
Chapter 2
Robust Signed-Rank Variable Selection
in Linear Regression

Asheber Abebe and Huybrechts F. Bindele

Abstract The growing need for dealing with big data has made it necessary
to find computationally efficient methods for identifying important factors to be
considered in statistical modeling. In the linear model, the Lasso is an effective way
of selecting variables using penalized regression. It has spawned substantial research
in the area of variable selection for models that depend on a linear combination of
predictors. However, work addressing the lack of optimality of variable selection
when the model errors are not Gaussian and/or when the data contain gross outliers
is scarce. We propose the weighted signed-rank Lasso as a robust and efficient
alternative to least absolute deviations and least squares Lasso. The approach is
appealing for use with big data since one can use data augmentation to perform the
estimation as a single weighted L1 optimization problem. Selection and estimation
consistency are theoretically established and evaluated via simulation studies. The
results confirm the optimality of the rank-based approach for data with heavy-tailed
and contaminated errors or data containing high-leverage points.

Keywords Adaptive Lasso • Wilcoxon estimation • Oracle property • Penalized
least squares • LAD regression

2.1 Introduction

The growing need for dealing with ‘big data’ has made it necessary to find ways
of determining the few important factors to consider in the statistical modeling. In
the linear and generalized linear models, this translates to identifying the covariates
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that are most needed in the prediction of the outcome. In this regard, the Lasso
method introduced in Tibshirani (1996) has garnered significant attention in the
past two decades. The Lasso method takes advantage of the singularity of the L1

penalty to effectively select variables via the penalized least squares procedure. This
work has been refined and extended in various directions. See, for example, Fan
and Li (2001), Zou and Hastie (2005), Zou (2006), Wang and Leng (2008), and
references therein. Much of the focus has been in establishing the so-called “Oracle”
property Fan and Li (2001) that consists of selection consistency and estimation
efficiency. These are both asymptotic properties where selection consistency refers
to ones ability to correctly identify the zero regression coefficients while estimation
efficiency refers to ones ability to provide a

p
n-consistent estimator of the non-zero

coefficients.
However, there are not too many results that address the lack of optimality of

these variable selection procedures when the model errors are not Gaussian and/or
when the data contain gross outliers. An approach based on penalized Jaeckel-type
rank-regression was discussed in Johnson and Peng (2008), Johnson et al. (2008),
Johnson (2009), Leng (2010) and Xu et al. (2010). The computation is complicated
and, as in unpenalized rank-regression, the approach used in these papers will only
result in robustness in the response space. For variable selection, however, getting
a handle on leverage is crucial. One paper that discussed this issue and tried to
address the influence of high leverage points is Wang and Li (2009), where they
considered penalized weighted Wilcoxon estimation. Our proposed approach based
on minimization of a penalized weighted signed-rank norm is much simpler to
compute and provides protection against outliers and high-leverage points. It also
allows one flexibility through choice of score generating functions. One limitation
of our proposed approach is that it requires symmetry of the error density. In this
case, the estimates are equivalent to Jaeckel-type rank-regression estimates.

Consider the linear regression model given by

yi D x0
iˇ0 C ei; 1 � i � n; (2.1)

where ˇ0 2 B � R
d is a vector of parameters, xi is a vector of independent

variables in a vector space X, and the errors ei are assumed to be i.i.d. with a
distribution function F. Let Vn D f.y1; x1/; : : : ; .yn; xn/g be the set of sample data
points. Note that Vn � V � R � X. We shall assume that B is a compact subspace
of Rd, ˇ0 is an interior point of B.

Rank-based approaches have been shown to possess a high breakdown property
resulting on robust and efficient estimators. The rank-based approach considered in
this paper is based on the so-called the weighted signed-rank (WSR) norm proposed
in Bindele and Abebe (2012) for estimation of coefficients of general nonlinear
models. Here we consider WSR with added penalty for simultaneous estimation
and variable selection in linear models. That is, we obtained an estimator Ǒ

n of ˇ0

satisfying

Ǒ
n D Argmin

ˇ2B
Q.ˇ/; (2.2)
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where Q.ˇ/ is a penalized WSR objective function

Q.ˇ/ D Dn.Vn; w; ˇ/ C n
dX

jD1

P�j.jˇjj/: (2.3)

and Dn.Vn; w; ˇ/ is the WSR dispersion function defined by

Dn.Vn; w; ˇ/ D
nX

iD1

w.xi/an.i/jz.ˇ/j.i/: (2.4)

Here zi.ˇ/ D yi � x0
iˇ, jz.ˇ/j.i/ is the ith ordered value among jz1.ˇ/j; : : : ; jzn.ˇ/j,

and the numbers an.i/ are scores generated as an.i/ D 'C.i=.n C 1//, for some
bounded and non-decreasing score function 'C W .0; 1/ ! R

C that has at most a
finite number of discontinuities. The function w W X ! R

C is a continuous weight
function. The penalty function P�j.�/ is defined on R

C. When the penalty function
is the Lasso penalty Tibshirani (1996) P�j.jtj/ D �jtj for all j, we will refer to
the resulting estimator as the WSR-Lasso (WSR-L), and when the penalty function
is the adaptive Lasso Zou (2006) P�j.jtj/ D �jjtj, we will refer to the estimator
as WSR-Adaptive Lasso (WRS-AL) estimator. We should point out that for 'C �
1, the objective function in (2.3) reduces to the WLAD-Lasso discussed in Arslan
(2012). If additionally w � 1, then we obtain the LAD-lasso discussed in Wang et al.
(2007). While these LAD based estimators are easy to compute and provide robust
estimators, they lack efficiency especially when the error density at zero is small
(Hettmansperger and McKean 2011; Leng 2010). Note that, while not stressed in
our notation, Ǒ

n depends on the tuning parameter � D .�1; : : : ; �d/0.
Using the same idea in Wang et al. (2007), either under WSR-L or WSR-AL,

one can write Q.ˇ/ as

Q.ˇ/ D
nCdX

iD1

�ijz�
i .ˇ/j; (2.5)

where z�
i .ˇ/ D y�

i � x�0
i ˇ with

.y�
i ; x�

i /0 D
�

.yi; xi/
0; for 1 � i � n,

.0; n�iei/
0; for n C 1 � i � n C d.

(2.6)

and

�i D
(

w.xi/'
C

�
R.zi.ˇ//

nC1

�
; for i � n,

1; for i > n.
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Here ei is the d-dimensional vector with ith component equal to 1 and all the others
equal to 0. To this end, Eq. (2.5) can be seen as the weighted L1 objective function.
In Eq. (2.6) the WSR-L objective function is obtained by putting �i D � for all
i. To avoid any possible confusion, we will use Qw

` .�/ and Qw
a`.�/ for WSR-L and

WSR-AL objective functions, respectively.

Remark 2.1. Considering the unpenalized objective function Dn.Vn; w; ˇ/ defined
in Eq. (2.4), asymptotic properties (consistency and

p
n-asymptotic normality) of

the WSR estimator with w � 1 were established under mild regularity conditions in
Hössjer (1994). Considering the weighted case, analogous asymptotic results were
obtained by Bindele and Abebe (2012) for general nonlinear regression model.

2.2 Asymptotics

In this section, we provide the asymptotic properties of the WSR-AL estimator
defined in (2.2) under regularity conditions. Consider the following assumptions

.I1/ P
�
x0ˇ D x0ˇ0

�
< ˛ for all ˇ ¤ ˇ0, 0 < ˛ � 1, and EGŒjxjr� < 1 for some

r > 1, G being the distribution of x.
.I2/ The density f of " is symmetric about zero, strictly decreasing on R

C, and
absolutely continuous with finite Fisher information. Its derivative f 0 is bounded
and EF.j"jr/ < 1 for some r > 1.

These two assumptions ensure the strong consistency of Q̌
nD Argminˇ Dn.Vn; w; ˇ/.

2.2.1 Consistency and Asymptotic Normality

We shall assume that p0 � d of the true regression parameters are nonzero. Thus,
without loss of generality, we assume ˇ0j ¤ 0 for j � p0 and ˇ0j D 0 for j > p0.
Thus ˇ0 can be partitioned as ˇ0 D .ˇ0

0a; ˇ0
0b/0 with ˇ0b D 0. Also, Ǒ

n can be

similarly partitioned as Ǒ
n D . Ǒ 0

na; Ǒ 0
nb/0 with Ǒ

na D . Ǒ
n;1; : : : ; Ǒ

n;p0 /
0, and Ǒ

nb D
. Ǒ

n;p0C1; : : : ; Ǒ
n;d/0.

Following Johnson and Peng (2008), we define

H�j.jtj/sgn.t/ D d

dt
P�j.jtj/ and PH�j.jtj/sgn.t/ D d

dt
H�j.jtj/:

Also, under Eq. (2.5), taking the negative gradient with respect to ˇ, we obtain

S.ˇ/ D rˇQ.ˇ/ D
nCdX

iD1

�ixisgn.z�
i .ˇ// D Sn.ˇ/ C n

dX

jD1

H�j.jˇjj/sgn.ˇj/;
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where Sn.ˇ/ D �rˇDn.Vn; w; ˇ/. In addition to .I1/ � .I2/, we will need the
following assumption:

.I3/ Define an D max
1�j�p0

H�j.jtj/ and bn D min
j>p0

H�j.jtj/; 8 t fixed, and

assume that

.i/
p

nan ! 0 and
p

nbn ! 1 as n ! 1
.ii/ lim

n!1 inf
jtj�c=

p
n
f��1

n H�j.jtj/g > 0 for any c > 0.

Remark 2.2. Note that for the adaptive Lasso case where P�j.jtj/ D �jjtj, and in
assumption .I3/, an and bn are reduced to an D max

1�j�p0

�j and bn D min
p0C1�j�d

�j, as

H�j.jtj/ D �j. It is worth pointing out the Lasso penalty does not satisfy assumption
.I3/ which is not surprising as it is well-known that the Lasso estimator does not have
the oracle property, and .I3/ is key to ensuring the oracle property of the resulting
estimator.

Theorem 2.1. Under assumptions .I1/ � .I3/, Ǒ
n exists and is a

p
n-consistent

estimator of ˇ0.

The proof this theorem is provided in Appendix.
Next consider the following assumption commonly imposed in the framework of

signed-rank estimation, see Hössjer (1994) and Abebe et al. (2012):

.I4/ 'C 2 C2..0; 1/ n E/ with bounded derivatives, where E is a finite set of
discontinuities.

Following Hössjer (1994), set

�'CD
Z 1

0

�
'C.t/

�2
dt and �'CD

Z 1

0

'C.t/hF.t/dtD�
Z 1

�1
'C.F�1.u//f 0.u/du;

where hF.u/ D �f 0.F�1.u//=f .F�1.u//. As it is pointed out in Hössjer (1994), .I1/

and .I2/ imply that �'C > 0. Also, letting J denote the joint distribution of .y; x/

and by symmetry of f , one can define a corresponding symmetric distribution as
follows:

Hˇ.t/ D 1

2

�
PJ.zi.ˇ/ � t/ C PJ.�zi.ˇ/ � t/

�

D 1

2

�
EGfF.t/ C x� ˇg C EGfF.t � x� ˇ/g�: (2.7)

Now setting Fˇ;i.t/ D 1
2
EGfxiF.t C x� ˇ/g and �.ˇ/ D .�1.ˇ/; : : : ; �n.ˇ//� , where

�i.ˇ/ D 2

Z 1

�1
'C.Hˇ.t//dFˇ;i.t/;
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it is shown under .I1/ � .I3/ in Hössjer (1994) that Sn.ˇ/ � �.ˇ/ ! 0 a:s: as
n ! 1: Let W.x/ D diagfw1.x/; : : : ; wn.x/g and define the expected weighted
Gram matrix ˙ D EGŒx0W.x/x�. Now partition x as x D .xa; xb/, according to
nonzero and zero coefficients, and let ˙a denote the top left p0 � p0 sub-matrix
of ˙ . We will assume that ˙a is positive definite. The following main result gives
the asymptotic properties (oracle property) of the penalized WSR estimator given
in (2.2). Its proof is provided in Appendix.

Theorem 2.2. Under assumptions .I1/ to .I4/, we have lim
n!1 P. Ǒ

nb D 0/ D 1, and

p
n
� Ǒ

na � ˇ0a

� D�! N
�
0; ��2

'C�'C˙a
�
;

where ˙a is a p0 � p0 positive definite matrix.

Remark 2.3. From the two theorems above, .i/ and .ii/ in assumption .I3/ together
with .I1/, I2 and .I4/ are imposed to ensure the

p
n-consistency, the oracle property

and the
p

n-asymptotic normality of the proposed estimator. Note that although
Theorem 2.2 is similar to that of Johnson and Peng (2008), the definitions of an

and bn given here are more general and the assumptions needed for the asymptotic
normality of the gradient function Sn.ˇ/ are very different.

2.3 Some Practical Considerations

2.3.1 Estimation of the Tuning Parameter �

Another important issue in the estimation of ˇ0 in model (2.1), is the choice of the
�j’s in Eq. (2.3). As proposed by Johnson et al. (2008) � can be estimated as follows

O� D Argmin
�

Dn.Vn; w; Ǒ
n.�//=n

f1 � e.�/g2
; (2.8)

where e.�/ D tr
�
XfX0X C ˙

�; Ǒ
n.�/

g�1X0� and X is the n � d matrix with column
vectors xi and ˙

�; Ǒ
n.�/

a diagonal matrix with entries

H�j.j Ǒ
nj.�/j/sgn. Ǒ

nj.�//:

This cross validation procedure was considered by Johnson et al. (2008) and was
shown to have advantage over the least squares cross valuation criterion that is
obtained by replacing the numerator of the right hand side of Eq. (2.8) by the
least squares objective function. Note that although the idea similar, the objective
function Dn.Vn; w; ˇ/ considered in this paper is very different to the one considered
in Johnson et al. (2008). If we restrict ourselves to WSR-AL, another alternative to
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estimating � is to consider the AIC and BIC approaches discussed in Wang et al.
(2007) based on the considered objective function. That is, obtain O� as,

O� D Argmin
�

n
Qw

a`.
Q̌

n/ �
dX

jD1

log.n�j/
o

the for AIC approach; (2.9)

which leads to O�j D 1=.nj Q̌
njj/, and

O� D Argmin
�

n
Qw

a`.
Q̌

n/ �
dX

jD1

log.n�j/ log n
o

the for BIC approach, (2.10)

which leads to O�j D log n=.nj Q̌
njj/, where Q̌

n D Argmin
ˇ2B

Dn.Vn; w; ˇ/.

2.3.2 Choice of Weights

In our analysis, we choose the weight function w.x/ to be

w.x/ D min
h
1;

	

d.x/

i
;

where d.x/ D .x�x/0C�1
x .x�x/ is a robust Mahalanobis distance, with x and Cx

being robust estimates of location and covariance of x, respectively and 	 being
some positive constant usually set at 
2

0:95 in practice. Under this choice, it is shown
in Bindele and Abebe (2012) that the resulting estimator has a bounded influence
function.

2.3.3 Computational Algorithm

For computation purposes, the following steps can be followed:

1. Obtain the unpenalized (W)SR estimator Ǒ
'C .

2. Use Ǒ
'C .

• Estimate Ovi as vi. Ǒ
'C/.

• Use AIC/BIC in Eq. (2.9) or (2.10) with Q̌
n D Ǒ

'C to estimate �, say O�.

3. Form z�.ˇ; O�/ D y� � x�0
O� ˇ, where x�

O� is as defined in Eq. (2.6) with � D O�.
4. Find

Argmin
ˇ

nCdX

iD1

Ovijz�
i .ˇ; O�/j

using any weighted LAD software (e.g. quanteg, rfit in R).
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2.4 Simulation and Real Data Studies

To demonstrate the performance of our proposed method, several simulation
scenarios and a real data set are considered.

2.4.1 Low Dimensional Simulation

The setting for the low-dimensional simulation is taken from Tibshirani (1996). We
take a sample of size n D 50 where the number of predictor variables is d D 8 and
ˇ0 is set at ˇ0 D .3; 1:5; 0; 0; 2; 0; 0; 0/0. Thus p0 D 3. To study the effect of tail
thickness, contamination, and leverage, we considered three different scenarios:

Scenario 1: The vector of predictor variables x is generated as x � N8.0; V/,
where V D .vij/ and vij D 0:5ji�jj. The error distributions are t and contaminated
normal. That is, the errors are generated as e � tdf for several degrees of freedom
(df ) and e � .1 � �/N.0; 1/ C �N.0; 32/ for several levels of contamination �.
These distributions allow us to investigate the effect of tail thickness and the rate
of contamination on the proposed method.

Scenario 2: The vector of predictors x is generated as x � .1 � �/N8.0; V/ C
�N8.1�; V/, with � D 5 and the errors are generated as e � N.0; 1/. This enables
us to study the effect of contamination (such us gross outliers and leverage points)
in the design space.

Scenario 3: This scenario considers a partial model misspecification similar to
the one in Arslan (2012). In this case, we take ˇ0 D .3; 1:5; 0; 0; 2; 0; 0; 0/0 and
ˇ�

0 D .3; : : : ; 3/0. Then x and y are generated as follows: for i D 1; : : : ; n � Œn��,
xi � N8.0; V/ and yi D x0

iˇ0 C N.0; 1/, for i D n � Œn�� C 1; : : : ; n, xi �
N8.1�; V/, � D 5, and yi D x0

iˇ
c
0 C N.0; 1/. Varying � in Œ0; 1/ allows us to

study the effect of various levels of model contamination.

In all cases, we considered the adaptive lasso penalty where the tuning parameter
is computed using the BIC criterion. The estimators studied were least squares
(LS-AL), least absolute deviations (LAD-AL), signed-rank (SR-AL), weighted
LAD (WLAD-AL), and weighted SR (WSR-AL). The weights were computed
as discussed above using minimum covariance determinant (MCD) of Rousseeuw
(1984). We performed 1000 replications and calculated the average number of cor-
rect zeros (true negatives), the average number of incorrect zeros (false negatives),
the percentage of correct models identified, and relative efficiencies versus LS-AL
of the proposed estimators for estimating ˇ1 based on estimated MSEs. The results
of Scenario 1 are given in Figs. 2.1 and 2.2 while the results of Scenarios 2 and 3
are given in Figs. 2.3 and 2.4, respectively.

Figure 2.1 shows that LAD-AL and SR-AL (unweighted) estimators are not very
good at identifying zeroes (left panels) compared to WLAD-AL and WSR-AL.
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Fig. 2.1 Average number of correct and incorrect zeroes, Relative model error, Percentage of
correct fit, relative efficiencies (RE) against t distribution df (Scenario 1). The symbols in the
plots are LS-AL (open triangle), LAD-AL (open square), SR-AL (open circle), WLAD-AL (filled
square) and WSR-AL (filled circle)

They are, slightly more efficient than their weighted counterpart in estimating
nonzero coefficients. Their relative efficiencies versus LS-AL stabilize towards the
theoretical relative efficiencies of 0.955 and 0.63 as the tails of the t distribution
approach the tails of the standard normal distribution.

Figure 2.2 shows that with the exception of LS-AL, the performance in detecting
true zeroes of all other estimators deteriorates as the proportion of contamination
increases (left panels). On the other hand, the false negatives of LS-AL increase
with increasing contamination (top right panel). Taken together, these indicate that
LS-AL increasingly over-penalizes when the proportion of outliers in the data
increases. and SR-AL (unweighted) estimators are not very good at identifying zeros
(left panels) compared to WLAD-AL and WSR-AL. Once again the unweighted
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Fig. 2.2 Average number of correct and incorrect zeroes, Relative model error, Percentage of
correct fit, relative efficiencies (RE) against contamination proportion (�) of the contaminated
normal distribution (Scenario 1). The symbols in the plots are LS-AL (open triangle), LAD-AL
(open square), SR-AL (open circle), WLAD-AL (filled square) and WSR-AL (filled circle)

LAD and SR are slightly more efficient in estimating nonzero coefficients than
their weighted counterparts while the relative efficiencies of both weighted and
unweighted estimators increases with increasing proportion of error contamination.

Figure 2.3 shows that, even when the model is correctly specified, high leverage
points have a detrimental effect on model selection. While the number of true
positives decrease, the weighted cases appear to provide some resistance for low
percentage of high-leverage points. With respect to the estimation of nonzero
coefficients, the false negative rates of LS-AL increase sharply compare to all other
estimators (top right panel). Once again, LS-AL is increasingly over-penalizing
the model with increasing proportion of high-leverage points. It is not surprising
that LS-AL is also inefficient in the estimation of nonzero coefficients, especially
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Fig. 2.3 Average number of correct and incorrect zeroes, Relative model error, Percentage of
correct fit, relative efficiencies (RE) against contamination proportion (�) of the distribution of
the predictor x (Scenario 2). The symbols in the plots are LS-AL (open triangle), LAD-AL (open
square), SR-AL (open circle), WLAD-AL (filled square) and WSR-AL (filled circle)

compared to WLAD-AL and WSR-AL, especially for moderate proportion (4–8 %)
of high-leverage points.

Our observations remain similar to the above for model misspecification (Sce-
nario 3). In this case, the performance of all the estimators deteriorates quite rapidly
with increasing contamination. LS-AL is once again the worst offender and WLAD-
AL and WSR-AL provide the highest relative efficiency. The unweighted forms are
much less efficient in comparison.
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Fig. 2.4 Average number of correct and incorrect zeroes, Relative model error, Percentage of cor-
rect fit, relative efficiencies (RE) against contamination proportion (�) of the model contamination
(Scenario 3). The symbols in the plots are LS-AL (open triangle), LAD-AL (open square), SR-AL
(open circle), WLAD-AL (filled square) and WSR-AL (filled circle)

2.4.2 High-Dimensional Simulation

Again as in Tibshirani (1996), consider the linear model (2.1), where x is a
100 � 40 matrix with entries xij D zij C zi such that zij and zi are independent
and generated from standard normal distributions. This setting makes the xij’s
to be pairwise correlated with correlation coefficient of about 0.5. The random
error in Eq. (2.1) is generated from two different distributions: the contaminated
normal distribution with different rates of contamination and the t distribution
with different degrees of freedom. The regression coefficient vector is set at ˇ D
.0; : : : ; 0; 2; : : : ; 2; 0; : : : ; 0; 2; : : : ; 2/, where there are ten repeats in each block.
From 1000 replications, average numbers of correct zeroes, average number of
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incorrect zeroes and percentage of correct fit are reported. The simulation results
are displayed in Fig. 2.5, where for clarity of presentation we only report results of
LS-AL, SR-AL, and WSR-AL fits.

Our observations are quite similar to the low-dimensional case. LS-AL over-
penalizes with increasing proportion of high leverage points, even when the model
is correctly specified. SR-AL and WSR-AL provide superior performance in high
leverage situations (rows three and four of Fig. 2.5). WSR-AL is clearly the best
among the three for heavier tailed errors (top row). The percentage of correctly
estimated models deteriorates with increasing error contamination (second row) for
all the methods.

2.4.3 Boston Housing Data

The data considered here is the Boston Housing dataset which contains median
values of housing in 506 census tracts and 13 predictors comprised of characteristics
of the census tract. The full description of the data can be found in Leng (2010) and
the dataset is available in the R library MASS. So, for sake of brevity, the description
will not be included here. We first fit unpenalized regression models using the
LS and SR procedures. The results are given in Table 2.1. We then fit penalized
regression models using LS-AL, SR-AL, and WSR-AL. These results are displayed
in Table 2.2.

The results in Table 2.1 indicate that both LS and SR find the variables INDUS
and AGE insignificant while ZN is marginally significant. However, the LS and
SR estimated coefficients are quite different in some cases outside of two standard
errors of each other. Also, the residual plot given in Fig. 2.6 indicates the presence of
heavy tails casting doubt on the LS results. In fact, observing the plot of studentized
residuals of LS and SR in Fig. 2.6 plotted on the same scale, it is clear that the SR
fit identifies many more outlying observations than the LS estimator. The results
of penalized regressions given in Table 2.2 show that LS-AL eliminates the two
insignificant variables (INDUS, AGE) from the model while SR-AL and WSR-AL
eliminate a third variable (ZN) from the model. Thus, our observations are in line
with those of Leng (2010).

The obvious question is if this reduction in model is associated with loss in
prediction accuracy. To evaluate this, we performed cross validation where we
randomly split the data into a training set containing approximately 90% of the
data and a testing set containing the remaining 10 %. We fit the models using
the training sets and calculated the absolute error for the test sets jy � Ǫ � x0 Ǒ j,
where Ǫ is estimated using the mean (for LS) and median (for LAD and SR) of the
training set residuals y�x0 Ǒ . Table 2.3 gives the mean absolute error and the median
model size over 100 iterations. The estimators considered all use the adaptive lasso
penalty. Weights were computed using three different versions of the Mahalanobis
distance: classic (Mah), minimum volume ellipsoid (MVE) of Rousseeuw (1984),
and minimum covariance determinant (MCD) of Rousseeuw (1984).
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Fig. 2.5 Average number of correct and incorrect zeroes and percentage of correct fit for the
high-dimensional simulation. The symbols in the plots are LS-AL (open triangle), SR-AL
(times) and WSR-AL (plus). First row represents t distributed errors, second row represents
contaminated normal, third row represents high-leverage points, and the last row represents model
misspecification
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Table 2.1 Estimated coefficients using LS and SR

LS SR

Coef se t Coef se t

CRIM �0:0103 0.0013 �7:8083 �0:0089 0.0010 �8:8709

ZN 0:0012 0.0005 2:1338 0:0008 0.0004 2:0147

INDUS 0:0025 0.0025 1:0022 0:0023 0.0019 1:2355

CHAS 0:1009 0.0345 2:9255 0:0781 0.0263 2:9691

NOX �0:7784 0.1529 �5:0912 �0:3925 0.1166 �3:3662

RM 0:0908 0.0167 5:4300 0:1766 0.0128 13:8376

AGE 0:0002 0.0005 0:3983 �0:0006 0.0004 �1:5251

DIS �0:0491 0.0080 �6:1486 �0:0359 0.0061 �5:9025

RAD 0:0143 0.0027 5:3725 0:0094 0.0020 4:6518

TAX �0:0006 0.0002 �4:1574 �0:0005 0.0001 �4:6360

PTRATIO �0:0383 0.0052 �7:3086 �0:0300 0.0040 �7:5140

B 0:0004 0.0001 3:8468 0:0006 0.0001 7:5509

LSTAT �0:0290 0.0020 �14:3036 �0:0229 0.0015 �14:8047

Table 2.2 Estimated regression coefficients using LS, SR, LS-AL,
SR-AL, and WSR-AL

LS LS-AL SR SR-AL WSR-AL

CRIM �0:0103 �0:0101 �0:0089 �0:0077 �0:0088

ZN 0:0012 0:0009 0:0008 0:0000 0:0000

INDUS 0:0025 0:0000 0:0023 0:0000 0:0000

CHAS 0:1009 0:0975 0:0781 0:0506 0:0546

NOX �0:7784 �0:6990 �0:3925 �0:3238 �0:3171

RM 0:0908 0:0911 0:1766 0:1696 0:1708

AGE 0:0002 0:0000 �0:0006 0:0000 0:0000

DIS �0:0491 �0:0489 �0:0359 �0:0251 �0:0263

RAD 0:0143 0:0126 0:0094 0:0056 0:0053

TAX �0:0006 �0:0005 �0:0005 �0:0003 �0:0003

PTRATIO �0:0383 �0:0376 �0:0300 �0:0317 �0:0329

B 0:0004 0:0004 0:0006 0:0005 0:0006

LSTAT �0:0290 �0:0288 �0:0229 �0:0249 �0:0245

It is evident from Table 2.3 that while the model performances remain relatively
similar, the median model sizes of the MCD and MVE weighted adaptive lasso
estimation required far fewer variables. For comparable model sizes, SR-AL
estimator provides lower absolute error than LS-AL, LAD-AL, WLAD-AL (Mah),
and WSR-AL (Mah). Also a comparison of WLAD-AL (Arslan 2012) and WSR-
AL shows that on average WSR-AL achieves a lower mean absolute error using a
slightly smaller model.
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Fig. 2.6 Plots of studentized residuals versus fitted values as well as residual Q-Q plots of LS and
SR fits

Table 2.3 Results of cross validation

Method Mean absolute error (St dev) Median model size

LS-AL 0.1408 (0.0184) 11.0

LAD-AL 0.1368 (0.0226) 11.0

SR-AL 0.1356 (0.0214) 11.0

WLAD-AL (Mah) 0.1365 (0.0213) 11.0

WSR-AL (Mah) 0.1360 (0.0210) 11.0

WLAD-AL (MVE) 0.1474 (0.0232) 10.0

WSR-AL (MVE) 0.1452 (0.0219) 10.0

WLAD-AL (MCD) 0.1523 (0.0244) 8.5

WSR-AL (MCD) 0.1490 (0.0224) 8.0
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2.5 Discussion

This paper considered variable selection for linear models using penalized weighted
signed-rank objective functions. It is demonstrated that the method provides
selection and estimation consistency in the presence of outliers and high-leverage
points. Our simulation study considered both low and high-dimensional data. In
both cases, it was shown that compared to penalized least squares, penalized
rank-based estimators provided more accurate true negative and false negatives
identification while providing higher efficiency in estimating true positives when
the error distribution is heavy tailed or contaminated. The weighted versions of
the rank-based estimators provided protection against high leverage points, even
when the model is incorrectly specified for the high-leverage points as long as the
proportion of high-leverage points is moderate.

While the results are encouraging, an interesting extension involves regression
when the data are ultra-high dimensional; that is, the dimension of the predictor
also goes to infinity. This is currently under consideration by the authors. Another
interesting extension involves generalized linear and single index models or even
functional data analysis. Variable selection remains a valid exercise in these cases,
where the last case is usually dealt with using group-selection methods.
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birthday. We are thankful for his mentorship and guidance over the years. We also thank the
anonymous referee for suggestions that improved the presentation.

Appendix

This Appendix provides some lemmas and the proofs of the main results (Theo-
rems 2.1 and 2.2). In the proofs we have taken W D I to simplify notation. The
general case follows by taking W1=2x in place of x in the proofs.

Proofs

The following three lemmas, whose proofs follow from slight modifications of
those given in Hössjer (1994) and Hettmansperger and McKean (2011), are key
to deriving the proof of the main results.

Lemma 2.1. Under assumptions .I1/ and .I2/, we have Q̌
n ! ˇ0 a:s:

The proof of this lemma is given in Hössjer (1994) for w � 1 and in Abebe et al.
(2012) for any positive w, and a more general regression model. Also, as in Wu
(1981), the proof of this lemma is obtained by showing that
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lim
n!1 inf

ˇ2Bc

�
Dn.vn; w; ˇ/ � Dn.vn; w; ˇ0/

�
> 0 a:s: (2.11)

where B is an open subset of B and ˇ0 2 Int.B/.

Lemma 2.2. Putting Un.�; ˇ/ D kSn.�/ � Sn.ˇ/ � �.�/ C �.ˇ/k1

n�1=2 C k�.�/k1

, we have for

small enough ı > 0 that

sup
k�k�ı

Un.�; ˇ0/
a:s�! 0 as n ! 1:

This lemma ensures that n�1=2Sn.ˇ0/ converges in distribution to a multivariate
normal distribution with mean zero and covariance matrix �'C˙ . It also results
in the following asymptotic linearity established in Hettmansperger and McKean
(2011).

Lemma 2.3. Under the assumption of the errors having a finite Fisher information,
we have for all � > 0 and C > 0

P

"
supp

nkˇ�ˇ0k1�C
kn�1=2.Sn.ˇ/�Sn.ˇ0//C�'C

p
n.ˇ�ˇ0/k1 	 �

#
! 0 as n ! 1:

From this asymptotic linearity follows that for all ˇ such that kˇ � ˇ0k1 � C=
p

n,
we have

n�1=2Sn.ˇ/ D n�1=2Sn.ˇ0/ � �'C

p
n.ˇ � ˇ0/ C o.1/ (2.12)

Proof of Theorem 2.1. Set B D fˇ0 C n�1=2u W kuk1 < Cg. Clearly B is an open
neighborhood of ˇ0 and therefore Bc is a closed subset of B not containing ˇ0. To
complete the proof, it is then sufficient to show that

lim
n!1 inf

ˇ2Bc

�
Q.ˇ/ � Q.ˇ0/

�
> 0 a:s:

which from Lemma 1 of Wu (1981) will result in the
p

n-consistency of Ǒ
n. Indeed,

Q.ˇ/ � Q.ˇ0/ D Dn.vn; w; ˇ/ � Dn.vn; w; ˇ0/ C n
dX

jD1

�
P�j.jˇjj/ � P�j.jˇ0jj/

�
:

(2.13)

Now by the mean value theorem, assuming without loss of generality the jˇ0jj <

jˇjj, there exits ˛j 2 .jˇ0jj; jˇjj/ such that

P�j.jˇjj/ � P�j.jˇ0jj/ D H�j.j˛jj/sgn.˛j/.jˇjj � jˇ0jj/;
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and therefore

jP�j.jˇjj/ � P�j.jˇ0jj/j � H�j.j˛jj/jˇj � ˇ0jj:

This together with Eq. (2.13) imply that

Q.ˇ/ � Q.ˇ0/ D Dn.vn; w; ˇ/ � Dn.vn; w; ˇ0/ C n
dX

jD1

H�j .j˛jj/sgn.˛j/.jˇjj � jˇ0jj/

	 Dn.vn; w; ˇ/ � Dn.vn; w; ˇ0/ � p
nan

p0X

jD1

jujj; (2.14)

as ˇ 2 Bc implies that ˇ can be written as ˇ D ˇ0 C n�1=2u with kuk1 	 C.
Being a closed subset of a compact space, Bc is compact, and hence, is closed and
bounded. Then, there exists a constant M such that C � kuk1 � M. From the

last term of equation (2.14), note that
p0X

jD1

jujj � kuk1 � M from which, we have

�p
nan

p0X

jD1

jujj 	 �p
nanM. Thus,

Q.ˇ/ � Q.ˇ0/ 	 Dn.vn; w; ˇ/ � Dn.vn; w; ˇ0/ � p
nanM;

and so,

lim
n!1 inf

ˇ2Bc

�
Q.ˇ/ � Q.ˇ0/

� 	 lim
n!1 inf

ˇ2Bc

�
Dn.vn; w; ˇ/ � Dn.vn; w; ˇ0/

� � lim
n!1

hp
nanM

i
:

By assumption .I3/, limn!1
hp

nanM
i

D 0, and by Lemma 2.1, we have

lim
n!1 inf

ˇ2Bc

�
Q.ˇ/ � Q.ˇ0/

�
> 0 a:s:

Proof of Theorem 2.2. From the proof of Theorem 2.1 to obtain the oracle prop-
erty, it is sufficient to show that for any ˇ� satisfying kˇ�

a � ˇ0ak1 D Op.n�1=2/

and jˇ�
j j < Cn�1=2 for j D p0 C 1; : : : ; d,

@Q.ˇ/

@ˇj

ˇ̌
ˇ
ˇDˇ�

and ˇ�
j have the same sign.

Indeed,

n�1=2 @Q.ˇ/

@ˇj

ˇ̌
ˇ
ˇDˇ�

D �n�1=2Sj
n.ˇ0/ C �'C

p
n.ˇ� � ˇ0/ C p

nH�j .jˇ�
j j/sgn.ˇ�

j / C o.1/

D OP.1/ C p
nH�j .jˇ�

j j/sgn.ˇ�
j / for j D p0 C 1; : : : ; d;
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where Sj
n.ˇ0/ is the jth component of Sn.ˇ0/. Note that by assumption .I3/,

p
nH�j.jˇ�

j j/ 	 p
nbn ! 1 as n ! 1, and thus the sign of

@Q.ˇ/

@ˇj

ˇ̌
ˇ
ˇDˇ�

is

fully determined by that of ˇ�
j for n large enough. This together with Theorem 2.1

implies that lim
n!1 P. Ǒ

nb D 0/ D 1.

Moreover, by definition of Ǒ
n, it is obtained in a straightforward manner that

@Q.ˇ/

@ˇa

ˇ̌
ˇ
ˇD. Ǒ

a;0/
D oP.1/. From this, partitioning Sn.ˇ0/ as .Sn;a.ˇ0/; Sn;b.ˇ0//, it

follows from Eq. (2.12) that

oP.1/ D n�1=2Sn;a.ˇ0/ � �'C

p
n. Ǒ

na � ˇ0a/ C p
n

p0X

jD1

H�j.j Ǒ
na;jj/sgn. Ǒ

na;j/;

and jpn
Pp0

jD1 H�j.j Ǒ
na;jj/sgn. Ǒ

na;j/j � p0

p
nan ! 0 as n ! 1 by assumption

.I3/. Hence,

p
n. Ǒ

na � ˇ0a/ D ��1
'C n�1=2Sn;a.ˇ0/ C oP.1/:

As n�1=2Sn;a.ˇ0/
D�! N

�
0; �'C˙a

�
, we have

p
n
� Ǒ

na � ˇ0a

� D�! N
�
0; ��2

'C�'C˙a
�
:
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