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Abstract. Huff curves are well known for efficient arithmetics to their
group law. In this paper, we propose two deterministic encodings from
Fq to generalized Huff curves. When q ≡ 3 (mod 4), the first determin-
istic encoding based on Skalpa’s equality saves three field squarings and
five multiplications compared with birational equivalence composed with
Ulas’ encoding. It costs three multiplications less than simplified Ulas
map. When q ≡ 2 (mod 3), the second deterministic encoding based
on calculating cube root costs one field inversion less than Yu’s encod-
ing at the price of three field multiplications and one field squaring. It
costs one field inversion less than Alasha’s encoding at the price of one
multiplication. We estimate the density of images of these encodings
with Chebotarev density theorem. Moreover, based on our deterministic
encodings, we construct two hash functions from messages to generalized
Huff curves indifferentiable from a random oracle.

Keywords: Elliptic curves · Generalized Huff curves · Character sum ·
Hash function · Random oracle

1 Introduction

Plenty of elliptic/hyperelliptic curve cryptosystems require hashing into alge-
braic curves. Many identity-based schemes need messages to be hashed into
algebraic curves, including encryption schemes [1,2], signature schemes [3,4],
signcryption schemes [5,6], and Lindell’s universally-composable scheme [7]. The
simple password exponential key exchange [10] and the password authenticated
key exchange protocols [11] both require a hash algorithm to map the password
into algebraic curves.

Boneh and Franklin [8] proposed an algorithm to map elements of Fq to
rational points on an ordinary elliptic curve. This algorithm is probabilistic and
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fails to return a point at the probability of 1/2k, where k is a predetermined
bound. One disadvantage of this algorithm is that its total number of running
steps depends on the input u ∈ Fq, hence is not constant. Thus the algorithm
may be threaten by timing attacks [9], and the information of the message may
leaked out. Therefore, it is significant to find algorithms hashing into curves in
constant number of operations.

There exist various algorithms encoding elements of Fq into elliptic curves
in deterministic polynomial time. When q ≡ 3 (mod 4), Shallue and Woestijne
proposed an algorithm [12] based on Skalba’s equality [13], using a variation of
Tonelli-Shanks algorithm to calculate square roots efficiently as x1/2 = x(q+1)/4.
Fouque and Tibouchi [14] simplified this encoding by applying brief version of
Ulas’ function [15]. Moreover, they generalized Shallue and Woestijne’s method
so as to hash into some special hyperelliptic curves. When q ≡ 2 (mod 3), Icart
[16] gave an algorithm based on computing cube roots efficiently as x1/3 =
x(2q−1)/3 in Crypto 2009. Both algorithms encode elements of Fq into curves in
short Weierstrass form.

After initial algorithms listed above, hashing into Hessian curves [17] and
Montgomery curves [18] were proposed. Alasha [19] constructed deterministic
encodings into Jacobi quartic curves, Edwards curves and Huff curves. Yu con-
structed a hash function from plaintext to C34− curves by finding a cube root [20].

Huff curves, first introduced by Huff [21] in 1948, were utilized by Joye,
Tibouchi and Vergnaud [22] to develop an elliptic curve model over a finite field
K where char(K) > 2. They also presented the efficient explicit formulas for
adding or doubling points on Huff curves. In 2011, Ciss and Sow [27] introduced
generalized Huff curves: ax(y2 − c) = by(x2 −d) with abcd(a2c− b2d) �= 0, which
contain classical Huff curves [22] as special cases. Wu and Feng [23] indepen-
dently presented another kind of curves they also called generalized Huff curves:
x(ay2 − 1) = y(bx2 − 1), which is in fact an equivalent variation of Ciss and
Sow’s construction. Wu and Feng constructed arithmetic and pairing formu-
las on generalized Huff curves. Generalized Huff curves own an effective group
law and unified addition-doubling formula, hence are resistant to side channel
attacks [24]. Devigne and Joye also analyzed Huff curves over binary fields [28]:
ax(y2 + cy + 1) = by(x2 + cx + 1) with abc(a − b) �= 0.

We propose two deterministic encodings directly from Fq to generalized Huff
curves: brief Shallue-Woestijne-Ulas (SWU) encoding and cube root encoding.
Based on Skalba’s equality [13], brief SWU encoding costs three field squarings
and five multiplications less than birational equivalence from short Weierstrass
curve to generalized Huff curve composed with Ulas’ original encoding [15].
It saves three squarings less than birational equivalence from short Weier-
strass curve to generalized Huff curve composed with simplified Ulas map [26].
To prove our encoding’s B-well-distributed property, we estimate the character
sum of an arbitrary non-trivial character defined over generalized Huff curves
through brief SWU encoding. We also estimate the size of image of brief SWU
encoding. Based on calculating cube root of elements in Fq, cube root encod-
ing saves one field inversion compared with Yu’s encoding function at the price
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of one field multiplication. It saves one field inversion compared with Alasha’s
encoding at the price of one field squaring and three field multiplications. We
estimate the relevant character sum and the size of image of cube root encoding
in similar way.

Based on brief SWU encoding and cube root encoding, we construct two
hash functions efficiently mapping binary messages into generalized Huff curves,
which are both indifferentiable from random oracle.

We do experiments over 192−bit prime field FP192 and 384-bit prime field
FP384 recommended by NIST in the elliptic curve standard [25]. On both fields,
there exist efficient algorithms to calculate the square root and cube root for
each element. On FP192, our cube root encoding fI saves 13.20% running time
compared with Alasha’s encoding function fA, 8.97% with Yu’s encoding fY , on
FP384, fI saves 7.51% compared with fA and 4.40% with fY . Our brief SWU
encoding fS also runs faster than fU , birational equivalence composed with
Ulas’ encoding function and fE , birational equivalence composed with Fouque
and Tibouchi’s brief encoding. Experiments show that fS saves 9.19% compared
with fU and 7.69% with fE on FP192, while it saves 5.92% compared with fU

and 5.17% with fE on FP384.

Organization of the Paper. In Sect. 2, we recall some basics of generalized
Huff curves. In Sect. 3, we introduced brief SWU encoding, prove its B-well-
distributed property by estimating the character sum of this encoding, and cal-
culate the density of image of the encoding. In Sect. 4, we proposed the cube root
encoding, also prove its B-well-distributed property and calculate the density of
image of the encoding by similar methods. In Sect. 5, we construct 2 hash func-
tions indifferentiable from random oracle. In Sect. 6, time complexity of given
algorithms is analysed, and we presented the practical results. Section 7 is the
conclusion of the paper.

2 Generalized Huff Curves

Suppose Fq is a finite field whose characteristic is greater than 2.

Definition 1 ([27]). Generalized Huff curve can be written as:

ax(y2 − c) = by(x2 − d),

where a, b, c, d ∈ Fq with abcd(a2c − b2d) �= 0.

For generalized Huff curve E, if c = γ2, d = δ2 are squares of Fq, let (x, y) =
(δx

′
, γy

′
),wefind thatE isFq-isomorphic to classicalHuffcurve (aδγ2)x

′
(y

′2−1) =
(bδ2γ)y

′
(x

′2 − 1). If c or d is not a square of Fq, there exists no relevant classical
Huff curve which is Fq-isomorphic to E. Therefore, generalized Huff curves contain
classical Huff curves as a proper subset.

Consider the point sets on projective plane (X : Y : Z) ∈ P
2(Fq), generalized

Huff curve can be written as:

aX(Y 2 − cZ2) = bY (X2 − dZ2).
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Generalized Huff curve has 3 infinity points: (1 : 0 : 0), (0 : 1 : 0), (a : b : 0).
We give a picture of generalized curve 3x

(
y2 − 1

)
= −5 y

(
x2 − 2

)
as shown in

Fig. 1 (over R):
According to [23], a generalized Huff curve over Fq contains a copy of Z/2Z×

Z/2Z. In fact, every elliptic curve with 3 points of order 2 is Fq-isomorphism to
a generalized Huff curve. In particular, ax(y2 − c) = by(x2 − d) is Fq-isomorphic
to y2 = x(x + a2c)(x + b2d).

Fig. 1. Generalized Huff Curve 3x
(
y2 − 1

)
= −5 y

(
x2 − 2

)

3 Brief SWU Encoding

For q ≡ 3 (mod 4), Ulas presented an encoding function from Fq to curve y2 =
xn + ax2 + bx [15]. We construct our deterministic encoding function fS by
generalizing his method, mapping u ∈ Fq to (x, y) ∈ E(Fq).

3.1 Algorithm

Input: a, b, c, d and u ∈ Fq.
Output: A point (x, y) ∈ E(Fq).

1. If u = 0 then return (0, 0).

2. X(u) =
a2b2cd

a2c + b2d
(u2 − 1).

3. Calculate g(X(u)) where g(s) = s3 + (a2c + b2d)s2 + a2b2cds.

4. Y (u) = − a2b2cd

a2c + b2d
· (1 − 1

u2
).
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5. Calculate g(Y (u)).
6. If g(X(u)) is a quadratic residue, then (s, t) =

(
X(u),−√

g(X(u))
)

,

else (s, t) =
(
Y (u),

√
g(Y (u))

)
.

7. (x, y) =
(

bd(s + a2c)
t

,
ac(s + b2d)

t

)
.

According to [14], there exists a function U(u) = u3g(Y (u)), such that the
equality

U(u)2 = −g(X(u))g(Y (u)) (1)

holds. Thus either g(X(u)) or g(Y (u)) is a quadratic residue. Choose the one
which has square roots in Fq. Note that q ≡ 3 (mod 4), we can efficiently
calculate the standard square root by

√
a = a(q+1)/4. Hence the mapping

u �→ (s, t) satisfying t2 = g(s) is constructed. Then in step 7, we transfer
(s, t) to (x, y) ∈ E(Fq) by a birational equivalence. It is easy to check that
this birational equivalence is one-to-one and onto when it is extended to a map
between projective curves. The image of (0, 0), (−a2c, 0), (−b2d, 0) are infinite
points (a : b : 0), (0 : 1 : 0), (1 : 0 : 0) respectively while the image of (0 : 1 : 0) is
(0, 0) on E. Denote the map u �→ (s, t) by ρ, and denote the map (s, t) �→ (x, y)
by ψ, we call the composition fS = ψ ◦ ρ brief SWU encoding. Therefore given
(s, t) ∈ Im(ρ), either t =

√
g(s) hence s is the image of Y (u) and has at most

2 preimages, or t = −√
g(s) hence s is the image of X(u) and has still at most

2 preimages. Moreover, it is easy to check that ψ is one-to-one. Therefore for
each finite point on E(Fq), and for the infinite point (a : b : 0), fS has at most
2 preimages, but for the rest 2 infinite points of E(Fq), whose projective coor-
dinates are (1 : 0 : 0) and (0 : 1 : 0), fS has at most 4 preimages since the
corresponding t vanishes.

3.2 Theoretical Analysis of Time Cost

Let S denote field squaring, M denote field multiplication, I field inversion, ES

the square root, EC the cube root, D the determination of the square residue.
Suppose a, b, c, d ∈ Fq. In this paper we make the assumption that S = M ,
I = 10M and ES = EC = E.

The cost of fS can be calculated as follows:

1. Calculating u2 costs S, multiplying u2 − 1 by
a2b2cd

a2c + b2d
costs M , and it is

enough to calculate X(u).
2. To compute Y (u), we need to calculate the inversion of u2 for I + M .
3. When s is known, computing g(s) = s(s2 + (a2c + b2d)s + a2b2cd) = s(s +

a2c)(s + b2d) takes 2M . To make sure that the algorithm be run in constant
time, both g(X(u)) and g(Y (u)) must be calculated and it requires 4M .
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4. In general case, exact one of g(X(u)) and g(Y (u)) is a quadratic residue. We
only need to check once and it takes D, then compute the square root ES of
the quadratic residue. Then values of s and t are known.

5. Finally, we calculate the inverse of t, which requires I. Then multiplying the
inverse by s + a2c and s + b2d costs 2M , then calculating x and y costs 2M ,
hence it requires I + 4M in this step.

Therefore, fS requires ES + 2I + 10M + S + D = E + 31M + D in all.

3.3 B-Well-Distributed Property of Brief SWU Encoding

Definition 2 (Character Sum). Suppose f is an encoding from Fq into a
smooth projective elliptic curve E, and J(Fq) denotes the Jacobian group of E.
Assume that E has an Fq − rational point O, by sending P ∈ E(Fq) to the deg 0
divisor (P )−(O), we can regard f as an encoding to J(Fq). Let χ be an arbitrary
character of J(Fq). We define the character sum

Sf (χ) =
∑

s∈Fq

χ(f(s)).

We say that f is B-well-distributed if for any nontrivial character χ of J(Fq),
the inequality |Sf (χ)| � B

√
q holds [29].

Lemma 1 (Corollary 2, Sect. 3, [29]). If f is a B-well-distributed encoding
into a curve E, then the statistical distance between the distribution defined by
f⊗s on J(Fq) and the uniform distribution is bounded as:

∑

D∈J(Fq)

|Ns(D)
qs

− 1
#J(Fq)

| � Bs

qs/2

√
#J(Fq),

where
f⊗s(u1, . . . , us) = f(u1) + . . . + f(us),

Ns(D) = #{(u1, . . . , us) ∈ (Fq)s|D = f(u1) + . . . + f(us)},

i.e., Ns(D) is the size of preimage of D under f⊗s. In particular, when s is
greater than the genus of E, the distribution defined by f⊗s on J(Fq) is statis-
tically indistinguishable from the uniform distribution. Especially, in the elliptic
curves’ case, gE = 1, let s = gE + 1 = 2, the hash function construction

m �→ f⊗2(h1(m), h2(m))

is indifferentiable from random oracle if h1, h2 are seen as independent random
oracles into Fq(See [29]).

Hence, it is of great importance to estimate the character sum of an encoding
into an elliptic curve, and we will study the case of generalized Huff curves.
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Definition 3 (Artin Character). Let E be a smooth projective elliptic curve,
J(Fq) be Jacobian group of E. Let χ be a character of J(Fq). Its extension is a
multiplicative map χ : DivFq

(E) → C,

χ(n(P )) =

{
χ(P )n, P ∈ S,

0, P �∈ S.

Here P is a point on E(Fq), S is a finite subset of E(Fq), usually denotes the ram-
ification locus of a morphism Y → X. Then we call χ an Artin character of X.

Theorem 1. Let h : X̃ → X be a nonconstant morphism of projective curves,
and χ is an Artin character of X. Suppose that h∗χ is unramified and nontrivial,
ϕ is a nonconstant rational function on X̃. Then

|
∑

P∈X̃(Fq)

χ(h(P ))
(

ϕ(P )
q

)
| � (2g̃ − 2 + 2deg ϕ)

√
q,

where
( ·

q

)
denotes Legendre symbol, and g̃ is the genus of X̃.

Proof. See Theorem 3, [29].

Theorem 2. Let fS be the brief SWU encoding encoding from Fq to generalized
Huff curve E, q ≡ 2 (mod 3). For any nontrivial character χ of E(Fq), the
character sum SfS

(χ) satisfies:

|SfS
(χ)| � 16

√
q + 45.

Proof. Let S = {0}⋃{roots of g(X(u)) = 0}⋃{roots of g(Y (u)) = 0} where
X(·) and Y (·) are defined as in Sect. 3.1. For any u ∈ Fq\S, X(u) and Y (u)
are both well defined and nonzero. Let CX = {(u, s, t) ∈ F

3
q| s = X(u), t =

−√
g(X(u))}, CY = {(u, s, t) ∈ F

3
q| s = Y (u), t =

√
g(Y (u))} be the smooth

projective curves. It is trivial to see there exist one-to-one map PX : u �→ (u, s ◦
ρX(u), t ◦ ρX(u)) from P

1(Fq) to CX(Fq) and PY : u �→ (u, s ◦ ρY (u), t ◦ ρY (u))
from P

1(Fq) to CY (Fq). Let hX and hY be the projective maps on CX and
CY satisfying ρX(u) = hX ◦ PX(u) and ρY (u) = hY ◦ PY (u). Let gX = P−1

X ,
gY = P−1

Y , SX = g−1
X (S

⋃{∞}) = PX(S)
⋃

PX(∞), SY = g−1
Y (S

⋃{∞}) =
PY (S)

⋃
PY (∞).

To estimate SfS
(χ),

SfS
(χ) =

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
Sχ)(u) +

∑

u∈S

(f∗
Sχ)(u)

∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
Sχ)(u)

∣
∣
∣
∣
∣
∣
+ #S,
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we deduce as follows,

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S
(f∗

Sχ)(u)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)\SY(
t(P )

q

)
=1

(h∗
Y ψ∗χ)(P ) +

∑

P∈CX (Fq)\SX(
t(P )

q

)
=−1

(h∗
Xψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�#SY +#SX +

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)(
t(P )
q

)
=+1

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CX (Fq)(
t(P )

q

)
=−1

(h∗
Xψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and

2

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)

( t(P )
q )=+1

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P ) +

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P ) ·

(
t(P )

q

)

−
∑

( t(P )
q )=0

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣

�
∣
∣
∣
∣

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣ +

∣
∣
∣
∣

∑

P∈CY (Fq)

(h∗
Y ψ∗χ)(P ) ·

(
t(P )

q

) ∣
∣
∣
∣

+ #{roots of g(Y (u)) = 0}.

From the covering ψ ◦ hY : CY → E, Y (u) = s ◦ ψ−1(x, y), which implies

T (u) = (a3cy − b3dx)u2 − (acx − bdy)ab = 0.

⇔ u2 =
ab(acx − bdy)
a3cy − b3dx

.

Indeed, ψ ◦ hY is ramified if and only if T (u) has multiple roots, which occurs
when u = 0 or at infinity. Hence by Riemann-Hurwitz formula,

2gCY
− 2 = 0 + 1 + 1 = 2.

Hence curve CY is of genus 2. Similarly, CX is also of genus 2.
Observe that

deg t = [Fq(s, t, u) : Fq(t)] = [Fq(s, t, u) : Fq(s, t)][Fq(s, t) : Fq(t)] = 2 · 3 = 6.
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Further more, by Theorem 3 in [29],
∣
∣
∣
∣
∑

P∈CY (Fq)
(h∗

Y ψ∗χ)(P )
∣
∣
∣
∣ � (2gCY

−2)
√

q =

2
√

q,

∣
∣
∣
∣
∑

P∈CY (Fq)
(h∗

Y ψ∗χ)(P ) ·
(

t(P )
q

) ∣
∣
∣
∣ � (2gCY

− 2 + 2det t)
√

q = 14
√

q, and

g(Y (u)) = 0 is sextic polynomial, we can derive
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CY (Fq)

( t(P )
q )=+1

(h∗
Y ψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

� 8
√

q + 3.

And ∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈CX (Fq)

( t(P )
q )=−1

(h∗
Xψ∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

has the same bound.
Hence |SfS

(x)| � 16
√

q + 6 + #SY + #SX + #S. Note that g(X(u)) = 0
and g(Y (u)) = 0 have common roots, we can deduce that #S � 1 + 6 = 7.
Thus #SX � 2(#S + 1) � 16. By the same reason, #SY � 16. Then |SfS

(x)| �
16

√
q + 45. Thus fS is well-distributed encoding using the Theorem 3 in [29]. �

3.4 Calculating the Density of the Image

In the case of dealing with short Weierstrass curves, Icart conjectured that the

density of image
#Im(f)
#E(Fq)

, is near
5
8
, see [16]. Fouque and Tibouchi proved this

conjecture [14] using Chebotarev density theorem. Now we apply this theorem
onto generalized Huff curves, and give their sizes of images of deterministic
encodings.

Theorem 3 (Chebotarev, [31]). Let K be an extension of Fq(x) of degree n <
∞ and L a Galois extension of K of degree m < ∞. Assume Fq is algebraically
closed in L, and fix some subset ϕ of Gal(L/K) stable under conjugation. Let
s = #ϕ and N(ϕ) the number of places v of K of degree 1, unramified in L,

such that the Artin symbol
(

L/K

v

)
(defined up to conjugation) is in ϕ. Then

|N(ϕ) − s

m
q| � 2s

m
((m + gL) · q1/2 + m(2gK + 1) · q1/4 + gL + nm)

where gK and gL are genera of the function fields K and L.

Theorem 4. Let E be the generalized Huff curve over Fq defined by equation
ax(y2 − c) = by(x2 − d), abcd(a2c − b2d) �= 0, fS is the corresponding brief SWU
encoding function. Then

|#Im(fS) − 1
2
q| � 4q1/2 + 6q1/4 + 27.
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Proof. K is the function field of E which is the quadratic extension of Fq(x),
hence d = 2, and by the property of elliptic curve, gK = 1.

Gal(L/K) = S2, hence m = #S2 = 2. ϕ is the subset of Gal(L/K) consisting
a fixed point, which is just (1)(2), then s = 1.

Let W be the preimage of the map ψ, W (Fq) be the corresponding rational
points on W . By the property that ψ is one-to-one rational map, #Im(fS) =
#Im(ψ−1 ◦f) = IX + IY + I0, where IX = #{(s, t) ∈ W (Fq)|∃u ∈ Fq, s = X(u),
y = −√

g(X(u)) �= 0}, IY = #{(s, t) ∈ W (Fq)|∃u ∈ Fq, s = Y (u), t =√
g(Y (u)) �= 0}, I0 = #{(s, 0) ∈ W (Fq)|g(X(u)) = 0 or g(Y (u)) = 0}. It is

trivial to see that I0 � 3.
Let NX denote the number of rational points on the curve W with an s-

coordinate of the form X(u) and NY denote the number of rational points on
the curve W with an s-coordinate of the form Y (u), we have

2IX � NX � 2IX + I0 � 2IX + 3,

2IY � NY � 2IY + 3.

Hence IX + IY � 1
2
(NX + NY ) � IX + IY + 3.

Since the place v of K of degree 1 correspond to the projective unramified
points on E(Fq), hence |NX − N(ϕ)| � 12 + 3 = 15, where 3 represents the
number of infinite points, 12 represents the number of ramified points. Then we
have

|NX − 1
2
q| � |NX − N(ϕ)| + |N(ϕ) − 1

2
q|

� 15 + (4q1/2 + 6q1/4 + 6) = 4q1/2 + 6q1/4 + 21.

Analogously, |NY − 1
2q| � 4q1/2 + 6q1/4 + 21.

Therefore, we have

|#Im(fS) − 1
2
q| � |#Im(fS) − NX + NY

2
| + |NX + NY

2
− 1

2
q|

� I0 + |IX − NX

2
| + |IY − NY

2
| + (4q1/2 + 6q1/4 + 21)

� 3 +
3
2

+
3
2

+ (4q1/2 + 6q1/4 + 21)

= 4q1/2 + 6q1/4 + 27. �

4 Cube Root Encoding

4.1 Algorithm

When q ≡ 2 (mod 3) is a power of odd prime number, we give our deterministic
construction fI : u �→ (x, y) in the following way:
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Input: a, b, c, d, and u ∈ Fq.
Output: A point (x, y) ∈ E(Fq).

1. t = u2 − a2c − b2d.

2. r =
1
2

(
a2b2cd − 1

3
t2

)
.

3. s =
ut

3
+ 3

√

ur2 − (
ut

3
)3.

4. (x, y) =
(

bd(s + a2cu)
su + r

,
ac(s + b2du)

su + r

)
.

In step 3, since q ≡ 2 (mod 3), we can efficiently calculate the the cube root
by 3

√
a = a(2q−1)/3.

4.2 Theoretical Analysis of Time Cost

Let M , S, I and EC represent the same as in Sect. 3.2. The cost of encoding
function fI can be estimated as follows:

1. Computing u2 costs S. Then t can be calculated.
2. To compute r, we need S.
3. We use S +M to calculate ur2, then use M to get ut and S +M to calculate

(
ut

3
)2, take EC to calculate s.

4. Finally, to calculate the inversion of su+r, we need M +I. Calculating
s

us + r

and
u

us + r
cost 2M . Calculating

a2bcdu

su + r
,

bds

su + r
,

b2acdu

su + r
,

acs

su + r
cost 4M

with pre-computations.

Therefore, fI requires EC + I + 4S + 10M = E + 24M.

4.3 Properties of Cube Root Encodings

Lemma 2. Suppose P (x, y) is a point on generalized Huff curve E, then equa-
tion fI(u) = P has solutions satisfying H(u;x, y) = 0.

When a4c2 + b4d2 �= a2b2cd,

H(u;x, y) = (acx − bdy)u4 + (2b3d2y − 2a3c2x + 4abcd(bx − ay))u2

+ 6abcd(a2c − b2d)u + (acx − bdy)(a4c2 + b4d2 − a2b2cd).

When a4c2 + b4d2 = a2b2cd,

H(u;x, y) = (acx − bdy)u3 + (2b3d2y − 2a3c2x + 4abcd(bx − ay))u

+ 6abcd(a2c − b2d). (2)
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Proof. By the algorithm in Sect. 4.1, we have
{

(xu − bd)s = a2bcdu − xr

(yu − ac)s = ab2cdu − yr
⇒ xu − bd

yu − ac
=

a2bcdu − xr

ab2cdu − yr

⇒(−bdy + acx)u4 + (−2 a3c2x + 4xab2cd − 4 bdya2c + 2 b3d2y)u2

+ 6 abcd(a2c − b2d)u + (−b2da2c + a4c2 + b4d2)(−bdy + acx) = 0. (3)

When a4c2 + b4d2 = a2b2cd, the constant coefficient of this equation is 0. Then
eliminate u, we get (2).

Meanwhile, if H(u;x, y) = 0 and (x, y) ∈ E, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ax(y2 − c) = by(x2 − d)

(acx − bdy)

(

b2da2c −
(
a2c + b2d − u2

)2

3

)

= 2u((xu − bd)ab2cd

−a2bcdt(yu − ac))

which leads to

(xu − bd)ab2cd − (yu − ac)a2bcd = (acx − bdy)(a2b2cd − 1
3
(a2c + b2d − u2)2)/2u,

from this equation and the definition of s, r, we get
⎧
⎪⎨

⎪⎩

x =
bd(s + a2cu)

su + r

y =
ac(s + b2du)

su + r
.

⇒ (x, y) = fI(u).

�

4.4 The Genus of Curve C

Denote F by the algebraic closure of Fq. We consider the graph of fI :

C = {(x, y, u) ∈ E × P
1(F )| fI(u) = (x, y)}

= {(x, y, u) ∈ E × P
1(F )| H(u;x, y) = 0},

which is the subscheme of E × P
1(F ).

Now we calculate the genus of C. In the case a4c2 + b4d2 �= a2b2cd, the
projection g : C → E is a morphism of degree 4, hence the fiber at each point of E
contains 4 points. The branch points of E are points (x, y) ∈ E where H(u;x, y)
has multiple roots, which means the discriminant D = disc(H) vanishes at (x, y).

By substituting x2 = −−axy2 + axc − byd

by
into D, it can be represented as

D = −16a3(P1(y)x + P2(y))
b5y5

⇒ x = −P2(y)
P1(y)

,
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where P1(y) is a polynomial of degree 10, P2(y) is a polynomial of degree 11.

Substituting x = −P2(y)
P1(y)

into E(x, y) = 0, we find that y satisfies y11 ·Q(y) = 0,

where Q(y) is a polynomial of degree 12. Hence there are at most 12 branch
points on E other than (0, 0). It is easy to check that (x, y) = (0, 0) is a branch
point, since the multiplicity of u = ∞ is 3. If H(u;x, y) has triple roots at (x, y),
we have: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E(x, y) = 0
H(u;x, y) = 0
d

du
H(u;x, y) = 0

d2

du2
H(u;x, y) = 0.

(4)

In general cases, when (x, y) �= (0, 0), (4) has no solution, thus all 12 branch
points have ramification index 2. By Riemann-Hurwitz formula, 2gC − 2 � 4 ·
(2 · 1 − 2) + 12 · (2 − 1) + 1 · (3 − 1), we get gC � 8.

In the case that a4c2 + b4d2 = a2b2cd, analogous to previous proof, we can
show that g is a morphism of degree 3, D is a cubic function of u and hence has
3 different roots unless disc(D) = 0. By similar calculation, we find that only
when y satisfies some sextic function, the point (x, y) ∈ E is a branch point.
Hence there are at most 6 branch points on E, with ramification index 2. By
Riemann-Hurwitz formula, 2gC − 2 � 3 · (2 · 1 − 2) + 6 + (3 − 1), we get gC � 5.

Hence we have

Theorem 5. If a4c2 + b4d2 �= a2b2cd, the genus of curve C is at most 8; if
a4c2 + b4d2 = a2b2cd, the genus of curve C is at most 5.

Next, we will utilize this theorem to estimate the upper bound of the char-
acter sum for an arbitrary nontrivial character of E(Fq).

4.5 Estimating Character Sums on the Curve

Theorem 6. Let fI be the cube root encoding from Fq to generalized Huff curve
E, q ≡ 3 (mod 4). For any nontrivial character χ of E(Fq), the character sum
SfI

(χ) satisfies:

|SfI
(χ)| �

{
14

√
q + 3, a4c2 + b4d2 �= a2b2cd,

8
√

q + 3, a4c2 + b4d2 = a2b2cd.
(5)

Proof. Let K = Fq(x, y) be the function field of E. Recall that a point (x, y) ∈ E
is the image of u if and only if

H(u;x, y) = 0.

Then a smooth projective curve C = {(x, y, u)|(x, y) ∈ E,H(u;x, y) = 0} is
introduced, whose function field is the extension L = K[u]/(H). By field inclu-
sions Fq(u) ⊂ L and K ⊂ L we can construct birational maps g : C → P

1(Fq)
and h : C → E. Then g is a bijection and fI(u) = H ◦ g−1(u).
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Since the genus of curve C is at most 8, by Theorem 1, we have

|SfI
(χ) +

∑

P∈C(Fq),u(P )=∞
χ ◦ h(P )| = |

∑

P∈C(Fq)

χ ◦ h(P )| � (2 · 8 − 2)
√

q = 14
√

q.

For (x, y) = (0, 0), function H(u;x, y) = 0 has only one finite solution, hence
there exist 3 infinite solutions of u; for other points on Ē, it can be check that all
solutions of H(u;x, y) = 0 are finite. Therefore |∑P∈C(Fq),u(P )=∞ χ◦h(P )| � 3.

Hence |SfI
(χ)| � 14

√
q + 3.

In the case that a4c2 + b4d2 = a2b2cd, it is proved that the genus of C is at
most 5. Analogous to previous discussion, we have |SfI

(χ)| � 8
√

q + 3. �

4.6 Galois Group of Field Extension

Let K = F (x, y) be the function field of generalized Huff curve E, L be the
function field of C. To estimate the character sum of any character of Jacobian
group of E, or to estimate the size of image of fI , we need know the structure
of Gal(L/K). By [31], when L/K is a quartic extension, then Gal(L/K) = S4

if and only if

1. H(u) is irreducible over F (x, y).
2. Let R(u) be the resolvent cubic of H(u), then R(u) is irreducible over F (x, y).
3. The discriminant of R(u) is not a square in F (x, y).

if L/K is a cubic extension, then Gal(L/K) = S3 if and only if

1. H(u) is irreducible over F (x, y).
2. The discriminant of H(u) is not a square in F (x, y).

When L/K is a quartic extension, we have to prove 3 following lemmas:

Lemma 3. The polynomial H(u) is irreducible over F (x, y).

Proof. Substitute x =
bd(s + a2c)

t
and y =

ac(s + b2d)
t

into H(u;x, y), we only
need to show

H̃(u; s, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u4 − (2a2c + 2b2d − 6s)u2 + 6tu + (a4c2 + b4d2 − a2b2cd),
when a4c2 + b4d2 �= a2b2cd,

u3 +
(−2 a2c − 6 s − 2 b2d

)
u + 6 v,

when a4c2 + b4d2 = a2b2cd

is irreducible over F (s, t) = F (x, y) = K. Let σ be the non trivial Galois
automorphism in Gal(F (s, t)/F (t)), which maps t to −t, it remains to show
H̃0(u; s, t) = H̃(u; s, t)H̃(u; s, t)σ is irreducible over F (t). Let v = u2, Note that
H̃0(u) can be represented as polynomial of v:



36 X. He et al.

J0(v) = v4 + (−4 ca2 − 12 s − 4 db2)v3 + (6 b4d2 + 6 a2b2cd + 6 a4c2 + 24 sca2+

36 s2 + 24 sdb2)v2 + (−12 b4d2s − 4 b6d3 − 24 a2b2cds − 4 a6c3 − 12 a4c2s

− 36 s3 − 36 db2s2 − 36 ca2s2)t + (b4d2 − a2b2cd + a4c2)2,

if a4c2 + b4d2 �= a2b2cd, (6)

or

J0(v) = v3 + (−4 a2c − 12 s − 4 b2d)v2 + 4 (a2c + 3 s + b2d)2v

− 36 s(s2 + a2c + b2d + b2da2c), (7)

if a4c2 + b4d2 = a2b2cd.

From (6), by Theorem 1.2.3 in [31], if J0(v) is reducible over F (s), then either
it can be decomposed as

J0(v) = (v + A)(v3 + Bv2 + Cv + D)

= v4 + (A + B)v3 + (AB + C)v2 + (AC + D)v + AD,

or it can be decomposed as

J0(v) = (v2 + Av + B)(v2 + Cv + D)

= v4 + (A + C)v3 + (B + AC + D)v2 + (BC + AD)v + BD,

where A,B,C,D ∈ F [s].
In the first case, note that AD = (b4d2 − a2b2cd + a4c2)2, A and D are

both constant. Since A + B = −4 ca2 − 12 s − 4 db2, B is of degree 1. Since the
coefficient of v2 is 2, degree of C is 2, which can lead to the inference that the
degree of v is also 2, a contradiction to the fact it is 3.

In the second case, B and D are constants. Hence summation of the degree
of A and the degree of C equals to 2, which shows that the coefficient of v is at
most 2, also a contradiction.

Then we have shown that J0(v) is irreducible over F (s). Let z be a root of
H0(u). Then

[F (s, z) : F (s)] = [F (s, z) : F (s, z2)] · [F (s, z2) : F (s)] = 4[F (s, z) : F (s, z2)].

Since τ ∈ Gal(F (s, z)/F (s, z2)) which maps z to −z is not an identity, hence
Gal(F (s, z)/F (s, z2)) �= {ι} , then [F (s, z) : F (s, z2)] � 2. Hence [F (s, z) :
F (s)] � 8, which shows that H0(u) is irreducible over F (s).

From (7), J0(v) is cubic, then if it is reducible, it should have a root in F (s),
which is factor of the constant coefficient of J0(v). However, we can confirm that
such root does not exist by enumerating all the possibilities. The remaining step
is similar to previous case. �

Lemma 4. The resolvent polynomial R(u;x, y) is irreducible over F (x, y).
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Proof. In the case that H(u;x, y) is quartic, the resolvent cubic of H(u) is

R(u;x, y) = (acx − bdy)2u3 + 2(acx − bdy)(−2cxb2ad + a3c2x + 2a2bcdy

− b3d2y)u2 − 4(a4c2 + b4d2 − a2b2cd)(acx − bdy)2u − 36 a6b2c4d2

+ 72 a4b4c3d3 − 36 a2b6c2d4 + 16 b6d3a2c2x2 + 24 b6d4a2cy2

− 24 b4d2x2a4c3 − 24 a4b4c2d3y2 + 24 a6b2c4dx2 + 16 a6c3b2d2y2

− 8 b7d4yacx − 8 a7c4bdyx − 8 b8d5y2 − 8 a8c5x2 (8)

Similar to previous lemma, we only need to show R̃(u; s, t), the transforma-
tion of R(u;x, y) such that it is defined on ψ−1(E), is irreducible over F (s, t).
Represent x, y with variable s, t, we have

R̃(u; s) = u3 + (2 ca2 + 6 s + 2 db2)u2 + (−4 b4d2 + 4 a2b2cd − 4 a4c2)u

− 24 a4c2s − 12 b2da2cs − 24 b4d2s − 8 a6c3 − 36 s2a2c − 36 s2b2d (9)

− 8 b6d3 − 36 s3

If R̃(u; s) is reducible, it must have a degree 1 factor u + A, where A ∈
F [s, t]. If A /∈ F [s], then (u + A)σ is a factor of R̃(u; s)σ = R̃(u; s). Hence

R̃(u; s)
(u + A)(u + A)σ

∈ F [s]. Without loss of generality, we suppose A ∈ F [s]. Hence

R̃(u; s) = (u+A)(u2+Bu+C), A,B,C ∈ F [s]. In this case, R̃(u; s) has a solution
in F [s] whose degree is 1, since when the value of u is a polynomial with degree
�= 1, R̃(u; s) will be equal to a polynomial whose degree greater than 0. Suppose
A = Ps + Q, P,Q ∈ F , then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B = 6s + 2b2d + 2a2c − (Ps + Q)
C = −4b4d2 + 4a2b2cd − 4a4c2 − AB

AC = −24a4c2s − 12b2da2cs − 24b4d2s − 8a6c3 − 36s2a2c − 36s2b2d

−8b6d3 − 36s3.

Then P and Q satisfies

P 2(P − 6)s3 + P (3QP − 12Q − 2Pb2d − 2Pa2c)s2+

(3Q2P − 6Q2 − 4QPb2d − 4QPa2c − 4Pa4c2 − 4Pb4d2 + 4Pa2b2cd)s+

Q(Q2 − 4 b4d2 + 4 a2b2cd − 4 a4c2 − 2Qb2d − 2Qa2c) = 0 (10)

where s is the variable. When char(F ) � 3, it can be checked that solutions of
P and Q do not exist. �
Lemma 5. Let D(x, y) be the discriminant of R(u;x, y), then D(x, y) is not a
square in F (x, y).

Proof. Similar to previous proof, we only need to show that

D̃(s, t) = D(x(s, t), y(s, t))

is not a square in F (s, t). After simplification,



38 X. He et al.

D̃(s, t) = −27 · 35 · (abcd(a2c − b2d))8

t8
· (27 s6 − (−54 a2c − 54 b2d)s5 − (−27 a4c2

− 108 a2b2cd − 27 b4d2)s4 + 2 (a2c + b2d)(8 b4d2 + 7 a2b2cd + 8 a4c2)s3

+ 3 a2b2cd(8 a4c2 − 23 a2b2cd + 8 b4d2)s2 − 24 a4b4c2d2(a2c + b2d)s

− 16 b4d2a4c2(a4c2 + b4d2 − a2b2cd)), (11)

In fact, we only need to show that G̃(s, t) = − t8

27 · 35 · (abcd(a2c − b2d))8
D̃(s, t)

is irreducible over F (s, t).
Suppose G̃ is a square in F (s, t), then F (s, t) ⊇ F (s,

√
G̃) ⊇ F (s). Note that

[F (s, t) : F (s)] = 2, either F (s,
√

G̃) = F (s, t) or F (s,
√

G̃) = F (s).
In the first case, G̃ is s(s + a2c)(s + b2d) = t2 times a square in F (s). But

divide G̃ by s(s + a2c)(s + b2d), the remainder vanishes if and only if a4c2 +
b4d2 − a2b2cd = 0.

In the second case, G̃ is a square over F (s). Suppose

G̃(s) =
(√

27s3 + Bs2 + Cs ± 4a2b2cd
√

a2b2cd − a4c2 − b4d2
)2

,

expand the right hand side of this equation and compare its coefficients of si, i =
1 to 5 with the left hand side, and it is checked there are no B,C ∈ F s.t the
equality holds. �

Remark: by similar method, we can also prove that when L/K is a cubic
extension, H(u;x, y) is irreducible over F (x, y) and its discriminant is not a
square in F (x, y).

Summarize these lemmas, we directly deduce:

Theorem 7. Let K = Fq(x, y) be the function field of E. The polynomial
H(u;x, y) introduced in (3) is irreducible over K, then when a4c2+b4d2 �= a2b2cd,
its Galois group is S4; when a4c2 + b4d2 = a2b2cd, its Galois group is S3.

In Sect. 5.2, we will use this theorem to construct a hash function indifferen-
tiable from random oracle.

4.7 Calculating the Density

Similar to Sect. 3.4, we apply Chebotarev density theorem to estimate the size
of image of fI .

Theorem 8. Let E be the generalized Huff curve over Fq defined by equation
ax(y2−c) = by(x2−d), abcd(a2c−b2d) �= 0, fI is the corresponding hash function
defined in Sect. 4.1. Then if a4c2 + b4d2 �= a2b2cd , we have

|#Im(fI) − 5
8
q| � 5

4
(31q1/2 + 72q1/4 + 67),

and if a4c2 + b4d2 = a2b2cd, we have
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|#Im(fI) − 2
3
q| � 4

3
(10q1/2 + 18q1/4 + 30).

Proof. K is the function field of E which is the quadratic extension of Fq(x),
hence d = 2, and by the property of elliptic curve, gK = 1.

In the case that a4c2+b4d2 �= a2b2cd, Gal(L/K) = S4, hence m = #S4 = 24.
ϕ is the subset of Gal(L/K) consisting at least 1 fixed point, which are conjugates
of (1)(2)(3)(4), (12)(3)(4) and (123)(4), then s = 1+6+8 = 15. Since the place v
of K of degree 1 correspond to the projective unramified points on E(Fq), hence
|#Im(fI) − N(ϕ)| � 12 + 3 = 15, where 3 represents the number of infinite
points, 12 represents the number of ramified points. Then we have

|#Im(fI) − 5
8
q| � |#Im(fI) − N(ϕ)| + |N(ϕ) − 5

8
q|

� 15 +
5
4
(31q1/2 + 72q1/4 + 55)

=
5
4
(31q1/2 + 72q1/4 + 67).

In the case that a4c2 + b4d2 = a2b2cd, Gal(L/K) = S3, hence m = #S3 = 6.
The corresponding s has the value of 4. |#Im(fI) − N(ϕ)| � 6 + 3 = 9, where
3 represents the number of infinite points, 6 represents the number of ramified
points. Hence

|#Im(fI) − 2
3
q| � |#Im(fI) − N(ϕ)| + |N(ϕ) − 2

3
q|

� 9 +
2
3
(10q1/2 + 18q1/4 + 16)

=
2
3
(10q1/2 + 18q1/4 + 30). �

5 Construction of Hash Function Indifferentiable
from Random Oracle

Let h be a classical hash function from messages to finite field Fq, we can show
that both fS ◦ h and fI ◦ h are one-way and collision-resistance according to the
fact that each point on E has finite preimage through fS and fI [16]. Hence fS ◦h
and fI ◦ h are both hash functions mapping messages to E(Fq). However, since
fS and fI are not surjective, fS ◦h and fI ◦h are easy to be distinguished from a
random oracle even when h is modeled as a random oracle to Fq [33]. Therefore,
we introduce 2 new constructions of hash functions which are indifferentiable
from a random oracle.

5.1 First Construction

Suppose f : S → G is a weak encoding [26] to a cyclic group G, where S denotes
prime field Fq, G denotes E(Fq) which is of order N with generator G, + denotes
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elliptic curve addition. According to the proof of random oracle, we can construct
a hash function HR : {0, 1}∗ → G:

HR(m) = f(h1(m)) + h2(m)G,

where h1 : {0, 1}∗ → Fq and h2 : {0, 1}∗ → Z/NZ are both classical hash
functions. HR(m) is indifferentiable from a random oracle in the random oracle
model for h1 and h2.

We only need to show fS , fI are both weak encodings to prove that HS(m) =
fS(h1(m))+h2(m)G and HI(m) = fI(h1(m))+h2(m)G are indifferentiable from
a random oracle in the random oracle model for h1 and h2. By the definition of

weak encoding [26], fS is a
2N

q
-weak encoding and fI is a

4N

q
-weak encoding,

both
2N

q
and

4N

q
are polynomial functions of the security parameter.

5.2 Second Construction

Another construction is as follows:
{

HS′ = fS(h1(m)) + fS(h2(m))
HI′ = fI(h1(m)) + fI(h2(m)).

We have proved that fS , fI are both well distributed encodings in Sects. 3.3
and 4.5. According to corollary 2 of [29], HI′ and HS′ are both indifferentiable
from a random oracle, where h1 and h2 are regarded as independant random
oracles with values in Fq.

6 Time Comparison

When q ≡ 3 (mod 4), the key step of an encoding function is calculating square
root for given element of Fq. For convenience to make comparisons, we first intro-
duce a birational map between generalized Huff curve E and short Weierstrass
curve

EW : t2 = s3+
a2b2cd − a4c2 − b4d2

3
s+

1
27

(2 a6c3−3 a4c2b2d−3 a2cb4d2+2 b6d3),

via maps

ϑ : E → EW :

(x, y) �→ (s, t) =

(
1
3

2 a2bcdy − 2 ab2cdx + xa3c2 − b3d2y

axc − byd
,
bdac

(
a2c − b2d

)

axc − byd

)

,

ς : EW → E :

(s, t) �→ (x, y) =

⎛

⎜
⎜
⎝

bd

(
s +

2
3

a2c − 1
3

b2d

)

t
,

ac

(
s +

2
3

b2d − 1
3

a2c

)

t

⎞

⎟
⎟
⎠ . (12)
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Table 1. Theoretic time cost of different deterministic encodings

Encoding Cost Converted cost

fS ES + 2I + D + S + 10M E + D + 31M

fU ES + 2I + D + 4S + 15M E + D + 39M

fE ES + 2I + D + 4S + 10M E + D + 34M

fI EC + I + 4S + 10M E + 24M

fY EC + 2I + 3S + 7M E + 30M

fA EC + 2I + 4S + 9M E + 33M

Table 2. NIST primes

Prime Value Residue (mod 3) Residue (mod 4)

P192 2192 − 264 − 1 2 3

P384 2384 − 2128 − 296 + 232 − 1 2 3

Table 3. Time cost (ms) of different square root methods on NIST

Prime P192 P384

fS 0.053 0.235

fE 0.057 0.248

fU 0.058 0.250

Therefore, we compare our encoding fS with 2 encodings: birational equiv-
alence ς in (12) composed with Ulas’ encoding function [15], denoted by fU ; ς
composed with simplified Ulas map given by Eric Brier et al., denoted by fE .

When q ≡ 2 (mod 3), the essential of an encoding function is calculating
the cube root for elements of Fq. We compare our encoding fI with Alasha’s
work [19] denoted by fA and Yu’s encoding function [32] denoted by fY . In

comparison with fA, we let c =
1
a
, d =

1
b

since Alasha only treats this special
case; in comparison with fY , we let c = d = 1, since Yu’s work can only be
applied on classical Huff curves.

We have shown that fS costs E+D+31M , fI costs E+24M . For comparison,
fU costs (ES +I +4S+11M +D)+(I +4M) = E+D+39M by Theorem 2.3(2),
[15] and the map ς in (12), while fE costs (ES + I +4S +6M +D)+(I +4M) =
E + D + 34M by [14]. Yu’s encoding fY costs EC + 2I + 3S + 7M = E + 30M ,
Alasha’s encoding fA costs EC + 9M + 4S + 2I = E + 33M (Table 1).

We do experiments on prime field FP192 and FP384 (see Table 2). General
Multiprecision PYthon project (GMPY2) [34], which supports the GNU Multiple
Precision Arithmetic Library (GMP) [35] is used for big number arithmetic. The
experiments are operated on an Intel(R) Core(TM) i5-4570, 3.20 GHz processor.
We ran fS , fU , fE , fI , fY and fA 1, 000, 000 times each, where u is randomly
chosen on FP192 and FP384.
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Table 4. Time cost (ms) comparison between fI and fA

Prime P192 P384

fI 0.053 0.233

fA 0.061 0.252

Table 5. Time cost (ms) comparison between fI and fY

Prime P192 P384

fI 0.052 0.233

fY 0.058 0.244

From the average running times listed in Table 3, fS is the fastest among
encodings which need calculate square roots. On FP192, it saves 9.19% running
time compared with fU , 7.69% running time compared with fE . On FP384, fS

saves 5.92% running time compared with fU and 5.17% running time compared
with fE . fI is also the fastest among encodings which need to calculate cube
roots. On FP192, it saves 13.20% of running time compared with fA and 8.97%
compared with fY . On FP384, the relevant percentages are 7.51% and 4.40%
(see Tables 4 and 5).

7 Conclusion

We provide two constructions of deterministic encoding into generalized Huff
curves over finite fields, namely, brief SWU encoding and cube root encoding.
We do theoretical analysis and practical implementations to show that when
q ≡ 3 (mod 4), SWU encoding is the most efficient among existed methods
mapping Fq into generalized Huff curve E, while cube root encoding is the most
efficient one when q ≡ 2 (mod 3). For any nontrivial character χ of E(Fq),
we estimate the upper bound of the character sums of both encodings. As a
corollary, hash functions indifferentiable from random oracle are constructed.
We also estimate image sizes of our encodings by applying Chebotarev density
theorem.
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