11-20 (2011). http://doi.acm.org/10.
1145/2094114.2094118

Li, F., Ooi, B.C., Ozsu, M.T., Wu, S.: Distributed data management using mapre-
duce. ACM Comput. Surv. 46(3), 31: 1-31: 42 (2014). http://doi.acm.org/10.1145/
2503009

Livny, M., Khoshafian, S., Boral, H.: Multi-disk management algorithms. In: SIG-
METRICS, pp. 6977 (1987). http://doi.acm.org/10.1145/29903.29914

Lu, H., Tan, K.L., Ooi, B.C.: Query Processing in Parallel Relational Database
Systems. IEEE CS Press, Los Alamitos (1994)

Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin:
a not-so-foreign language for data processing. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, 10-12 June 2008, pp. 1099-1110 (2008).
http://doi.acm.org/10.1145/1376616.1376726

Oracle. http://www.oracle.com/technetwork /bdc/hadoop-loader/connectors-
Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer,
New York (2011)

Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stone-
braker, M.: A comparison of approaches to large-scale data analysis. In: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, 29 June-2 July 2009, pp. 165—
178 (2009). http://doi.acm.org/10.1145/1559845.1559865

Schneider, D.A., DeWitt, D.J.: Tradeoffs in processing complex join queries via
hashing in multiprocessor database machines. In: Proceedings of 16th International
Conference on Very Large Data Bases, Brisbane, Queensland, Australia, 13-16
August 1990, pp. 469-480 (1990). http://www.vldb.org/conf/1990/P469.PDF
Soliman, M.A., Antova, L., Raghavan, V., El-Helw, A., Gu, Z., Shen, E.,
Caragea, G.C., Garcia-Alvarado, C., Rahman, F., Petropoulos, M., Waas, F.,
Narayanan, S., Krikellas, K., Baldwin, R.: Orca: a modular query optimizer
architecture for big data. In: International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, 22-27 June 2014, pp. 337-348 (2014).
http://doi.acm.org/10.1145/2588555.2595637

Sqoop. http://sqoop.apache.org/

Stonebraker, M., Abadi, D.J., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A.,
Rasin, A.: Mapreduce and parallel DBMSs: friends or foes? Commun. ACM 53(1),
64-71 (2010). http://doi.acm.org/10.1145/1629175.1629197

Stonebraker, M., Cattell, R.: 10 rules for scalable performance in ‘simple operation’
datastores. Commun. ACM 54(6), 72-80 (2011). doi:10.1145/1953122.1953144.
http://doi.acm.org/10.1145/1953122.1953144

Stonebraker, M., Madden, S., Dubey, P.: Intel “big data” science and tech-
nology center vision and execution plan. SIGMOD Rec. 42(1), 44-49 (2013).
http://doi.acm.org/10.1145/2481528.2481537


http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://www.vldb.org/conf/1991/P363.PDF
http://www.vldb.org/conf/1991/P363.PDF
http://doi.acm.org/10.1145/2094114.2094118
http://doi.acm.org/10.1145/2094114.2094118
http://doi.acm.org/10.1145/2503009
http://doi.acm.org/10.1145/2503009
http://doi.acm.org/10.1145/29903.29914
http://doi.acm.org/10.1145/1376616.1376726
http://www.oracle.com/technetwork/bdc/hadoop-loader/connectors-
http://doi.acm.org/10.1145/1559845.1559865
http://www.vldb.org/conf/1990/P469.PDF
http://doi.acm.org/10.1145/2588555.2595637
http://sqoop.apache.org/
http://doi.acm.org/10.1145/1629175.1629197
http://dx.doi.org/10.1145/1953122.1953144
http://doi.acm.org/10.1145/1953122.1953144
http://doi.acm.org/10.1145/2481528.2481537

38

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

A. Hameurlain and F. Morvan

Tan, K., Lu, H.: Pipeline processing of multi-way join queries in shared-memory
systems. In: Proceedings of the 1993 International Conference on Parallel Process-
ing. Architecture, Syracuse University, NY, USA, 1620 August 1993, vol. I,
pp. 345-348 (1993). http://dx.doi.org/10.1109/ICPP.1993.147

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive - a warehousing solution over a map-reduce framework.
PVLDB 2(2), 1626-1629 (2009)

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony,
S., Liu, H., Murthy, R.: Hive - a petabyte scale data warehouse using hadoop.
In: Proceedings of the 26th International Conference on Data Engineering, ICDE
2010, Long Beach, California, USA, 1-6 March 2010, pp. 996-1005 (2010).
http://dx.doi.org/10.1109/ICDE.2010.5447738

Trummer, 1., Koch, C.: Multi-objective parametric query optimization. PVLDB
8(3), 221-232 (2014). http://www.vldb.org/pvldb/vol8/p221-trummer.pdf
Valduriez, P.: Parallel database systems: open problems and new issues.
Distrib. Parallel Databases 1(2), 137-165 (1993). doi:10.1007/BF01264049.
http://dx.doi.org/10.1007 /BF01264049

Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Comput. 25(3), 38-49 (1992). http://dx.doi.org/10.1109/2.121508

Witkowski, A., Carifo, F., Kostamaa, P.: NCR 3700 - the next-generation indus-
trial database computer. In: Proceedings of 19th International Conference on Very
Large Data Bases, Dublin, Ireland, 24-27 August 1993, pp. 230-243 (1993). http://
www.vldb.org/conf/1993/P230.PDF

Xu, Y., Kostamaa, P., Gao, L.: Integrating hadoop and parallel DBMs. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, 6-10 June 2010, pp. 969-974 (2010).
http://doi.acm.org/10.1145/1807167.1807272

Zha, L., Zhang, J., Liu, W., Lin, J.: An uncoupled data process and transfer model
for mapreduce. In: Hameurlain, A., Kiing, J., Wagner, R.., Bellatreche, L., Mohania,
M. (eds.) TLDKS XVII. LNCS, vol. 8970, pp. 24-44. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46335-2_2

Zhou, J., Brumo, N., Wu, M., Larson, P., Chaiken, R., Shakib, D.:
SCOPE: parallel databases meet mapreduce. VLDB J. 21(5), 611-636 (2012).
http://dx.doi.org/10.1109/PDIS.1993.253066

Ziane, M., Zait, M., Borla-Salamet, P.: Parallel query processing in DBS3.
In: Proceedings of the 2nd International Conference on Parallel and Dis-
tributed Information Systems (PDIS 1993), Issues, Architectures, and Algo-
rithms, San Diego, CA, USA, 20-23 January 1993, pp. 93-102 (1993).
http://dx.doi.org/10.1109/PDIS.1993.253066


http://dx.doi.org/10.1109/ICPP.1993.147
http://dx.doi.org/10.1109/ICDE.2010.5447738
http://www.vldb.org/pvldb/vol8/p221-trummer.pdf
http://dx.doi.org/10.1007/BF01264049
http://dx.doi.org/10.1007/BF01264049
http://dx.doi.org/10.1109/2.121508
http://www.vldb.org/conf/1993/P230.PDF
http://www.vldb.org/conf/1993/P230.PDF
http://doi.acm.org/10.1145/1807167.1807272
http://dx.doi.org/10.1007/978-3-662-46335-2_2
http://dx.doi.org/10.1109/PDIS.1993.253066
http://dx.doi.org/10.1109/PDIS.1993.253066

2 Springer
http://www.springer.com/978-3-319-34098-2

Beyond Databases, Architectures and Structures.
Advanced Technologies for Data Mining and Knowledge
Discovery

12th International Conference, BDAS 20168, Ustron,
Poland, May 31 - June 3, 2016, Proceedings

Kozielski, 5.; Mrozek, D.; Kasprowski, P.;
Matysiak-Mrozek, B.; Kostrzewa, D. (Eds.)

2018, XV, 738 p. 250 illus., Softcover

ISBM: 978-3-319-34098-2



	Big Data Management in the Cloud: Evolution or Crossroad?
	1 Introduction
	2 Parallel Database Systems Versus Cloud Systems
	2.1 Parallel Relational Database Systems
	2.2 Cloud Systems
	2.3 Comparison

	3 Evolution of Data Manipulation Languages in Cloud Systems
	3.1 Introduction
	3.2 Data Manipulation Languages Without Relational Operators
	3.3 Data Manipulation Languages Using Relational Operators

	4 Discussion
	5 Conclusion
	References


