About Number Fields with Polya Group
of Order <2

David Adam and Jean-Luc Chabert

Abstract Carlitz characterized the number fields K with class number <2 by the
equality of the lengths of all the factorizations of every integer of K into irreducible
elements. Analogously, we study the links between the order of the Pélya group
ZP0(K) of anumber field K and the factorizations into irreducible elements of some
rational numbers. Our main results concern quadratic fields where we prove some
equivalences between, on the one hand, | 2?0(K)| = 1 and uniqueness of factoriza-
tions, on the other hand, | %0(K)| = 2 and uniqueness of lengths of factorizations.
We also show how analogous results may be formulated in the case of function fields.

1 Introduction

Let K be a number field. Denote its ring of integers by Ok and its class group by
E1(K). If the group €I(K) is trivial it means that O is a principal ideal domain. As
Oy is a Dedekind domain, to be a principal ideal domain is equivalent to be a unique
factorization domain. From this point of view, Carlitz [4] proved in a very short paper
the following result which says that, to weaken the hypothesis by allowing €I(K) to
have not one but two elements is equivalent to weaken the factorization property in
O in the following way:

Theorem 1 (Carlitz) The class number of a number field K is <2 if and only if, for
every integer x of K, all the factorizations of x into irreducible elements of Og have
the same length.

We are interested here in a subgroup of €I(K) called the Pélya group of K. Let
us recall its definition.
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Notation. If an integer ¢ is the norm of at least one maximal ideal of Ok, we denote
by I1,(K) the ideal product of all maximal ideals of Ok with norm ¢

m,(K) = H m. (1)
meMax(Ox)
Nk/g(m)=¢q

Definition 1 [3, Sect.I1.3] The Pédlya group of K is the subgroup Zo(K) of the
class group ¢I(K) of K generated by the classes of all the ideals I1,(K) defined by
Formula (1).

The Pdlya group could also be defined as the subgroup of the class group generated
by the classes of Bhargava’s factorial ideals (which are defined in [2]).

The idea for this article comes from a remark by Jesse Elliott: the hypothesis
Card(%l(K)) < 2 corresponds to an interesting property, it could also be the case
for the similar hypothesis Card(Z?0(K)) < 2. Noticing that the Pélya group of K is
trivial, if and only if, for every n € N, the Ox-module

Int,(Ok) = {f € Int(O) | deg(f) < n}

is free [15, 16], Elliott [7] suggests the following conjecture:
Conjecture. For every number field K, if Card(Zo(K)) < 2, then

— 1 1
limy— 400 ﬁCard{n < N | Int,(Ok) is free} > 7

For our part, always with the assumption Card(£?o(K)) < 2, returning to the
spirit of the result of Carlitz, we consider the factorizations of rational integers into
irreducible elements of Ok, because there are natural links between the rational
integers and the ideals I1,(K) whose classes generate Zo(K). We will see that we
have to exclude the prime numbers which are decomposed in the extension K/Q.

Recall that a prime number p is said to be decomposed in the number field K if there
are at least two prime ideals of the ring of integers Ok lying over p. Consequently,
the prime p is undecomposed in K if and only if pOy is a primary ideal of O, that
is, is a power of a maximal ideal of 0.

In Sect.2, we prove that | Zo(K)| = 1 (resp., | Z0o(K)| < 2) implies the unique-
ness of the factorization (resp., of the length of the factorizations) into irreducible
elements of Ok of all products of undecomposed primes numbers (Theorem 2). In
Sect.3, we study the obstructions for the converses of the previous assertions. In
Sect.4, we obtain characterizations in the particular case of Galois number fields
of odd prime degree. In Sect. 5, we obtain equivalences for quadratic number fields
(Theorems 3 and 4). Finally, in the last section, we end with some analogous results
in the function fields case.
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2 The Hypothesis Card(Zo(K)) <2

In this section, we describe consequences of the hypothesis Card(Zo(K)) < 2. We
consider rational integers m which are product of primes which are themselves unde-
composed in the extension K /Q and the factorizations of these rational integers m
into irreducible elements of 0.

Theorem 2 Let K be a number field. We denote its ring of integers by Oy and
its Polya group by Po(K) . Let m be any rational integer which is a product of
undecomposed primes.

1. If |Z20(K)| = 1, then the factorization of m into irreducible elements of Ok is
unique.

2. If|Z0(K)| < 2, then all the factorizations of m into irreducible elements of Ok
have the same length.

Let us be precise: in ‘a product of primes’ the primes are not necessarily distinct,
and ‘the uniqueness of a factorization’ in O is always up to units of Ok and up to
the order of the elements in the product.

Proof Note first that, if the prime p is undecomposed in the extension K /Q and if p
denotes the unique prime ideal of Ok lying over p, then

pOx =y°, [Ok/p:F,] =f where ef =[K : Q], and p = I,y (K).

Now, let
- hy
m=p'...p,
where, fori = 1, ..., k, the prime p; lies under a unique maximal ideal p; of Ok. Let
piﬁK = p? with ¢; > 1.
Then,

hie

mOx = pj'" - @
By hypothesis on m, the ideals p; are the ideals IT,; (K).
1- Assume that | Z?0o(K)| = 1 (in this case, K is called a Pdlya field [20]). Then, the
ideals p; = IT,: (K) are principal and p; = 7; 0k where 7; is an irreducible element
of Ok. Consequently, p;0x = t{" Ok, that is, p; = u;mr{" where u; is a unit in 0.
Finally,

h he
m=um"" -7, " where u € Oy .

If 7 is an irreducible element of O which divides m, then

w0k =[]p] =[]0k whereJ C{1.....k}and 1 < y; < ye;.
jeJ jeJ
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The irreducibility of = implies the existence of some index j € {1, ..., k} such that
w0k = p; = mj0k, that is, such that 7 and 7; are associated. One may easily con-
clude by iteration that the factorization of m is unique.

2- Assume that | Z0(K)| < 2. Then, for each i, either the ideal p; is principal, or the
ideal p? is principal. Let 7 be an irreducible of Ok which divides m and consider
the factorization of the ideal w Ok in a product of maximal ideals of 0. If in this
factorization there is an ideal p; which is principal, then necessarily 7w Og = p;.
Otherwise, there are at least two maximal ideals (not necessarily distinct) p; and p;
which are not principal and the hypothesis on Z0(K) implies that p;p; is principal,
and hence, necessarily = Ox = p;p;.

Finally, the number of irreducible elements which appear in the factorization of
m may be computed in the following way: if v denotes the number of principal
ideals p; which appear in the right hand side of Eq.(2) taking into account their
multiplicity and if u denotes the number of nonprincipal ideals p; still taking into
account their multiplicity, then the number of irreducible elements in a factorization
of m is necessarily v + % W, which is a fixed integer for a given m.

The following examples show that we cannot admit decomposed primes in The-
orem 2, neither when | Z0o(K)| = 1, nor when | Z0o(K)| < 2.

Example 1 Let K = Q(+/—31). We know that | Z0(K))| = 1 (see for instance [3,
Corollary 11.4.5]). On the other hand, 50k = pq where p and g are not principal
(there are no integers of Ok with norm 5). Consequently, 5 is irreducible in Ok and
the order of the classes of p and q is 3 (the class number of K is 3). In other words,
p® = 10k and q° = 7/ Ok where  and 7’ are irreducible. Finally, we have

SSﬁK = ﬂﬂ/ﬁK

with 3 irreducible elements on the left side and 2 on the right side.

Example 2 Even in the cyclotomic case, one has to exclude the decomposed primes.
For instance, let K = Q(¢39) where {39 = €27/ Then, Z0(K) is trivial as for every
cyclotomic number field [20, Proposition 2.6]. Let us consider the factorization of
13in O : ex;(13) = 12 and fx/g(13) = 1 since 13 = 1 (mod 3), and hence,

130 = (q9))"%.

We show now that the ideals q and g’ are not principal by considering the containments
Q c Q(+/—39) C K. For instance, if q were a principal ideal, then the ideal

Ni gm0 (@) = (N Oy =302 = 4.0 Oy =),

which is the prime ideal of 0, /=35, lying over 13, would be principal, but it is not.
On the other hand, hx = 2, and hence, 4> = 70k, q> = n'0k, qq = 0Ok, and
7, m', o are irreducible elements of Ok. The equality (qq')*> = q%q’ leads to two
distinct factorizations 020k = wn’ Ok.
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3 Toward Reciprocal Assertions

Note that the uniqueness of the factorization (resp., the uniqueness of the length
of the factorizations) of the products of undecomposed primes is equivalent to the
uniqueness of the factorization (resp., the length of the factorizations) of the products
of undecomposed primes which are (at least partially) ramified.

Indeed, an undecomposed prime p which is not ramified is totally inert, and hence,
pOx is a prime ideal, which means that p is not only an irreducible element of O,
but it is a prime element of 0. Consequently, if such an element p appears in some
factorization of an integer m, necessarily it appears in all the factorizations of m.

3.1 Counterexamples

The converse of both implications in Theorem 2 are false as shown by the following
examples of quadratic fields.

Example 3 The field K = Q(+/—5) is an example of a non-Pélya field whereas the
factorizations are unique. The ramified primes are 2 and 5. Let 20k = p* and 50k =
q%. Then, q = ~/—50k while p is not principal. Consequently, on the one hand 2 is
irreducible in O, on the other hand Z0(K) is not trivial. Let us prove the uniqueness
of the factorization of every product m = p; ...p; of undecomposed primes. As
previously said, we may assume for our proof that all the p;’s are ramified, that is,
that the product is of the form m = 295”. Clearly, m admits the unique factorization

245

Example 4 The field K = Q(+/—21) is an example where | Z0(K)| = 4 while the
factorizations have the same length. The ramified primes are 2, 3, and 7. Let

20k =p*, 30x = g% and 70k = ¢°. 3)

The ideals p, g, and v are not principal. Consequently, 2, 3, and 7 are irreducible
elements of Ok. Since the field K is not real, we know with Hilbert [12] that the
relations between the classes of p, ¢, and v are all given by relations (3) and by

qt:J—_Zlﬁ[(. (4)

The Pélya group of K which is generated by the classes of p, ¢, and t is then of
order 4. Let us prove that all the factorizations of every product m = p; ...p; of
undecomposed primes have the same length. We still assume that all the p;’s are
ramified, and hence, that m = 293°7¢. Then, one has

mﬁ]( — 2a3b7CﬁK — pZanthC.
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The only irreducibles which can divide m are 2, 3,7 and +/—21, and hence, the
factorizations of m into irreducible elements are of the form m = u 2% 3% 77 / —21(S
where u € Oy, a0 =a,2p + 8 =2band 2y + 8 = 2c. Consequently, o« + 8 + y +
8 = a + b + c and the lengths of all the factorizations of m are equal.

These examples show that the hypotheses | Z0(K)| = 1 and |ZPo(K)| < 2 are
too strong.

3.2 Nontrivial Relations in Z0(K)

The following notation will be used in the sequel.

Notation. Denote by py, ..., p, the prime numbers which are undecomposed and
ramified in the extension K/Q, and by py, ..., p, the corresponding prime ideals of
Ok lying over these p;. For 1 < j < t, we have p; 0 = p;j where e¢; = eg/q(p;) and
| Ok /pj] =p]ff where f; = fx,q0(p;). Clearly, ¢; x fj = [K : Q].

Since p; = HP_Q (K), we are interested in the relations between the classes Ej of
the p;’s in Z0(K). Finally, denote by ¢; the order of p;. Clearly, ¢; divides ¢; and
p;’ = 1,0y where 7; is an irreducible element of 0. The relation E;f = lin Z0o(K)
will be said to be trivial and we introduce the following definition:

Definition 2 We say that there is a non-trivial relation in 2 o(K) between the classes
Ej if there exists a sequence «;, . . ., «; of integers such that

pl e =y0k (5)

for some y € Ok, where 0 < o < ¢;, and where at least two «; are nonzero. More-
over, we say that such a nontrivial relation is minimal if there is no other nontrivial
relation with exponents §; such that 0 < 8; < «; with B;; < «, for at least one jj.

Proposition 1 The factorization into irreducible elements of every product of unde-
composed primes is unique if and only if there is no nontrivial relation between the
classes p;.

Proof Assume that there exists a nontrivial relation of the form (5). Clearly, «; # 0
implies that the ideal p; is not principal, that is, &; # 1. Let us prove that m =

Lo
H;:] pj’ " where n = [K : Q] admits two distinct factorizations. First,

t n t
o i nxao;
m0Ok ZHpjj Ok = p; ' =y"0k.
j=1 j=1
Using a factorization of y, we will obtain a factorization for m in product of irreducible
elements whose exponents are nonzero multiples of 7.
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On the other hand, we have the equality

t t n
g\~ 5%
mOk = I I(Pj])”’ ' = | |JT;’ Ok.
j=1

j=1

Assume, for instance, that oy # 0, and hence, that 1 < «; < €. Then, we have
another factorization of m where the exponent of 7| is < n.

Conversely, assume that there is no nontrivial relation. Then, the only irreducible
elements which can divide m = pll“ e pf’ are the m;’s. Thus, we have the uniqueness
of the factorization of m.

Proposition 2 The lengths of the factorizations into irreducible elements of every
product of undecomposed primes are equal if and only if, for every minimal nontrivial
relation of the form (5), we have

S, (6)

Proof Assume that there exists a nontrivial relation of the form (5) and consider such
a minimal relation. Then, p{'p5”...p;" = yOk and the minimality of the relation
implies the irreducibility of y. With the notation of the previous proof, we have

t n
5 Y
mﬁ[{ =ynﬁ1( = Hﬂjj ﬁ[(.
j=1

The uniqueness of the length of the factorizations implies equality (6).
Conversely, assume that every minimal nontrivial relation of the form (5) satisfies
equality (6). Let us consider these relations

Ak 02k

pipyt o =00k (1 <k <)

where the elements oy, are irreducible in 0. Letm = p}l“ e pf’. The only irreducible
elements which can divide m are the 7r;’s (1 < j < t) and the o3’s (1 < k < ). From

t t S
: 5
mOy = I ij/: | IJTJ.V’X | |O’kk Ok,
j=1 j=1 k=1

we deduce:

B =hiej =gy + D s (1<j<0.
k=1
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Thus,

t t S ! ! .
NEDWEESWEDNDIE S LEDNEDIW
- j=1 k=1 \j=1 j=1 k=1

j=1 j=1 7 j= =

which shows that the number of irreducible elements in the factorization, that is,
. e .
2. Vi + 22x 8 is a constant equal to 3, hj - which depends only on m.

3.3 Factorizations in Monoids

While our aim was to emphasize on the group Z?0(K) and, in the spirit of Carlitz’ the-
orem, to find links with factorizations of rational integers, the previous propositions
show that we have the uniqueness of factorizations or of the lengths of the factor-
izations only by considering relations between the classes of the ramified primes
which are not decomposed. As the classes of ramified primes which are decomposed
may take part to the group Fo(K), we understand that the sufficient conditions
| Z0(K)| = 1or|Zo(K)| <2 may be not necessary for the uniqueness.

Let us consider for a while the question of the uniqueness from the point of view
of the factorization theory in commutative monoids (see [8]). We said that the Pélya
group is generated by the classes of the ideals I1,(K) (given by formula (1)). Let us
consider the ideals IT,(K) themselves, they generate a free submonoid of the monoid
of nonzero ideals of O, and the undecomposed ramified primes py, ..., p, (which
are some particular ideals IT,(K)) generate a smaller free submonoid F':

F={p]"pl | Bi,.... B €N

Now we introduce the following submonoid of the monoid &3 = Ok \ {0}:
H={x e 0§ |alk € F}

As H is divisor-closed [Va € H VB € Ok (Bla = B € H)], the factorization of an
element « € H into irreducible elements of O is the same as the factorization into
irreducible elements of H. Recall that the monoid H is said to be factorial if the
factorization of every element of H into irreducible elements of H is unique up to
the units. Then, we may formulate a stronger version of Proposition 1

Proposition 3 The monoid H is factorial if and only if there is no nontrivial relation
between the classes p;.

The fact that the condition is necessary follows from Proposition 1, while the
proof of the fact that the condition is sufficient is similar to those given in the proof
of Proposition 1. We can made analogous remarks with respect to Proposition 2.
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Recall that the monoid H is said to be half-factorial if the factorizations of every
element of H into irreducible elements have the same length.

Proposition 4 The monoid H is half-factorial if and only if relation (6) is satisfied
by every minimal nontrivial relation of the form (5).

Proof LetGo = {py, ..., p,;} € FI(K)andlet Z(Gy) be the block monoid of Gy, that
is, the free abelian monoid formed by the sums 8,q; + - - - + 8,9, (whereq,, ..., q,
denote the distinct elements of Go) such that q;”' - - - §,”" = 1. Clearly, the canonical
homomorphism of monoids H — #(Gy) is surjective; in fact it is a transfer homo-
morphism. Thus, H is half-factorial if and only if Z(Gy) is half-factorial and, by
Zacks-Skula theorem, %(G)) is half-factorial if and only if every irreducible block
in Z(Gy) has cross-number 1 (see [8, Proposition 6.7.3]), this is just relation (6).

Putting together Propositions 1 and 3 on the one hand, and Propositions 2 and 4
on the other hand, we have:

Corollary 1 Let K be a number field. The following assertions are equivalent:

(i) For every rational integer m which is not a multiple a prime number decom-
posed in Ok, the factorization (resp., the lengths of the factorizations) of m into
irreducible elements of Ok is unique (resp., are equal).

(ii) For every algebraic integer a of Ok not contained in a prime ideal of K lying
over a decomposed prime number; the factorization (resp., the lengths of the
factorizations) of « into irreducible elements of O is unique (resp., are equal).

Proof In fact, this corollary is obvious. Let Hy denote the submonoid of H formed
by the rational integers which are product of undecomposed primes. The corollary
says that H is factorial (resp., half-factorial) if and only if Hj is factorial (resp., half-
factorial). This is a clear consequence of the fact that Hy C H and, for each @ € H,
o' XQ is in H,.

3.4 Tame Ramification

Back to classical algebraic number theory, we consider now a case where there does
exist a nontrivial relation. Noticing that in both examples of Sect. 3.1, the prime 2
is ramified with ramification index 2, we may try to exclude this case by assuming
that ramifications are tame, that is, no ramified prime divides one of its ramification
indices. With such an hypothesis and assuming moreover that the extension K /Q is
Galois, we know that the different §x of K is equal to

w w w
— i—1 —
= I o <[ =Tl <T15" 0
j=1 j=1 j=1

peMax(ﬁK)
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where py, ..., p,, denotes the ramified primes in the extension K /Q and 7, .. ., I,
the corresponding ideals I1,(K), that is the products of the maximal ideals of Ok
lying over p;. As a consequence, we have

Proposition 5 Let K be a Galois number field with tame ramifications. The ideal
H;Vzl II; is principal if and only if the different 8k is principal. This is the case, in
particular, either if the Z-algebra Ok is monogenic, or if the exponent of Zo(K) is
<2

Proof The fact that []/_, I7; is principal if and only if 8 is principal is an obvious
consequence of (7). Assume first that the Z-algebra Ok is monogenic, that is, that
Ok is of the form Z[«] for some o € Ok. Then, the ideal 8k is principal since
3k = f'(a) Ok where f denotes the minimal polynomial of « over Q.

Assume now that the exponent of Z0(K) is <2. We know that the class of §g in
the class group €I(K) is a square (see [19, Chap. XIII, Theorem 13]). As, by (7), the
class of §; belongs to Zo(K), we may conclude.

In order to be able to obtain links between the equivalences given by Propositions 1
and 2 and conditions on the Pélya group, we have to avoid the ramified primes which
are decomposed. Thus, we restrict our study to Galois number fields K of prime
degree.

4 Galois Number Fields of Prime Degree

From now on, we assume that K is a Galois number field of prime degree /. Then,
every prime p is either totally ramified, or totally inert, or totally decomposed. Con-
sequently, if p is ramified, pOx = p’ and I,(K) = p is maximal; if p is decomposed,
pOx =p1...p, = I1,(K) and I1,(K) is principal; and if p is inert, pOx = p, and
I, (K) is both maximal and principal. As we do not want to consider decomposed
primes p, we only have to consider ideals I1,(K) which are maximal. Moreover, if
p is inert, p is a prime element of O, thus it cannot lead to distinct factorizations of
products of undecomposed primes. Thus, we have

Lemma 1 IfK is a Galois number field of prime degree [, the following assertions
are equivalent:

(i) For every rational integer which is a product of undecomposed primes, the fac-
torization (resp., the length of the factorizations) into irreducible elements of
O is unique.

(ii) For every rational integer whose radical divides the discriminant dx of K, the
factorization (resp., the length of the factorizations) into irreducible elements of
O is unique.

About the Pélya group, we have the following:
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Proposition 6 Let K be a Galois number field of prime degree . Then,

272 if 1=2,K C R, Ng)g(OF) = {+1}
I'=1 otherwise

| Z0(K)| = ®)

where t denotes the number of ramified primes.

Proof Recall that, in a cyclic extension K /Q of degree n where there are r ramified
primes py, ..., p, with ramification indices ey, ..., e, the order of the Pélya group

satisfies . .
| Po(K)| = [Ticy e or [Tioy e
n 2n

(cf. [5, Corollary 3.11])

and the second equality occurs exactly when K is real and N ,q(0f ) = {+1}. Here,
we may conclude since the ramification indices are necessarily equal to /.

We denote by py, ..., p, the primes which are ramified in the extension K /Q and
by p1, ..., p; the corresponding prime ideals of Ok . Clearly, p; O = pj’- forl <j<t.
The following morphism is well defined and surjective:

g:kis.... k) € L)LY — Pi - B € Po(K). 9)

If [ # 2, it follows from Proposition 6 that Ker(¢) is of order /. Consequently,

Corollary 2 If K is a Galois number field of odd prime degree , then one and only
one of the following assertions holds: either the kernel of the morphism ¢ defined in
(9) is generated by one class p;, that is, p; is principal (and this is the only ramified
prime ideal which is principal), or Ker(¢) is generated by a nontrivial relation.

Proposition 7 Let K be a Galois number field of odd prime degree l. The following
assertions are equivalent:

(i) Every rational integer which is a product of undecomposed primes admits a
unique factorization into irreducible elements of Ok.
(ii) There is a ramified prime ideal of Ok which is principal.

Proof By Proposition 1, assertion (7) is equivalent to the nonexistence of nontrivial
relation between the p; and, by Corollary 2, this nonexistence is equivalent to the
existence of a principal ramified prime ideal.

Corollary 3 Let K be a Galois number field of odd prime degree . Assume that the
prime [ is not ramified in K and that the different 8 is a principal ideal. Then, the
following assertions are equivalent:

(i) Every product of undecomposed primes admits a unique factorization into irre-
ducible elements of Ck.

(ii) | Po(K)| = 1.
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Here the fact that | Z20(K)| = 1 is equivalent to the fact that there is only one
ramified prime.

Proof (i) = (ii): The ramifications are tame since we assume that / is not ramified,
then, by Proposition 5, the ideal p; . .. p, is principal. By Proposition 1, if () holds,
this relation is trivial, that is, all the ramified prime ideals p; are principal. (In fact,
by Corollary 2, there is exactly one ramified prime.)

(if) = (i) follows from Theorem 2.

Example 5 Following [6, Theorem 6.4.6], the field K = Q(0) where 6 is a root of
the equation
X3 —57X+19=0

is a cyclic cubic field where the ramified primes are 3 and 19. Clearly, 0 is a generator
of the prime ideal p lying over 19. This is an example where we have the uniqueness
of the factorizations (cf. Proposition 7) while K is not a Pélya field (cf. Proposition 6).

Proposition 8 Ler K be a Galois number field of odd prime degree 1. The following
assertions are equivalent:

(i) All the factorizations into irreducible elements of Uk of a rational integer which
is a product of undecomposed primes have the same lengths.

(ii) Either there is a ramified prime ideal which is principal, or there is a nontrivial
relation between the classes of ramified prime ideals of the formpy' ...p;" =1
with a; > 0 where z]t-zl aj =1

Proof By Corollary 2, either there is a ramified prime ideal which is principal, or
there is a nontrivial relation between the classes of ramified prime ideals. In this
latter case, by Proposition 2, if (i) holds, such a minimal nontrivial relation satisfies
i %’ = 1, which means here > o = I.
Conversely, assume that (ii) holds. Taking into account Proposition 7, we may
assume that the ideals p; are not principal, and hence, that there is a relation
pi' ...y = w0k with; > 0 where >/, o; = [. Clearly, this nontrivial relation is

minimal and, by Proposition 2, (i) holds.

Corollary 4 Let K be a Galois number field of odd prime degree . Assume that |
is not ramified and that the different Sk is principal. The following assertions are
equivalent:

(i) All the factorizations into irreducible elements of Ok of a rational integer which
is a product of undecomposed primes have the same lengths.
(ii) | Po(K)| =1orl'" o equivalently, there are 1 or | ramified primes in K.

Proof This is an obvious consequence of Propositions 5 and 8.

Unfortunately, following [11], there are very few number fields K of prime degree
[ such that Ok is monogenic. In particular, the only cyclic number fields of prime
degree [ > 5 are real subfields of cyclotomic fields. More precisely, if / is a Sophie
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Germain’s prime, that is, if / and 2/ 4 1 are primes, the real subfield Q(cos %)

of the cyclotomic field Q(ezzf%) is of degree / and its ring of integers Z[cos 2?—11] is
monogenic. We know that in this case | Z20o(Q(cos 2%%)N = 1[20, Proposition 2.6].

On the other hand, there exist infinite families of cyclic cubic number fields whose
ring of integers is monogenic (see [10]) and, of course, the ring of integers of every

quadratic number field is monogenic.

5 Quadratic Number Fields

LetK = Q(+v/d) bea quadratic field where d is a square-free integer. What about the
converses of the implications in Theorem 2?

Let py, ..., ps be the prime numbers which divide d. The ramified primes are
D1, ..., Ps, and 2in the case where d = 3 (mod 4). From d = +p; ...p,, we have
VdOx = p, ...p,, which is a nontrivial relation between the p;’s if and only if there
are nonprincipal prime ideals dividing d 0. This leads us to introduce the following
notation:

Notation. In this section, Z0*(K) denotes the subgroup of #o(K) generated by the
classes of the p;’s which divide d.

Theorem 3 Let K = Q(v/d) be a quadratic field where d is a square-free integer:
The following assertions are equivalent:

(i) Every product of undecomposed primes admits a unique factorization into irre-
ducible elements of O.
(ii) Ok has at most one ramified prime ideal which is not principal.

(i) | P0*(K)| = 1.

Proof Assume that (i) holds. Then, by Proposition 1, there is no nontrivial rela-
tion. Consequently, the relation ~/d@x = p; ... p, implies that all the prime ideals
p1, ..., Py are principal, that is, | Z0*(K)| = 1. Thus, (i) implies (iii).

Clearly, (iii) implies (ii) since all the ramified primes divide d except whend = 3
(mod 4) : 2 is ramified and the corresponding prime ideal may be nonprincipal.

Finally, assume that (if) holds. Then, all the prime ideals p; dividing d are principal:
p; = ;O where 7; is a prime element in Ok. If d =3 (mod 4), 2 is ramified and
the corresponding prime ideal may be nonprincipal, in this case 2 is an irreducible
element of Ok. Thus, if m denotes an integer whose radical divides the discriminant
dg of K (dx = d or 4d), then all the irreducible elements of Ok dividing m are prime
elements except in the case where 2 is irreducible. Consequently, (i) holds.

Note that the field Q(+/—5) studied in Counterexample 3 corresponds to this case
where 2 is irreducible in 0.

Theorem 4 Let K = Q(v/d) be a quadratic field where d is a square-free integer:
The following assertions are equivalent:
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(i) All the factorizations into irreducible elements of Oy of any product of unde-
composed primes have the same lengths.

(i) Either |20*(K)| <2, or | Z0*(K)| = 4 and there is a product of two ramified
prime ideals which is a principal ideal.

Proof We first recall Formula (8) in the case of quadratic number fields:

272 if K € Rand Nk (7)) = {+1}

|20 = 1 5i-1 gtherwise

where ¢ denotes the number of ramified primes (see [12, Sect. 73] or [3, Sect.I1.4]).
Recall also that we have

d==p;...ps with p;Og = p,-z.

First case: | Po(K)| = 2'~!
The relations between the classes of the p;’s are all deduced from (see also [12,
Sect.73)):

p?=piOx (1 <i<nandp;...p, = Vd0x.

By Proposition 2, assertion (i) means that either there is no nontrivial relation between

the p;’s, that is s < 1, or every minimal nontrivial relation satisfies (6), that is here,

s =2 (since &; = 1 and ¢; = 2). Finally, (i) & s <2 & |Z0*(K)| < 2.

Second case: | Po(K)| = 2!72

There is another fundamental relation between the classes of the p;’s (1 <j < ?).
The first subcase. The prime 2 does not divide d, but is ramified and the prime

ideal lying over 2 is principal. Then, the relations between the p; (1 < j < s) are as

in the first case and, analogously, we may conclude (i) < s <2 & |Z0*(K)| < 2.
The other subcase. The other relation is then between the prime ideals which

divide d. Thus, by renumbering the p;’s, it may be written (see [12, Sect. 73]):

a0k =p;...p,withl <r <

|«

Then, the relations between the classes of the p;’s are all deduced from

p; =piOx (1 <i<1), aOk =p;...p,and BOk = pri1 ... Ps.

By Proposition 2, assertion (i) means that either there is no nontrivial relation or
each minimal nontrivial relation is a product of two prime ideals, equivalently, either
s <3, ors =4 and r = 2. These latter assertions mean that either | Zo*(K)| = 2,
or | Z0*(K)| = 4 and there is a product of two prime ideals which is principal.
Finally, we have proved that (i) implies (ii). To be sure that (if) implies (i), it
remains to see that the assertion ‘| %?0*(K)| = 4 and there is a product of two primes
which is principal’ may only occur in the second subcase. Indeed, if we are not in the
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second subcase, | Z0*(K)| < 4implies s < 3.If s = 3, the fact that there is a product
of two prime ideals which is principal implies that the third prime ideal dividing d is
principal, which itself implies that | Z0*(K)| < 2.Finally, s < 2 and | Z0*(K)| < 2.

Note that, for the field Q(+/—21) studied in Example 4, we have | Z0*(K)| = 2
while | Z0(K)| = 4. The following example shows that we may have | Z0*(K)| = 4
with a product of two prime ideals which is principal, while | Zo(K)| = 8.

Example 6 Let K = Q(+/3 x 7 x 17 x 79). Since 28203 =3 (mod 4), one has
Ok = Z[+/28203]. The group Z0*(K) is generated by the classes of ideals B3, B,
B17 and P79 where P, denotes the prime ideal of Ok above the prime p. As 3 and
£79 are not quadratic residues modulo 17, the ideals 135 and 379 are not principal.
The equality 168> — 28203 x 12 = 21 implies that B3B7 = (168 + +/28203) O is
principal. From the equality /282030 = B3 B7LB17B79, one deduces that 317879
is principal. Finally, 837 is not principal because the equality x> — 28203y*> = 51
is impossible (modulo 4), while the equality x> — 28203y? = —51 is impossible
(modulo 7). Then we may conclude that

P0*(K) = {Ok, B3, P17, B3 P17}

is of order 4. Moreover, since —1 is not a square modulo 3, the norm of the funda-
mental unit of K is 1 and, as 2 is ramified, Formula (8) gives | Z0(K)| = 8.

6 A Few Words About the Function Fields Case

Let g be a power of a prime p and K/IF,(T) be a finite extension of function fields.
Denote the integral closure of F,[T'] in K by by Ok. Analogously to Definition 1,
one defines the Pélya group of Ok

Definition 3 The Pélya group of Uk is the subgroup Zo(0k) of the class group
C(Ok) of Uk generated by the classes of the ideals /T, (Uk) defined by

g0 =[] m

meMax(Ok)
N(m)=¢q"

The following proposition shows that the naive function field analog of Theorem 2
does not hold.

Proposition 9 Assume that q is odd and let B € I, \ Fj

(1) Let K:=TF,(T)lyl] where v = BT(T +1). Then |Po(Cx)| =1, while
T(T + 1) admits two distinct factorizations into irreducible elements of Ok.

(2) Let K :=TF,(T)[y] where y? = BT(T + 1DQ(T) and Q(T) € F,[T] is a monic
irreducible polynomial of degree 2. Then | 2o(Ux)| = 2, while T(T + 1)Q(T)
admits two factorizations into irreducible elements of Ok with different lengths.
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Proof In both cases, the extension K /IF,(T') is an imaginary extension. As a conse-
quence Oy = [y (see [17]).

(1) The fact that |Zo(K)| = 1 is a consequence of [1, Theorem 12]. It follows
from [18, Proposition VI1.3.1] that the ramified prime ideals of Ok are the ideals pr
and p7q lying over T and T + 1 respectively. Thus, yOg = prpry1. The ideal pr
is not principal. Indeed, assume that pr = a0 with o« = A +yB (A, B € F,[T)).
This implies that A> — BT(T + 1)B> = v wherev € IFZ, thatisA> = T(v + B(T +
1)B?). Obviously, B = 0 is impossible. The comparison of the leading coefficients
of both sides leads to a contradiction since 8 ¢ ]Fg. In the same way, one could show
that p7.; is not principal. Consequently y, T and T + 1 are irreducible elements of
Ok, and y2 = BT (T + 1) are two different factorizations into irreducible elements
of ﬁ[(.

(2) Analogously, the ramified prime ideals of O are the ideals pr, pr4;, and po
lying over T, T + 1, and Q(T) respectively. Clearly, Z0(0x) is generated by the
classes of prpr41 and of pp. From the equalities

T(T + )0k = pip74,. YOk = (pror+1)po, QO0k = sz,

one deduces that Zo(0k) = {[Ok], [pol}. Asin (1), one proves that the six ideals pr,

PT+1, P, PTPT+1, PrPo. and pry1po are not principal. Consequently, T + 1, T, Q,
and y are irreducible elements of Ok. The equality

y? = BT(T + DHQ(T)

corresponds to two factorizations with different lengths.

Nevertheless, the introduction of Sect. 3 and the whole Sect. 3.2 are still true when
we replace ‘prime number’ by ‘irreducible polynomial’ (in F,[T]). In particular,
Propositions 1 and 2 still hold for any extension K /F,(T). But, to go further and in
order to retrieve in the function fields case other results analogous to those of the
zero characteristic, we are led to consider the group of classes of ambiguous ideals
instead of the Pélya group.

Definition 4 Let K /IF,(T) be a Galois extension with Galois group G.

1. Anideal I of O is said to be ambiguous if for every o € G, o (I) = I.

2. Aclass € of €1(0k) is said to be ambiguous if, for every o € G, one has o (%) =
%, that is, for every ideal I € ¥, onehaso (I) € %

3. Aclass € of €'1(0k) is said to be strongly ambiguous if € contains an ambiguous
ideal 1.

One denotes by @/my,(K) the subgroup of €1(0k) formed by the strongly
ambiguous classes.

Remark 1 1. Clearly, a strongly ambiguous class is an ambiguous class, but the
converse does not hold: [21, Theorem 2] shows that in the class group of the
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field F3(T)[y] with y?> = —(T? 4+ 1)(T? 4+ 2T + 2) there exists a class that is
ambiguous but not strongly ambiguous.

2. When the extension of function fields K/IF,(T) is Galois, the group 27 nig, (K)
is generated by the classes of the following ideals:

H p (P eTF,[T] ramified in K).

peMax(Ok)
plP

Then, we have the containments
Po(K) C Fmy, (K) S CUK)

which may be strict, while for a Galois number field K we have
Po(K) = o/mg(K) € CUK).

Thus, from now on, we assume that the extension of function fields K/IF,(T) is
Galois with Galois group G. Since the proofs follow closely those of the characteristic
zero case, we will sketch them only. Here is an analog of Theorem 2.

Theorem 5 Let K /F,(T) be a Galois extension of function fields. Let m be a product
of irreducible polynomials of F,[T] which are undecomposed in the extension.

(1) If |9 mg,.(K)| = 1, the factorization of m into irreducible elements of Uk is
unique.

Q) If | mgy, (K)| <2, all the factorizations of m into irreducible elements of Ok
have the same length.

Proof If P € IF,[T]is anirreducible polynomial which is undecomposed in the exten-
sion, then there exists only one maximal ideal p of Ok lying over P, and hence, for
every o € Gal(K/F,(T)), one has p° = p. The proof ends as in Theorem 2.

Now, we prove the converses of Theorem 5 for quadratic separable extensions
K /F,(T). In this case, the group of classes of ambiguous ideals is generated by the
ramified primes of J. Recall that a quadratic extension of function fields K /IF,(T)
is said to be real if the infinite place (%) of IF,(T) is split in K. Recall also

Proposition 10 Let K /F,(T) be a quadratic extension. If t denotes the number of
ramified primes in the extension, then one has

212 if K real and NK/IE‘ (T)(ﬁ;é) =[F*2
q q
2=1 otherwise (see [211)
2=V if K real
qEVen ) ot otherwise.

q odd [
|/ my(K)| =
(see [13])
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Theorem 3 about the uniqueness of the factorizations translates into the two fol-
lowing theorems.

Theorem 6 If g is odd and if K /F,(T) is a quadratic extension, then the following
assertions are equivalent:

(i) Every product of irreducible polynomials of ¥ ,|T| which are undecomposed in
the extension admits a unique factorization into irreducible elements of Ok.
(ii) All the ramified prime ideals of Ok are principal.
(iii) |/ ms, (K)| = 1.

Proof One can write K := F,(T)[y] with y* = D(T) where D(T) e IF,[T]is square-
free. Assume that D owns ¢ > 2 primes divisors Py, ..., P, in F,[T]. The following
equality holds:

VDO =p;---py, (10)

where each p; € Max(0k) divides P;. Analog of Proposition 1 proves that (i) implies
(ii). Clearly, (ii) < (iii), and (iii) = (i) follows from Theorem 5.

Theorem 7 If q is even and K /IF,(T) is a quadratic separable extension, then the
following assertions are equivalent:

(i) Every product of irreducible polynomials of F,|T| which are undecomposed in
the extension admits a unique factorization into irreducible elements of Oy.

(ii) Denoting by t the number of ramified primes, either |/mg.(K)| =2', or
| Mg (K)| = 2" and O has a principal ramified prime ideal.

Proof By Proposition 10, the equality |.<7my, (K)| = 2" is obviously equivalent to the
nonexistence of trivial relations in 0. On the other hand, the equality |.«/mg, (K)| =
2'~1 holds if and only if there exists a nontrivial relation in &k or one ramified prime
ideal of O is principal.

Remark 2 Both cases may occur

(1) The field Fo (T)[y] withy? +y = T;?FTTJ:T)I is animaginary function field (see [13]).

The ramified irreducible polynomials of F[T'] are T and T + 1 (see [9, Chap. III]).
Clearly,

g, (K) = {1, [pr], [pra1], [Pror1l),

where pr and pr are the primes ideals of O above T and T + 1.

(2) The field F, (T)[y] with y> + (T + 1)%y = T(T + 1) is areal function field. There
is aramified prime ideal in Ok, the ideal lying over T + 1. Moreover €’[(Ok) is trivial
(see [14]).

The uniqueness of the length of the factorizations is characterized by the following
theorems:
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Theorem 8 If q is odd and K /F,(T) is a quadratic extension, the following asser-
tions are equivalent:

(i) All the factorizations into irreducible elements of Oy of any product of unde-
composed primes of F4[T] have the same lengths.

(ii) Either |/ mgy, (K)| < 2, or |/ mg.(K)| = 4 andthere is a product of two ramified
prime ideals which is a principal ideal.

Proof Write K = F,(T)[y] with y* = D(T) where D € F,[T] is squarefree with
prime factorization D = P; - - - P,. Adapting the proof of Theorem 4, Proposition 2,
and Equality (10) lead to the result.

Theorem 9 If g is even and K /F,(T) is a quadratic separable extension, the fol-
lowing assertions are equivalent:

(i) All the factorizations into irreducible elements of Oy of any product of unde-
composed primes of F4[T] have the same lengths.

(ii) Denoting by t the number of ramified primes ideals of Oy, either |/ mg, (K)| =
2!, or | mg, (K)| = 2'~" and there is a principal ramified prime ideal of Oy or
a product of two ramified prime ideals of Og which is a principal ideal.

Proof By Theorem 7, one can assume that |./my, (K)| = 2/~! and there is no ram-
ified principal prime ideal of 0. Since all the orders of the classes in .&/my, (K)
of the ramified prime ideals are equal to 2, there is a relation between the ramified
prime ideals p; (1 < i < t) of Ok which can be written as

[ =1 (€0, 1,
i=1

with at least two nonzero «;’s. By Proposition 4, if we consider such a minimal
nontrivial relation, assertion (i) holds if and only if there are exactly two nonzero
Ol,"S.

Remark 3 Here is an example where |.&/myg, (K)| = 2t=1 and there is a product of
two ramified prime ideals which is a principal ideal. Let K := F,(T)[y] with y* +
y= ﬁ (K is an elliptic field following [9]). The ramified prime ideals of Ok
are the primes ideals pr and pry; above T and T + 1, and they are not principal.
Indeed, assume (for instance) that pr is principal. Obviously o (p7) = pr41, where
o is the automorphism of K defined by o(y) =y and o(T) = T + 1. Hence pr4
is also principal and «/mg, (K) = {1}. This is a contradiction. Moreover, we have
y 'Ok = prprar.

Acknowledgments The authors want to thank the anonymous referee who suggested to study the
problem in the framework of the theory of factorization in monoids and proposed almost everything
that is contained in Sect.3.3.
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