
Chapter 2
VHDL

2.1 A Brief History of VHDL

VHDL is the acronym of Very High-Speed Integrated Circuit Hardware Description
Language, and it was developed around 1980 at the request of the U.S. Department
of Defense. At the beginning, the main goal of VHDL was the electric circuit simu-
lation; however, tools for synthesis and implementation in hardware based on VHDL
behavior or structure description files were developed later. With the increasing use
of VHDL, the need for standardized was generated. In 1986, the Institute of Elec-
trical and Electronics Engineers (IEEE) standardized the first hardware description
language, VHDL, through the 1076 and 1164 standards. VHDL is technology/vendor
independent, then VHDL codes are portable and reusable.

2.2 VHDL Structure

VHDL is a structured language. Each description of a file has three main blocks:

• Libraries
• Entity
• Architecture

Listing 2.1 shows themain standard libraries for logic and arithmetic descriptions.
“Unsigned” and “arith” libraries were developed by Synopsys Inc., they may be
under c©.

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3 use IEEE. std_logic_unsigned . al l ;
4 use IEEE. std_logic_arith . a l l ;
5 use IEEE.numeric_std . a l l ;

Listing 2.1 Libraries
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34 2 VHDL

Fig. 2.1 Black box

Entity can be seen as a black box as shown by Fig. 2.1, where the inputs and
outputs must be defined here (see listing 2.2). For example, Fig. 2.1 has four ports:
signal A is type in, signal B is type out, signal C is type in/out, and signal D is type
buffer.

• in. Input signal to the entity. Unidirectional
• out. Output signal to the entity. Unidirectional
• in/out. Input–output signal to the entity. Bidirectional
• buffer. Allows internal feedbacks inside the entity. The declared port behavior is
as an output.

The data type for each port must be defined. Some of the most used in VHDL are:

• Bit. The only values that port allows are 0 or 1.
• Boolean. Take the values true or false.
• Integer. This type cover all integer values.
• std_logic. This data type allows nine values

– U Unitialized
– X Unknown
– 0 Low
– 1 High
– Z High impedance
– W Weak unknown
– L Weak low
– H Weak high
– ’-’ Don’t care

• bit_vector. A vector of bits.
• std_logic_vector. A vector of bits of type std_logic.

1 entity name_of_entity is
2 port (
3 port_name: port_mode signal_type ;
4 port_name: port_mode signal_type ;
5 . . . . .
6 ) ;
7 end [ entity ] [name_of_entity ] ;

Listing 2.2 Entity declaration



2.2 VHDL Structure 35

Listing 2.3 shows the entity description for the black box of Fig. 2.1.

1 entity black_bok is
2 port (
3 A : in std_logic_vector(1 downto 0) ;
4 B : out std_logic ;
5 C : inout std_logic ;
6 D : buffer std_logic
7 ) ;
8 end black_box;

Listing 2.3 Entity black box

Architecture contains a description of how the circuit should function, fromwhich
the actual circuit is inferred. A syntax for an architecture description is shown in
listing 2.4.

1 architecture architecture_name of entity_name is
2 [ architecture_declarative_part ]
3 begin
4 architecture_statements_part
5 end [ architecture ] [architecture_name ] ;

Listing 2.4 Architecture syntax

Listing 2.5 shows an example of an architecture description for an AND gate.
A complete description of the AND gate including libraries and entity is shown in
listing 2.6. You may check the next related books [13, 14, 15, 16].

1 architecture example of AND_G is
2 begin
3 C <= AANDB;
4 −− This is a comment
5 −− C is an output
6 −− A, B are inputs
7 end architecture example;

Listing 2.5 Architecture of AND gate

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity AND_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end AND_G;
11

12 architecture example of AND_G is
13 begin
14 C <= AANDB;
15 end architecture example;

Listing 2.6 AND gate description
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2.3 Levels of Abstraction

VHDL allows different styles for architecture description, they can be classified as:

• Behavioral description
• Structural description
• Data flow description

2.3.1 Behavioral Description

Behavioral description reflects the system function, how the system works without
taking care about the elements that compose it. It is just a relation between inputs and
outputs. A process structure is present in a combinational description. For example,
listing 2.7 shows a behavioral description for a XOR gate. For this example it is
considered that (Fig. 2.2 and Table2.1):

if A = B then C = 0

if A �= B then C = 1

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity XOR_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end XOR_G;
11

12 architecture behavioral of XOR_G is
13 begin
14 process(A,B)
15 begin
16 i f A = B then
17 C <= ’0 ’;
18 else
19 C <= ’1 ’;
20 end i f ;
21 end process ;
22 end architecture behavioral ;

Listing 2.7 XOR gate behavioral description

Another example is shown in listing 2.8. It shows the behavioral description for
the AND gate considering that (Fig. 2.3 and Table2.2):
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Fig. 2.2 RTL XOR

Table 2.1 XOR true table A B C

0 0 0

0 1 1

1 0 1

1 1 0

if A = 1 and B = 1 then C = 1

other case C = 0

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity AND_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end AND_G;
11

12 architecture behavioral of AND_G is
13 begin
14 process(A,B)
15 begin
16 i f A = ’1’ and B = ’1’ then
17 C <= ’1 ’;
18 else
19 C <= ’0 ’;
20 end i f ;
21 end process ;
22 end architecture behavioral ;

Listing 2.8 AND gate behavioral description

Fig. 2.3 RTL AND
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Table 2.2 AND true table A B C

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.3 2-bit comparator
true table

A B G E L

00 00 0 1 0

00 01 0 0 1

00 10 0 0 1

00 11 0 0 1

01 00 1 0 0

01 01 0 1 0

01 10 0 0 1

01 11 0 0 1

10 00 1 0 0

10 01 1 0 0

10 10 0 1 0

10 11 0 0 1

11 00 1 0 0

11 01 1 0 0

11 10 1 0 0

11 11 0 1 0

Fig. 2.4 2-bit comparator

Listing 2.9 shows the behavioral description of a 2-bit comparator (Table2.3).
Figure2.4 shows the inputs and outputs of the 2-bit comparator. For the behavioral
description it is considered that:

if A = 1 and B = 1 then C = 1

other case C = 0
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1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity comparator_2bits is
5 port (
6 A : in std_logic_vector(1 downto 0) ;
7 B : in std_logic_vector(1 downto 0) ;
8 G : out std_logic ;
9 E : out std_logic ;

10 L : out std_logic
11 ) ;
12 end comparator_2bits ;
13

14 architecture behavioral of comparator_2bits is
15 begin
16 combinational : process(A,B)
17 begin
18 i f A > B then
19 G <= ’1’;
20 else
21 G <= ’0 ’;
22 end i f ;
23

24 i f A = B then
25 E <= ’1’
26 else
27 E <= ’0 ’;
28 end i f ;
29

30 i f A < B then
31 L <= ’1 ’;
32 else
33 L <= ’0 ’;
34 end i f ;
35 end process combinational ;
36

37 end architecture behavioral ;

Listing 2.9 2-bit comparator behavioral description

2.3.2 Data Flow Description

Data flow description designates the way how data can be transferred from one
signal to another without using sequential statements. The data flow descriptions are
concurrent; these kinds of descriptions allow to define the flow that data take from
one module to another. An example of data flow description is shown in listing 2.10
(Table2.4, Fig. 2.5):

if A = 1 and B = 1then C = 0
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Table 2.4 NAND true table A B C

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 2.5 RTL NAND

Table 2.5 OR true table A B C

0 0 0

0 1 1

1 0 1

1 1 1

other case C = 1

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity NAND_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end NAND_G;
11

12 architecture Data_flow of NAND_G is
13 begin
14

15 C <= ’0’ when (A = ’1’ and B = ’1’) else ’1 ’;
16

17 end architecture Data_flow;

Listing 2.10 NAND gate data flow description

Another example of data flow description is shown in listing 2.11. In this case,
the data flow description for the OR gate considers that (Table2.5, Fig. 2.6):

if A = 0 and B = 0 then C = 0

other case C = 1
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Fig. 2.6 RTL OR

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity OR_G is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : out std_logic
9 ) ;
10 end OR_G;
11

12 architecture Data_flow of OR_G is
13 begin
14

15 C <= ’0’ when (A = ’0’ and B = ’0’) else ’1 ’;
16

17 end architecture Data_flow;

Listing 2.11 OR gate data flow description

Listing 2.9 shows the data flow description of a 2-bit comparator. Figure2.4 shows
the inputs and output of the 2-bit comparator and Table 2.3 its True Table.

1 library IEEE;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity comparator_2bits is
5 port (
6 A : in std_logic_vector(1 downto 0) ;
7 B : in std_logic_vector(1 downto 0) ;
8 G : out std_logic ;
9 E : out std_logic ;
10 L : out std_logic
11 ) ;
12 end comparator_2bits ;
13

14 architecture data_flow of comparator_2bits is
15 begin
16

17 G <= ’1’ when A > B else ’0 ’;
18 E <= ’1’ when A = B else ’0 ’;
19 L <= ’1’ when A < B else ’0 ’;
20

21 end architecture data_flow;

Listing 2.12 2-bit comparator data flow description
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Fig. 2.7 RTL EXAMPLE

2.3.3 Structural Description

Structural description is based on established logic models (gates, adders, counters,
etc.), which are called as components and they are interconnected in a netlist. Struc-
tural description has a hierarchy, it is necessary to reduce the design in small modules
(components). These components will be called into another module of more hier-
archy. This reduction allows a practical analysis of small modules and it is a simple
form to describe.

Figure2.7 shows an example of structural description, in this example are used
the AND, OR, XOR gates described above. Entity “example” is the top level design.
Listing 2.13 shows the structural description for the example.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity example is
5 port (
6 A : in std_logic ;
7 B : in std_logic ;
8 C : in std_logic ;
9 D : in std_logic ;
10 F : out std_logic
11 ) ;
12 end example;
13

14 architecture structural of example is
15 component AND_G
16 port (
17 A : in std_logic ;
18 B : in std_logic ;
19 C : out std_logic
20 ) ;
21 end component;
22 component OR_G
23 port (
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24 A : in std_logic ;
25 B : in std_logic ;
26 C : out std_logic
27 ) ;
28 end component;
29 component XOR_G
30 port (
31 A : in std_logic ;
32 B : in std_logic ;
33 C : out std_logic
34 ) ;
35 end component;
36

37 signal SI0 , SI1 , SI2 , SI3 , SI4 : std_logic ;
38

39 begin
40 DUT1 : AND_G port map(A,B,SI0) ;
41 DUT2 : XOR_G port map(SI0 ,SI1 ,F) ;
42 DUT3 : OR_G port map(C,D,SI1) ;
43

44 end structural ;

Listing 2.13 Structural Description Example

Listing 2.14 is the structural description of the 2-bit comparator, its RTL was
divided into three sections. The first one corresponds to G signal, when A is greater
than B, the RTL is shown in Fig. 2.8. The second one shows the RTL for E signal,
when A is equal to B, in this case Fig. 2.9 shows its RTL. Finally, the RTL for signal
L is shown in Fig. 2.10, when A is lower that B. This example for the structural
description of a 2-bit comparator, shows different levels of abstraction, beginning
with gates, their interconnections into amore complex gates (for example theOR4_G
is an OR with four inputs), the description of a logic function (G, E, L) and finally a
combinational circuit (comparator).

Fig. 2.8 RTL signal G
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Fig. 2.9 RTL signal E

Fig. 2.10 RTL signal L

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity comparator_2bits is
5 port (
6 A : in std_logic_vector(1 downto 0 ) ;
7 B : in std_logic_vector(1 downto 0 ) ;
8 G : out std_logic ; −− A > B
9 E : out std_logic ; −− A = B

10 L : out std_logic −− L < B
11 ) ;
12 end comparator_2bits ;
13

14 architecture structural of comparator_2bits is
15

16 component AND_G
17 port (
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18 A : in std_logic ;
19 B : in std_logic ;
20 C : out std_logic
21 ) ;
22 end component;
23

24 component OR3_G
25 port (
26 A : in std_logic ;
27 B : in std_logic ;
28 C : in std_logic ;
29 D : out std_logic
30 ) ;
31 end component;
32

33 component AND4_G
34 port (
35 A : in std_logic ;
36 B : in std_logic ;
37 C : in std_logic ;
38 D : in std_logic ;
39 E : out std_logic
40 ) ;
41 end component;
42

43 component AND3_G
44 port (
45 A : in std_logic ;
46 B : in std_logic ;
47 C : in std_logic ;
48 D : out std_logic
49 ) ;
50 end component;
51

52 component OR4_G
53 port (
54 A : in std_logic ;
55 B : in std_logic ;
56 C : in std_logic ;
57 D : in std_logic ;
58 E : out std_logic
59 ) ;
60 end component;
61

62 signal A1n,A0n, B0n,B1n : std_logic ;
63 signal S1,S2,S3,S4,S5,S6,S7,S8,S9,S10 : std_logic ;
64

65 begin
66 B0n <= not B(0) ;
67 B1n <= not B(1) ;
68 A0n <= not A(0) ;
69 A1n <= not A(1) ;
70
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71 −−−−−−G−−−−−−−−−−
72 DUT1: AND_G port map(A(1) ,B1n,S1) ;
73 DUT2: AND3_G port map(A(0) ,B1n,B0n,S2) ;
74 DUT3: AND3_G port map(A(1) ,A(0) ,B0n,S3) ;
75 DUT4: OR3_G port map(S1,S2,S3,G) ;
76

77 −−−−−− E−−−−−−−−−−−
78 DUT5: AND4_G port map(A1n,A0n,B1n,B0n,S4) ;
79 DUT6: AND4_G port map(A1n,A(0) ,B1n,B(0) ,S5) ;
80 DUT7: AND4_G port map(A(1) ,A(0) ,B(1) ,B(0) ,S6) ;
81 DUT8: AND4_G port map(A(1) ,A0n,B(1) ,B0n,S7) ;
82 DUT9: OR4_G port map(S4,S5,S6,S7,E) ;
83

84 −−−−−− L−−−−−−−−−−−−
85 DUT10: AND_G port map(A1n,B(1) ,S8) ;
86 DUT11: AND3_G port map(A1n,A0n,B(0) ,S9) ;
87 DUT12: AND3_G port map(A0n,B(1) ,B(0) ,S10) ;
88 DUT13: OR3_G port map(S8,S9,S10,L) ;
89

90 end structural ;

Listing 2.14 2-bit Comparator structural description

2.4 Modules Description Examples

In this section, a descriptions and simulation of some common circuits are given. For
example, the blocks: multiplexor, adder, decoder, flip_flop, registers, and counters.

2.4.1 Combinational Circuits

Some gates were described above, so the first example is a simple multiplexer 2 to 1.
Mux2_1 RTL is shown in Fig. 2.11 and its description in listing 2.15. Its simulation
usign Active-HDL is presented in Fig. 2.12

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity mux2_1 is
5 port (
6 I0 : in std_logic ;
7 I1 : in std_logic ;
8 S : in std_logic ;
9 Y : out std_logic
10 ) ;
11 end mux2_1;
12

13 architecture data_flow of mux2_1 is
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Fig. 2.11 Mux2_1

Fig. 2.12 Simulation of Mux2_1

14 begin
15 Y <= I0 when S = ’0’ else I1 ;
16 end data_flow;

Listing 2.15 Mux2_1 description

Figure2.13 presents a multiplexor 4 to 1, but in this case each input is a vector of
“n-bit” except the input S which has 2-bit width and it does not depend on the generic
n. To declare n the keyword generic is used as is shown in listing 2.16, in line 5. n is
the integer type and its default value is four. By using the generic keyword, the value
of the vector width can be modified when the multiplexer is used as a component.
The description used the with/select structure, for the last case (“11”) the keyword
others is applied, others included all the combination described for std_logic signals
(see Sect. 2.2). The simulation of the mux4_1_n is shown in Fig. 2.14.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3

4 entity mux4_1_n is
5 generic(n : integer := 4);
6 Port ( I0 : in STD_LOGIC_VECTOR (n−1 downto 0);
7 I1 : in STD_LOGIC_VECTOR (n−1 downto 0);
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Fig. 2.13 Mux4_1_n

Fig. 2.14 Simulation of Mux4_1_n

8 I2 : in STD_LOGIC_VECTOR (n−1 downto 0);
9 I3 : in STD_LOGIC_VECTOR (n−1 downto 0);

10 S : in STD_LOGIC_VECTOR (1 downto 0);
11 Y : out STD_LOGIC_VECTOR (n−1 downto 0)
12 );
13 end mux4_1_n;
14

15 architecture data_flow of mux4_1_n is
16

17 begin
18 with S select
19 Y <= I0 when "00",
20 I1 when "01",
21 I2 when "10",
22 I3 when others;
23

24 end data_flow;

Listing 2.16 Mux4_1_n description

An example of hexadecimal to 7 segments decoder is shown below. Figure2.15
shows one input vector of 4 bits and one output vector of 7 bits, for this example
the description is behavioral. Simulation for hexadecimal to 7 segments decoder is
presented in Fig. 2.16. Please check that segment “a” corresponds to bit seg(7), “b”
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Fig. 2.15 Hexadecimal to 7 segments decoder

Fig. 2.16 Simulation hexadecimal to 7 segments decoder

to seg(6), “c” to seg(5), “d” to seg(4), “e” to seg(3), “f” to seg(2), and “g” to seg(1),
for this description the signal seg does not have a bit seg(0) declared.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity hex_7seg is
5 port (
6 hex : in std_logic_vector(3 downto 0) ;
7 seg : out std_logic_vector(7 downto 1)
8 ) ;
9 end hex_7seg;
10

11 architecture behavioral of hex_7seg is
12 begin
13 process(hex)
14 begin
15 case hex is −− abcdefg
16 when x"0" => Seg <= "1111110" ;
17 when x"1" => Seg <= "0110000" ;
18 when x"2" => Seg <= "1101101" ;
19 when x"3" => Seg <= "1111001" ;
20 when x"4" => Seg <= "0110011" ;
21 when x"5" => Seg <= "1011011" ;
22 when x"6" => Seg <= "1011111" ;
23 when x"7" => Seg <= "1110000" ;
24 when x"8" => Seg <= "1111111" ;
25 when x"9" => Seg <= "1111011" ;
26 when x"A" => Seg <= "1110111" ;
27 when x"b" => Seg <= "0011111" ;
28 when x"C" => Seg <= "1001110" ;
29 when x"d" => Seg <= "0111101" ;
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30 when x"E" => Seg <= "1001111" ;
31 when others => Seg <= "1000111" ; −− F
32 end case ;
33 end process ;
34

35 end behavioral ;

Listing 2.17 Hexadecimal to 7 segments decoder description

Figure2.17 shows an RTL for a complete adder of 4-bit. The adder has three
inputs, two vectors of 4 bits (A and B) and one signal of 1 bit (Cin), and two outputs,
one signal of one bit (Cou) and one vector of 4 bits (Sum). A and B are the numbers
to be added, Cin is the input carry, Cou is the output carry and Sum is the result of the
sum. Listing 2.18 shows a generic adder description, it can be seen in line 6 a generic
integer and its default value set to 4. Three internal signals of unsigned type are used
for data conversion and to store the internal sum (C, Ai, Bi). These conversions are
shown in lines 22 and 23 and the sum in line 26. Finally, the result is converted to
std_logic type in lines 29 and 30. The adder simulation is shown in Fig. 2.18.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
4

Fig. 2.17 RTL adder

Fig. 2.18 Simulation adder
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5 entity adder_n is
6 generic (n : integer := 4) ;
7 port (
8 A : in std_logic_vector (n−1 downto 0) ;
9 B : in std_logic_vector (n−1 downto 0) ;

10 Cin : in std_logic ;
11 Sum : out std_logic_vector (n−1 downto 0) ;
12 Cou : out std_logic
13 ) ;
14 end adder_n;
15

16 architecture behavioral of adder_n is
17 signal C : unsigned(n downto 0) ;
18 signal Ai,Bi : unsigned(n−1 downto 0) ;
19 begin
20

21 −− data conversion to unsigned
22 Ai <= unsigned(A) ;
23 Bi <= unsigned(B) ;
24

25 −− adder
26 C <= (’0’ & Ai) + (’0’ & Bi) + (’0’ & Cin) ;
27

28 −− data conversion to std_logic
29 Sum <= std_logic_vector (C(n−1 downto 0)) ;
30 Cou <= std_logic (C(n) ) ;
31

32 end behavioral ;

Listing 2.18 Adder description

2.4.2 Sequential Circuits

A basic element in sequential logic is the flip_flop D, its RTL view is shown in
Fig. 2.19. The inputs for the flip_flop are: asynchronous reset (RST), clock (CLK),
and datum (D), the only output signal isQ. The simulation of the flip_flop is presented
in Fig. 2.20, here one can see how Q takes the value of D when the clock transition is
positive and holds this value until a new clock transition is presented. The behavioral
description of the flip_flop is presented in listing 2.19

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity flip_flop_d is
5 port (
6 RST : in std_logic ;
7 CLK : in std_logic ;
8 D : in std_logic ;
9 Q : out std_logic
10 ) ;
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Fig. 2.19 RTL Flip_Flop D

Fig. 2.20 Simulation Flip_Flop D

11 end flip_flop_d ;
12

13 architecture behavioral of flip_flop_d is
14 begin
15 process(RST,CLK)
16 begin
17 i f RST = ’1’ then
18 Q <= ’0’;
19 e ls i f rising_edge(CLK) then
20 Q <= D;
21 end i f ;
22 end process ;
23

24 end behavioral ;

Listing 2.19 Flip_Flop D description

Figure2.21 shows a RTLRTL of a parallel-parallel enable register of four bits,
each bit is stored in a flip_flop. Its inputs are: asynchronous reset (RST), clock (CLK),
enable (E), and data (D), the output signal is a vector Q. The simulation of the register
can be seen in Fig. 2.22. In the simulation is noted the register behavior, apart from
the clock, enable signal must be activated to load D, until E is active, the output Q
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Fig. 2.21 RTL
parallel–parallel enable
register

takes the value of D (in each positive clock transition), when E is not active Q holds
the last data.

Listing 2.20 is the description of the register, with a genericwidth. In this example,
it was necessary an internal signal Qi. Line 18 assigns Qi to the output Q. The enable
is described in lines 25–29, when E = 1 the register load the data D, when E = 0 it
holds the previous values.

Fig. 2.22 Simulation parallel–parallel enable register
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1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3

4 entity register_epp is
5 generic (n : integer := 4) ;
6 port (
7 RST : in std_logic ;
8 CLK : in std_logic ;
9 D : in std_logic_vector (n−1 downto 0) ;

10 E : in std_logic ;
11 Q : out std_logic_vector (n−1 downto 0)
12 ) ;
13 end register_epp ;
14

15 architecture behavioral of register_epp is
16 signal Qi : std_logic_vector (n−1 downto 0) ;
17 begin
18 Q <= Qi;
19

20 process(RST,CLK)
21 begin
22 i f RST = ’1’ then
23 Qi <= (others => ’0’) ;
24 e ls i f rising_edge(CLK) then
25 i f E = ’1’ then
26 Qi <= D;
27 else
28 Qi <= Qi;
29 end i f ;
30 end i f ;
31 end process ;
32

33 end behavioral ;

Listing 2.20 Parallel–parallel enable register description

The next example is a left-shift register with a parallel output, the RTL view is
shown in Fig. 2.23, to simplify the RTL, common signals (asynchronous reset RST,
clockCLK, and enableE)were removed.One can see how the data flow fromflip_flop
Qi(0) to Q(1) . . . and so on, and the output signal takes the value in a parallel way.

Simulation of the left-shift register with parallel output is shown in Fig. 2.24. L
was fixed with a value of one. The register loads this value when the enable (E) is
equal to 1 and the clock (CLK) is in a positive transition. Previous values are moved
to the left, after four active enable cycles the register is fully load of ones. When the
enable is E = ‘0’ the register holds its present value.

Listing2.21 shows the behavioral description for the left-shift registerwith parallel
output. Line 18 shows the output parallel assignation. Lines 25–29 show the enable
and shift functions. In line 26 one can see that signal L is concatenated to vector Qi,
due to this one bit of the vector Qi must be removed, in this case the MSB (n–1).

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
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Fig. 2.23 RTL left-shift register parallel output

Fig. 2.24 Simulation left-shift register parallel output

3

4 entity reg_shift is
5 generic (n : integer := 4) ;
6 port (
7 RST : in std_logic ;
8 CLK : in std_logic ;
9 L : in std_logic ;

10 E : in std_logic ;
11 Q : out std_logic_vector (n−1 downto 0)
12 ) ;
13 end reg_shift ;
14

15 architecture behavioral of reg_shift is
16 signal Qi : std_logic_vector (n−1 downto 0) ;
17 begin
18 Q <= Qi;
19
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Fig. 2.25 RTL of the ascending/descending enable counter

20 process(RST,CLK)
21 begin
22 i f RST = ’1’ then
23 Qi <= (others => ’0’) ;
24 e ls i f rising_edge(CLK) then
25 i f E = ’1’ then
26 Qi <= Qi(n−2 downto 0) & L;
27 else
28 Qi <= Qi;
29 end i f ;
30 end i f ;
31 end process ;
32

33 end behavioral ;

Listing 2.21 Left-Shift register parallel output description

Other common sequential circuit is the counter. Figure2.25 shows a RTL view of
a counter ascending/descending with enable module 4. The inputs signals are: clock
(CLK), asynchronous reset (RST), and operation counter (OPC). The output is the
signal vector Q of 2-bit.

Ascending/descending enable counter simulation is shown in Fig. 2.26. When
OPC is “00” or “01” the present value of the counter is holding. When OPC = “11”
the value is increased in one each clock cycle and when OPC = “10” the value is
decreased in one each clock cycle.

The description of the ascending/descending enable counter is shown in listing
2.22. The behavior of input signal OPC is described from line 24–30. In this example
Qi was defined of type unsigned. Line 17 shows the output assigned, due to Qi is the
type unsigned a signal conversion must be done using std_logic_vector.

1 library ieee ;
2 use ieee . std_logic_1164 . al l ;
3 use ieee .numeric_std . a l l ;
4

5 entity counter is
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Fig. 2.26 Simulation of the ascending/descending enable counter

6 port (
7 RST : in std_logic ;
8 CLK : in std_logic ;
9 OPC : in std_logic_vector(1 downto 0) ;

10 Q : out std_logic_vector(1 downto 0)
11 ) ;
12 end counter ;
13

14 architecture behavioral of counter is
15 signal Qi : unsigned(1 downto 0) ;
16 begin
17 Q <= std_logic_vector (Qi) ;
18

19 process(RST,CLK)
20 begin
21 i f RST = ’1’ then
22 Qi <= (others => ’0’) ;
23 e ls i f rising_edge(CLK) then
24 i f OPC = "11" then
25 Qi <= Qi + 1;
26 e ls i f OPC = "10" then
27 Qi <= Qi − 1;
28 else
29 Qi <= Qi;
30 end i f ;
31 end i f ;
32 end process ;
33

34 end behavioral ;

Listing 2.22 Counter ascending/descending enable description

The last example is a finite state machine (FSM). The inputs of the FSM are:
asynchronous reset (RST), clock (CLK), enable (A), and enable (B). The output is a
vector of 2 bits (Y). The FSM is shown in Fig. 2.27. The FMS has four states, when
the reset is active the FSM goes to state 1. For each state if signal A = ‘0’ then the
FSM stays is the actual state, if A = ‘1’ and B = ‘1’ the FSM goes to the next state,
for A = ”1’ and B = ‘0’ the FSM returns to the previous state. In state one (S1) the
output is Y = “00”, Y = “01” for S2, Y = “10” for S3 and Y = “11” for S4. This is
a Moore Machine, then, the output depends on the actual state.
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Fig. 2.27 Finite state machine

Fig. 2.28 RTL of the finite state machine

RTL view of the FSM is shown in Fig. 2.28. Simulation of the FSM is presented
in Fig. 2.29, here one can see that the FSM has a behavior as the previous counter
example, signal A and B represent the signal OPC in the counter.

1 library ieee ;
2 use IEEE. std_logic_1164 . al l ;
3

4 entity fsm is
5 port (
6 RST : in std_logic ;
7 CLK : in std_logic ;
8 A : in std_logic ;
9 B : in std_logic ;
10 Y : out std_logic_vector(1 downto 0)
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Fig. 2.29 Simulation of the FSM

11 ) ;
12 end fsm;
13

14 architecture behavioral of fsm is
15 signal Qi : std_logic_vector(1 downto 0) ;
16 begin
17 Y <= Qi;
18 process(RST,CLK)
19 begin
20 i f RST = ’1’ then
21 Qi <= "00" ;
22 e ls i f rising_edge(CLK) then
23 case Qi is
24 when "00" =>
25 i f A = ’0’ then
26 Qi <= "00" ;
27 e ls i f B = ’1’ then
28 Qi <= "01" ;
29 else
30 Qi <= "11" ;
31 end i f ;
32

33 when "01" =>
34 i f A = ’0’ then
35 Qi <= "01" ;
36 e ls i f B = ’1’ then
37 Qi <= "10" ;
38 else
39 Qi <= "00" ;
40 end i f ;
41

42 when "10" =>
43 i f A = ’0’ then
44 Qi <= "10" ;
45 e ls i f B = ’1’ then
46 Qi <= "11" ;
47 else
48 Qi <= "01" ;
49 end i f ;
50

51 when others =>
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52 i f A = ’0’ then
53 Qi <= "11" ;
54 e ls i f B = ’1’ then
55 Qi <= "00" ;
56 else
57 Qi <= "10" ;
58 end i f ;
59 end case ;
60 end i f ;
61 end process ;
62

63 end behavioral ;

Listing 2.23 Finite state machine behavioral description

The behavioral description of the FSM is presented in listing 2.23. To describe the
FSM a case structure is used, for each state one case is used. The output is assigned
in line 17.
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