Chapter 2

Automation of Research in Computational
Modeling

It is obvious that if we could find characters or signs suited for
expressing all our thoughts as clearly and as exactly as
arithmetic expresses numbers or geometry expresses lines, we
could do in all matters insofar as they are subject to reasoning
all that we can do in arithmetic and geometry.
Gottfried Wilhelm Leibniz
Preface to the General Science, 1677

The advances in reliability, generality and interdisciplinary nature of new
computational methods derived in recent years are primary result of a holistic
approach to computational modeling where advanced software tools and techniques
are combined with advanced numerical methods. The holistic approach is playing
nowadays a central role in the process that leads to the ultimate goal, i.e. a com-
plete automation of computational modeling. The problem of an automation of the
derivation of computational models has been explored by researches from the fields
of mathematics, computer science and computational mechanics, resulting in a vari-
ety of approaches (e.g. object-oriented approaches, domain specific languages and a
hybrid symbolic-numeric methods) and available software tools (e.g. symbolic and
algebraic systems, automatic differentiation tools, problem solving environments and
numerical libraries). Automation can address all steps of the finite element solution
procedure from the strong form of boundary-value problem to the visualization of
results, or it can be applied only to the automation of the selected steps of the whole
procedure. Consequently, the automation procedures nowadays influence directly
how the mechanical problem and corresponding numerical model are postulated and
solved.

Alternative approaches to automation of computational modeling are discussed in
the first part of the chapter, while an emphasis is given to automatic differentiation.
The hybrid symbolic-numeric approach to automation of the finite element method
and the system for automatic code generation AceGen are described in detail in the
second part of the chapter.
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2.1 Introduction

Finite element technology. As demonstrated throughout this book, there are almost
countless ways of how a particular problem can be solved by the finite element
method. The complete finite element simulation can be, from the aspect of automa-
tion, decomposed into the following steps:

1. formulation of the strong form of an initial boundary-value problem;

2. transformation of the strong form into a weak form or a variational functional;

3. definition of the discretization of the domain and approximation of the field vari-
ables and their virtual counterparts (test functions);

4. derivation and solution of additional algebraic equations or differential equations
defined at the element level (e.g. constraints or plastic evolution equations);

5. derivation of algebraic equations that describe the contribution of one element to

the global residual vector and to the global tangential stiffness matrix;

. coding of the derived equations in a required computer language;

. generation of a finite element mesh and its boundary conditions;

. solution of the global problem;

. visualization and analysis of the results.

Nelio JBEN Bo)

Alternatively, one can also start from the free Helmholtz energy of the problem and
derive element equations directly as a gradient of the free energy. This approach is
especially appealing for the automation due to the numerical efficiency of the solution
when the gradient is obtained by the backward mode of automatic differentiation (see
Sect.2.4). The presented list follows from the engineering approach related to finite
element technology where requirements for highly efficient elements (e.g. mixed,
under-integrated, etc.) and the variety of elements (etc. solid, structural, coupled)
leed to a rather strict separation of the individual finite element level and the global
level of the problem.

With respect to the software organization the procedure of solving a problem by
the finite element method can be divided into two parts:

1. partindependent of the actual physical problem or the finite element environment,
2. and the part dependent on the physical problem or the finite elements.!

Finite elements are provided in open source finite element environments through user
defined finite element subroutines or user subroutines. A particular finite element
subroutine is meant to calculate the contribution of the particular finite element to
the global solution of the problem. In the present book only the automation of the
generation of user subroutines is presented.

Automation. If the automation of all steps of a finite element process from the strong
form of an initial boundary-value problem to the visualization and analysis of results
is chosen, then only a very specific subset of possible formulations can be covered.

Here the particular finite element is meant to solve a particular physical problem. Large commercial
finite element environments can include several hundreds of different finite elements for different
physical applications.
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Usually, only the standard spatial discretization (see Chap.4) is considered as pre-
sented in Logg (2007). On the other hand, the standard discretization is of little use
for problems involving coarse mesh accuracy, locking phenomena and distorted ele-
ment shapes for which highly problem specific formulations have to be implemented
as described in Sects.6.4 and 6.5. As usual in science, the high uniqueness of a
specific formulation renders the whole concept of automation questionable. Making
templates or deriving objects for something that is used only once simply does not
pay off. This may be the main reason why a complete automation of the finite element
method is still not used within the commercial finite element environments. More
often, the level of automation used involves only steps that are from the numerical
aspect deterministic (e.g. various correctness preserving symbolic manipulations,
differentiation and automatic code generation) while the true decisions are left to the
researcher.

The automation of computational modeling can be approached having in mind
two fundamentally different goals. The automation procedure can aim at the

1. automation of the solution of physical or mathematical problems,
2. or at the automation of scientific research in developing the optimal computational
approach for the solution of physical or mathematical problems.

Usually, the difference between the standard description and the algorithmic
implementation prevents full automation of scientific research in computational
methods. When the automation of the solution is sought then the description and
the algorithmic implementation are done within the same framework and the prob-
lem is less limiting. However it is questionable whether a complete automation is
achievable at the present scientific level. New methods, different ways of discretiza-
tion, optimal variational principles and optimal algorithmic implementation are still
very much under research. While the automation of the solution results in software
solutions that are in many ways under control of the software developer the automa-
tion of the research into solution requires much higher level of interaction between
the user of the software solution and the actual process of automation. In particular,
debugging possibilities have to be included in an automatic code generator that can
provide a backward link between the automatically generated code and the basic
equations of the mathematical model.

2.1.1 Abstract Symbolic Description of a Computational
Model

A general requirement for a successful use of automation system is that the basic
equations defining the problem have to be written down in an input form that is
capable of manipulating equations symbolically. The advantage of automation in
computational mechanics becomes apparent only when the description of the prob-
lem, which means the way how the basic equations are written down, is appropriate
for the symbolic description. When this condition is not met then the automation
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of the symbolic description of a computational model may require more effort than
the classical, well establish approaches. Unfortunately, some of the traditional for-
mulations used in computational mechanics are not appropriate for the symbolic
description. The symbolic formulation of computational mechanics problems dif-
fers often from the classical formulations described in detail in other chapters of
this book and thus brings up the need for rethinking and reformulating known and
traditional ways. Despite that, there exist strong arguments why at the end symbolic
formulations are indeed beneficial:

1. A symbolic formulation is more compressed and thus gives fewer possibilities
for an error.

2. Algebraic operations, such as differentiation, are done automatically.

3. Automatically generated codes are highly efficient and portable.

4. The multi-language and multi-environment capabilities of symbolic systems
enable generation of numerical codes for various numerical environments from
the same symbolic description.

5. An available collection of prepared symbolic inputs for a broad range of finite
elements can be easily adjusted for the user specific problem leading to the on-
demand numerical code generation.

6. Multi-field and multi-physic problems can be easily implemented. For example,
the symbolic inputs for mechanical analysis and thermal analysis can be combined
into a new symbolic input that creates a finite element for a fully coupled and
quadratically convergent thermo-mechanical analysis.

An example, underlining the arguments above, is the standard formulation of the
tangential stiffness matrix, leading to the matrix form B? DB. It can be easily imple-
mented using the symbolic tools. Having in mind that element tangential stiffness
matrix is either the Jacobian of the resulting system of discrete algebraic equations
or the Hessian of the variational functional, it means that automatic differentiation
is sufficient for obtaining the tangent matrix. The work of implementing a BT DB
matrix formulation and the efficiency of the resulting code is inferior to the approach
when the tangent matrix is derived by backward automatic differentiation. The latter
approach requires, regardless on the complexity of the topology and the material
model, a single line of symbolic input. The standard B DB formulation requires
much more input for the same result.

Modern finite element simulations are often coupled with optimization proce-
dures that require additionally to the solution of the primal problem also a solution
of the sensitivity problem. The aim of sensitivity analysis is to calculate derivatives
of arbitrary response functionals with respect to chosen parameters (see e.g. Kleiber
et al. 1997; Keulen et al. 2005; Choi and Kim 2005a or 2005b). Sensitivity analy-
sis has become an indispensable part of modern computational algorithms. The use
of an analytically exact sensitivity analysis can significantly improve optimization
procedures, see Choi and Kim (2005b), Kristanic and Korelc (2008), multi-scale algo-
rithms, see Solinc and Korelc (2015), and the implementation of nonlinear material
models, see Korelc and Stupkiewicz (2014), Hudobivnik and Korelc (2016). Thus,
any proposed method of automation should address automation of primal as well
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as sensitivity analysis. However, to the authors knowledge, no large commercial
code currently provides a general sensitivity analysis tool. Automation of sensitivity
analysis is presented in Chap. 8.

The automation of the finite element methods should not be restricted only to
the repetition of the same procedures that are normally done manually on a sheet of
paper. However, the ability to describe the problems in terms that are more general
does not necessarily mean that the derivation of the specific computational model
would be any easier. The true advantages of automation become apparent only if the
description of the problem, the notation and the mathematical apparatus are changed
as well. It is demonstrated in the book that this can be achieved using the auto-
matic differentiation technique as presented in Sect.2.4.2. Thus, the basis for the
automation of computational modeling is an automatic differentiation based form or
ADB form of the basic equations used to describe the problem (see Chap. 3). In the
actual implementation of the described methodology a general-purpose automatic
code generator AceGen Korelc (2011) is used to derive and code characteristic finite
element quantities (e.g. residual vector and stiffness matrix) at the level of an indi-
vidual finite element. This code produces user defined elements for different finite
element environments. However there exists also the general-purpose finite element
environment AceFFEM for the solution of the global problem that is taylored for the
use together with AceGen.

2.2 Advanced Software Tools and Techniques

The use of advanced software technologies plays a central role in the process that
leads to the ultimate goal: a complete automation of computational modeling. The
problem of automation of computational methods has been explored by researches
from the fields of mathematics, computer science and computational mechanics,
resulting in a variety of approaches (e.g. the hybrid object-oriented approach by
Eyheramendy and Zimmermann 2000 and the hybrid symbolic-numeric approach
by Korelc 2002) and available software tools (e.g. computer algebra systems, AD
tools by Griewank 2000, problem solving environments and numerical libraries).

The techniques presented in the next sections are the result of rapid development in
computer science in the last decades. They are particularly relevant for the description
of a nonlinear finite element model on a high abstract level, while preserving the
numerical efficiency.

2.2.1 Symbolic and Algebraic Computational Systems

Symbolic and algebraic computational (SAC) systems are tools for the manipulation
of mathematical expressions in symbolic form. Widely used SAC systems such as
Mathematica (www.wolfram.com) or Maple (www.maplesoft.com) have become an
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integrated computing environment that covers all aspects of a computational process,
including numerical analysis and graphical presentation of the results. The general
SAC systems are also one of the most complex software systems ever developed
and the SAC system Mathematica is often described as the “world‘s single largest
consumer of algorithms”. In the case of complex mechanical models, the direct use
of SAC systems is not possible due to several reasons. For the numerical implemen-
tation, SAC systems cannot keep up with the run-time efficiency of programming
languages such as FORTRAN and C and by no means with highly problem-oriented
and efficient numerical environments used for finite element analysis. However, SAC
systems can be used for the automatic derivation of appropriate formulas and gen-
eration of numerical codes (Korelc 2002; Amberg et al. 1999). The FE method is
within the general SAC systems usually implemented as an additional package or
toolbox such as AceGen Korelc (2011) for Mathematica.

The major limitation of the symbolic systems, when applied to complex engineer-
ing problems, as pointed out before by many authors (see e.g. Wang 1986; Fritzson
and Fritzson 1984; Korelc 1997b and Korelc 2002), is an uncontrollable growth of
expressions and consequently redundant operations and inefficient codes. This is
especially problematic when a SAC system is used to derive formulas needed in
numerical procedures such as the finite element method where the numerical effi-
ciency of the derived formulas and the generated code are of utmost priority.

General SAC systems are very powerful when dealing with one isolated formula,
but become very awkward when the code to be generated contains control structures
such as If and Do constructs.

2.2.2 Automatic Differentiation Tools

Differentiation is a symbolic operation that plays a crucial role in the development
of new numerical procedures. Automatic differentiation or AD is a method to eval-
uate the derivative of a function specified by a computer program and represents an
alternative to more common and widely used numerical differentiation and symbolic
differentiation. The AD technique is explained more in detail in Sect.2.4 due to the
central role of AD in automation of the finite element method.

2.2.3 Problem Solving Environments

Problem-solving environments (PSE) are automatic code generators with libraries
containing routines for various numerical solution methods. These routines form
templates for the generated program codes. The system libraries determine a vari-
ety of numerical solution methods available in such systems. They are meant to
solve problems, in particular ordinary differential equations or partial differential
equations, in an already established way. Several problem-solving environments for
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a high level abstract description of PDE’s based on finite difference method have
been derived, such as SciNapse (Akers et al. 1998) and Ctadel (van Engelen et al.
1995). A comprehensive overview can be found in Gallopoulos et al. (1994).

Numerical libraries. Additionally to the general problem-solving environments,
there are also tools that support only numerical operations such as: compiled
numerical libraries (e.g. NAG, www.nag.co.uk), numerical matrix languages (e.g.
MATLAB, www.mathworks.com), high-level object oriented languages with object
libraries, etc.

Specialized systems for FEM. General finite element environments, such as such
as commercial codes like ABAQUS (www.hks.com) and ANSYS (www.ansys.com)
or research codes like FEAP (www.ce.berkeley.edu/feap), can also be viewed as a
specialized PSE. The general finite element environments can handle, regardless of
the type of finite elements, all the phases of a typical FE simulation: pre-processing
of the input data, manipulation and organization of the data related to nodes, ele-
ments, material characteristics, displacements and stresses, construction of the global
matrices by invoking different element subroutines, solving the system of equations,
post-processing and analysis of the results.

2.2.4 Hybrid Approaches

The level of automation of FE method can be greatly increased by combining several
approaches and tools. Some possible combinations are discussed below.

Hybrid object-oriented approach. The object-oriented approach has brought a new
perspective for the development of complex software and in the past decade, numer-
ous object-oriented FE environments have been developed. While the object-oriented
approach deals primary with the high level of data abstraction and organization, its
principles can be extended also to the complete automation of the finite element
method. An overview of the object-oriented hybrid symbolic-numerical approach
can be found in Eyheramendy and Zimmermann (2000), Beall and Shephard (1999)
and Logg (2007). Modern hybrid object-oriented (HOO) systems, such as FEniCS
(Logg 2007; Logg and Wells 2012) or FreeFem++ (Pironneau et al. 2008), provide
tools for automation of all FE simulation steps, from the strong form of a PDE to
the presentation of the results. A typical HOO system introduces its own domain-
specific language and uses built-in C++ libraries for symbolic manipulation. The
HOO systems are in general restricted to a particular type of formulations where the
general knowledge of the appropriate procedure, that leads from strong form to the
element equations, has already been established. This also reduces the expression
growth problem since the symbolic code derivation is used only for sub-problems.

Hybrid symbolic-numerical approach. The disadvantage of the hybrid object-
oriented approach is the loss of generality and flexibility compared to a general
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computed algebra systems. Only a small fraction of symbolic manipulation capa-
bilities of the general SAC systems is presented in specialized finite element C++
libraries for symbolic manipulation. The real power of the symbolic approach for
testing and applying new, unconventional ideas is provided by general-purpose SAC
systems. However, their use is limited for problems that lead to large systems like
finite element simulations. Furthermore, the use of large commercial finite element
environments for analyzing a variety of problems is standard practice of engineers.
The hybrid symbolic-numerical (HSN) approach is a way to combine both. While
the hybrid object-oriented systems tends to offer complete FE solution, the idea
behind the hybrid symbolic-numerical (HSN) approach is to use a general SAC sys-
tem for the derivation of the characteristic element quantities and the automatic code
generation of user subroutines at the level of one finite element. The automatically
generated code is then incorporated into the chosen finite element environment (one
or possibly more) and used within the global numerical solution procedures. The
HSN approach is explained in more detail in Sect.2.5.1. An advantage of using a
general SAC system is also that it provides well known and defined description lan-
guage for the derivation of FE equations, generation of FE code and possibly also for
the complete FE analysis, as opposed to the hybrid object-oriented systems which
introduce their own domain-specific language.

2.3 Automatic Generation of Numerical Codes

Most of the existing numerical methods for solving partial differential equations
can be subdivided into two classes: finite difference and finite element methods.
In the last years, various approaches to the automation of the two methods were
extensively studied. In many ways, the present stage of the automation of the finite
difference method is more elaborated and more general than the automation of the
finite element method. Various transformations, differentiation, matrix operations,
and a large number of degrees of freedom involved in the derivation of characteristic
finite element quantities often lead to exponential growth of the expressions in space
and time, see e.g. Fritzson and Fritzson (1984). This makes automation of the FE
method more complex than automation of the finite difference method. Different
approaches have been proposed for the solution of the problem related to expression
growth. In the first approach additional low-level knowledge about the problem is
introduced and the symbolic code generation is used only for sub-problems, where
expression growth does not appear or is not severe, see e.g. Amberg et al. (1999).
A pure symbolic approach is often combined with the object-oriented approach
and specialized routines for symbolic manipulations of the general CA systems are
used instead. An extensive overview of object-oriented hybrid symbolic/numerical
approaches can be found in Eyheramendy and Zimmermann (2000) and in Beall
and Shephard (1999). The disadvantage of the approach is the loss of generality and
flexibility of general CA systems. These specialized systems are often restricted to
a particular type of problems where general knowledge of the solution procedure
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has already been established. The real power of the symbolic approach for testing
and applying new, unconventional ideas lies in general purpose systems. Not many
attempts have been undertaken to produce a general FE code generator where the key
issue of the FE code generation, i.e. expression swell, is treated within the automatic
procedure. Techniques such as the use of the symmetric properties of the formulae,
the automatic introduction of intermediate variables and the pattern search were
applied in Finger Wang (1986), Wang (1991) and Tan et al. (1991).

When the symbolic approach is used in a standard way to describe complex-
engineering problems then the common experience of the users of symbolic and
algebraic systems is an uncontrollable swell of expression, as pointed out before,
leading to inefficient or even unusable codes. The general computer algebra systems
come with the built in code optimization capabilities, see e.g. Maple, or additional
packages for code optimization such as AceGen for Mathematica. The classical way
of optimizing expressions in computer algebra systems is searching for common sub-
expressions after all the formulae have been derived and before the generation of the
numerical code. This has been proven to be insufficient when applied to general
non-linear mechanical problems and only relatively simple finite elements can be
derived within such approach.

An alternative approach for automatic code generation is employed in AceGen
and called Simultaneous Stochastic Simplification of numerical code, see Korelc
(1997b). This approach avoids the problem of expression swell by using symbolic
and algebraic capabilities of the general computer algebra system Mathematica and
combining them with the following techniques: automatic differentiation, simul-
taneous optimization of expressions with automatic selection and introduction of
appropriate intermediate variables. Formulae are optimized, simplified and replaced
by auxiliary variables simultaneously with the derivation of the problem. A stochas-
tic evaluation of the formulae is applied for determining the equivalence of algebraic
expressions, see e.g. Gonnet (1986). The simultaneous approach is appropriate also
for problems where intermediate expressions can be subjected to uncontrolled swell.

Using the general finite element environment for analyzing a variety of problems
and for incorporating new elements is now already an everyday practice. Although
large FE environments often offer a possibility to incorporate user defined elements
and material modes, it is time consuming to develop and test these user defined new
pieces of software. Practice shows that at the derivation stage of a new numerical
model, different languages and different platforms are the best means for the assess-
ment of specific performances and failures of the numerical model. The basic tests,
which are performed on a single finite element or on a small patch of elements, can be
done most efficiently by using general computer algebra system. Many design flaws,
such as element instabilities or poor convergence properties, can be easily identified,
if the element quantities are investigated on a symbolic level. Unfortunately a stand-
alone CA system becomes very inefficient once there is a larger number of nonlinear
finite elements to process or if iterative numerical procedures have to be executed. In
order to assess element performances under real conditions, the easiest way is to run
the necessary test simulations on sequential machines with good debugging capa-
bilities and with the open source FE environment designed for research purposes,
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e.g. FEAP (www.ce.berkeley.edu/rlt/feap/), AceFEM (www.fgg.uni-1j.si/symech/)
or Diffpack (www.diffpack.com). At the end, for real industrial simulations involv-
ing complex geometries a large commercial FE environment has to be used. In order
to meet all these demands in an optimal way, an approach is needed that would offer
multi-language and multi-environment generation of numerical codes. The auto-
matically generated code is then incorporated into the FE environment that is most
suitable for the specific step of the research process. Using the classical code devel-
opment procedures, re-coding of the element in different languages would be time
consuming and is rarely done. With the general SAC systems, re-coding comes prac-
tically for free, since the code can be automatically generated for several languages
and for several platforms using the same basic symbolic description.

2.4 Automatic Differentiation

The classical way of performing differentiation is to symbolically differentiate a
function either manually or by a computer algebra system and to evaluate it at a cho-
sen point. In the case of complex computational models, the symbolic derivatives
are difficult to obtain, which is why the numerical differentiation by the finite differ-
ence method is often used instead. Automatic differentiation (see e.g. Griewank and
Walther 2008; Bartholomew-Biggs et al. 2000; Bischof et al. 2002) is a method to
compute the derivative of a function specified by a computer program. It represents
an alternative solution to the numerical differentiation as well as to the symbolic dif-
ferentiation. With the AD technique, one can avoid the problem of expression growth
that is associated with the symbolic differentiation performed by a SAC system.

2.4.1 Principles of Automatic Differentiation

Automatic differentiation techniques are based on the fact that every computer pro-
gram executes a sequence of elementary operations with known derivatives, thus
allowing evaluation of exact derivatives via the chain rule for an arbitrary complex
formulation. If one has a computer code which allows to evaluate a function f and
needs to compute the gradient V f of f with respect to arbitrary variables, then the
automatic differentiation tools, see e.g. Griewank (2000), Bartholomew-Biggs et al.
(2000), Bischof et al. (2002) can be applied to generate the appropriate program code.
There are two approaches for the automatic differentiation of a computer program,
often characterized as the forward and the backward mode of automatic differentia-
tion. The procedure is illustrated by a simple example of a function f defined by

f=bc with b=>a? and c= Sin(b) 2.1)

i=1
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where a1, as, ..., a, are n independent variables. The forward mode accumulates the
derivatives of intermediate variables with respect to the independent variables as
follows

vb={£]=0x i=1,2 .0

Ve = {d_} —(Cos(b) Vb)) i=1,2,...n 2.2

Vf={%}={Vbic+bvci}i=1,z,...,n

Contrary to the forward mode, the backward mode propagates adjoints x = a—f
which are the derivatives of the final values, with respect to intermediate variables:
f= df =1 1
¢= g =Uf=bf 1
- - _ - _ 2.3
b= =4 f 1= cf+Cos(h)C 1 @3)
sz{a,»}z{a—jz} = {2a; b} i=1,2,..n

The numerical efficiency of the differentiation of N scalar-valued functions F =
{fi 11 €[1, N]} with respect to M independent variablesa = {a; : j € [1, M]} can
be measured by the numerical work ratio defined as

cost (F(a), 2 a )

wratio(F(a)) = cost (F(a))

(2.4)

The ratio is in general proportional to the number of independent variables
(wratio(F(a)) o< M) in the case of forward mode and proportional to the number of
functions (wratio(F(a)) o N) in the case of backward mode. The upper bound for
the ratio in the case of backward mode differentiation of one function with respect
to arbitrary number of independent variables is 5 and is usually around 1.5 if care is
taken in handling quantities that are common to the function and gradient, see e.g.
Griewank (2000). Although numerically superior when the number of functions is
small, the backward mode requires potential storage of a large amount of interme-
diate data during the evaluation of the function that can be as high as the number of
numerical operations performed. Additionally, a complete reversal of the program
flow is required. This is because the intermediate variables are used in reverse order
when related to their computation. For the efficient automation of the FE method,
it is desirable that both approaches are available and that the software tool used for
automation can automatically select the most efficient approach according to the
estimated work ratio.

It should be pointed out that the symbolic differentiation is one of the algebraic
operations prone to severe expression growth and it can result even for relatively
simple nonlinear elements in hundreds of pages of code. Thus, the use of hybrid
system that combines the symbolic tool with the automatic differentiation technique
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is essential for the high abstract symbolic formulation of FE models. To increase
the numerical efficiency of the generated code and to limit the physical size of the
generated code, it is essential to minimize the number of calls to the automatic
differentiation procedure.

There exist many strategies how the AD procedure can be implemented, see e.g.
Bischof et al. (2002). The simplest approach is to use operator overloading and
during the evaluation of function f create a trace of all numerical operations and
their arguments, later used to evaluate gradients in forward or backward mode. The
operator overloading strategy is computationally too inefficient to be used within
the finite element procedures. More efficient is a source-to-source transformation
strategy that transforms the source code for computing a function into the source code
for computing the derivatives of the function. The AD tools based on a source-to-
source transformation have been developed for most of the programming languages
e.g. ADIFOR (www-unix.mcs.anl.gov/autodiff/ADIFOR/) for FORTRAN, ADOL-C
(www.math.tu-dresden.de/~adol-c/) for C, MAD (www.amorg.co.uk/AD/MADY/) for
Matlab and AceGen (www.fgg.uni-lj.si/symech) for Mathematica.

2.4.2 Generalized Notation of Automatic Differentiation

Recent advances in the development of automatic differentiation technique, espe-
cially the backward mode implementation of the code-to-code approach to automatic
differentiation, have rejected the traditional assumption that automatic differentiation
is impracticable and that the numerical codes based on automatic differentiation are
intrinsically too slow for large-scale numerical computations. However, as powerful
as automatic differentiation technique is, the results of the automatic differentiation
procedure might not automatically correspond to the specific mathematical formal-
ism used to describe the mechanical problem. One of the primal goals of the present
book is to introduce an appropriate notation that builds a bridge between the classical
mathematical notation of computational models and the actual computer implemen-
tation. It is essential for the generalized notation that it can be directly translated into
the program code and that the derived program code is numerically efficient. The
idea presented in the book is to achieve the unification by means of extended auto-
matic differentiation technique combined with the automatic code generation. The
introduced notation does not only simplify the derivation of the corresponding equa-
tions, but also reflects much more closely the actual algorithmic implementation.
In this way, the mathematical formulation and computer implementation become
indistinguishable.
The introduced generalized notation is comprised of three components that:

e define the mathematical operation,
e indicate the algorithm used to obtain the quantity and
e specify the flow of information within the algorithm.
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Let a be a set of mutually independent variables and f an arbitrary function of a.
The “computational derivative” is then defined by the following formalism

§f(a)
Sa

2.5)

The above formalism has to be viewed in an algorithmic way. The operator 4@
represents a differentiation of a function f with respect to variables a performzf‘:d
by the automatic differentiation algorithm. Thus, in the context of the book the
operator has a dual purpose. It indicates the mathematical operation of differentiation
as well as it indicates the algorithm used to obtain the required quantity. It also
denotes that, in the process of derivation, the AD procedure has been called. The
mathematical formalisms that are part of the traditional FE formulation such as partial
derivatives BE:;’ total derivatives DE:;’ directional derivatives, consistent derivatives
etc., can all be represented by the AD procedure. However, the result of an AD
procedure might not automatically correspond to any of the above mathematical
formalisms. Thus, there exists a need for an extended functionality of the traditional
AD procedure as well as a need for an extended notation that would correspond to an
extended functionality. This extended functionally can be provided by introducing
additional information used within the process of automatic differentiation. It thus
defines exceptions within the AD procedure.

Let b be a set of mutually independent intermediate variables that are part of the
evaluation of a function f. f, is a set of arbitrary functions of a such that b := f;,(a),
and M is an arbitrary matrix. AD exceptions are then introduced by the following
formalism

O
8 ()| Db
Da

(2.6)
=M

where g(:) stands for the various forms of AD operators that will be introduced

later. Notation (2.6) indicates that during the AD procedure, the total derivatives of
an arbitrary set of mutually independent intermediate variables b with respect to
independent variables a are set to be equal to the matrix M. The AD exceptions can
be viewed as a bridge inside the chain-rule that goes directly from b to a.

Ina special case, M represents the actual total derivatives of b with respect to a.
Thus M = D b ‘however M can not be derived from the actual program code consid-
ered by the AD procedure. The matrix M has to be in this special case calculated by
an alternative computational procedure or imported as an input data of the problem.
The situation is indicated by the following formalism

8 (o)

5(0) Db Db

Q2.7)
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The formalism 22 D =D, D,b in (2.7) denotes that the actual total derivatives of b with

respect to a were obtained by an alternative procedure, stored in a matrix Dab and
used during the AD procedure.

When no AD exceptions are defined for any of the intermediate variables that
appear as part of evaluation of function f, then the computational derivative (2.5)
yields the same result as the partial derivative, thus

8 9
f@) _ @) (2.8)
Sa oa
The use of the proposed AD formalism instead of the standard partial derivative

formalism also indicates that the AD procedure is being used to obtain the result.
d(e)
a(e)
of the specific computational procedure is proposed.

If the computer program that defines the function is relatively simple, the AD
can be applied at the global level of the program. More often, the computer pro-
gram is complex (e.g. finite element environment) with some parts available only
as compiled libraries and thus unavailable for automatic differentiation. In that case
the AD can still be applied at the level of particular subroutines (e.g. finite element
subroutines). When the AD procedure is used within the subroutine then the AD
procedure recognizes only dependencies that appear explicitly within the derived
subroutine. Thus, all the input parameters of the subroutine are automatically con-
sidered as independent variables with all derivatives set to zero. Any dependency
of the input parameters of the subroutines has to be explicitly introduced as an AD
exception.

For further derivations it is important to note that in the backward mode of auto-
5]2(3) + 5]‘2(3)

a

formalism wherever the automation

us, the = orma ISInISllSC mstead o (]
Thus, th ‘SE';f li dinstead of th

matic differentiation the expression can result in a code that is twice as
large as and twice times slower than the code produced by the equivalent expression
M . In general, the proposed automation procedure would be optimal if the
number of AD calls is kept to a minimum.

The additional information introduced by the AD exception (2.6) is associated
with the intermediate variables b. The point in the algorithm where this additional
information is introduced is important as well. Two typical situations are consid-
ered. The simplest case is when additional information is introduced together with
a particular call of AD procedure. This situation is referred to as “local definition of
AD exception”. In the case of complex computational models that involve a large
number of differentiations and several types of variables for which AD exceptions
have to be specified, local definition of AD exception becomes cumbersome. The
information about all AD exceptions relevant for the intermediate variables b can
also be introduced at the point in algorithm where b is introduced. The situation is
referred to as “global definition of AD exceptions”.
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2.4.3 Local Definition of AD Exceptions
The local definition of an AD exception is provided by

_ /@ b@)

Sa Db
Da=M

Vfa (2.9)

Notation (2.9) indicates that during the AD procedure, the total derivatives of inter-
mediate variables b with respect to independent variables a are set to be equal to
matrix M. The use of AD exception (2.9) can be beneficial also when M = % and
explicit algorithmic dependency of b with respect to a exists. Thus, in principle the
required total derivatives can be obtained automatically by the AD procedure using
the chain-rule. This is often the case when there exists a profound mathematical
relationship that enables the evaluation of total derivatives g—'; in a more efficient
way (e.g. when the evaluation of b involves iterative loops, inverse matrices, etc.).
Several special cases and generalizations of (2.9) can also be introduced. The first
special case is when the intermediate variables b algorithmically depend on a but
have to be considered constant during the AD procedure. In this case, the direct use
of AD would not give the correct result without intervention of the user. The correct

results can be obtained by setting the matrix M in (2.9) to zero as follows

_ $f@.b@)

da

_ 3f@.ba@)

Db éa
Da ="

Vs (2.10)

b=const.

Situation (2.10) frequently appears in the formulation of mechanical problems where,
instead of the total variation, some arbitrary variation of a given quantity has to be
evaluated.

The second special case of (2.9) appears when intermediate variables b algo-
rithmically do not depend on a, however from the mathematical formulation of the
problem it is apparent that some additional (usually implicit) dependencies have to
be considered for the differentiation leading to

Sf(a,b
Vic= —f(;’ ) : 2.11)
a Db
EZM

Exception (2.9) can also be generalized. Let ¢ be an additional set of intermediate
variables that appear during the evaluation of function f such that b := f;,(c) and let
f. be a set of arbitrary functions of a such that ¢ := f.(a). A bridge in the chain-rule
can now be formed that goes directly from b to ¢. The chain-rule from ¢ to a is
then propagated automatically by the AD procedure to complete the evaluation of
computational derivatives. The situation is described by the following formalism
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_ $f@be@)

Sa Db
De=M

Vb (2.12)

It is important for the uniqueness of AD procedure that % is zero in this case, thus
b depends explicitly only on ¢ and it does not depend directly on a.

2.4.4 Global Definition of AD Exceptions

AD exceptions (2.9)—(2.12) are imposed during the execution of the particular call of
the AD procedure to which they are attached. The global definition of AD exceptions
relevant for the intermediate variables b appears at the point in the algorithm where
b is introduced and is indicated by the following formalism

M(a)

8f@b
Vs = f(aga(a))

b=f,(a)|pb
Da= 2.13)

The global definition of the AD exception (2.13) is equivalent to the local definition
of the AD exception (2.9) except that the AD exception (2.13) is defined globally,
thus valid for every subsequent call of the AD procedure while (2.9) applies only
for the specific call of the AD procedure. The formalism (2.13) does not change the
value of the variables b. However, the definition (2.13) forces the AD procedure to
ignore all dependencies of b as defined by function f;, and specifies that during all
subsequent calls of the AD procedure the total derivatives of variables b with respect
to a are set to be equal to matrix M.

As for the local definition of AD exceptions, there also exist special cases and
generalizations for the global definition of AD exceptions. In Table2.1 the various
types of local definitions of AD exceptions introduced in previous sections are sum-
marized and accompanied by the corresponding global definitions. The letters A to
D that identify the specific types that are introduced for later use.

Obviously, multiple definitions of AD exceptions for the same variables can clash.
For example, it is possible to define first a global AD exception (2.13) and later, at the
actual call of the AD procedure, additionally a local AD exception (2.9). When local
and global exceptions clash, the local definition of an AD exception takes precedence
over the global definition of an AD exception for the same variable.

2.4.5 Differentiation with Respect to Variables with an Index

If f(a) is an explicit function of all components of a then the physical size of

a,g;a) depends on the number of independent

the generated code for a derivative
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Table 2.1 Typical automatic differentiation exceptions

Type Local definition of AD Global definition of AD
exception exception
A 5 b= fy(a
Vs af(z},h(a)) ’ oh b( A)I%:M(a)
DaM iy = Sf(a:b(a))
B 5f b= fy(a
VfB = W b=const h( )Igb
Vg = Sf(a h(a))
C b = f;| pp
Vie=UEh| Ze=m
BaM 5@
Ve =R
D V/p = 37, b(c(a))) ‘77 c="f.(a)

=M | b=1f,()lpb_

. Dc
Vfp = 5.1‘(3,13’2(‘6(3)))

variables. This can again lead to swell of expressions and is not acceptable for larger
numbers of independent variables. Thus, explicit code for all terms of the gradient
can be generated only if the number of independent variables is small. The size of
the generated code can be reduced by an introduction of representative formulas. A
representative formula is one general formula, that can be used for the evaluation
of several other formulas. It is a formula with an index. If the index represents
a loop counter then the representative formula can be evaluated within the loop
several times in succession. The concept is of course well known and often used
in mechanics to reduce the complexity of derivations. It is here extended to the
automatic differentiation procedure. The generation of a representative formula is
indicated by the following formalism

§f(a)

da,

(2.14)

f (@)

The operator == represents differentiation of the function f (a) with respect to the

mth element of the vector of the independent variables a performed by an automatic
differentiation algorithm. The result is an algorithm that, when evaluated in a loop
with the loop counter m, yields the elements of the gradient vector V, f.

2.5 Automatic Code Generation with AceGen

2.5.1 Hybrid Symbolic-Numerical System AceGen

The idea implemented in AceGen is not to try to combine different tools, but to com-
bine different techniques inside one system in order to avoid the above mentioned



46 2 Automation of Research in Computational Modeling

problems. Thus, the main objective is to combine techniques in such a way that will
lead to an optimal environment for the design and coding of numerical subroutines.
Among the presented systems the most versatile are indeed the SAC systems. They
normally contain, besides algebraic manipulation, graphics and numerical capabili-
ties, also powerful programming languages. It is therefore quite easy to simulate other
techniques inside the SAC system. The approach of automatic code generation used
in AceGen is called Simultaneous Stochastic Simplification of numerical code (Korelc
1997a). This approach combines the general computer algebra system Mathematica
with an automatic differentiation technique and an automatic theorem proving by
examples. To alleviate the problem of the growth of expressions and redundant cal-
culations, simultaneous simplification of symbolic expressions is used. Stochastic
evaluation of the formulae is applied for determining the equivalence of algebraic
expressions, instead of the conventional pattern matching technique. AceGen was
designed to approach especially to hard problems, where the general strategy for an
efficient formulation of numerical procedures, such as analytical sensitivity analysis
of complex multi-field problems, has not yet been established.

The structure of AceGen is presented in Fig.2.1. General characteristics of the
AceGen code generator are:

AceGen code generator

Symbolic derivation of the model

Expression Introduction of Automatic
optimization intermediate variables differentiation

*—I

Automatic code generation

Environment interface
~ data interface

~ tasks interpreter
~ general numerical
subroutines

»~ FORTRAN
~ Mathematica script
~ Matlab script

Numerical user subroutines

(C/C++/C#( (Mathematica( (FORTRAN(( Matlab (
I I |

| ELFEN | | |Matlab FE |
v _AceFEM v v
CDriver | | MDriver || |ABAQUS| [ FEAP |

Numerical FEM environment

Fig. 2.1 Hybrid symbolic-numeric approach to automation of the finite element method
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. simultaneous optimization of expressions immediately after they have been

derived,

. automatic differentiation technique,

. automatic selection of the appropriate intermediate variables,

. generation of the whole program structure,

. appropriate for large problems where also intermediate expressions can be sub-

jected to the uncontrolled swell,

. global expression optimization with stochastic evaluation of expressions,
. differentiation with respect to indexed variables,
. automatic interface to other numerical environments (by using the Splice com-

mand of Mathematica),

. multi-language code generation (FORTRAN/FORTRAN9OQ, C/C++/C#, Mathemat-

ica language, Matlab language),
advanced methods for exploring and debugging of generated formulas,
system is written in the symbolic language of Mathematica.

2.5.2 Typical AceGen Automatic Code Generation Procedure

A simple example is considered here to illustrate the standard AceGen procedure.
It is a subroutine that returns the determinant of the Jacobi matrix of a nonlinear
transformation from the reference to initial configuration for quadrilateral element
topology (for details see Sect.4.2.1). The syntax of the AceGen script language is
the same as the syntax of the Mathematica script language with some additional
functions. A short description of the AceGen syntax is given in Appendix A while
the detailed description can be found in Korelc (2011). The input for AceGen that
produces the required subroutine is as follows

<<AceGen";

SMSInitialize["DetJSub", "Language"->"C"];

SMSModule ["DetJ",Real [X$$5[2,4],k$S,e$5,d95%] ]
{€,n}rSMSReal [ {k$S, e85} ];
{Xc,Yc}rTable [SMSReal [X$S$[1i,3]],{1i,2},{3.4}];
Nhe{(1-§) (1-0), (1+&) (1-n), (1+&) (1+n), (1-&) (1+n)}/4;
JgeSMSD [ {Nh.Xc,Nh.Yc}, {&,n}];
SMSExport [Det [Jg] ,J$S] ;
SMSWrite["LocalAuxiliaryVariables"—>True];

(2.15)

This input can be divided into six characteristic steps:

Step 1: Initialization

<<AceGen";
SMSInitialize["DetJSub", "Language"->"C"];
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

2 Automation of Research in Computational Modeling

At the beginning of the session the SMSInitialize function initial-
izes the system and specifies the name of the generated source code file.
The additional option “*Language” ->“C" specifies that the subroutine is
generated in C language.

Definition of input and output parameters

SMSModule [ "Detd",Real [X$S$[2,4],kS$S,e$5,J9S8S8] ] ;

The sSMSModule function defines the name (DetJ) and input/output para-
meters of the subroutine. Input parameter X$$ is a 2 x 4 matrix of nodal
coordinates, k$$ and eS$$ are £ and 1 coordinates of the material point in
reference frame and Jg$$ is an output parameter of the subroutine. Double
$ character always indicates that the symbol is an input or output parameter
of the generated subroutine.

Definition of numeric-symbolic interface variables

{&,n)rSMSReal [ {k$$, eS8} ]
{Xc,Yc}rTable [SMSReal [X$8 (1,717, (1,2}, {3,4}];

The SMSReal function assigns random signature to input parameters k$$
and e$s. The - operator then creates new auxiliary variables & and 7. Sim-
ilarly, vectors of auxiliary variables Xc and Yc hold X and Y coordinates
of element nodes.

Derivation of the problem

Nhe{(1-&) (1-n), (1+&) (1-n), (1+&) (1+n), (1-€) (1+n)}/4;
JgeSMSD [ {Nh.Xc,Nh.Yc}, {&,n}];

During the description of the problem a special operator F is used that per-
forms global optimization of expressions and then creates new auxiliary
variables if AceGen finds out that the introduction of a new auxiliary vari-
able is necessary. The SMSD function performs the automatic differentiation
of one or several expressions with respect to one or a vector of auxiliary
variables by simultaneously enhancing the already derived code.
Exporting results to output parameters

’ SMSExport [Det [Jg],Jdg$$] ;

The results of the derivation are assigned to the output parameter Jg$$ of
the subroutine by SMSExport function.
Code generation

’ SMSWrite["LocalAuxiliaryVariables"—True] ;

At the end of the session the SMSWrite function writes the contents of
the vector of the generated formulas to file DetJSub. ¢ in a prescribed
language format.
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Due to the advantage of the simultaneous optimization procedure we can execute
each step separately and examine intermediate results. This is also the basic way how
to trace errors that might occur during the AceGen session. The generated source code
in C language is as follows.

[REF*kkkkkkkkkkkkkkkk G U B R O U T I N E *kkkkkkkkkkkkhkkhkkhkkkk/

void Detd (double X[2] [4],double (*k),double (*e),double (*Jg))
{

double v[36];
v[31]=(-1e0+ (*e) ) /4e0;
v[30]=(1e0+(*e)) /4e0;
v[29]=(-1e0- k))/4e0
v[28]=(-1e0+(*k)) /4e0;
(*J) = (v[31]* (X[0] [0] -X[0] [1])+v[30]* (X[0] [2]-X[0] [3]))* (v[29]* (X[1] [1]-
[1] [2])+v[28] * (X[1] [0]
X[1] [3]1)) - (v[29] * (X[0] [1] -X[0] [2])+v[28] * (X[0] [0]-X[0] [3]))* (v[31]*(X[1] [0]-
[1] [1])+v[30]*
(X[1] [2]-X[1]1 [31));

7

With the change of language option to “Language”->“Fortran” the fol-
lowing source code in FORTRAN language is generated.

!******************* S U B R O U T I N E *hkkhkkkkhkkkkhkhkhkkhkhkhkkhkhkhkkkkk
SUBROUTINE DetJ (X, k, e, Jg)
IMPLICIT NONE
include 'sms.h'
DOUBLE PRECISION v(36),X(2,4),k,e,Jg
v(31) =((-1d0) +e) /4d0

=(
v (30) =(1do+e) /4d0
v(29) =((-1d0) -k) /4d0
v (28) = ( (-1d0) +k) /4d0
J=(v(31)*(X(1,1) -X(1,2))+v(30) * (X(1,3) -X(1,4))) * (v(29) * (X(2,2)
&-X(2,3))+v(28)*(X(2,1)-X(2,4))) - (v(29) * (X(1,2) -X(1,3) ) +v(28) * (X
&(1,1)-X(1,4)))* (v(31)*(X(2,1)-X(2,2))+v(30) * (X(2,3) -X(2,4)))

END

2.5.3 Simultaneous Simplification Procedure

During the description of the problem the special operator F was used to perform
the simultaneous optimization of expressions and the creation of new intermediate
variables.

A typical AceGen function takes the expression provided by the user, either inter-
actively or from a file, and returns an optimized version of the expression. Optimized
version of the expression can result in a newly created auxiliary symbol (v;), or in an
original expression in parts replaced by previously created auxiliary symbols. In the
first case, AceGen stores the new expression in an internal database. The database
contains a global vector of all expressions, information about dependencies of the
symbols, labels and names of the symbols, partial derivatives, etc. The database is a
global object that maintains information during the AceGen session.
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vector of 7 new auxiliary variables
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result is simplified matrix
expressed with new auxiliary variables

Fig. 2.2 Simultaneous simplification procedure

The classical way of optimizing expressions in a computer algebra systems is
searching for common sub-expressions at the end of the derivation, before the gener-
ation of the numerical code. In the numerical code common sub-expressions appear
as auxiliary variables. An alternative approach is implemented in AceGen where
formulas are optimized, simplified and replaced by the auxiliary variables simulta-
neously with the derivation of the problem. The optimized version is then used in
further operations (Fig.2.2). When the optimization is performed simultaneously,
the explicit form of an expression is obviously lost, since some parts are replaced by
intermediate variables.

Inreal problems itis almost impossible to recognize the identity of two expressions
(for example the symmetry of the tangent stiffness matrix in nonlinear mechanical
problems) automatically using only the pattern matching mechanisms. Normally
our goal is to recognize the identity automatically without introducing additional
knowledge into the derivation such as tensor algebra, matrix transformations, etc.
Commands in Mathematica such as Simplify, Together, and Expand, are
useless in the case of large expressions. Additionally, these commands are efficient
only when the whole expression is considered. When optimization is performed
simultaneously, the explicit form of the expression is lost. The only possible way at
this stage of computer technology seems to be an algorithm which finds equivalence
of expressions numerically. This relatively old idea (see for example Martin 1971 or
Gonnet 1986) is rarely used, although it is essential for dealing with especially hard
problems. However, to show identity numerically is not a mathematically rigorous
proof for the identity of two expressions. Thus the correctness of the simplification
can be determined only within a certain degree of probability. With regard to our
experience the proof of numerical identity of expressions is sufficient in mechanical
analysis when dealing with more or less “smooth” functions.



2.5 Automatic Code Generation with AceGen 51

2.5.4 Efficiency and Limitations of Automation
of Computational Modeling

Animportant question arises: how to understand and analyze automatically generated
formulas? The automatically generated codes should not act like a “black box”. For
example, after using the automatic differentiation tools we have no insight in the
actual structure of the derivatives. One might argue that this is not needed, however
if the finite element codes are to be derived with an efficiency comparable with the
manually written codes then an efficient debugging procedure becomes a necessity.
The standard way in which Mathematica works is to evaluate a single expression
completely, which then can be analyzed and printed in a required format. If the
problem is complex with potentially hundreds of expressions and it includes loops
and branching, then more sophisticated procedures for the analysis and interactive
run time debugging are required. Additionally, when optimization of the derived
numerical code is performed simultaneously with the derivation of formulas, the
explicit form of the expressions is lost.

The automatically generated finite element subroutines are difficult to analyze and
to understand directly. Thus, itis in general difficult to debug the generated subroutine
after it is included into the commercial finite element environment. For an efficient
interactive debugging it is important where the debugging actually takes place. The
Mathematicabased high-level symbolic interface standard for inter-program commu-
nication called MathLink allows to run external programs under whatever debugger
is provided for a particular compiler. However, this approach is not applicable for
automatically generated codes, since the structure of the automatically generated
codes is rather “unreadable”, hence difficult to be debugged directly. The approach
where the generated code is not debugged directly but where the programmer can
look at the analytical expressions and their current numerical values when using
the symbolic environment is essential for the debugging of automatically generated
codes.

2.6 Automatic Differentiation and Finite Element Method

The AD tools were primarily developed for the evaluation of the gradient of an
objective function used within gradient-based optimization procedures. In general,
the objective function can be defined by a program composed of many subroutines
including a complete FE environment. Thus, one can apply the AD tools directly to
the complete FE environment to obtain the required derivatives when the evaluation of
the objective function involves FE simulation. The AD tools have been successfully
applied to FE environments with several 100,000 lines of code; see e.g. Bischof et al.
(2003).

A large finite element environment usually employs a variety of finite elements,
solution procedures. Commonly commercial numerical libraries are used within such
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system for which the source codes are not readily available. For these finite element
environments it is difficult to directly apply the AD tools to get e.g. the global stiffness
matrix of a large-scale problem. However, the AD technology can still be used for
the evaluation of specific quantities that appear as a part of the FE simulation. For
example, one can use AD at the individual element level to evaluate element specific
quantities such as:

strain and stress tensors,

nonlinear coordinate transformations,
residual vectors,

consistent tangent stiffness matrices and
sensitivity pseudo-load vectors.

A direct use of automatic differentiation tools for the development of nonlinear
finite elements turns out to be complex and not straightforward. Furthermore the
numerical efficiency of the resulting codes is poor. One solution, followed mostly
in hybrid object-oriented systems, is to use problem specific solutions to evaluate
local tangent matrix in a optimal way, see. e.g. Kirby et al. (2005). Another solution,
pursued in hybrid symbolic-numeric systems, is to combine a general computer
algebra system and the AD technology, see e.g. Korelc (2002).

An implementation of the AD procedure has to fulfill specific requirements in
order to obtain element source code that is as efficient as manually written codes.
Some basic requirements are:

e The AD procedure can be initiated at any time and at any point of the derivation of
the formulas and as many times as required (e.g. in the example at the end the AD
is used 13 times during the generation of an element subroutine). The recursive
use of standard AD tools on the same code, if allowed at all, leads to numerically
inefficient source code. This requirement limits the use of standard AD tools. An
alternative approach is implemented in Korelc (2002) where the source-to-source
transformation strategy is replaced by a method that consistently enhances the
existing code rather than producing a new one.

e The storage of the intermediate variables is not a limitation when the backward
differentiation method is employed at single element level. Finite element formu-
lations at the single element level involve a relatively small set of independent and
intermediate variables.

e Forreasons of efficiency, the results of all previous uses of AD have to be accounted
for when automatic differentiation is applied several times inside the same sub-
routine.

e The user has to be able to use all capabilities of the symbolic system on the final
and the intermediate results of the AD procedure.

e The AD procedure must offer a mechanism for the descriptions of various math-
ematical formalisms applied within a finite element formulation.

In implicit methods, the bulk of computational time is spent on performing differ-
entiations, thus the efficiency of the automation of differentiation is most important.
Two effects that have to be considered:
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e the number of recursive uses of differentiation within the derivation of the same
subroutine and
e the approach employed to perform differentiation.

As presented in Sect.2.4 there are two approaches for the implementation of the
automatic differentiation of a computer program, the forward and the backward
mode of automatic differentiation. The numerical efficiency of the differentiation of
N scalar-valued functions with respect to M independent variables can be measured
by the numerical work ratio (2.4). The ratio is in general proportional to the number
of independent variables in the case of forward mode and proportional to the number
of functions in the case of backward mode (see also Sect.2.4). For the efficient
automation of the FE method, it is desirable that both approaches are available and
that the software tool used for automation can automatically select the most efficient
approach according to the estimated work ratio, though the backward mode would
be preferable in most of the cases.

Contrary to the classical implementation of automatic differentiation where the
AD works as a code-to-code translator, the implementation in AceGen enhances the
currently derived code. However, the result of repeated use of AD within the same
subroutine is that the simultaneous code optimization procedures become less and
less efficient. To summarize, the automatically generated code would be numerically
efficient if the number of functions to differentiate and the number of calls to the
AD procedure is kept at minimum. One consequence of the rule is that in general
formulations where the element residual vector is derived as the gradient of a scalar
function, e.g. variational potential, leads to a more efficient numerical code than for-
mulations based on the weak form of the equilibrium equations where the variation
of the kinematic quantities e.g. strains tensor or tangential gap vector requires differ-
entiation of several scalar functions. Thus, the possibility of transforming the weak
form into the “pseudo-potential” scalar function is always worth to explore. The
pseudo-potential has to be formed in a way that the automatic differentiation proce-
dure of the pseudo-potential accompanied with the proper automatic differentiation
exceptions leads to the correct equations of the problem.

The book demonstrates by means of several examples direct consequences of
using automatic differentiation exceptions. It will show how the mechanical prob-
lem and its corresponding numerical model are formulated and solved. The ADB
form of the problem description is rather straightforward for e.g. total-Lagrangian
displacement-based finite element formulation of hyperelastic problems. However,
it can be nontrivial for e.g. spatial formulation of finite strain elasto-plastic finite
elements.

2.6.1 ADB Form of General Potential Form

Assume that the solution of a problem is defined as the minimum of the potential
p) = fQ W(p)ds2 wherep ={p1,p2,..., p,,,p}T is a set of unknown parame-
ters of the problem. The variation of I7(p) is computed as



54 2 Automation of Research in Computational Modeling

or1 oW
sr(p) = 2@, =/ ® 42sp=0 (2.16)
ap ap
where §p = {dp1,dp2, ..., 8p,,m}T is a variation of unknown parameters. Equation
(2.16) leads to a set of nonlinear algebraic equations of the form
oW
R:/ﬁd[Z:O. (2.17)
ap
2

The ADB form of the general problem with potential is obtained from (2.17) where
the partial derivative is directly replaced by the computational derivative

R:/‘mf(p) a2 = 0. (2.18)
sp

2

Furthermore, the individual element contribution R, to the global residual vector
R is in standard finite element formulations obtained by a numerical integration
rule—typically Gauss integration

l‘l”

R, ~ Z w,, R, (2.19)

g=1

where w,,, stands for the Gauss point weights, n, is the number of Gauss points
and R is the Gauss point contribution to the residual vector or Gauss point residual
given by

_Swp)
g = 5p

R (2.20)

The corresponding ADB form of the Gauss point contribution to the global tangent

matrix K is R
_ SR,
Sp.

K, 2.21)

A schematic AceGen input for the general potential form (2.20) and (2.21) is provided
by the following AceGen input segment

perSMSReal [Table [p$S$[i], {i,1,np}]];
WefW [pe] ;

Rg:eSMSD [W, pe] ;

KgeSMSD [Rg, pe] ;

(2.22)




2.6 Automatic Differentiation and Finite Element Method 55

2.6.2 ADB Form of General Weak Form

Assume the weak form [,a-8bd§2 +--- =0 where a and b are tensors of an
arbitrary order and &b is a directional derivative or variation of b. The symbolic
formulation of the weak form is not straightforward, since &b is not a real but rather
fictitious quantity and AD cannot be applied directly.? But AD can be applied directly
after the weak form is discretized. The variation of b is computed as

5b(p) = Db(p) sp = % 5p (2.23)
and the scalar product a(p) - 5b(p) as
a(p) - sb(p) = a(p) - %31) (() %) p. (2.24)
The product a(p) - a"(p) can also be written component wise
( ® - @) ap) - P _ ( ®’ 8"(")) (2.25)
P/ Opm Opm

by using the trace operator, see Appendix B.1.3 and B.1.5. The discretized weak
form is then given by

ntp

/a(p) -Sb(p)d2 + - -- / p 8b(p) 8pm+---=0 (2.26)
Q m=1

and leads to a set of n,, algebraic equations of the form

/ ® - ﬁd9+ 0. (2.27)

The ADB form of the discretized weak form is obtained from (2.27) where the partial
derivative is directly replaced by the computational derivative

P jo 4. =0 (2.28)

20f course, a general computer algebra system can be used for building the necessary apparatus
to deal with the virtual quantities in a traditional way and then automatic code generation can be
applied on the results. However, the elegance of using automatic differentiation would then be lost.
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The vector % in Eq.(2.28) has to be derived explicitly (all n;, components in
closed form) for the evaluation of the scalar product. This operation can lead to an
expression swell problem. Additionally, small differences in the actual form of the
derived expressions can disrupt the code optimization procedure. The form (2.28)
is also not optimal for the use of backward mode of AD since the cost of backward
AD depends linearly on the number of scalar functions to be differentiated. For the
present case, the numerical cost depends linearly on the number of components of
b. Thus, as mentioned before, the possibility of transforming the weak form into the
pseudo-potential scalar function is worth exploring. The pseudo-potential has to be
formed in a way that automatic differentiation of the pseudo-potential accompanied
by proper automatic differentiation exceptions leads to the correct set of discretized
equations of the problem. For the case (2.26) this can be achieved by introducing the
AD exception that hides the dependency a(p) from the AD procedure as follows

R= [ag 2P yg . — [ H0@DE)
2 op

A2+ =0. (229)

8 D
1Y D_::O
With the introduction of the pseudo-potential
W’ =a(p) - b(p) = tr(a(p)” b(p)) (2.30)

the final ADB form of the discretized weak form (2.26) is obtained as

Sy P
R:/(SWA (P)
p

A2+ =0, 2.31)

a=const.

2

Assuming that the integral is evaluated by a numerical integration rule as in the
previous section, the Gauss point contribution to the residual vector or Gauss point
residual leads to

Sb(p.)
R, =a(p.) - — (2.32)
ope
or when using the pseudo-potential form to
SW” (p,
R, = A (_p ) (2.33)
SPpe a=const.

The corresponding ADB form of Gauss point contribution to the global tangent
matrix K is for both cases given by

K, = —2. (2.34)
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The above procedure is valid for tensors of arbitrary rank. A schematic AceGen input
for the standard weak form (2.32) for the case when a and b are scalars is

perSMSReal [Table [p$$[i], {i,1,np}]1];

acfalpe];
befb(pe];
6beSMSD [b, pe] ;
Rgra Ob;
KgeSMSD [Rg, pe] ;
g [Rg, pe] (2.35)
in the case of rank-one tensors it can be written as
perSMSReal [Table [pS$S$[i], {i,1,np}]];
acfalpe];
befb(pe];
SbeSMSD [b, pe] ;
Rgra.db;
KgrSMSD[Rg, pe] ;
g [Rg, pe] (2.36)
and in the case of rank-two tensors (2.32) leads to
perSMSReal [Table[ps$S$[i], {i,1,np}]];
acfalpe];
befb[pe] ;
SbeTranspose [SMSD [b,pe], {2,3,1}];
RgrTable [Tr[a'éb[i]], {i,1,Length[pe]}];
KgeSMSD [Rg, pe] ;
g [Rg, pe] (2.37)

Note that in the case of rank-two tensors, the presented formulation requires only
one execution of the AD procedure.

Similarly, a schematic AceGen input for the pseudo-potential ADB form (2.33)
of the generalized weak form for the scalar product leads to?

perSMSReal [Table[ps$S$([i],{i,1,np}]];
arSMSFreeze [fa[pe]];

befb(pe];

WPra b;

RgESMSD [WP, pe, "Constant"—a] ;
KgrSMSD [Rg, pe] ;

(2.38)

3By using the SMSFreeze operator a new auxiliary variable is created that can be safely used as
independent variable within differentiation, see also Appendix A.2.2.
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for the rank-one tensors to

perSMSReal [Table [p$S$[i], {i,1,np}]];
arSMSFreeze [fa[pe]];

befb[pe] ;

WPEa .lb;

RgESMSD [WP, pe, "Constant"-a] ;
KgeSMSD [Rg, pe] ;

(2.39)

and in the case of rank-two tensors to

perSMSReal [Table[ps$S[i], {i,1,np}]];
arSMSFreeze[fa[pe]];

befb(pe];

WPETr[a'.b];

RgESMSD [WP, pe, "Constant"-a] ;
KgeSMSD [Rg, pe] ;

(2.40)

Note that in the case when b and a are scalars, the efficiency of the pseudo-potential
ADB form (2.33) is the same as efficiency of the standard ADB weak form (2.32).

2.6.3 Representative Formulas for Residual
and Tangent Matrix

If n, is the number element global degrees of freedom (DOF) then R, has n,, com-
ponents and K, has nf, components. The physical size of the automatically generated
code is consequently proportional to the square of the number of element DOF’s. This
can lead to a swell of expressions and is not acceptable for higher order elements.
Thus, an explicit code for all terms of the residual and tangent matrix, as presented in
Sect.2.6.1 for a general potential based formulations and in Sect.2.6.2 for a general
weak form formulations, can be generated only if the number of unknowns is small.
The size of the generated code can be reduced by the generation of representative
formulas as described in Sect.2.4.5.
The characteristic mth term of the Gauss point residual is given by

SW(p.
Rym = 2 (P.)
SPem

, (2.41)
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for the potential based form (2.20) and for the weak form (2.32) by

Rym = a(p) - ® _ (a(p)T Sb(p) ) (2.42)
Spem spem

and for the pseudo-potential form (2.33) by

_Swrp.)

Rym = —= (2.43)
8Pem

a=const.

The corresponding representative formula for the (m, n)"* term of the tangent matrix
at a Gauss point is for all cases given by

(2.44)

A schematic AceGen input where one representative formula is generated for
an arbitrary element of the residual and one representative formula for an arbitrary
element of the tangent matrix for the standard weak form (2.42) is presented in Box
2.1.

perSMSReal [Table[p$S$[i], {i,1,np}]];
WefW(pe] ;
SMSDo [m, 1,np]
RgmeSMSD [W, pe, m] ;
SMSExport [wgp Rgm,R$S$S[m], "AddIn"->True] ;
SMSDo [n, 1,np]
KgmneSMSD [Rgm, pe, n] ;
SMSExport [wgp Kgmn,KS$S$[m,n], "AddIn"->True] ;
SMSEndDo| | ;
SMSEndDo| | ;

Box 2.1. AceGen input for generation of representative formulas for a general

potential based ADB formulation

The AceGen command SMSD [W, pe, m] in Box 2.1 performs automatic differ-
entiation of the potential W with respect to the mth element of the set of unknowns p,.
The resulting representative formula is evaluated within the SMSDo [ ..., {m, 1, np}]
loop n, times. Since the successive evaluations override the results of the previ-
ous evaluations, the results have to be simultaneously stored or exported by the
SMSExport command into externally defined or allocated array ($SR). The same
is true for the inner loop that evaluates the elements of the tangent matrix.
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A similar schematic AceGen input is presented for the general weak ADB formu-

lation (2.42) in Box 2.2 and for the general pseudo-potential ADB formulation (2.43)
in Box 2.3.

perSMSReal [Table[p$S$[i], {i,1,np}]];
arfa[pe] ;brfb(pe];
SMSDo |
SlbmeSMSD [b, pe, m] ;
Switch[order
,"scalars",Rgmra Sbm ;
, "rank-one tensors",Rgmra.dbm;
,"rank-two tensors",RgmrTr[a’.sbm];
I
SMSExport [wgp Rgm,RS$S[m], "AddIn"->True] ;
SMSDo [
KgmneSMSD [Rgm, pe, m] ;
SMSExport [wgp Kgmn,K$S$S[m,n], "AddIn"->True] ;
’ {nlllnp}}
+{m,1,0p}];

Box 2.2. AceGen input for generation of representative formulas for a general
weak form ADB formulation

perSMSReal [Table [p$S$[i], {i,1,np}]];
arSMSFreeze [fa([pe] ] ;befb[pe] ;
Switch[order
,"scalars",WPra b;
, "rank-one tensors",WPra.lb;
,"rank-two tensors",WP:tTr[a'.lb];
1i
SMSDo [
RgmeSMSD [WP, pe, m, "Constant"-a] ;

SMSExport [wgp Rgm,RS$S[m], "AddIn"->True] ;
SMSDo [

KgmneSMSD [Rgm, pe, n] ;
SMSExport [wgp Kgmn,K$S$S[m,n], "AddIn"->True] ;
12 {nlllnp}}

+{m,1,np}];

Box 2.3. AceGen input for generation of representative formulas for a general
pseudo-potential ADB formulation

Representative formulas for multi-field problems. The set of unknowns p, of
a finite element is commonly used to discretize more than one scalar field (e.g.
three displacements u, v and w). In that case the generation of one very general
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representative formula for an arbitrary element of the residual and tangent matrix
can lead to redundant numerical operations and consequently slower codes. The
solution of the problem is to split a set of independent variables p, into a union
of disjoint subsets in a way that each subset discretizes only one scalar field. The
representative formulas are then generated for an arbitrary element of a particular
subset.

The kth subset of unknowns, denoted by p., is defined by

Pek CPer | JPek =Per Per [\ Per =0:Vk #1 (2.45)
k=1

where n; is the number of subsets. Letn ;. be the length of the kth subset of unknowns
Peks Pekm, the mth element of p,; and Iégmk arepresentative formula for an arbitrary
element of a subset of the residual R, that belongs to the subset of unknowns p,;. A
set of n; representative formulas for the evaluation of the residual is then given by

A T
_ } SW(p.
R =1g —We) (2.46)
g gmg

8(pekmk)

In the same way aset of ny x n, representative formulas is obtained for the evaluation
of the tangent matrix

_ _ SR,m
K, = | Ky = 7 k=1,....n, I =1,....n,|. (2.47)
8(peln,)

Consider an example where a set of unknowns is split into two subsets with the
lengths 7,1 and n,, as follows

Pe1={Pe1i,i=1’~“’”P1}T' (2.48)

Pe2 = {peZi’ i = 23""np2}T~

The set I_lg contains in this case two representative formulas and a matrix of repre-
sentative formulas for the evaluation of the tangent matrix Kg has dimension 2 x 2.
A schematic AceGen input for the evaluation of the residual and tangent matrix for
the general two subset case is given in Box 2.4.
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pel+rSMSReal [Table [p$S[i], {i,npl}]];
pe2+SMSReal [Table [p$S$ [npl+i], {i,np2}]];
WefW[pel,pe2];
SMSDo [ml,1,npl];
Rgm1leSMSD [W,pel, ml];
SMSExport [wgp Rgml,p$S[ml], "AddIn"->True] ;
SMSDo [nl,1,npl];
KgmlnleSMSD [Rgml,pel,nl];
SMSExport [wgp Kgmlnl,s$$[ml,nl], "AddIn"->True];
SMSEndDo| | ;
SMSDo [n2, 1,np2] ;
Kgmln2eSMSD [wgp Rgml,pe2,n2];
SMSExport [Kgmln2, s$$ [ml,npl+n2], "AddIn"->True] ;
SMSEndDo [ ] ;
SMSEndDo [ ] ;
SMSDo [m2, 1,np2] ;
Rgm2:SMSD [W, pe2,m2] ;
SMSExport [wgp Rgm2,p$$ [npl+m2], "AddIn"->True] ;
SMSDo [nl,1,npl];
Kgm2nleSMSD [Rgm2,pel,nl];
SMSExport [wgp Kgm2nl,s$$ [npl+m2,nl], "AddIn"->True] ;
SMSEndDo [ ] ;
SMSDo [n2,1,np2] ;
Kgm2n2E=SMSD [Rgm2, pe2,n2] ;
SMSExport [wgp Kgm2n2,s$$[npl+m2,npl+n2], "AddIn"->True] ;
SMSEndDo| | ;
SMSEndDo [ ] ;

Box 2.4. AceGen input for generation of representative formulas for a general

two-subsets case

The algorithm presented in in Box 2.4 contains 6 loops and is rather complex. The
algorithm can be significantly simplified in a special case when a set of unknowns
is divided into subsets of equal lengths, thus n,| =n,, = "7” A schematic AceGen
input for the evaluation of the residual and tangent matrix for the a two-subsets
case with the same length is given in Box 2.5. An example for the first case are
continuum elements based on mixed variational principles were unknowns can be
divided into two subsets: a subset of displacement degrees of freedom and a subset of
mixed modes. An example for the second case are isoparametric continuum elements
where subsets can be formed based on nodal degrees of freedom. An extensive study
how different implementations of the same element effect efficiency of the generated
code is presented in Chap. 4.
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nps=np/2;
pelrSMSReal [Table [pS$S[i], {i,nps}]];
pe2+SMSReal [Table [pS$S$ [nps+1], {i,nps}]];
WefW[pel,pe2] ;
SMSDo [m,1,np/2];
Rgmk{SMSD [W,pel, m],SMSD[W,pe2,m] };
SMSExport [wgp Rgm, {p$$[m],pS$s [nps+m] }, "AddIn"->True] ;
SMSDo [n,1,np/2];
Kgmne {SMSD [Rgm, pel,n], SMSD[Rgm,pel,n]}’;
SMSExport [wgp Kgmn, { {s$$[m,n],s$S$[m,nps+n]},
{s$S$ [nps+m,n],ss$S$ [nps+m,nps+n] }}, "AddIn"->True] ;
SMSEndDo [ ] ;
SMSEndDo| | ;

Box 2.5. AceGen input for generation of representative formulas for a two-

subsets case with the equal lengths

2.7 Automatic Generation of FE User Subroutines

The procedure described above and the code generated is not intended to be included
into a specific FE environment. FE environments that enable the use of user defined
finite elements usually require a strict form of a list of input and output parameters.
AceGen can automatically generate the list of input and output parameters.

The standard procedure to generate finite element source code using AceGen is
comprised of four major phases:

1. AceGen initialization,
2. template initialization,
3. definition of standard user subroutines,
The definition of each user subroutine consists of several steps:

(a) declaration of a standard user subroutine,

(b) definition of numeric-symbolic interface variables,
(c) derivation of the problem,

(d) exporting results to output parameters.

4. code generation.

The specific AceGen input can be divided into six characteristic steps. As an
example, the AceGen input that generates three-dimensional, 8 noded, isoparametric,
hyperelastic solid element is presented here. Only the structure of the AceGen input is
explained, while the theoretical background will be given later in Chap. 4. Here only
the most common and basic features and data structures are depicted. More extensive
information about the interactions between the AceGen code generator and the target
FE environment is given in Appendix A.2.4.
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Step 1:

Step 2:
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AceGen initialization

<<AceGen";

SMSInitialize["Hlelement", "Environment"->"AceFEM"] ;

At the beginning of the session the SMSInitialize function initializes
the system and specifies the name of the generated source code file. The
additional option “Environment”->“AceFEM” specifies the finite
element environment for which the element source code will be generated.
The AceFEM finite element environment is chosen in this case. Addition-
ally to the AceFEM environment one can also specify e.g. the research
code FEAP or the commercial code ABAQUS.

Template initialization

SMSTemplate |

"SMSTopology"—"H1"

, "SMSDomainDataNames"—

{"E -elastic modulus","v -poisson ratio",..}
, "SMSDefaultData"->{21000,0.3,..}
, "SMSSymmetricTangent "->True
I

nen=SMSNoNodes ; ndim=SMSNoDimensions;
np=SMSNoDOFGlobal ;

The SMSTemplate function initializes constants that are needed to create
a proper interface between the generated user subroutines and the finite
element environment. Typically, a minimum of four constants has to be
specified:

“SMSTopology” constant specifies a keyword that defines the element
topology. For example the “H1” keyword defines a three-dimensional, 8
noded, hexahedral element with 3 degrees of freedom per node. Setting
the topology constant also sets other constants that directly depend
on topology, e.g. the number of nodes (* SMSNoNodes "), the spatial
dimension (*SMSNoDimensions”), etc. Their values are available
after the SMSTemplate command and they can be used to make the
AceGen input more general and problem independent.

“SMSDomainDataNames” constant specifies a list of keywords that
characterize the material constants. Material constants appear as an
input data for finite element simulation.

“SMSDefaultData” constant specifies default (most common) val-
ues of the material constants.

“SMSSymmetricTangent” constant specifies whether the tangent
matrix is symmetric or not. Only the upper triangular matrix has to be
explicitly formed when the tangent matrix is symmetric.*

“This option also effects the selection of the algorithm applied to solve the resulting system of linear
equations when AceFEM is used.
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Step 3.a:

Step 3.b:

Declaration of standard user subroutine

SMSStandardModule [ "Tangent and residual"];

While the SMSModule command used in Sect.2.5.2 starts the definition
of auser subroutine with a user supplied set of input/output parameters, the
SMSStandardModule command starts the definition of the subroutine
with a predefined set of input/output parameters that is adjusted for the
needs of the specified finite element environment. A standard set of user
subroutines supported by AceGen is:

“Tangent and residual” standard user subroutine returns the tangent
matrix (stored in variable s$$ with dimensions (n, + ne) x (n, +
n.;)) and the residual or internal load vector (stored in variable p$$
with dimension n,, 4+ n.;,) for the current state of element related data.

“Postprocessing’”” user subroutine returns two arrays with an arbitrary
number of post-processing quantities as follows: gpost$$ is an array
of post-processing quantities at an integration point with dimensions
number of integration points Xxnumber of integration point quantities;
npostsS$s$ is an array of the nodal point quantities with dimensions
number of nodes x number of nodal point quantities.

“Sensitivity pseudo-load” user subroutine returns a matrix of pseudo-
load vectors (stored in the variable s$$ with dimensions ng x (n, +
ne,)) that is used in sensitivity analysis to calculate the sensitivity of
the global unknowns with respect to an arbitrary parameter.

“Dependent sensitivity” is a standard user subroutine that is employed
to calculate the sensitivity of locally coupled unknowns at element level.
Details about the sensitivity analysis are presented in Chap. 8.

Definition of numeric-symbolic interface variables

{Em, v}+-SMSReal [Table[es$S$["Data",1i],{i,2}]];

{A, u}eSMSHookeToLame [Em, V] ;
XIOrTable[SMSReal [nd$s$ (i, "X",j]1],{i,nen}, {j,ndim}];
uIO+SMSReal [Table[nds$$ (i, "at",j], {i,nen}, {j,ndim}]];
pe=Flatten[uIO];
SMSDo[Ig,1l,SMSInteger [es$S["id", "NoIntPoints"]]];
=={&,n,C}+Table[SMSReal [es$S$ [ "IntPoints",i,Ig]], {i,3}];
wgprSMSReal [es$S [ "IntPoints",4,Ig]];

The input parameters of the standard user subroutines allow access to all
data stored in the environment data base that relates to a specific element.
The most frequently used input data is:

nd$s[i, “X”, Jjl orXj,is jthcomponent of the initial coordinates
of the /th node,
nd$$[i, “at”,j]l or p;;isthe jthunknown at the /th element node,
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Step 3.c:

Step 3.d:
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esSS[“Data”,i] is the ith material constant (as previously defined
by “SMSDomainDataNames” constant),

es$S$[“IntPoints”,1,3J] is the ith coordinate of the jth Gauss
point,

esS$[“IntPoints”,4,j] is the Gauss point weight at the jth
Gauss point,

ess$s[“id”, "NoIntPoints”] is the number of Gauss points.

Derivation of the problem

=n={{-1,-1,-1},{1,-1,-1},{1,1,-1},{-1,1,-1},{-1,-1,1},
{1,-1,1},{1,1,1},{-1,1,1}};

NheTable[1/8 (1+§ Enf[i,1]) (1+n =n[i,2]) (1+Z =n[i,3]),
{i,1,nen}];

XFSMSFreeze [Nh.XIO] ;ueNh.uIO;JerSMSD[X, =] ;JedrDet [Je] ;

HESMSD [u, X, "Dependency"—{=, X, SMSInverse [Je] }];

FrIdentityMatrix[3]+H;CerF'.F;JFeDet [F];

Wel/2 A (JF-1) "2+ (1/2 (Tr[Ce]-3)-Log[JF]) ;

RgrJed SMSD[W,pe] ;

KgeSMSD [Rg, pe] ;

In this part, the shape functions are defined, the steps (computation of dis-
placement gradient, deformation gradient and right Cauchy—Green strain
tensor) are followed to formulate the potential form W. Furthermore the
residual vector and the tangent matrix are computed. Details and theoret-
ical background will be described later in Chap. 4.

Exporting results to output parameters

SMSExport [wgp Rg,p$S$, "AddIn"->True] ;
SMSExport [wgp Table[Kg[i,j], {i,1,np},{],i,np}],

Table[s$$[i,3],{1i,1,np},{],1i,np}], "AddIn">True];
SMSEndDo [ ] ;

The results of the derivation are assigned to the output parameters s$$
and ps$ of the “Tangent and residual” standard user subroutine by
the SMSExport function. Here the symmetry of the tangent matrix is
accounted for by exporting only the upper triangle matrix.

Steps 3.a-3.d: Definition of second user subroutines Steps 3.a—3.d can be repeated

Step 4:

several times for the definition of all required user subroutines.
Code generation

SMSWrite(];

Atthe end of the session the SMSWr i te function writes the generated for-
mulas together with the code that is related to the interface of the chosen
finite element environment. This output is written to a file in the program-
ming language of the target finite element environment.
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