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Abstract Let n ∈ Z
+. We provide two short proofs of the following classical fact,

one using Khovanov homology and one using Heegaard–Floer homology: if the
closure of an n-strand braid σ is the n-component unlink, then σ is the trivial braid.
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Let Bn denote the n-strand braid group, 1n ∈ Bn the n-strand trivial braid, andUn the
n-component unlink in S3. Denote by σ̂ the closure of σ ∈ Bn, considered as a link
in S3. The following fact first appears in the literature in [4, Thm. 4.1]. It can also be
obtained as an immediate corollary of [3, Thm.1]:

Proposition 1 Let σ ∈ Bn. If σ̂ = Un, then σ = 1n.

The primary purpose of this note is to provide two short proofs of Proposition 1,
one using Khovanov homology and one using Heegaard–Floer homology. Although
the classical proof contained in [4] is straightforward, we hope these new proofs
will also be of interest, since they suggest ways in which algebraic properties of link
homology theories can give information about braid dynamics.

The key geometric idea underlying both proofs is the following pair of simple but
powerful observations, from [8]:
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• A self-diffeomorphism of a surface with non-empty boundary that fixes the bound-
ary pointwise is isotopic to the identity rel boundary iff it is both right- and left-
veering (cf. [9] for a definition);

• If the Heegaard–Floer contact invariant (resp., Plamenevskaya’s transverse invari-
ant) is nonzero, then every open book supporting the contact structure (resp., every
braid closure representing the transverse link) is right-veering [9, 16] (resp., [1]).

The two proofs of Proposition 1 we present are formally analogous. The proof
involving Khovanov homology (Sect. 1) requires little more than the two facts above,
while theHeegaard–Floer homology proof (Sect. 2) involves applying the facts above
to fibered links in connected sums of copies of S1 × S2, using ideas ofBirman–Hilden
[2]. Recall that the preimage of the braid axis in the double branched cover of a braid
closure in S3 is a fibered link. When the closure of the braid is the unlink, one obtains
a fibered link in a connected sum of copies of S1 × S2. The existence of a nontrivial
n-strand braid whose closure isUn would imply the existence of a non-trivial fibered
link of minimal complexity (i.e., maximal Euler characteristic) in #n−1(S1 × S2).

More precisely, let Yn denote #n(S1 × S2). For L a fibered link with fiber F, we
will abuse terminology and refer to χ(F) as the Euler characteristic of L.

Define
Ln := {� ∈ Z

+ ∣

∣ � ≤ (n + 1) and � ≡ (n + 1)mod2}.

Note that for each � ∈ Ln, it is straightforward to construct a fibered �-component
link, L� ⊂ Yn, of Euler characteristic 1 − n. See Fig. 1. The monodromy of L� is
trivial, and the pair (Yn,L�) is well-defined up to diffeomorphism.

The following result appears in [14].

Proposition 2 [14, Prf. of Thm. 1.3] Let L� ⊂ Yn be a fibered, �-component link
with � ∈ Ln and Euler characteristic 1 − n. Then the pair (Yn,L�) is diffeomorphic
to the pair (Yn,L�).
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Fig. 1 Kirby diagrams of the links L1 (left) and L3 (right) in Y2 := #2S1 × S2. The S2’s (bound-
aries of the feet of 4-dimensional 1-handles) are identified as labeled, via a reflection in the plane
perpendicular to the straight line joining their centers. The fibered link in each case is drawn in
blue. To construct L� ∈ Yn in general, arrange n pairs of S2’s along an unknot in S3 so that attaching
2-dimensional one-handles to the disk bounded by the unknot, via the chosen configuration, forms
an oriented surface with � boundary components
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It is clear (cf. Lemma1) that if � /∈ Ln, then an �-component link cannot haveEuler
characteristic 1 − n. It is also clear (cf. Lemma 2) that 1 − n is the maximal possible
Euler characteristic among all fibered links in Yn. Informally, Proposition 2 therefore
says that for allowable �, maximal Euler characteristic fibered �-component links
in #n(S1 × S2) are unique up to diffeomorphism. After the first version of this note
appeared, it was pointed out in [5, Cor. 1.3] that Proposition 2 implies Proposition
1, by the main result of [2].

In Sect. 2.1 we present an alternative proof of Proposition 2 using Heegaard–Floer
homology. We thank John Baldwin for pointing out that this proof of Proposition 2
implies:

Corollary 1 If Y � Yn is a closed, oriented 3-manifold with the same Heegaard–
Floer module structure as Yn, then Y contains no fibered links of Euler characteristic
1 − n.

There is a unique maximal Euler characteristic fibered link in S3 (namely, the
unknot)whose corresponding open book supports the standard tight contact structure.
Ken Baker (cf. [11]) asked the following interesting question:

Question 1 Fix a contact structure, ξ , on a 3-manifold, Y , and let

χξ := max{χ(L) | L is a fibered link whose open book supports ξ}.

Up to diffeomorphism, are there finitely many fibered links L supporting ξ with
χ(L) = χξ?

Proposition 2 tells us that for the standard tight contact structure on Yn the answer
is yes.

1 Khovanov Homology Proof of Proposition 1

Proof (Proposition 1) Choose a diagram, D(̂σ ), for σ̂ obtained as the closure of a
diagram for σ , andmark the n points on the diagram corresponding to the intersection
with the closure arc. Recall that the (F = Z/2Z) Khovanov homology, Kh(̂σ ), of σ̂

is an invariant of the isotopy class of σ̂ ⊂ S3 that takes the form of a bigraded vector
space overF. Sincewe have also chosen a basepoint on each of the n link components,
[7, Prop.1] tells us that Kh(̂σ ) inherits the structure of a module over the ring

An := F[x1, . . . , xn]/(x21, . . . , x2n)

as follows.
Associated to the diagramof σ̂ is a cubeof resolutionswhose vertices are in one-to-

one correspondence with complete resolutions (i.e., Kauffman states) of the diagram.
The basis elements (generators) of the underlying vector space of theKhovanov chain
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complex, CKh(D(̂σ )), are, in turn, in one-to-one correspondence with markings of
the components of each resolution with either a 1 or an x (i.e., enhanced Kauffman
states).

Let Ibraid be the unique “braid-like” complete resolution of D(̂σ ), and denote by
�+ (resp.,�−) the basis element 1 ⊗ . . . ⊗ 1 (resp., x ⊗ . . . ⊗ x) in the vector space
associated to Ibraid . �− is a cycle, hence represents an element in Kh(̂σ ). Indeed,
[�−] ∈ Kh(̂σ ) is precisely Plamenevskaya’s invariant [17] of the transverse isotopy
class of the transverse link represented by σ̂ .

We are now ready to understand the An structure induced by the n points
p1, . . . , pn. For each complete resolution, I, choose a numbering of its �I con-
nected components, and let v1 ⊗ . . . ⊗ v�I represent the Khovanov generator whose
jth component in I is marked with vj ∈ {1, x}. Suppose pi lies on the kth component
of I. Then the action of xi ∈ An is the F-linear extension of the assignment:

xi · (v1 ⊗ . . . ⊗ vk ⊗ . . . ⊗ v�I ) := v1 ⊗ . . . ⊗ x ⊗ . . . ⊗ v�I

if vk = 1 and 0 otherwise.
It is straightforward to check that the Khovanov differential commutes with the

action ofAn, and it is shown in [7] (see also [12, 13]) that the homotopy equivalences
associated to Reidemeister moves respect the An-module structure, and moving a
basepoint past a crossing yields a homotopic map. The homology, Kh(̂σ ), therefore
inherits the structure of an An-module, and this An-module structure is an invariant
of the link.

With these preliminaries in place, assume that σ̂ = Un. A quick calculation using
the standard diagram of Un tells us that Kh(Un) ∼= An as an An-module. Let θ ∈
CKh(D(̂σ )) be a cycle representing the homology class 1 ∈ Kh(Un) ∼= An.

We now claim that when θ is expressed as a linear combination of the stan-
dard Khovanov generators, the coefficient of �+ must be 1. To see this, note that
x1 · · · xn(θ) represents the non-zero homology class x1 · · · xn ∈ Kh(̂σ ), but if v is any
basis element not equal to �+, then x1 · · · xn(v) = 0. We see this immediately for
v �= �+ ∈ Ibraid , and any complete resolution I �= Ibraid contains at least one con-
nected component intersecting the closure arc more than once, hence containing at
least two basepoints pi, pj, i �= j. We conclude that any basis element v associated to
I �= Ibraid satisfies xixj(v) = 0, hence also satisfies x1 · · · xn(v) = 0.

The arguments in the previous paragraph imply that x1 · · · xn(θ) = x1 · · · xn(�+)

= �−, so [�−] = x1 · · · xn ∈ Kh(̂σ ). In particular, [�−] �= 0.
But [1, Prop. 3.1] then implies that σ is right-veering.
Repeat the argument above on m(σ ), the mirror of σ , to conclude that σ is also

left-veering. Since the only braid which is both left- and right-veering is the identity
braid (cf. [1, Lem. 3.1]), σ = 1n, as desired.
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2 Fibred Links in #n(S1 × S2)

Recall that Ln := {� ∈ Z
+ ∣

∣ � ≤ (n + 1) and � ≡ (n + 1) mod 2}.
Lemma 1 If an �-component link L has Euler characteristic 1 − n, then � ∈ Ln.

Proof Let S denote the fiber surface of L, χ(S) its Euler characteristic, and g(S)
its genus. Then χ(S) = 1 − n = (2 − 2g(S)) − �. Since g(S) ∈ Z

≥0, we obtain � ≡
(n + 1) mod 2 and � ≤ n + 1.

Lemma 2 If L ⊂ Yn is a fibered link, then χ(L) ≤ 1 − n.

Proof Suppose L has � components, and let S denote the fiber surface of L, and h
its monodromy. H1(S) is free of rank 1 − χ(S) = 2g(S) + (� − 1). Viewing Yn − L
as the mapping torus of h (cf. Sect. 2.1), we obtain a corresponding presentation of
H1(Yn) ∼= Z

n with 1 − χ(L) generators, hence 1 − χ(L) ≥ n.

2.1 Heegaard–Floer Homology Proof of Proposition 2

We begin with some background on Heegaard–Floer homology.

2.1.1 Heegaard–Floer Module

Recall that in [15], Ozsváth-Szabó associate to a closed, oriented 3-manifold Y a
graded vector space (for simplicity we work over F = Z/2Z), ̂HF(Y), which splits
over Spinc(Y), the set of spinc structures on Y :

̂HF(Y) =
⊕

s∈Spinc
(Y)

̂HF(Y , s)

For appropriate choices of symplectic and almost complex structures, ̂HF(Y) is the
Lagrangian Floer homology of a natural pair of Lagrangian tori, Tα and Tβ , in the
g-fold symmetric product of a pointed Heegaard surface, (
,w), for Y .

̂HF(Y) can be given the structure of a module over �∗(H1(Y; F)), as described
in [15, Sect. 4.2.5]. Explicitly, let

(
, α = {α1, . . . , αg}, β = {β1, . . . , βg}, z)

be a pointed, genus g Heegaard splitting of Y , and consider ζ ∈ H1(Y; F). Ozsváth-
Szabó define an associated chain map,

Aζ : ̂CF(
, α, β, z) → ̂CF(
, α, β, z),
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on the Heegaard–Floer chain complex as follows ([15, Rmk. 4.20]). Let x, y ∈ Tα ∩
Tβ be generators of the chain complex. Recall thatπ2(x, y) denotes the set of domains
in 
 representing topological Whitney disks connecting x to y, in the sense of [15,
Sect. 2.4]. If φ ∈ π2(x, y), we follow the notation in [14, Sect. 2.1], letting ∂αφ :=
(∂φ) ∩ Tα , regarded as a 1-chain with boundary y − x.

Choose an immersed curve,

γζ ⊂ 
 − {αi ∩ βj}i,j∈{1,...,g},

representing ζ ∈ H1(Y; F) and define

a(γζ , φ) := # ̂M(φ)(γζ · ∂αφ),

where γζ · ∂αφ is the algebraic intersection number of γζ and ∂αφ. Then the chain
map associated to ζ is given by:

Aζ (x) =
∑

y∈Tα∩Tβ

∑

{

φ∈π2(x,y)
∣

∣μ(φ)=1,nw(φ)=0
}

a(γζ , φ) · y.

ThemapAζ is well-defined (independent of the choice of γ ) up to chain homotopy
(cf. [14, Lem. 2.4]).

2.1.2 Heegaard–Floer Contact Invariant

We now recall the definition of the Heegaard–Floer contact invariant [16], following
the alternative construction given in [10]. Let ξ be a contact structure on a closed,
connected, oriented 3-manifold Y . Then Giroux tells us [6] that there exists some
fibered link L whose corresponding open book supports ξ . One can then build a
Heegaard diagram for −Y (Y with the opposite orientation) using

• a choice of basis, {a1, . . . , an}, for a page S (of Euler characteristic 1 − n) of the
open book [10, Sect. 3.1], and

• the data of the monodromy, h, of the open book.

Honda-Kazez-Matić then identify a distinguished cycle in the corresponding chain
complex, ̂CF(−Y), and prove both that the class it represents in ̂HF(−Y) is invariant
of the choices used in its construction and that it agrees with the contact invariant
defined in [16].

We will need the following, which appears in [8] and follows immediately from
[16, Thm. 1.4] and [9, Thm. 1.1]:

Lemma 3 If L ⊂ Y is a fibered link whose monodromy, h, is not right-veering, then
the Heegaard–Floer contact invariant associated to the contact structure supported
by L vanishes.



An Elementary Fact About Unlinked Braid Closures 99

We now proceed to the proof.

Proof (Proposition 2) Let L� ⊂ Yn be an �-component fibered link of Euler char-
acteristic 1 − n. Construct a corresponding Heegaard diagram for −Yn as in [10,
Sect. 3].

The module structure on ̂HF(−Yn) has been computed in [15, Lemma. 9.1].
Explicitly, ̂HF(−Yn) ∼= An as a module over

�∗(H1(−Yn; F)) ∼= An := F[ζ1, . . . , ζn]/(ζ 2
1 , . . . , ζ 2

n ).

In particular, ζ1 · · · ζn �= 0 ∈ ̂HF(−Yn).
We can understand the module action explicitly in our setting as follows. All

of our notation matches [10]. Examine the Honda-Kazez-Matić pointed Heegaard
diagram

(
 = S1/2 ∪ −S0, {β1, . . . , βn}, {α1, . . . , αn}, z)

associated to the fibered link, L�. In particular, choose a small perturbation, bi ⊂ S,
of each arc ai ⊂ S, as described in [10, Sect. 3.1]. Subject to the identifications
S ∼= S1/2 ∼= S0, form:

αi := (ai ⊂ S1/2) ∪ (ai ⊂ −S0)

βi := (bi ⊂ S1/2) ∪ (h(bi) ⊂ −S0).

By construction, |S1/2 ∩ (αi ∩ βj)| = δij. Let xi denote the unique intersection point
in (S1/2 ∩ αi ∩ βi), and let x = (x1, . . . , xn) ∈ Tα ∩ Tβ ⊂ Symn(
). Honda-Kazez-
Matić prove that x is a cycle in the Heegaard–Floer chain complex and that it repre-
sents the Heegaard–Floer contact class c(ξ(S,h)) ∈ ̂HF(−Yn) associated to the contact
structure ξ(S,h) compatible with the open book (S, h).

Now choose a dual basis, {γ1, . . . , γn}, of simple closed curves on S1/2 satisfying
|ai ∩ γj| = δij. The set of homology classes, {[γ1], . . . , [γn]}, obtained by viewing the
γi as 1-cycles in −Yn, forms a basis for H1(−Yn; F). Hence, for each i ∈ {1, . . . , n},
the corresponding map on homology induced by the chain map A[γi] can be identified
with ζi ∈ An.

Let θ ∈ ̂CF(−Yn) be any cycle representing 1 ∈ ̂HF(−Yn). Since ζ1 · · · ζn �= 0 ∈
̂HF(−Yn), we know that there exists at least one generator y ∈ Tα ∩ Tβ satisfying

〈A[γ1] · · ·A[γn] · θ, y〉 ≡ 1 mod 2.

Associated to such a generator y is an odd number of correspondingMaslov index
n domains in π2(θ, y), each of which can be realized as the sum of n of the Maslov
index 1 domains contributing to the chain maps A[γ1], . . . ,A[γn]. Consider the local
multiplicity of such a Maslov index n domain, ψ , in the four regions adjacent to one
of the constituent intersection points, xi, of the distinguished cycle x = (x1, . . . , xn)
representing the contact class. We know (see Fig. 2) that the local multiplicity of ψ

in the two regions adjacent to xi that contain the basepoint, z0, must be 0 and also that
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Fig. 2 The contact class on (half of) the Honda-Kazez-Matić Heegaard diagram associated to a
fibered link L2 ⊂ Y3. The right-hand picture is a close-up of one of the constituent intersection
points of the contact class and restrictions on the local multiplicities of the Maslov index n domain
ψ . The NW, SE domains must have multiplicity 0 since they contain the basepoint z0. One of the
other two domains must have positive multiplicity, since it is the unique domain intersecting γi

the local multiplicity in the region adjacent to the unique intersection point between
γi and ai must be nonzero (hence positive, since ψ is a sum of domains representing
holomorphic disks). Since the fourth region must have non-negative multiplicity, we
conclude that xi must be a corner, of multiplicity at least one, in the boundary of ψ ,
implying that xi must be a constituent intersection point of the generator y.

Since the above argument holds for each of the xi, we conclude that, in fact, y
is actually the distinguished contact class, x, and it follows that (working mod 2)
A[γ1] · · ·A[γn] · θ = x. Therefore,

[A[γ1] · · ·A[γn] · θ ] = [x] = ζ1 · · · ζn �= 0 ∈ ̂HF(−Yn),

so the Heegaard–Floer contact invariant associated to the contact structure supported
by L� is nonzero. By Lemma 3, the monodromy, h, of L� is right-veering.

Now consider the mirror of L, i.e., the fibered link L ⊂ −Yn with monodromy
h−1. By running the same argument above, we conclude that the contact invariant
associated to the contact structure supported by the mirror of L is also nonzero.
Hence, h−1 is right-veering, implying that h is left-veering.

But if h is both right- and left-veering, then h is isotopic to the identity mapping
class, and hence (Yn,L�) is diffeomorphic as a pair to (Yn,L�).
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