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Abstract Carlitz characterized the number fields K with class number ≤2 by the
equality of the lengths of all the factorizations of every integer of K into irreducible
elements. Analogously, we study the links between the order of the Pólya group
Po(K) of a number field K and the factorizations into irreducible elements of some
rational numbers. Our main results concern quadratic fields where we prove some
equivalences between, on the one hand, |Po(K)| = 1 and uniqueness of factoriza-
tions, on the other hand, |Po(K)| = 2 and uniqueness of lengths of factorizations.
We also show how analogous results may be formulated in the case of function fields.

1 Introduction

Let K be a number field. Denote its ring of integers by OK and its class group by
C l(K). If the group C l(K) is trivial it means that OK is a principal ideal domain. As
OK is a Dedekind domain, to be a principal ideal domain is equivalent to be a unique
factorization domain. From this point of view, Carlitz [4] proved in a very short paper
the following result which says that, to weaken the hypothesis by allowing C l(K) to
have not one but two elements is equivalent to weaken the factorization property in
OK in the following way:

Theorem 1 (Carlitz) The class number of a number field K is ≤2 if and only if, for
every integer x of K, all the factorizations of x into irreducible elements of OK have
the same length.

We are interested here in a subgroup of C l(K) called the Pólya group of K . Let
us recall its definition.
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Notation. If an integer q is the norm of at least one maximal ideal of OK , we denote
by Πq(K) the ideal product of all maximal ideals of OK with norm q

Πq(K) =
∏

m∈Max(OK )
NK/Q(m)=q

m. (1)

Definition 1 [3, Sect. II.3] The Pólya group of K is the subgroup Po(K) of the
class group C l(K) of K generated by the classes of all the ideals Πq(K) defined by
Formula (1).

The Pólya group could also be defined as the subgroup of the class group generated
by the classes of Bhargava’s factorial ideals (which are defined in [2]).

The idea for this article comes from a remark by Jesse Elliott: the hypothesis
Card(C l(K)) ≤ 2 corresponds to an interesting property, it could also be the case
for the similar hypothesis Card(Po(K)) ≤ 2. Noticing that the Pólya group of K is
trivial, if and only if, for every n ∈ N, the OK -module

Intn(OK) = {f ∈ Int(OK) | deg(f ) ≤ n}

is free [15, 16], Elliott [7] suggests the following conjecture:

Conjecture. For every number field K , if Card(Po(K)) ≤ 2, then

limN→+∞
1

N
Card{n ≤ N | Intn(OK) is free} ≥ 1

2
.

For our part, always with the assumption Card(Po(K)) ≤ 2, returning to the
spirit of the result of Carlitz, we consider the factorizations of rational integers into
irreducible elements of OK , because there are natural links between the rational
integers and the ideals Πq(K) whose classes generate Po(K). We will see that we
have to exclude the prime numbers which are decomposed in the extension K/Q.

Recall that a prime number p is said to be decomposed in the number fieldK if there
are at least two prime ideals of the ring of integers OK lying over p. Consequently,
the prime p is undecomposed in K if and only if pOK is a primary ideal of OK , that
is, is a power of a maximal ideal of OK .

In Sect. 2, we prove that |Po(K)| = 1 (resp., |Po(K)| ≤ 2) implies the unique-
ness of the factorization (resp., of the length of the factorizations) into irreducible
elements of OK of all products of undecomposed primes numbers (Theorem 2). In
Sect. 3, we study the obstructions for the converses of the previous assertions. In
Sect. 4, we obtain characterizations in the particular case of Galois number fields
of odd prime degree. In Sect. 5, we obtain equivalences for quadratic number fields
(Theorems 3 and 4). Finally, in the last section, we end with some analogous results
in the function fields case.
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2 The Hypothesis Card(Po(K)) ≤ 2

In this section, we describe consequences of the hypothesis Card(Po(K)) ≤ 2. We
consider rational integersmwhich are product of primes which are themselves unde-
composed in the extension K/Q and the factorizations of these rational integers m
into irreducible elements of OK .

Theorem 2 Let K be a number field. We denote its ring of integers by OK and
its Pólya group by Po(K) . Let m be any rational integer which is a product of
undecomposed primes.

1. If |Po(K)| = 1, then the factorization of m into irreducible elements of OK is
unique.

2. If |Po(K)| ≤ 2, then all the factorizations of m into irreducible elements of OK

have the same length.

Let us be precise: in ‘a product of primes’ the primes are not necessarily distinct,
and ‘the uniqueness of a factorization’ in OK is always up to units of OK and up to
the order of the elements in the product.

Proof Note first that, if the prime p is undecomposed in the extension K/Q and if p
denotes the unique prime ideal of OK lying over p, then

pOK = pe , [OK/p : Fp] = f where ef = [K : Q] , and p = Πpf (K).

Now, let
m = ph11 . . . phkk

where, for i = 1, . . . , k, the prime pi lies under a unique maximal ideal pi ofOK . Let

piOK = peii with ei ≥ 1.

Then,
mOK = ph1e11 · · · phkekk . (2)

By hypothesis on m, the ideals pi are the ideals Πpfi (K).

1- Assume that |Po(K)| = 1 (in this case, K is called a Pólya field [20]). Then, the
ideals pi = Πpfi (K) are principal and pi = πiOK where πi is an irreducible element
of OK . Consequently, piOK = π

ei
i OK , that is, pi = uiπ

ei
i where ui is a unit in OK .

Finally,
m = uπh1e1

1 · · · πhkek
k where u ∈ O×

K .

If π is an irreducible element of OK which divides m, then

πOK =
∏

j∈J
p

γj
j =

∏

j∈J
π

γj
j OK where J ⊆ {1, . . . , k} and 1 ≤ γj ≤ hjej.
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The irreducibility of π implies the existence of some index j ∈ {1, . . . , k} such that
πOK = pj = πjOK , that is, such that π and πj are associated. One may easily con-
clude by iteration that the factorization of m is unique.

2- Assume that |Po(K)| ≤ 2. Then, for each i, either the ideal pi is principal, or the
ideal p2i is principal. Let π be an irreducible of OK which divides m and consider
the factorization of the ideal πOK in a product of maximal ideals of OK . If in this
factorization there is an ideal pi which is principal, then necessarily πOK = pi.
Otherwise, there are at least two maximal ideals (not necessarily distinct) pi and pj
which are not principal and the hypothesis on Po(K) implies that pipj is principal,
and hence, necessarily πOK = pipj.

Finally, the number of irreducible elements which appear in the factorization of
m may be computed in the following way: if ν denotes the number of principal
ideals pi which appear in the right hand side of Eq. (2) taking into account their
multiplicity and if μ denotes the number of nonprincipal ideals pi still taking into
account their multiplicity, then the number of irreducible elements in a factorization
of m is necessarily ν + 1

2μ, which is a fixed integer for a given m.

The following examples show that we cannot admit decomposed primes in The-
orem 2, neither when |Po(K)| = 1, nor when |Po(K)| ≤ 2.

Example 1 Let K = Q(
√−31). We know that |Po(K))| = 1 (see for instance [3,

Corollary II.4.5]). On the other hand, 5OK = pq where p and q are not principal
(there are no integers of OK with norm 5). Consequently, 5 is irreducible in OK and
the order of the classes of p and q is 3 (the class number of K is 3). In other words,
p3 = πOK and q3 = π ′OK where π and π ′ are irreducible. Finally, we have

53OK = ππ ′OK

with 3 irreducible elements on the left side and 2 on the right side.

Example 2 Even in the cyclotomic case, one has to exclude the decomposed primes.
For instance, letK = Q(ζ39)where ζ39 = e2iπ/39. Then,Po(K) is trivial as for every
cyclotomic number field [20, Proposition 2.6]. Let us consider the factorization of
13 in OK : eK/Q(13) = 12 and fK/Q(13) = 1 since 13 ≡ 1 (mod 3), and hence,

13OK = (qq′)12.

Weshownow that the ideals q and q′ are not principal by considering the containments
Q ⊂ Q(

√−39) ⊂ K . For instance, if q were a principal ideal, then the ideal

NK/Q(
√−39)(q) = (q ∩ OQ(

√−39))
fK/Q(

√−39)(q) = q ∩ OQ(
√−39),

which is the prime ideal of OQ(
√−39) lying over 13, would be principal, but it is not.

On the other hand, hK = 2, and hence, q2 = πOK , q′2 = π ′OK , qq′ = σOK , and
π, π ′, σ are irreducible elements of OK . The equality (qq′)2 = q2q′2 leads to two
distinct factorizations σ 2OK = ππ ′OK .
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3 Toward Reciprocal Assertions

Note that the uniqueness of the factorization (resp., the uniqueness of the length
of the factorizations) of the products of undecomposed primes is equivalent to the
uniqueness of the factorization (resp., the length of the factorizations) of the products
of undecomposed primes which are (at least partially) ramified.

Indeed, an undecomposed prime pwhich is not ramified is totally inert, and hence,
pOK is a prime ideal, which means that p is not only an irreducible element of OK ,
but it is a prime element of OK . Consequently, if such an element p appears in some
factorization of an integer m, necessarily it appears in all the factorizations of m.

3.1 Counterexamples

The converse of both implications in Theorem 2 are false as shown by the following
examples of quadratic fields.

Example 3 The field K = Q(
√−5) is an example of a non-Pólya field whereas the

factorizations are unique. The ramified primes are 2 and 5. Let 2OK = p2 and 5OK =
q2. Then, q = √−5OK while p is not principal. Consequently, on the one hand 2 is
irreducible inOK , on the other handPo(K) is not trivial. Let us prove the uniqueness
of the factorization of every product m = p1 . . . pk of undecomposed primes. As
previously said, we may assume for our proof that all the pi’s are ramified, that is,
that the product is of the form m = 2a5b. Clearly, m admits the unique factorization
2a(

√−5)2b.

Example 4 The field K = Q(
√−21) is an example where |Po(K)| = 4 while the

factorizations have the same length. The ramified primes are 2, 3, and 7. Let

2OK = p2 , 3OK = q2 and 7OK = r2. (3)

The ideals p, q, and r are not principal. Consequently, 2, 3, and 7 are irreducible
elements of OK . Since the field K is not real, we know with Hilbert [12] that the
relations between the classes of p, q, and r are all given by relations (3) and by

q r = √−21OK . (4)

The Pólya group of K which is generated by the classes of p, q, and r is then of
order 4. Let us prove that all the factorizations of every product m = p1 . . . pk of
undecomposed primes have the same length. We still assume that all the pi’s are
ramified, and hence, that m = 2a3b7c. Then, one has

mOK = 2a3b7cOK = p2aq2br2c.
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The only irreducibles which can divide m are 2, 3, 7 and
√−21, and hence, the

factorizations of m into irreducible elements are of the form m = u 2α 3β 7γ
√−21

δ

where u ∈ O×
K , α = a, 2β + δ = 2b and 2γ + δ = 2c. Consequently, α + β + γ +

δ = a + b + c and the lengths of all the factorizations of m are equal.

These examples show that the hypotheses |Po(K)| = 1 and |Po(K)| ≤ 2 are
too strong.

3.2 Nontrivial Relations inPO(K)

The following notation will be used in the sequel.

Notation. Denote by p1, . . . , pt the prime numbers which are undecomposed and
ramified in the extension K/Q, and by p1, . . . , pt the corresponding prime ideals of
OK lying over these pj. For 1 ≤ j ≤ t, we have pjOK = p

ej
j where ej = eK/Q(pj) and

|OK/pj| = p
fj
j where fj = fK/Q(pj). Clearly, ej × fj = [K : Q].

Since pj = Π
p
fj
j

(K), we are interested in the relations between the classes pj of

the pj’s in Po(K). Finally, denote by εj the order of pj. Clearly, εj divides ej and
p

εj
j = πjOK where πj is an irreducible element ofOK . The relation p

εj
j = 1 inPo(K)

will be said to be trivial and we introduce the following definition:

Definition 2 Wesay that there is a non-trivial relation inPo(K) between the classes
pj if there exists a sequence α1, . . . , αt of integers such that

pα1
1 . . . pαt

t = yOK (5)

for some y ∈ OK , where 0 ≤ αj < εj, and where at least two αj are nonzero. More-
over, we say that such a nontrivial relation is minimal if there is no other nontrivial
relation with exponents βj such that 0 ≤ βj ≤ αj with βj0 < αj0 for at least one j0.

Proposition 1 The factorization into irreducible elements of every product of unde-
composed primes is unique if and only if there is no nontrivial relation between the
classes pj .

Proof Assume that there exists a nontrivial relation of the form (5). Clearly, αj 
= 0
implies that the ideal pj is not principal, that is, εj 
= 1. Let us prove that m =
∏t

j=1 p
n
ej

αj

j where n = [K : Q] admits two distinct factorizations. First,

mOK =
t∏

j=1

p
n
ej

αj

j OK =
t∏

j=1

p
n×αj

j = ynOK .

Using a factorization of y, wewill obtain a factorization form in product of irreducible
elements whose exponents are nonzero multiples of n.
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On the other hand, we have the equality

mOK =
t∏

j=1

(p
εj
j )

n
εj

αj =
⎛

⎝
t∏

j=1

π

n
εj

αj

j

⎞

⎠OK .

Assume, for instance, that α1 
= 0, and hence, that 1 ≤ α1 < ε1. Then, we have
another factorization of m where the exponent of π1 is < n.

Conversely, assume that there is no nontrivial relation. Then, the only irreducible
elements which can dividem = ph11 . . . phtt are the πj’s. Thus, we have the uniqueness
of the factorization of m.

Proposition 2 The lengths of the factorizations into irreducible elements of every
product of undecomposed primes are equal if and only if, for everyminimal nontrivial
relation of the form (5), we have

t∑

j=1

αj

εj
= 1. (6)

Proof Assume that there exists a nontrivial relation of the form (5) and consider such
a minimal relation. Then, pα1

1 pα2
2 . . . pαt

t = yOK and the minimality of the relation
implies the irreducibility of y. With the notation of the previous proof, we have

mOK = ynOK =
⎛

⎝
t∏

j=1

π

n
εj

αj

j

⎞

⎠OK .

The uniqueness of the length of the factorizations implies equality (6).
Conversely, assume that every minimal nontrivial relation of the form (5) satisfies

equality (6). Let us consider these relations

p
α1,k

1 p
α2,k

2 . . . p
αt,k
t = σkOK (1 ≤ k ≤ s)

where the elements σk are irreducible inOK . Letm = ph11 . . . phtt . The only irreducible
elements which can divide m are the πj’s (1 ≤ j ≤ t) and the σk’s (1 ≤ k ≤ s). From

mOK =
t∏

j=1

p
βj

j =
t∏

j=1

π
γj
j ×

s∏

k=1

σ
δk
k OK ,

we deduce:

βj = hjej = εjγj +
s∑

k=1

αj,kδk (1 ≤ j ≤ t).
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Thus,

t∑

j=1

βj

εj
=

t∑

j=1

hj
ej
εj

=
t∑

j=1

γj +
s∑

k=1

⎛

⎝
t∑

j=1

αj,k

εj

⎞

⎠ δk =
t∑

j=1

γj +
s∑

k=1

δk

which shows that the number of irreducible elements in the factorization, that is,∑
j γj +

∑
k δk is a constant equal to

∑
j hj

ej
εj
which depends only on m.

3.3 Factorizations in Monoids

While our aimwas to emphasize on the groupPo(K) and, in the spirit of Carlitz’ the-
orem, to find links with factorizations of rational integers, the previous propositions
show that we have the uniqueness of factorizations or of the lengths of the factor-
izations only by considering relations between the classes of the ramified primes
which are not decomposed. As the classes of ramified primes which are decomposed
may take part to the group Po(K), we understand that the sufficient conditions
|Po(K)| = 1 or |Po(K)| ≤ 2 may be not necessary for the uniqueness.

Let us consider for a while the question of the uniqueness from the point of view
of the factorization theory in commutative monoids (see [8]). We said that the Pólya
group is generated by the classes of the ideals Πq(K) (given by formula (1)). Let us
consider the idealsΠq(K) themselves, they generate a free submonoid of the monoid
of nonzero ideals of OK , and the undecomposed ramified primes p1, . . . , pt (which
are some particular ideals Πq(K)) generate a smaller free submonoid F :

F = {pβ1
1 · · · pβt

t | β1, . . . , βt ∈ N}.

Now we introduce the following submonoid of the monoid O∗
K = OK \ {0} :

H = {α ∈ O∗
K | αOK ∈ F}

As H is divisor-closed [∀α ∈ H ∀β ∈ OK (β|α ⇒ β ∈ H)], the factorization of an
element α ∈ H into irreducible elements of OK is the same as the factorization into
irreducible elements of H. Recall that the monoid H is said to be factorial if the
factorization of every element of H into irreducible elements of H is unique up to
the units. Then, we may formulate a stronger version of Proposition 1

Proposition 3 The monoid H is factorial if and only if there is no nontrivial relation
between the classes pj .

The fact that the condition is necessary follows from Proposition 1, while the
proof of the fact that the condition is sufficient is similar to those given in the proof
of Proposition 1. We can made analogous remarks with respect to Proposition 2.



About Number Fields with Pólya Group of Order ≤2 31

Recall that the monoid H is said to be half-factorial if the factorizations of every
element of H into irreducible elements have the same length.

Proposition 4 The monoid H is half-factorial if and only if relation (6) is satisfied
by every minimal nontrivial relation of the form (5).

Proof LetG0 = {p1, . . . , pt} ⊆ C l(K) and letB(G0)be the blockmonoid ofG0, that
is, the free abelian monoid formed by the sums β1q1 + · · · + βrqr (where q1, . . . , qr
denote the distinct elements ofG0) such that q1

β1 · · · qrβr = 1. Clearly, the canonical
homomorphism of monoids H → B(G0) is surjective; in fact it is a transfer homo-
morphism. Thus, H is half-factorial if and only if B(G0) is half-factorial and, by
Zacks-Skula theorem, B(G0) is half-factorial if and only if every irreducible block
inB(G0) has cross-number 1 (see [8, Proposition 6.7.3]), this is just relation (6).

Putting together Propositions 1 and 3 on the one hand, and Propositions 2 and 4
on the other hand, we have:

Corollary 1 Let K be a number field. The following assertions are equivalent:

(i) For every rational integer m which is not a multiple a prime number decom-
posed in OK , the factorization (resp., the lengths of the factorizations) of m into
irreducible elements of OK is unique (resp., are equal).

(ii) For every algebraic integer α of OK not contained in a prime ideal of K lying
over a decomposed prime number, the factorization (resp., the lengths of the
factorizations) of α into irreducible elements of OK is unique (resp., are equal).

Proof In fact, this corollary is obvious. Let H0 denote the submonoid of H formed
by the rational integers which are product of undecomposed primes. The corollary
says that H is factorial (resp., half-factorial) if and only if H0 is factorial (resp., half-
factorial). This is a clear consequence of the fact that H0 ⊂ H and, for each α ∈ H,
α[K :Q] is in H0.

3.4 Tame Ramification

Back to classical algebraic number theory, we consider now a case where there does
exist a nontrivial relation. Noticing that in both examples of Sect. 3.1, the prime 2
is ramified with ramification index 2, we may try to exclude this case by assuming
that ramifications are tame, that is, no ramified prime divides one of its ramification
indices. With such an hypothesis and assuming moreover that the extension K/Q is
Galois, we know that the different δK of K is equal to

δK =
∏

p∈Max(OK )

peK/Q(p)−1 =
w∏

j=1

Π
ej−1
j =

w∏

j=1

pj ×
w∏

j=1

Π−1
j (7)
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where p1, . . . , pw denotes the ramified primes in the extensionK/Q andΠ1, . . . ,Πw

the corresponding ideals Πq(K), that is the products of the maximal ideals of OK

lying over pj. As a consequence, we have

Proposition 5 Let K be a Galois number field with tame ramifications. The ideal∏w
j=1 Πj is principal if and only if the different δK is principal. This is the case, in

particular, either if the Z-algebra OK is monogenic, or if the exponent ofPo(K) is
≤2.

Proof The fact that
∏w

j=1 Πj is principal if and only if δK is principal is an obvious
consequence of (7). Assume first that the Z-algebra OK is monogenic, that is, that
OK is of the form Z[α] for some α ∈ OK . Then, the ideal δK is principal since
δK = f ′(α)OK where f denotes the minimal polynomial of α over Q.

Assume now that the exponent ofPo(K) is ≤2. We know that the class of δK in
the class group C l(K) is a square (see [19, Chap. XIII, Theorem 13]). As, by (7), the
class of δk belongs toPo(K), we may conclude.

In order to be able to obtain links between the equivalences given byPropositions 1
and 2 and conditions on the Pólya group, we have to avoid the ramified primes which
are decomposed. Thus, we restrict our study to Galois number fields K of prime
degree.

4 Galois Number Fields of Prime Degree

From now on, we assume that K is a Galois number field of prime degree l. Then,
every prime p is either totally ramified, or totally inert, or totally decomposed. Con-
sequently, if p is ramified, pOK = pl andΠp(K) = p is maximal; if p is decomposed,
pOK = p1 . . . pl = Πp(K) and Πp(K) is principal; and if p is inert, pOK = p, and
Πpl (K) is both maximal and principal. As we do not want to consider decomposed
primes p, we only have to consider ideals Πq(K) which are maximal. Moreover, if
p is inert, p is a prime element of OK , thus it cannot lead to distinct factorizations of
products of undecomposed primes. Thus, we have

Lemma 1 If K is a Galois number field of prime degree l, the following assertions
are equivalent:

(i) For every rational integer which is a product of undecomposed primes, the fac-
torization (resp., the length of the factorizations) into irreducible elements of
OK is unique.

(ii) For every rational integer whose radical divides the discriminant dK of K, the
factorization (resp., the length of the factorizations) into irreducible elements of
OK is unique.

About the Pólya group, we have the following:
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Proposition 6 Let K be a Galois number field of prime degree l. Then,

|Po(K)| =
{
2t−2 if l = 2 ,K ⊂ R ,NK/Q(O×

K ) = {+1}
lt−1 otherwise

(8)

where t denotes the number of ramified primes.

Proof Recall that, in a cyclic extension K/Q of degree n where there are t ramified
primes p1, . . . , pt with ramification indices e1, . . . , et , the order of the Pólya group
satisfies

|Po(K)| =
∏t

i=1 ei
n

or

∏t
i=1 ei
2n

(cf. [5, Corollary 3.11])

and the second equality occurs exactly when K is real and NK/Q(O×
K ) = {+1}. Here,

we may conclude since the ramification indices are necessarily equal to l.

We denote by p1, . . . , pt the primes which are ramified in the extension K/Q and
by p1, . . . , pt the corresponding prime ideals ofOK . Clearly, pjOK = plj for 1 ≤ j ≤ t.
The following morphism is well defined and surjective:

ϕ : (k1, . . . , kt) ∈ (Z/lZ)t �→ p
k1
1 · · · pktt ∈ Po(K). (9)

If l 
= 2, it follows from Proposition 6 that Ker(ϕ) is of order l. Consequently,

Corollary 2 If K is a Galois number field of odd prime degree l, then one and only
one of the following assertions holds: either the kernel of the morphism ϕ defined in
(9) is generated by one class pj , that is, pj is principal (and this is the only ramified
prime ideal which is principal), or Ker(ϕ) is generated by a nontrivial relation.

Proposition 7 Let K be a Galois number field of odd prime degree l. The following
assertions are equivalent:

(i) Every rational integer which is a product of undecomposed primes admits a
unique factorization into irreducible elements of OK .

(ii) There is a ramified prime ideal of OK which is principal.

Proof By Proposition 1, assertion (i) is equivalent to the nonexistence of nontrivial
relation between the pj and, by Corollary 2, this nonexistence is equivalent to the
existence of a principal ramified prime ideal.

Corollary 3 Let K be a Galois number field of odd prime degree l. Assume that the
prime l is not ramified in K and that the different δK is a principal ideal. Then, the
following assertions are equivalent:

(i) Every product of undecomposed primes admits a unique factorization into irre-
ducible elements of OK .

(ii) |Po(K)| = 1.
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Here the fact that |Po(K)| = 1 is equivalent to the fact that there is only one
ramified prime.

Proof (i) ⇒ (ii): The ramifications are tame since we assume that l is not ramified,
then, by Proposition 5, the ideal p1 . . . pt is principal. By Proposition 1, if (i) holds,
this relation is trivial, that is, all the ramified prime ideals pj are principal. (In fact,
by Corollary 2, there is exactly one ramified prime.)

(ii) ⇒ (i) follows from Theorem 2.

Example 5 Following [6, Theorem 6.4.6], the field K = Q(θ) where θ is a root of
the equation

X3 − 57X + 19 = 0

is a cyclic cubic field where the ramified primes are 3 and 19. Clearly, θ is a generator
of the prime ideal p lying over 19. This is an example where we have the uniqueness
of the factorizations (cf. Proposition 7) whileK is not a Pólya field (cf. Proposition 6).

Proposition 8 Let K be a Galois number field of odd prime degree l. The following
assertions are equivalent:

(i) All the factorizations into irreducible elements ofOK of a rational integer which
is a product of undecomposed primes have the same lengths.

(ii) Either there is a ramified prime ideal which is principal, or there is a nontrivial
relation between the classes of ramified prime ideals of the form p

α1
1 . . . p

αt
t = 1

with αj ≥ 0 where
∑t

j=1 αj = l.

Proof By Corollary 2, either there is a ramified prime ideal which is principal, or
there is a nontrivial relation between the classes of ramified prime ideals. In this
latter case, by Proposition 2, if (i) holds, such a minimal nontrivial relation satisfies∑

j
αj

εj
= 1, which means here

∑
j αj = l.

Conversely, assume that (ii) holds. Taking into account Proposition 7, we may
assume that the ideals pi are not principal, and hence, that there is a relation
pα1
1 . . . pαt

t = wOK with αj ≥ 0 where
∑t

j=1 αj = l. Clearly, this nontrivial relation is
minimal and, by Proposition 2, (i) holds.

Corollary 4 Let K be a Galois number field of odd prime degree l. Assume that l
is not ramified and that the different δK is principal. The following assertions are
equivalent:

(i) All the factorizations into irreducible elements ofOK of a rational integer which
is a product of undecomposed primes have the same lengths.

(ii) |Po(K)| = 1 or ll−1 or, equivalently, there are 1 or l ramified primes in K.

Proof This is an obvious consequence of Propositions 5 and 8.

Unfortunately, following [11], there are very few number fieldsK of prime degree
l such that OK is monogenic. In particular, the only cyclic number fields of prime
degree l ≥ 5 are real subfields of cyclotomic fields. More precisely, if l is a Sophie



About Number Fields with Pólya Group of Order ≤2 35

Germain’s prime, that is, if l and 2l + 1 are primes, the real subfield Q(cos 2π
2l+1 )

of the cyclotomic field Q(e
2iπ
2l+1 ) is of degree l and its ring of integers Z[cos 2π

2l+1 ] is
monogenic. We know that in this case |Po(Q(cos 2π

2l+1 ))| = 1 [20, Proposition 2.6].

On the other hand, there exist infinite families of cyclic cubic number fields whose
ring of integers is monogenic (see [10]) and, of course, the ring of integers of every
quadratic number field is monogenic.

5 Quadratic Number Fields

Let K = Q(
√
d) be a quadratic field where d is a square-free integer. What about the

converses of the implications in Theorem 2?

Let p1, . . . , ps be the prime numbers which divide d. The ramified primes are
p1, . . . , ps, and 2 in the case where d ≡ 3 (mod 4). From d = ±p1 . . . ps, we have√
dOK = p1 . . . ps, which is a nontrivial relation between the pj’s if and only if there

are nonprincipal prime ideals dividing dOK . This leads us to introduce the following
notation:

Notation. In this section,Po∗(K) denotes the subgroup ofPo(K) generated by the
classes of the pj’s which divide d.

Theorem 3 Let K = Q(
√
d) be a quadratic field where d is a square-free integer.

The following assertions are equivalent:

(i) Every product of undecomposed primes admits a unique factorization into irre-
ducible elements of OK .

(ii) OK has at most one ramified prime ideal which is not principal.
(iii) |Po∗(K)| = 1.

Proof Assume that (i) holds. Then, by Proposition 1, there is no nontrivial rela-
tion. Consequently, the relation

√
dOK = p1 . . . ps implies that all the prime ideals

p1, . . . , ps are principal, that is, |Po∗(K)| = 1. Thus, (i) implies (iii).
Clearly, (iii) implies (ii) since all the ramified primes divide d except when d ≡ 3

(mod 4) : 2 is ramified and the corresponding prime ideal may be nonprincipal.
Finally, assume that (ii)holds. Then, all the prime idealspj dividingd are principal:

pj = πjOK where πj is a prime element in OK . If d ≡ 3 (mod 4), 2 is ramified and
the corresponding prime ideal may be nonprincipal, in this case 2 is an irreducible
element of OK . Thus, if m denotes an integer whose radical divides the discriminant
dK of K (dK = d or 4d), then all the irreducible elements ofOK dividingm are prime
elements except in the case where 2 is irreducible. Consequently, (i) holds.

Note that the fieldQ(
√−5) studied in Counterexample 3 corresponds to this case

where 2 is irreducible in OK .

Theorem 4 Let K = Q(
√
d) be a quadratic field where d is a square-free integer.

The following assertions are equivalent:
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(i) All the factorizations into irreducible elements of OK of any product of unde-
composed primes have the same lengths.

(ii) Either |Po∗(K)| ≤ 2, or |Po∗(K)| = 4 and there is a product of two ramified
prime ideals which is a principal ideal.

Proof We first recall Formula (8) in the case of quadratic number fields:

|Po(K)| =
{
2t−2 if K ⊂ R and NK/Q(O×

K ) = {+1}
2t−1 otherwise

where t denotes the number of ramified primes (see [12, Sect. 73] or [3, Sect. II.4]).
Recall also that we have

d = ±p1 . . . ps with piOK = p2i .

First case: |Po(K)| = 2t−1

The relations between the classes of the pi’s are all deduced from (see also [12,
Sect. 73]):

p2i = piOK (1 ≤ i ≤ t) and p1 . . . ps = √
dOK .

ByProposition 2, assertion (i)means that either there is no nontrivial relation between
the pj’s, that is s ≤ 1, or every minimal nontrivial relation satisfies (6), that is here,
s = 2 (since αj = 1 and εj = 2). Finally, (i) ⇔ s ≤ 2 ⇔ |Po∗(K)| ≤ 2.

Second case: |Po(K)| = 2t−2

There is another fundamental relation between the classes of the pj’s (1 ≤ j ≤ t).

The first subcase. The prime 2 does not divide d, but is ramified and the prime
ideal lying over 2 is principal. Then, the relations between the pj (1 ≤ j ≤ s) are as
in the first case and, analogously, we may conclude (i) ⇔ s ≤ 2 ⇔ |Po∗(K)| ≤ 2.

The other subcase. The other relation is then between the prime ideals which
divide d. Thus, by renumbering the pi’s, it may be written (see [12, Sect. 73]):

αOK = p1 . . . pr with 1 ≤ r ≤ s

2
.

Then, the relations between the classes of the pi’s are all deduced from

p2i = piOK (1 ≤ i ≤ t) , αOK = p1 . . . pr and βOK = pr+1 . . . ps.

By Proposition 2, assertion (i) means that either there is no nontrivial relation or
each minimal nontrivial relation is a product of two prime ideals, equivalently, either
s ≤ 3, or s = 4 and r = 2. These latter assertions mean that either |Po∗(K)| = 2,
or |Po∗(K)| = 4 and there is a product of two prime ideals which is principal.

Finally, we have proved that (i) implies (ii). To be sure that (ii) implies (i), it
remains to see that the assertion ‘|Po∗(K)| = 4 and there is a product of two primes
which is principal’ may only occur in the second subcase. Indeed, if we are not in the
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second subcase, |Po∗(K)| ≤ 4 implies s ≤ 3. If s = 3, the fact that there is a product
of two prime ideals which is principal implies that the third prime ideal dividing d is
principal, which itself implies that |Po∗(K)| ≤ 2. Finally, s ≤ 2 and |Po∗(K)| ≤ 2.

Note that, for the field Q(
√−21) studied in Example 4, we have |Po∗(K)| = 2

while |Po(K)| = 4. The following example shows that wemay have |Po∗(K)| = 4
with a product of two prime ideals which is principal, while |Po(K)| = 8.

Example 6 Let K = Q(
√
3 × 7 × 17 × 79). Since 28203 ≡ 3 (mod 4), one has

OK = Z[√28203]. The groupPo∗(K) is generated by the classes of idealsP3,P7,

P17 andP79 wherePp denotes the prime ideal of OK above the prime p. As ±3 and
±79 are not quadratic residues modulo 17, the ideals P3 and P79 are not principal.
The equality 1682 − 28203 × 12 = 21 implies thatP3P7 = (168 + √

28203)OK is
principal. From the equality

√
28203OK = P3P7P17P79, one deduces thatP17P79

is principal. Finally,P3P17 is not principal because the equality x2 − 28203y2 = 51
is impossible (modulo 4), while the equality x2 − 28203y2 = −51 is impossible
(modulo 7). Then we may conclude that

Po∗(K) = {OK ,P3,P17,P3P17}

is of order 4. Moreover, since −1 is not a square modulo 3, the norm of the funda-
mental unit of K is 1 and, as 2 is ramified, Formula (8) gives |Po(K)| = 8.

6 A Few Words About the Function Fields Case

Let q be a power of a prime p and K/Fq(T) be a finite extension of function fields.
Denote the integral closure of Fq[T ] in K by by OK . Analogously to Definition 1,
one defines the Pólya group of OK

Definition 3 The Pólya group of OK is the subgroup Po(OK) of the class group
C l(OK) of OK generated by the classes of the ideals Πqr (OK) defined by

Πqr (OK) =
∏

m∈Max(OK )
N(m)=qr

m.

The following proposition shows that the naive function field analog of Theorem 2
does not hold.

Proposition 9 Assume that q is odd and let β ∈ Fq \ F2
q.

(1) Let K := Fq(T)[y] where y2 = βT(T + 1). Then |Po(OK)| = 1, while
T(T + 1) admits two distinct factorizations into irreducible elements of OK .

(2) Let K := Fq(T)[y] where y2 = βT(T + 1)Q(T) and Q(T) ∈ Fq[T ] is a monic
irreducible polynomial of degree 2. Then |Po(OK)| = 2, while T(T + 1)Q(T)

admits two factorizations into irreducible elements of OK with different lengths.
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Proof In both cases, the extension K/Fq(T) is an imaginary extension. As a conse-
quence O×

K = F
∗
q (see [17]).

(1) The fact that |Po(K)| = 1 is a consequence of [1, Theorem 12]. It follows
from [18, Proposition VI.3.1] that the ramified prime ideals of OK are the ideals pT
and pT+1 lying over T and T + 1 respectively. Thus, yOK = pTpT+1. The ideal pT
is not principal. Indeed, assume that pT = αOK with α = A + yB (A,B ∈ Fq[T ]).
This implies that A2 − βT(T + 1)B2 = vT where v ∈ F

∗
q, that is A

2 = T(v + β(T +
1)B2). Obviously, B = 0 is impossible. The comparison of the leading coefficients
of both sides leads to a contradiction since β /∈ F

2
q. In the same way, one could show

that pT+1 is not principal. Consequently y, T and T + 1 are irreducible elements of
OK , and y2 = βT(T + 1) are two different factorizations into irreducible elements
of OK .
(2) Analogously, the ramified prime ideals of OK are the ideals pT , pT+1, and pQ
lying over T , T + 1, and Q(T) respectively. Clearly, Po(OK) is generated by the
classes of pTpT+1 and of pQ. From the equalities

T(T + 1)OK = p2Tp
2
T+1, yOK = (pTpT+1)pQ, QOK = p2Q,

one deduces thatPo(OK ) = {[OK ], [pQ]}. As in (1), one proves that the six ideals pT ,
pT+1, pQ, pTpT+1, pTpQ, and pT+1pQ are not principal. Consequently, T + 1,T ,Q,

and y are irreducible elements of OK . The equality

y2 = βT(T + 1)Q(T)

corresponds to two factorizations with different lengths.

Nevertheless, the introduction of Sect. 3 and the whole Sect. 3.2 are still true when
we replace ‘prime number’ by ‘irreducible polynomial’ (in Fq[T ]). In particular,
Propositions 1 and 2 still hold for any extension K/Fq(T). But, to go further and in
order to retrieve in the function fields case other results analogous to those of the
zero characteristic, we are led to consider the group of classes of ambiguous ideals
instead of the Pólya group.

Definition 4 Let K/Fq(T) be a Galois extension with Galois group G.

1. An ideal I of OK is said to be ambiguous if for every σ ∈ G, σ(I) = I .
2. A classC ofC l(OK) is said to be ambiguous if, for every σ ∈ G, one has σ(C ) =

C , that is, for every ideal I ∈ C , one has σ(I) ∈ C .
3. A classC ofC l(OK) is said to be strongly ambiguous ifC contains an ambiguous

ideal I .

One denotes by A mstr(K) the subgroup of C l(OK) formed by the strongly
ambiguous classes.

Remark 1 1. Clearly, a strongly ambiguous class is an ambiguous class, but the
converse does not hold: [21, Theorem 2] shows that in the class group of the
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field F3(T)[y] with y2 = −(T 2 + 1)(T 2 + 2T + 2) there exists a class that is
ambiguous but not strongly ambiguous.

2. When the extension of function fields K/Fq(T) is Galois, the group A mstr(K)

is generated by the classes of the following ideals:

∏

p∈Max(OK )
p|P

p (P ∈ Fq[T ] ramified in K).

Then, we have the containments

Po(K) ⊆ A mstr(K) ⊆ C l(K)

which may be strict, while for a Galois number field K we have

Po(K) = A mstr(K) ⊆ C l(K).

Thus, from now on, we assume that the extension of function fields K/Fq(T) is
GaloiswithGalois groupG. Since the proofs follow closely those of the characteristic
zero case, we will sketch them only. Here is an analog of Theorem 2.

Theorem 5 Let K/Fq(T) be aGalois extension of function fields. Let m be a product
of irreducible polynomials of Fq[T ] which are undecomposed in the extension.

(1) If |A mstr(K)| = 1, the factorization of m into irreducible elements of OK is
unique.

(2) If |A mstr(K)| ≤ 2, all the factorizations of m into irreducible elements of OK

have the same length.

Proof IfP ∈ Fq[T ] is an irreducible polynomialwhich is undecomposed in the exten-
sion, then there exists only one maximal ideal p of OK lying over P, and hence, for
every σ ∈ Gal(K/Fq(T)), one has pσ = p. The proof ends as in Theorem 2.

Now, we prove the converses of Theorem 5 for quadratic separable extensions
K/Fq(T). In this case, the group of classes of ambiguous ideals is generated by the
ramified primes of OK . Recall that a quadratic extension of function fields K/Fq(T)

is said to be real if the infinite place
(
1
T

)
of Fq(T) is split in K . Recall also

Proposition 10 Let K/Fq(T) be a quadratic extension. If t denotes the number of
ramified primes in the extension, then one has

|A mstr(K)| =

⎧
⎪⎪⎨

⎪⎪⎩

q odd

{
2t−2 if K real and NK/Fq(T)(O

×
K ) = F

∗2
q

2t−1 otherwise
(see [21])

q even

{
2t−1 if K real
2t otherwise.

(see [13])
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Theorem 3 about the uniqueness of the factorizations translates into the two fol-
lowing theorems.

Theorem 6 If q is odd and if K/Fq(T) is a quadratic extension, then the following
assertions are equivalent:
(i) Every product of irreducible polynomials of Fq|T ] which are undecomposed in

the extension admits a unique factorization into irreducible elements of OK .
(ii) All the ramified prime ideals of OK are principal.
(iii) |A mstr(K)| = 1.

Proof One can writeK := Fq(T)[y]with y2 = D(T)whereD(T) ∈ Fq[T ] is square-
free. Assume that D owns t ≥ 2 primes divisors P1, . . . ,Pt in Fq[T ]. The following
equality holds: √

DOK = p1 · · · pt, (10)

where each pi ∈ Max(OK) dividesPi. Analog of Proposition 1 proves that (i) implies
(ii). Clearly, (ii) ⇔ (iii), and (iii) ⇒ (i) follows from Theorem 5.

Theorem 7 If q is even and K/Fq(T) is a quadratic separable extension, then the
following assertions are equivalent:

(i) Every product of irreducible polynomials of Fq|T ] which are undecomposed in
the extension admits a unique factorization into irreducible elements of OK .

(ii) Denoting by t the number of ramified primes, either |A mstr(K)| = 2t, or
|A mstr(K)| = 2t−1 and OK has a principal ramified prime ideal.

Proof ByProposition 10, the equality |A mstr(K)| = 2t is obviously equivalent to the
nonexistence of trivial relations inOK . On the other hand, the equality |A mstr(K)| =
2t−1 holds if and only if there exists a nontrivial relation inOK or one ramified prime
ideal of OK is principal.

Remark 2 Both cases may occur
(1)ThefieldF2(T)[y]with y2 + y = T 3+T 2+1

T(T+1) is an imaginary functionfield (see [13]).
The ramified irreducible polynomials of F2[T ] are T and T + 1 (see [9, Chap. III]).
Clearly,

A mstr(K) = {1, [pT ], [pT+1], [pTpT+1]},

where pT and pT+1 are the primes ideals of OK above T and T + 1.
(2) The fieldF2(T)[y]with y2 + (T + 1)2y = T(T + 1) is a real function field. There
is a ramified prime ideal inOK , the ideal lying overT + 1.MoreoverC l(OK) is trivial
(see [14]).

The uniqueness of the length of the factorizations is characterized by the following
theorems:
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Theorem 8 If q is odd and K/Fq(T) is a quadratic extension, the following asser-
tions are equivalent:

(i) All the factorizations into irreducible elements of OK of any product of unde-
composed primes of Fq[T ] have the same lengths.

(ii) Either |A mstr(K)| ≤ 2,or |A mstr(K)| = 4and there is a product of two ramified
prime ideals which is a principal ideal.

Proof Write K = Fq(T)[y] with y2 = D(T) where D ∈ Fq[T ] is squarefree with
prime factorization D = P1 · · ·Pt . Adapting the proof of Theorem 4, Proposition 2,
and Equality (10) lead to the result.

Theorem 9 If q is even and K/Fq(T) is a quadratic separable extension, the fol-
lowing assertions are equivalent:

(i) All the factorizations into irreducible elements of OK of any product of unde-
composed primes of Fq[T ] have the same lengths.

(ii) Denoting by t the number of ramified primes ideals of OK , either |A mstr(K)| =
2t, or |A mstr(K)| = 2t−1 and there is a principal ramified prime ideal of OK or
a product of two ramified prime ideals of OK which is a principal ideal.

Proof By Theorem 7, one can assume that |A mstr(K)| = 2t−1 and there is no ram-
ified principal prime ideal of OK . Since all the orders of the classes in A mstr(K)

of the ramified prime ideals are equal to 2, there is a relation between the ramified
prime ideals pi (1 ≤ i ≤ t) of OK which can be written as

t∏

i=1

[pi]αi = 1 (αi ∈ {0, 1}),

with at least two nonzero αi’s. By Proposition 4, if we consider such a minimal
nontrivial relation, assertion (i) holds if and only if there are exactly two nonzero
αi’s.

Remark 3 Here is an example where |A mstr(K)| = 2t−1 and there is a product of
two ramified prime ideals which is a principal ideal. Let K := F2(T)[y] with y2 +
y = 1

T(T+1) (K is an elliptic field following [9]). The ramified prime ideals of OK

are the primes ideals pT and pT+1 above T and T + 1, and they are not principal.
Indeed, assume (for instance) that pT is principal. Obviously σ(pT ) = pT+1, where
σ is the automorphism of K defined by σ(y) = y and σ(T) = T + 1. Hence pT+1

is also principal and A mstr(K) = {1}. This is a contradiction. Moreover, we have
y−1OK = pTpT+1.
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42 D. Adam and J.-L. Chabert

References

1. D. Adam, Pólya and Newtonian function fields. Math. Manuscr. 126(2), 231–246 (2008)
2. M. Bhargava, Generalized factorials and fixed divisors over subsets of a Dedekind domain. J.

Number Theory 72, 67–75 (1998)
3. P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials, vol. 48, American Mathematical Soci-

ety Surveys and Monographs (American Mathematical Society, Providence, 1997)
4. L. Carlitz, A characterization of algebraic number fields with class number two. Proc. Am.

Math. Soc. 11, 391–392 (1960)
5. J.-L. Chabert, Factorial groups and Pólya groups in Galoisian extensions of Q, Commutative

Ring Theory and Applications, vol. 231, Lecture Notes in Pure and Applied Mathematics
(Marcel Dekker, New York, 2003), pp. 77–86

6. H. Cohen, A Course in Computational Algebraic Number Theory (Springer, New York, 1993)
7. J. Elliott, The probability that Intn(D) is free, Commutative Algebra, Recent Advances in

Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions (Springer, New
York, 2014), pp. 133–151

8. A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations, Algebraic, Combinatorial and
Analytic theory (Chapman & Hall, Boca-Raton, 2006)

9. D. Goldschmidt,Algebraic Functions and Projective Curves, vol. 215, Graduate Texts inMath-
ematics (Springer, New York, 2002)

10. M.-N. Gras, Sur les corps cubiques cycliques dont l’anneau des entiers est monogène. C. R.
Acad. Sci. Paris Sér. A 278, 59–62 (1974)

11. M.-N. Gras, Non monogénéité de l’anneau des entiers des extensions cycliques de Q de degré
premier l ≥ 5. J. Number Theory 23, 347–353 (1986)

12. D. Hilbert, Die Theorie der algebraischen Zahlkörper. Jahresbericht der Deutschen
Mathematiker-Vereinigung 4(1894–95), 175–546 (1897)

13. S. Hu, Y. Li, The genus fields of Artin-Schreier extensions. Finite Fields Appl. 16(4), 255–264
(2010)

14. D. Lebrigand, Real quadratic extensions of the rational function field in characteristic two,
arithmetic, geometry and coding theory (AGCT 2003), Séminaires et Congrès, vol. 11 (2005),
pp. 143–169

15. A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpern. J. reine angew.Math.
149, 117–124 (1919)

16. G. Pólya, Über ganzwertige Polynome in algebraischen Zahlkörpern. J. reine angew. Math.
149, 97–116 (1919)

17. M. Rosen, Number Theory in Function Fields, vol. 210, Graduate Texts in Mathematics
(Springer, New York, 2002)

18. H. Stichtenoth, Algebraic Function Fields and Codes, Universitext (Springer, NewYork, 1993)
19. A. Weil, Basic Number Theory (Springer, New York, 1967)
20. H. Zantema, Integer valued polynomials over a number field. Manuscr. Math. 40, 155–203

(1982)
21. X. Zhang, Ambiguous classes and 2-rank of class group of quadratic function fields. J. China

Univ. Sci. Technol. 17(4), 425–431 (1987)



http://www.springer.com/978-3-319-38853-3


	About Number Fields with Pólya Group of Order leq2
	1 Introduction
	2 The Hypothesis Card(mathcalPo(K)) leq2
	3 Toward Reciprocal Assertions
	3.1 Counterexamples
	3.2 Nontrivial Relations in mathcalPO(K)
	3.3 Factorizations in Monoids
	3.4 Tame Ramification

	4 Galois Number Fields of Prime Degree
	5 Quadratic Number Fields
	6 A Few Words About the Function Fields Case
	References


