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Abstract. When studying a biological regulatory network, it is usual
to use boolean network models. In these models, boolean variables rep-
resent the behavior of each component of the biological system. Taking
in account that the size of these state transition models grows expo-
nentially along with the number of components considered, it becomes
important to have tools to minimize such models. In this paper, we relate
bisimulations, which are relations used in the study of automata (general
state transition models) with attractors, which are an important feature
of biological boolean models. Hence, we support the idea that bisimula-
tions can be important tools in the study some main features of boolean
network models. We also discuss the differences between using this app-
roach and other well-known methodologies to study this kind of systems
and we illustrate it with some examples.

Keywords: Biological regulatory networks · Bisimulation · Minimiza-
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1 Introduction

The term “biological regulatory network” refers to the regulation processes which
occur within a cell. In this environment, there are several biological components
which react with each other (for example, by chemical reactions). More generally,
the occurrence of these regulation processes within a biological system is due to
the fact that the presence of some components in the cell can either induce or
inhibit the production of some other component(s). For instance, this behavior
can be observed when some proteins interact with genes producing mRNA. In
its turn, mRNA induce the production of other proteins and so on.

To study a biological regulatory network, we must take in account that state
variables like the concentration of proteins, mRNA and other components vary
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in a continuous form. Indeed, one of the most precise kind of models used in this
field are those which describe the dynamics of a biological regulatory network
by an ordinary differential equations system (see [5]) that only admits contin-
uous state variables. Usually, these models use sigmoid functions to describe a
positive/negative regulation of a component over another (i.e., to describe that
one component induces/inhibits the production of another). The sigmoid func-
tions which are more often used to describe a positive regulation are the so called
“Hill functions” and depend on parameters θ and n. In this way, it is not difficult
to see that this kind of models admit non linear equations and, therefore, the
resulting ordinary differential equations system is not trivially solved by analytic
methods. Thus, other (more simple) kinds of models are often used in order to
proceed with a preliminary study of the biological system. In this context, the
boolean networks are really useful.

There are many variants of boolean network models, however, the basic idea
of all them is to approach each state variable of the system by a boolean variable
[9]. In this way, it is assigned either the value “1” or “0” to indicate that some
component is present or absent, respectively. Then, for each component i we
define a boolean variable xi and consider a threshold θi. If the concentration
of the component i is above θi we define xi as “1” (present) and otherwise we
define it as “0” (absent).

In a boolean network, a state is a vector (x1, ..., xn) such that each xi is the
boolean variable associated to the component i. There also are some variants of
these boolean approaches which admit more than one threshold associated to
each component: θji . In this case, it is possible to obtain several levels of express-
ibility which are codified using several boolean variables xj

i instead of only xi.
Still, there are other variants as asynchronous boolean networks (see [2]) which
we will more carefully describe in this paper. A boolean network model which
represents the dynamics of a biological system is a digraph in which each vertex
is a vector composed of “0”s and “1”s (which relates to a possible configuration
of the biological system); and each edge relates to a possible transition between
states. We then have a state transition model (automata).

These biological models and their variants are widely used because they are
simple and some features of the original system can be identified by studying
these boolean models. One of the most studied features in biological regulatory
networks is the existence of steady states. By steady state we refer to the values
of the concentration of a cell’s components where the system stabilizes. In par-
ticular, in models which use an ODE system, a steady state corresponds to those
states in which the evolution of the system is null, i.e., corresponds to set all
differential equations to zero. When a steady state exists, it can be either stable
(if little perturbations do not cause the system to evolve into a state far away
from the initial steady state) or unstable (otherwise). Thus, the study of these
characteristics is an important topic in the field of biological systems. Because of
this, discrete models as boolean networks are often used because it is well-known
that steady states are signaled by terminals in asynchronous boolean networks.
Then, it becomes worth to use these models to proceed with a preliminary study.



Relating Bisimulations with Attractors in Boolean Network Models 19

We point out that in a biological context, the concept attractor is more often
used than “terminal”. Therefore, we use the term “attractor” instead of “termi-
nal” when we refer to this concept in biological boolean networks.

It is not difficult to see that the number of states of these models grows expo-
nentially with the number of components of the system. For example, a model
which considers 10 components admits 210 states. Because of this, and since the
most of the biological models admits much different components (usually, much
more than 10), it becomes important to both develop tools to minimize these
boolean network models and new ideas to find features like attractor with few
computational cost. In order to do this, we propose to take into account the
ideas already used in automata theory. Although we do not present any new
algorithm, this work paves the way to new approaches to this problem.

In this paper, we apply the concept of bisimulation to propose a new method
to preliminarily study these biological systems. Bisimulations are already used in
several minimization processes. Furthermore, the possibility of combining bisim-
ulation with modal logic which admit modalities (see [1]) turns out that it is a
powerful tool to study state transition systems. The usage of modal logic is pos-
sible due to the possibility of interpreting biological boolean network as Kripke
models. However, in this paper, we will only propose bisimulations to develop
new minimization processes which allow us to find the attractors of boolean
networks and we do not consider any background logic. Thus, given a digraph
(V,E), we say that S ⊆ V × V is a bisimulation if S is not empty, and if it is an
equivalence relation such that:

– If (v, w) ∈ S and (v, v′) ∈ E then there exists w′ ∈ V such that (w,w′) ∈ E
and (v′, w′) ∈ S.

– If (v, w) ∈ S and (w,w′) ∈ E then there exists v′ ∈ V such that (v, v′) ∈ E
and (v′, w′) ∈ S.

Outline. We begin by presenting some definitions and a theorem that relates
attractors with bisimulations. Then, we enhance the difference between minimiz-
ing boolean networks using bisimulation and other known methodologies used in
the study of such systems. Finally, we present some conclusions and directions
to follow.

2 Bisimulations and Attractors

The dynamics within a cell are guided by several components: proteins, RNA,
genes, ribosomes, etc... Each of these components induces or inhibits the produc-
tion/activation of some of the other ones. Thus, it is very difficult to understand
a biological regulatory network and, usually, only some main features are stud-
ied. As referred, one of these features are the steady states. Steady states are
related to the modes of operating of a cell. For instance, in [4], a model for E. coli
with two steady states is presented: one is related to a configuration in which
the organism metabolizes sugar, grows and replicate itself; and the other relates
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to a configuration in which the organism does not metabolize sugar, does not
grow and does not replicate itself.

There exists results which shows that the study of asynchronous boolean
models can be used to identify steady states (see [9]). In practice, each terminal
represents a steady state. We follow with a formal definition of terminal.

Definition 1. Let (V,E) be a graph.
We say that v ∈ V has a transition to w ∈ V and we write v → w, if

(v, w) ∈ E. We write v � w otherwise.
We say that there is a path from v to w if there exist v1, ..., vn ∈ V such

that v → v1, v1 → v2, ..., vn → w.
A Strongly Connected Component (SCC) is a subset A of V such that there

is a path between any two element of A.
A set A is a terminal if it is a SCC and � a ∈ A, v ∈ V \A: a → v.

We point out that, since the biological boolean models represent a finite
number of components of a cell, in this section, we assume that all the considered
digraphs are finite, i.e., for any digraph (V,E), |V | < ∞.

To find the attractors of digraphs, several methodologies can be used. In
[7,10] some methods are presented. However, here, we present some new ideas
that can lead to a new approach on this theme, based in bisimulations. We thus
follow with a definition of a particular class of bisimulations and we present and
prove a theorem that relates this class of bisimulations with attractors.

Definition 2. Let (V,E) be a graph.
We say that B ⊆ V × V is a complete bisimulation if it is a bisimulation and

there exists B ⊆ V such that B = B × B (any two elements of B are related).
We say that a complete bisimulation B is minimal if there is not any other

complete bisimulation B′ such that B′
� B.

Lemma 1. Let (V,E) be a graph, B ⊆ V and B = B × B a minimal complete
bisimulation. For any A � B, ∃ a ∈ A, v ∈ B\A such that a → v.

Proof. Let us assume that there exists A � B such that, for any a ∈ A, v ∈ B\A,
a � v.

In this case, we can easily verify that A × A is an equivalence relation since
all states of A are related. By hypothesis, for any (a, a′) ∈ A × A ⊆ B such
that a → b, there exists some b′ which verifies a′ → b′ and (b, b′) ∈ B. Since
for any a ∈ A, v ∈ B\A, a � v, we can conclude that b, b′ ∈ A and, therefore,
(b, b′) ∈ A × A. Thus, A × A is a complete bisimulation and this contradicts the
minimality of B. �

Theorem 1. Let (V,E) be a graph. B = B × B ⊆ V × V is a minimal complete
bisimulation ⇔ B is a terminal of V .

Proof.
“⇒”
We start by proving that if B is a minimal complete bisimulation, then there

exists a path between any two elements of B. We prove that B is a terminal
afterwards.
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We consider u, v ∈ B. By Lemma 1, we know that there is a transition u → u1

from {u} to B\{u}. If u1 = v, we are done. Otherwise, using Lemma 1 again,
we know that there is a transition from {u, u1} to some u2 ∈ B\{u, u1}. Here,
either u → u2 or u1 → u2. In any case, there is a path from u to u2. Again, if
u2=v we are done. Otherwise, we can continue to apply this procedure till find
a path between u and v (this procedure will end in finite time since we are only
considering finite graphs). As u and v were arbitrary, we can conclude that B is
a SCC.

Finally, if u ∈ B and u → v, then (u, u) ∈ B and, by definition of complete
bisimulation, (v, v) ∈ B. Then v ∈ B and, thus, B is a terminal.

“⇐”
We now assume that B is a terminal of V . We can easily see that B = B ×B

is a equivalence relation since all states are related. We consider (u, v) ∈ B and
u → u′. Since B is a terminal, u′ ∈ B and ∃v′ ∈ B such that v → v′. Furthermore,
(v, v′) ∈ B, by definition and, therefore, B is a complete bisimulation.

Let us assume that B is not minimal, i.e., there is a complete bisimulation
A := A × A � B. Since B is terminal, it is possible to find a path from any
a ∈ A for any b ∈ B\A. Thus, ∃a′ ∈ A, b′ ∈ B\A such that a′ → b′. But this
contradicts the fact of A being bisimulation because b′ /∈ A. �

This theorem can help us to develop a new minimization methodology which
preserves the attractors without even know them. The general idea is to find a
bisimulation B such that any complete bisimulation contained in B is minimal.
Thus, we can compute the “quotient digraph” in order to obtain a minimized
model in which the states of the attractors may be “clustered”. Nevertheless,
these attractors are individually preserved. We follow with two examples in order
better understand how the minimization via bisimulation is made.

In this example, we consider two asynchronous boolean networks models.
In this kind of boolean network, the directed edges representing the transitions
between states are defined according to some boolean equations. However, we
can only update the value of one variable at each time. To simplify, we do not
consider any loops.

For the first example, we pick a purely theoretical model which is presented
in Fig. 1. This example is presented in order to further distinguish two method-
ologies. In this figure, the attractor of the model is enhanced by an orange box.
Although this model is theoretical, it could result from a system comporting
three components (a, b and c) whose state transition is computed by updating
the value of a single component at each time and according to the following
boolean equations: ⎧

⎪⎨

⎪⎩

a := a ∨ b

b := a ∨ (b ⊕ c)
c := (a ⊕ ¬b) ∨ c

In these equations, ⊕ is the XOR boolean operator.
In order to minimize this model, we can find a bisimulation B = {(000,

000), (001, 001), (011, 011), (111, 111), (010, 010), (110, 110), (100, 100), (101, 101),
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Fig. 1. Model with an attractor composed of a single state.

(001, 011), (011, 001), (110, 101), (101, 110), (010, 100), (100, 010)}. It is not diffi-
cult to verify that all complete bisimulation contained in this bisimulation are
minimal. Thus, we can construct the “quotient digraph” by clustering the states
in the same equivalence class. The transitions of the “quotient digraph” are
introduced by the following rule: “If a → b, then, [a] → [b] (where [a] and [b] are
the equivalence classes of a and b, respectively)”. This quotient digraph is then
presented in Fig. 2.

Fig. 2. Quotient digraph of the model in Fig. 1.

We now consider a real example. In [3], it is presented a biological system that
regulates the circadian rhythm in a cyanobacteria, i.e. this system models the
biological processes (which are periodic and whose period is 24 h) that regulates
the perception of a day-cycle by an organism. In [3], this system is studied with
a asynchronous boolean network and the attractors of the resulting network are
found and it is studied the robustness of this model. The asynchronous boolean
network used is defined by the boolean equations which follow:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a := ¬s

s := ts

t := a

ts := t ∧ a

This model describes the dynamics of the three phosphorylated forms of Kai
C (using boolean variables t, ts, and s) and the protein Kai A (with a boolean
variable a). These four form are responsible for the core of the cyanobacterial cir-
cadian clock. The referred system is modeled by the presented boolean functions
and the resulting asynchronous boolean network, whose attractor is enhanced
by an orange box, is shown in Fig. 3.

As before, we can find a bisimulation such that all complete bisimu-
lations contained on it are minimal and compute the “quotient digraph”.
Hence, if we consider the following bisimulation B = {(a, b) : a, b ∈
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Fig. 3. Model of the circadian rhythm in a cyanobacteria.

{0110, 0010, 1010, 1111, 0111, 1011, 0101, 0100, 0000, 1000}} ∪ {(a, a) : a ∈
{1110, 1101, 1100, 0011, 0001, 1001}}, the resultant quotient digraph is the one
which is presented in Fig. 4.

Fig. 4. Minimized model for the circadian rhythm in a cyanobacteria.

In both cases, we can see that we obtain a minimized model in which the
attractors are preserved. This is due to the fact that all complete bisimulations
contained in the bisimulation used are minimal.

3 Comparing Bisimulation with Other Reducing Methods

In this section, we compare this method of minimization with other methodolo-
gies which are commonly used in this field. We do this in order to distinguish
our minimizing method from those and we point out some advantages (and dis-
advantages) of our method when comparing to other approaches.

Firstly, we compare our quotient digraph with the hierarchical representa-
tions. This kind of representations sort the states of a model according to their
distance to the attractors. This approach is widely used in the study of systems.
However, the main disadvantage is that one must know a priori which are the
attractors of the model in order to obtain a hierarchical representation. It is not
difficult to see that our method can only get together two states whose distance
to the attractors is the same (since transitions are someway preserved). However
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it only clusters states whose behavior is similar. To illustrate this we call the
minimized model in Fig. 4. In this example, if we consider any state which is not
part of the attractor, we can see that its distance to the attractor is “1”. Despite
this fact, we can see that any two of these states are not clustered because each
one of them presents a different behavior. Actually it may be important to study
these differences in their behavior. Actually, they allow us to discover the longest
possible “path” to the attractor.

Another widely used method to minimize boolean networks and, then, search
for attractors is clustering the SCCs. This allows us to minimize a model and
still preserve the attractors. This is a well-known idea and several other methods
to find attractor where developed after it (for instance, see [10]). On one hand,
the method which we present can clusters sets of states which are not in the
same SCC and, therefore, it clusters states which would not be clustered when
we cluster the SCC’s. For instance, recalling the example in Fig. 2, we can see
that the states 010 and 100 were clustered and were not in the same SCC; on
the other hand, constructing the quotient digraph, it can happen that we do not
cluster all SCC’s. For example, the quotient digraph presented in Fig. 2 still has
a SCC. This is due to the fact that our method can only cluster SCCs which are
terminals. We can see this because, for any SCC which is not a terminal, there
exists some state in the SCC that admits a transition for a state out of that
SCC. Therefore, it may be impossible to find a complete bisimulation to cluster
all its states.

Finally, we point out a last important feature of bisimulations. Since we are
dealing with discrete state transition models (automata), it can be useful to use
modal logic to reason about such models. Hence, it could be useful to obtain
minimization processes which guarantee that all states in a cluster verify the
same modal formulas. Indeed, due to their definition, bisimulations are suitable
to be used with modal logic. More information about this can be found in [1].

4 Conclusions

Bisimulations can be used to obtain to minimize biological boolean models
and, guaranteeing some conditions, the methodology we presented preserves the
attractors. Although we present only the main ideas and some examples of the
application of this method, it can provide the basis for a new minimization algo-
rithm. Actually, in future, we are planing to develop this complete algorithm
which applies these ideas to minimize biological boolean models.

We also evaluated the convenience of using this minimization methodology
when compared with other methods already used. It provides a new way of
looking at biological models and it can be useful in their study. When comparing
with other methods, it has both some advantages and disadvantages. However,
as seen, since it preserves the attractors and, moreover, it can be combined with
a modal logic, we believe that this approach is worth.

In future, we also plan to study how can modal logic fit in these biological
boolean models and, if possible, to find an axiomatization of such systems which
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would allow us to formally prove diverse properties of them. Actually, in contin-
uous models which use ODEs, it was applied a dynamic logic (which integrates
first-order features) proposed by A. Platzer – Differential Dynamic Logic (see
[8]) – to formally reason about them. Some initial work can be found in [6].
We believe that is possible to obtain a similar results in discrete models and, in
particular, in boolean networks.
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